
CURRENT SCIENCE OF CARBON SEQUESTRATION

SUSAN CROW AND JONATHAN DEENIK

crows@hawaii.edu www.soilandcarbon.com

CARBON SEQUESTRATION FOR CLIMATE CHANGE MITIGATION

Carbon sequestration = capture and storage of CO_2 that would otherwise be emitted to or remain in the atmosphere.

Lal (2008)

Greenhouse gas benefits = emissions reduction or carbon sequestration

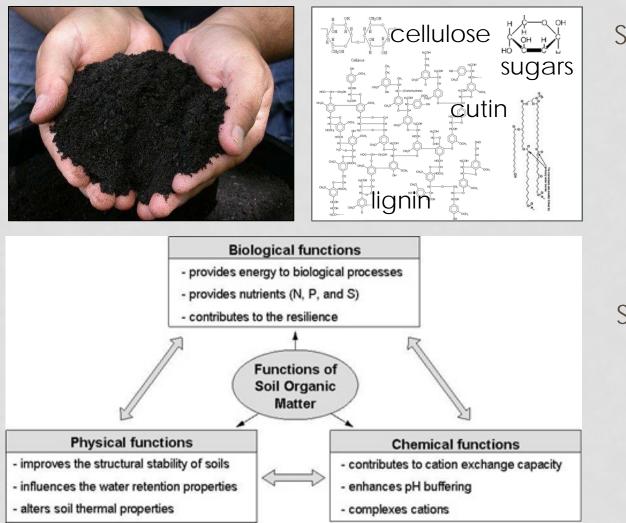

The biosphere acts naturally pull CO_2 out of the atmosphere.

Image Courtesy of EPA, www.clu-in.org

Management decisions influence the longevity in terrestrial pools, and therefore whether it counts as sequestration – and as carbon credit.

SOIL CARBON CONUNDRUM

Soil organic matter

_

47% Carbon

Soil organic matter must simultaneously decompose and accumulate

HEALTHY SOILS - ISLAND RESILIENCY

VALUE IN HEALTHY ECOSYSTEMS

 Market and non-market value exists for soil ecosystem services

Market and marketbased

- Improved water holding capacity = reduced irrigation costs
- Decomposition of organic amendments = decreased chemical fertilizer

Societal costs of climate change

- Uncertainty in food, water, and energy sectors
- Natural disasters
- Carbon
 market

Non-market based

- Practical benefits = reduction in transport, more time spent with family
 - Cultural value = respect for the aina and cultural practice
- Ethical value = a living landscape, beauty in nature

AGRICULTURE



Photo credits: https://mauimagazine.net/ wpcontent/uploads/hawaiian -forests.jpg (Forested)

All others by Susan Crow and Lab group

Initial or pre-intensive cultivation level

Considerations:

- CC biomass input
- Years in CCs
- Antecedent soil C Soil type
- CC species
- Tillage management

Climate

- Amendments (biochar!)
- If expanded from 177 million acres to day to 1 billion by 2015, estimated to reduce CO₂ by 17.35 gigatons globally.

Blanco-Canqui H., et al., 2015. Agron. J. 107:2449-2474.

AGROFORESTRY

Tree intercropping

Parkland systems

http://flickr.com/photos/76187282@N00/5669419104

Traditional agroforestry

Photos from Jonathan Deenik

- Principle: Diversity promotes soil health and productivity
- Carbon sequestration in tree biomass (but, only a fraction counts) and in soils (but, only if there is a degraded starting point)
- Reduced fertilizer and avoided emissions from food transport
- Although depending highly on site conditions and on the selected system, agroforestry has been recognized as having the greatest potential for C sequestration of all the land uses analyzed in the Land-Use, Land-Use Change and Forestry report of the IPCC (2000) potentially resulting in additional benefits such as reduction of soil erosion and improved water quality.

AQUACULTURE


The farming or ranching of any plant or animal species in a controlled salt, brackish, or freshwater environment; provided that such is on or directly adjacent to land.

https://www.kauaishrimp.com/images/farm_aerial.jpg

http://www.hawaiiforvisitors.com/images/oahu/attra ctions/kahuku-shrimp-farm-0395-398x235.jpg

https://www.ctahr.hawaii.edu/site/images/Ext/AQU.jpg

http://ecotippingpoints.org/ourstories/indepth/heeia/image003.jpg

http://www.midweek.com/wpcontent/uploads/2012/06/cover 2.jpg

Primary greenhouse gas benefit comes in avoided or reduced emissions.

CHALLENGES AND OPPORTUNITIES

emp. conifer forest

NS

Boreal forest/taiga

Ν

N

N S

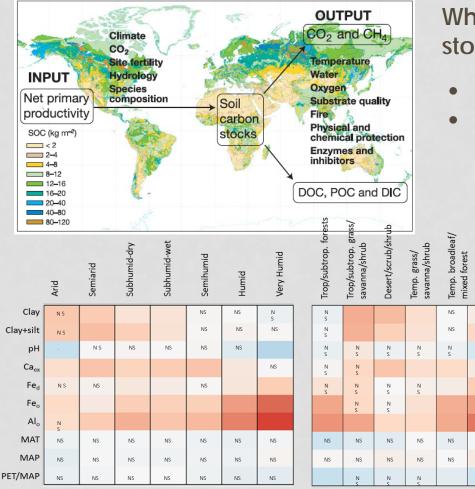
Ν

NS

NS

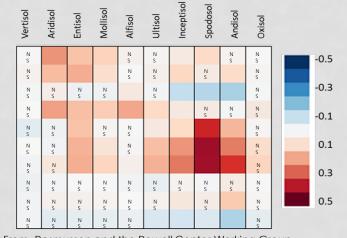
Ν

Tundra


N

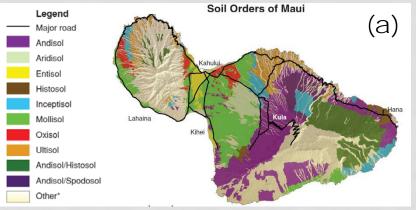
NS

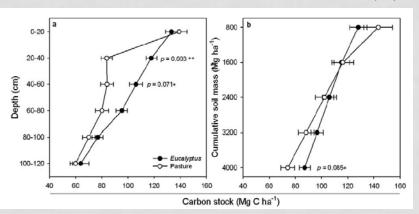
NS


Ν

From: Davidson and Janssens (2006)

Why is it so hard to predict carbon stocks?

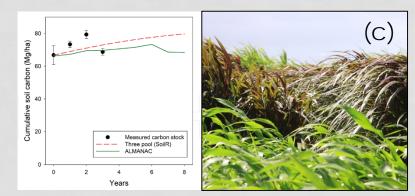

- Ecosystems are complex
- Climate, soil, biome all differ in their relationship to soil properties to influence soil carbon stocks.


From: Rasmussen and the Powell Center Working Group

CHALLENGES AND OPPORTUNITIES

(b)

From: Deenik and McClellan 2007

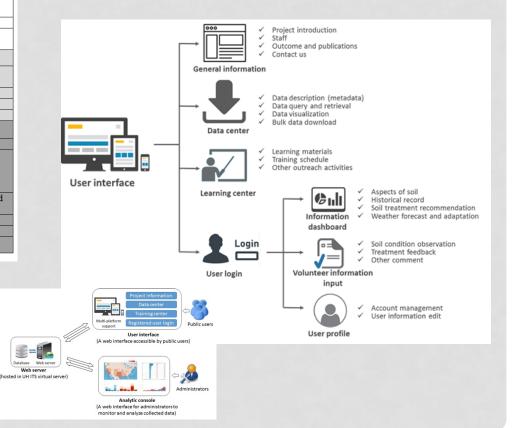


From: Crow et al. 2016 – Big Island pasture conversion to eucalyptus plantation

Why is it so hard to predict how carbon stocks will change with land use in Hawaii?

- Hawaii has 10 of the 12 soil orders

 (a) and 70% of global climatic life zones
- Compaction makes measurement difficult in many of our soils (b)
- Predictive models do not match our measured values (c)


From: Wells et al. 2017 – Maui perennial grasses sequestered carbon belowground quickly, not capture by the ALMANAC simulation model.

DIVERSE LANDSCAPES AND CLIMATE GRADIENTS; NO ONE SOLUTION

Progress on selecting soil health parameters for Hawaii

Parameters for a <i>potential</i> Soil Health Index for Hawaii, described in detail below.		
Indicator	Function	Methodology
Physical		
Available H ₂ O	Plant water relations	Pressure plate
Water stable aggregates	Infiltration, porosity, resistance to	Wet sieving (>4 mm
	erosion	size class)
Chemical		
рH	Nutrient availability and potential for toxicity	<u>pH</u> electrode
CEC	Nutrient retention, buffering capacity	Effective CEC
Extractable nutrients	Nutrient supply	Mehlich 3
Total organic C and N	Biological resource	Elemental analysis
Biological		
Carbon Pools		
- Carbon in water stable aggregates	Protection of carbon within aggregate	Wet sieving and
	structure	elemental analysis
		(0.25-1.0 mm size
		class)
- Stable carbon	Potential carbon sequestration	28-day incubation and
		3-pool modeling
CO ₂ respiration - burst	Microbial activity	24 hr incubation
Beta glucosidase	Cellulose degradation	Enzyme assay
Potentially mineralizable N	Plant available N reserves	28-day Incubation

<u>Proposed</u> tool for outreach, recommendations, measurement, and monitoring

OUR TASK

"Identify practices to improve soil health and promote carbon sequestration"

Lab

- Jon Wells (lab technician), Olivia Schubert, Nancy Parker, Christine Glazer, Lauren Deem (research technicians)

- Maxim Irion, Mariko Panzella, Heather Kikkawa, Nate Hunter, Mark Miller, Anne Quidez, Daniel Richardson, Eryn Opie, Kylie Wong (undergraduate research assistants)

- Mataia Reeves, Yudai Sumiyoshi, Meghan Pawlowski, Hironao Yamazaki, Lauren Deem, Whitney Ray, Jon Wells (graduate students);

