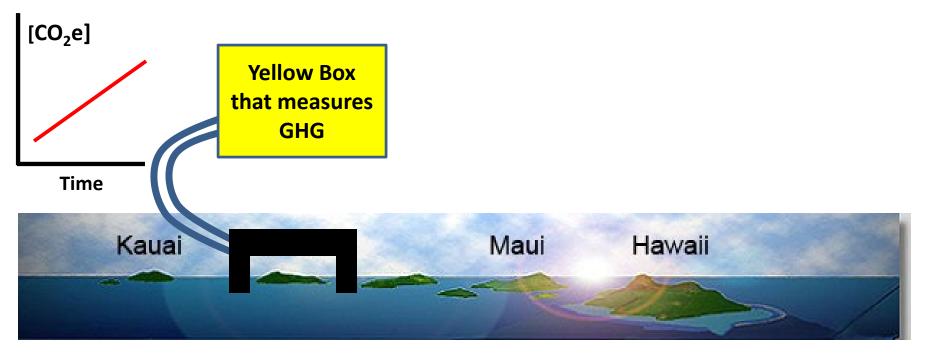
DEFINING CARBON NEUTRAL LANDSCAPES

HAWAII AS A MODEL SYSTEM FOR

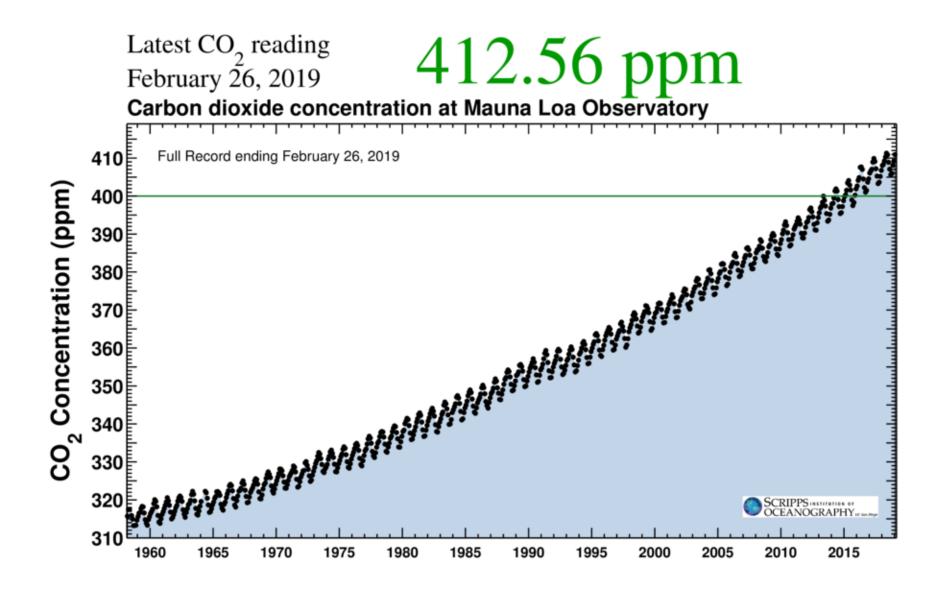
UNDERSTANDING CARBON NEUTRALITY DEFICITS AND ATTAINMENT

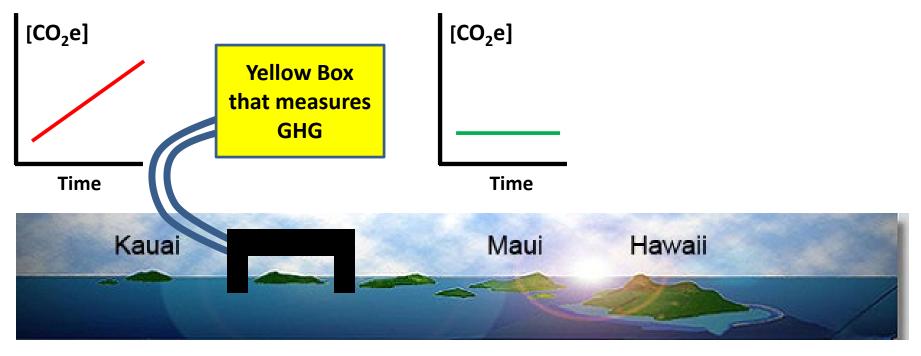
Christian P. Giardina

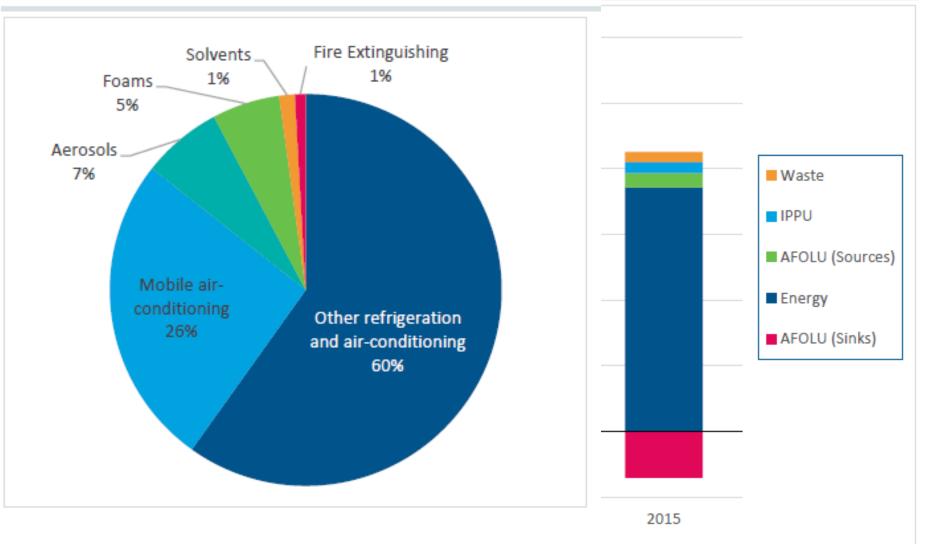
USDA Forest Service Institute of Pacific Islands Forestry, Hilo, Hawaii

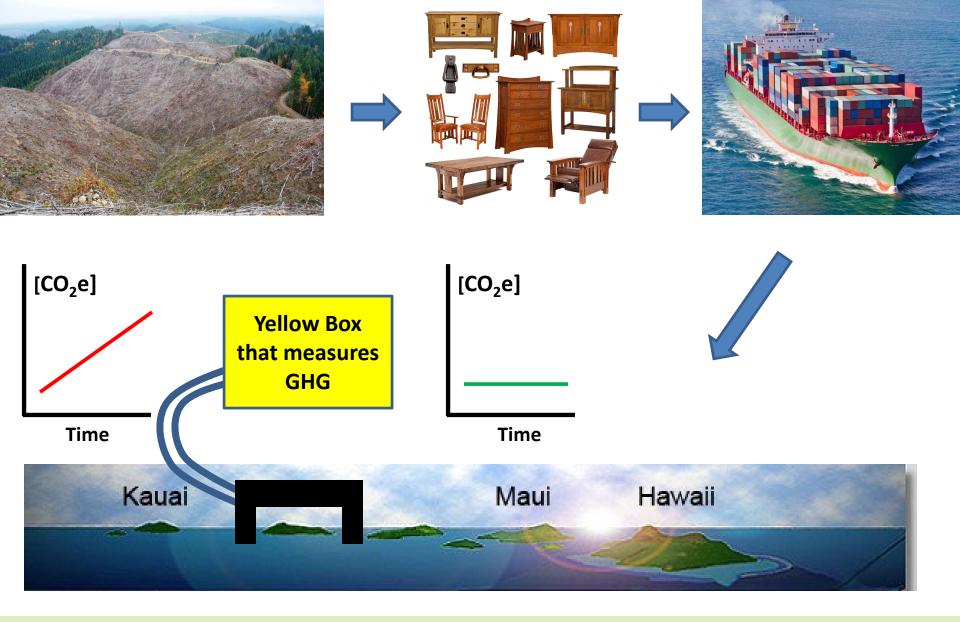


- Establish a comprehensive greenhouse gas inventory (global warming potential budget) for Hawaii.
- 2. Develop a plan for how to increase carbon sequestration in natural and working lands to offset our emissions.

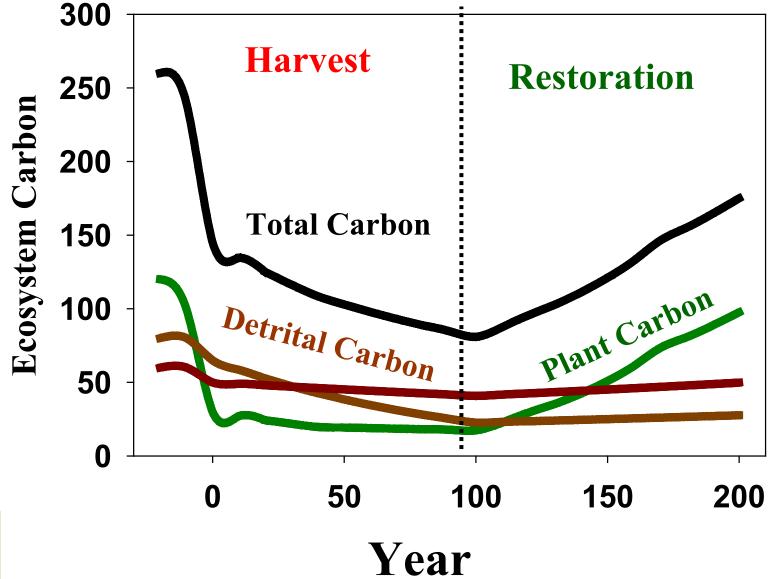




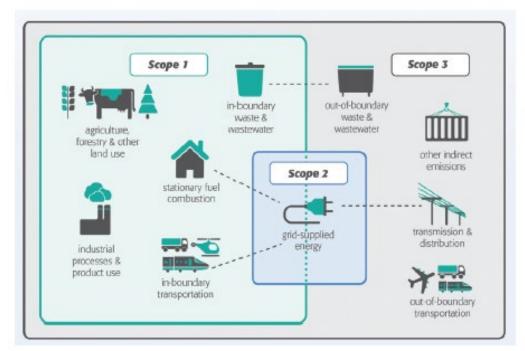



Figure 4-4: 2015 Emissions from ODS Substitutes by Sub-Category

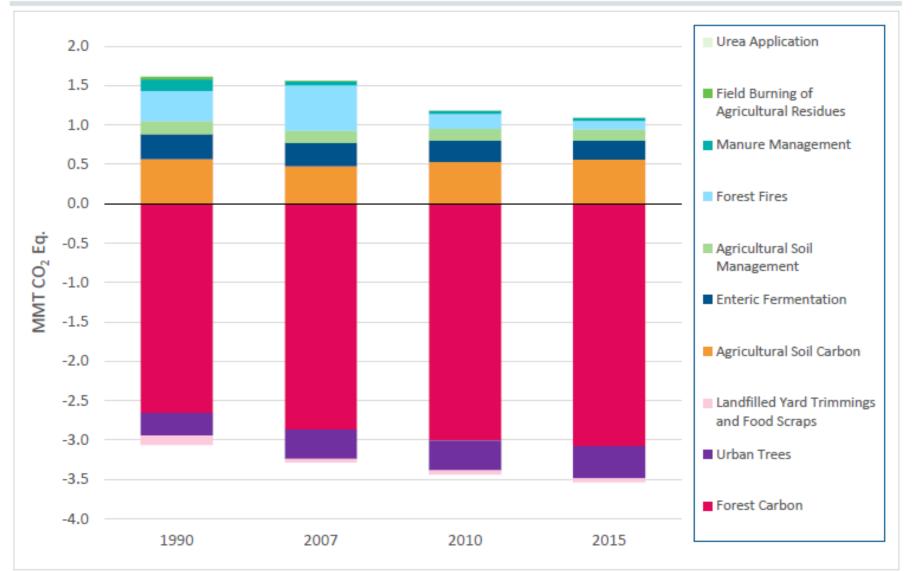
Hawaii Greenhouse Gas Emissions Report for 2015



Carbon stocks (MtC/ha) in plants, soils & dead wood


ds Forestry

Source: ICLEI, WRI and C40, "Global Protocol for Community Scale Greenhouse Gas Inventories", p. 11.

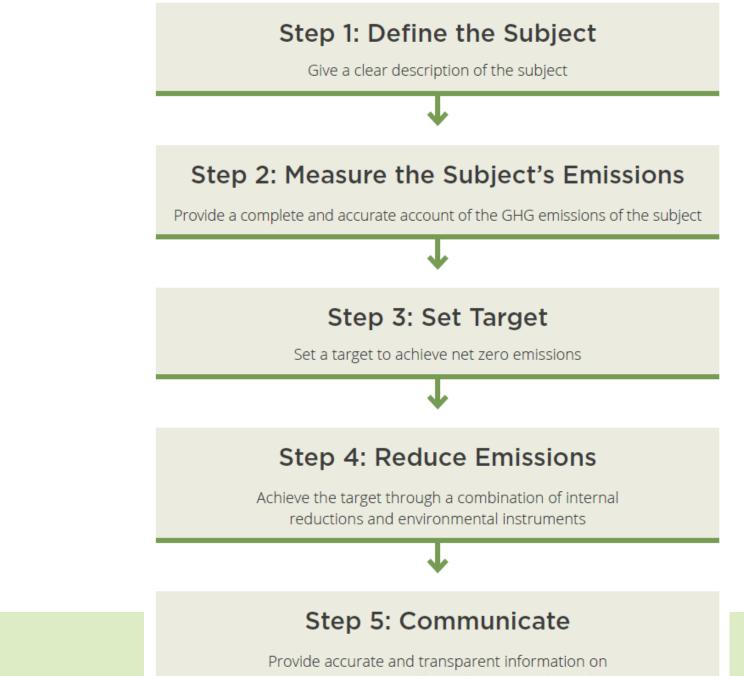


HB2182

§225P-B Zero emissions clean economy target. (a) Considering both atmospheric carbon and greenhouse gas emissions as well as offsets from the local sequestration of atmospheric carbon and greenhouse gases through long-term sinks and reservoirs, a statewide target is hereby established to sequester more atmospheric carbon and greenhouse gases than emitted within the State as quickly as practicable, but no later than 2045.

Figure 5-4: AFOLU Emissions and Removals by Source and Sink Category and Year

Hawaii Greenhouse Gas Emissions Report for 2015


Uncertainties and Areas for Improvement

The Tier 1 Gain Loss Method as outlined by the *2006 IPCC Guidelines* (IPCC 2006) was used to calculate carbon flux in managed Hawaii forests. Unmanaged forests are not included in this analysis per IPCC

Uncertainties associated with forest fire estimates include the following:

- Wildfire acres burned data and the area of wildland under protection were not available for all inventory years. As a result, estimates for these data were proxied based on the available data. There is significant annual variability in wildfire acres burned data, so 1994 data may not accurately represent wildfire acres burned in 1990. Further investigation into alternative sources for historical wildfire acres burned may be considered in future analyses.
- The ratio of forest and shrubland area is also a source of uncertainty for all inventory years because the ratios are estimated based on land cover data for years 2000 and 2014. Additional land cover data should be incorporated into future analyses if it becomes available.
- The estimate of carbon density in forests and shrubland and their assumed combustion
 efficiencies are not specific to Hawaii. Further research into the carbon density and combustion
 efficiencies in Hawaii may be considered in future analyses to further tailor these emission
 factors for the state of Hawaii.

The estimated sequestration rates in urban trees are based only on trees in Honolulu. Honolulu County accounted for 56 percent of Hawaii's urban area in 2010 (U.S. Census 2012). While Honolulu County has the largest share of urban area, its sequestration rates may not align with urban trees in other counties. Further research into urban tree sequestration rates by county or island may be considered in future analyses.

Protoco

arbonNeutral

orogrammes

neutral

for carbon

standard

global

how CarbonNeutral[®] certification is achieved

Step	Entities	Products ¹	Activities		
1. Select GHG accounting protocol	The GHG Protocol Corporate Standard, or ISO 14064-1, or the Climate Registry's General Reporting Protocol or similar consistent protocols <u>must</u> be used.	The GHG Protocol Product Standard, PAS 2050, ISO/TS 14067 or methods set out in steps 2-7 below <u>must</u> be applied unless the CarbonNeutral certifier identifies valid reasons for using other methods.	The GHG Protocol Product Standard, PAS 2050 or methods set out in steps 2-7 <u>must</u> be applied unless the CarbonNeutral certifier identifies valid reasons for using other methods.		
2. Define boundary	The boundary <u>must</u> include all sites, plants and vehicles owned by or under the direct management control of the subject.	The boundary <u>must</u> be consistent with the definition of the subject. For cradle-to-customer subjects, the boundary <u>must</u> extend to the point of customer delivery. For cradle-to- grave subjects, the boundary <u>must</u> extend to end-of-life disposal.	The boundary <u>must</u> be consistent with the definition of the subject and <u>must</u> include the sites and/or vehicles involved in the delivery of the activity.		
3. Identify emissions sources	Assessments <u>must</u> include emissions s specific required assessment emissior	sources as specified in Annex B – Carbo as sources.	onNeutral® certifications and their		
4. Identify GHGs to be measured	All Kyoto Protocol GHGs, carbon dioxic perfluorocarbons, sulphur-hexafluorid insofar as they apply to the subject.	de (CO ₂), methane (CH ₄), nitrous oxide (l le (SF ₆) and nitrogen trifluoride (NF ₃) mu	N ₂ O), hydrofluorocarbons, <u>ist</u> be measured in the assessment,		
5. Establish time period	Assessments <u>must</u> at a minimum be conducted annually and should relate to a 12 month data period. The final date of an assessment data period <u>must</u> not be earlier than nine months prior to start of CarbonNeutral® certification period (i.e. data more than 21 months old is not permitted).	For standard consumer products, assessments <u>must</u> at a minimum be every three years, unless a significant change to the product supply chain has occurred in which case another assessment <u>must</u> be undertaken. For one-off or custom produced products the timescale <u>must</u> relate to the production and delivery period.	For standard consumer activities, assessments <u>must</u> at a minimum be annual. For one-off or custom activities the timescale <u>must</u> relate to the production and delivery period.		
6. Determine data validity	Primary data <u>must</u> be used in preference to secondary data, where it is readily available, up to date and geographically relevant. Estimates, extrapolations, models and industry averages may be used where primary data is unavailable. When this is done, these assumptions <u>must</u> be recorded by the party carrying out the assessment. A qualitative and/or quantitative description of the uncertainty associated with the client-supplied data should be made. In cases where the quality of client supplied data is not known (e.g. in online calculators), the dependency of results on the quality of input data should be made clear.				
7. Measure GHG emissions	The subject's GHG emissions <u>must</u> either be directly measured or quantified using national, regional, international, or other relevant emission factors, with preference given to emission factors most closely associated with the emissions source (e.g. DEFRA emission factors for UK-based assessments).				
	The assessment <u>must</u> be reported in units of CO_2e according to the 100 year potential of each gas. Preference should be given to the GWP factors included within the latest assessment report of the Intergovernmental Panel on Climate Change (IPCC) (currently 5th). In instances where most relevant emission factors available use previous GWP factors, it is still acceptable to use these emission factors. GWP factors applied <u>must</u> be clearly stated in the assessment.				
		be assessed (see Annex B) but are esti out collectively no more than 5% of the s ed estimation methods.			
8. Quality assurance	approved, by an independent, expert t the above requirements in this table.	onducted or checked, and in the case of third party approved by Natural Capital Annex F details requirements and reco 2.8 provides further guidance on quality	Partners to ensure they have met mmendations for the presentation		

Research &

Development

WORLD Resources Institute

World Business Council for Sustainable Development

Accounti

Project

for

Protocol

5

Т

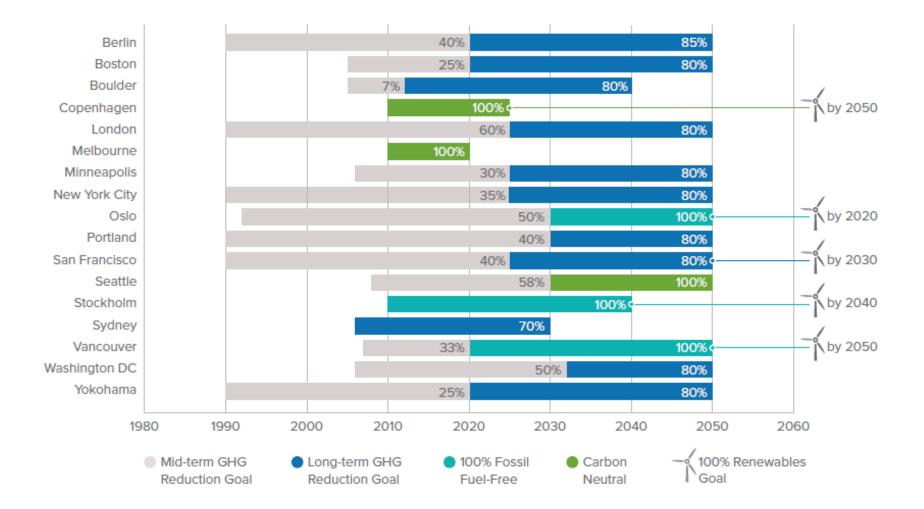
5

The

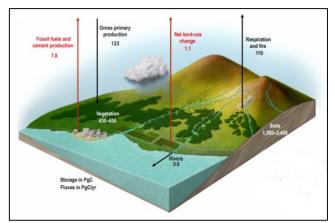
PART II GHG REDUCTION ACCOUNTING AND REPORTING CHAPTER 5 Defining the GHG Assessment Boundary

REQUIREMENTS 30 **GUIDANCE** 30 Selecting a Baseline Procedure **CHAPTER 6** REQUIREMENTS 37 **GUIDANCE** 37 Identifying the Baseline Candidates **CHAPTER 7** REQUIREMENTS 39 **GUIDANCE** 39 Estimating Baseline Emissions—Project-Specific Procedure **CHAPTER 8** REQUIREMENTS 49 **GUIDANCE** 50 Estimating Baseline Emissions—Performance Standard Procedure **CHAPTER 9** REQUIREMENTS 62 GUIDANCE 64 Monitoring and Quantifying GHG Reductions **CHAPTER 10** REQUIREMENTS 73 GUIDANCE 74 **Reporting GHG Reductions** CHAPTER 11 REQUIREMENTS 81

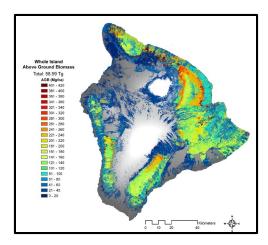
Framework for Long-Term Deep Carbon Reduction Planning

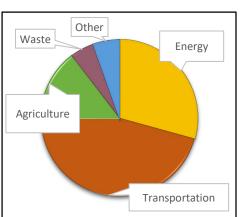

Source: City of Vancouver, "Greenest City 2020 Action Plan Update."

- Developing Carbon Neutrality Planning Standards – Developing approaches, analysis, and tools to support carbon neutrality; standardizing measurement and verification methodologies for tracking progress.
- Advancing "Transformative Change" in Key Urban Sectors – Sharing and implementing best practices for achieving "transformative" deep carbon reduction strategies in urban transportation, energy use, and waste systems.
- Advocating for Policy Change Identifying and advocating for policies at the state, regional, and federal levels to reduce emission sources not controlled directly by cities and engaging with other external stakeholders who are critical to cities' success.
- Speaking with a Common Voice—Helping CNCA cities demonstrate their leadership and communicate with a common voice.
- Creating a CNCA "Innovation Fund"—Investing in high-potential, city-led projects that develop, test, implement, and amplify deep decarbonization strategies and practices.
- Increasing Alliance Impact Sharing Alliance learnings with a broader audience to benefit the "next wave" of cities striving for carbon neutrality.

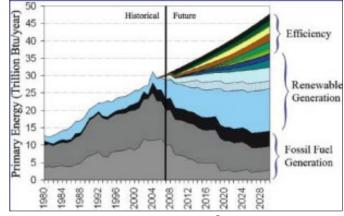


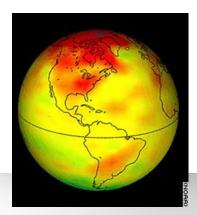
CNCA Cities' Long-Term and Interim GHG Reduction Targets

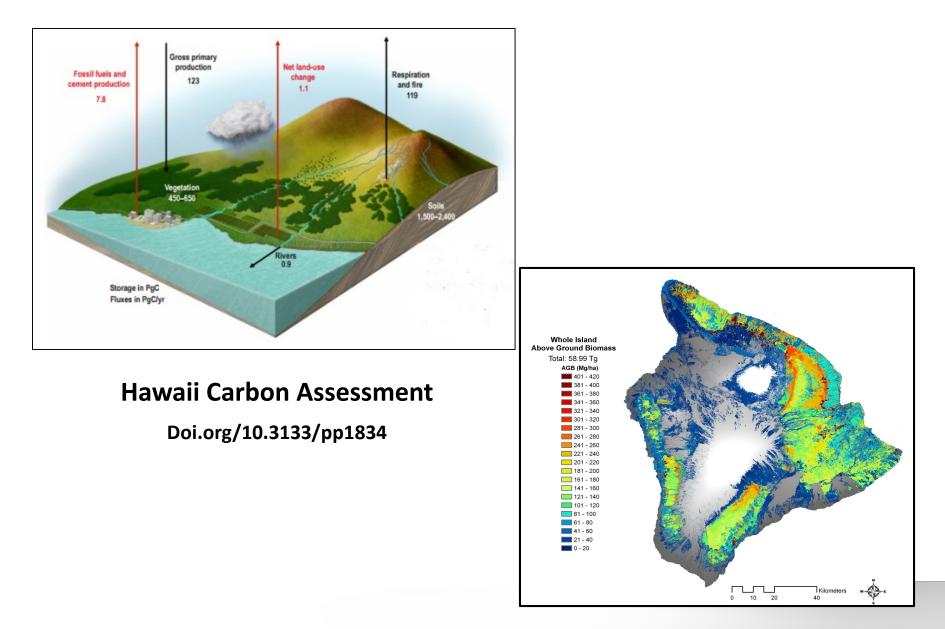




Hawaii Carbon Assessment


Doi.org/10.3133/pp1834


Hawaii Greenhouse Gas Inventory


http://health.hawaii.gov/ cab/hawaii-greenhousegas-program/

Hawaii Material Energy Flow Budgets

www.environment.yale.edu/profile/ chertow

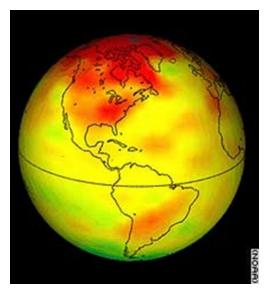
Hawaii GHG Emissions and Sinks by Sector/Category for 1990, 2007, 2010, 2015, 2020, and 2025 (MMT CO₂e); Reproduced from Tables ES-1 and <u>ES-2 (Projections</u>) * of the Report.

Sector/Category	1990	2007	2010	2015	<u>2020</u>	<u>2025</u>
Energy	19.61	21.84	20.46	18.57	<u>18</u>	<u>15.51</u>
IPPU	0.17	0.54	0.67	0.83	<u>0.89</u>	<u>0.95</u>
AFOLU (Sources)	1.61	1.56	1.18	1.1	<u>1.18</u>	<u>1.11</u>
AFOLU (Sinks)	-3.06	-3.28	-3.44	-3.54	<u>-3.57</u>	<u>-3.6</u>
Waste	0.75	1.05	0.89	0.78	0.84	<u>0.9</u>
Total Emissions (Excluding Sinks)	22.15	25.00	23.21	21.28	<u>20.9</u>	<u>18.46</u>
Net Emissions (Including Sinks)	19.08	21.71	19.77	17.75	<u>17.34</u>	<u>14.86</u>
Domestic Aviation	4.66	4.42	2.87	3.23	3.46	<u>3.67</u>
Net Emissions (State Goal) **	14.43	17.29	16.9	14.52	<u>13.88</u>	<u>11.19</u>

2015 Hawaii Greenhouse Gas Inventory http://health.hawaii.gov/cab/hawaii-greenhousegas-program/

Mass balances	1	+ 2 -	3	= 4	5 =	6 +	- 7	+ 8
Products (waste materials)	Imports	Domestic production	Exports	Apparent consum. ^a	Waste generation ^a	On-island recycling	Disposal	Waste exports
Lumber (C&D, wood)	350	9	270	89	58	8	50	0
Paper (paper)	110	0	40	70	360 ^b	0	290	70
Minerals (C&D, glass)	540	3,400	215	3,725	460	210	250	0
Metals (scrap)	2,450	0	1,600	850	176 ^b	0	21	155
Chemicals (hazardous)	145	0	69	76	30 ^b	15	2	13
Food and agriculture (scraps, sludge)	857	104	239	722	203	43	160	0
Biomass/green waste	0	200	0	200	160	80	80	0
Fossil fuels/ash	9,500	0	2,700	6,800	70	70	0	0
Final products/ discarded products	2,659	5	1,534	1,130	274	15	255	4
Total	16,611	3,718	6,667	13,662	1,791	441	1,108	242

Table I Island-wide material flows for Oahu, Hawaii, 2005 (in 1,000 tons, excluding water)


Note: 1,000 tons (short tons) = 2,000,000 pounds (lb) \approx 907,000 kilograms (kg, SI) = 907 metric tons. Consum. = consumption. C&D = construction and demolition.

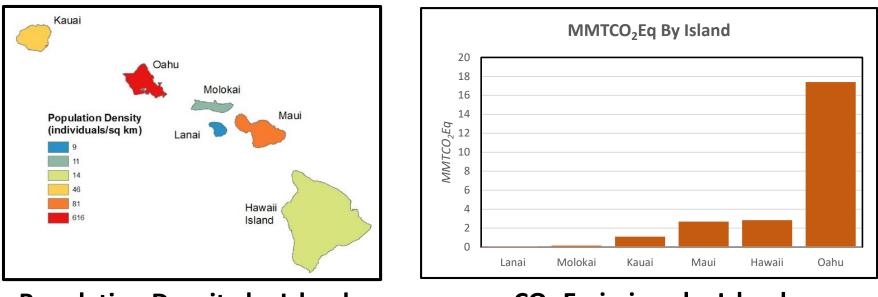
^aCalculated by mass balance

^bIncorporates waste from final products

Hawaii Material Energy Flow Budgets

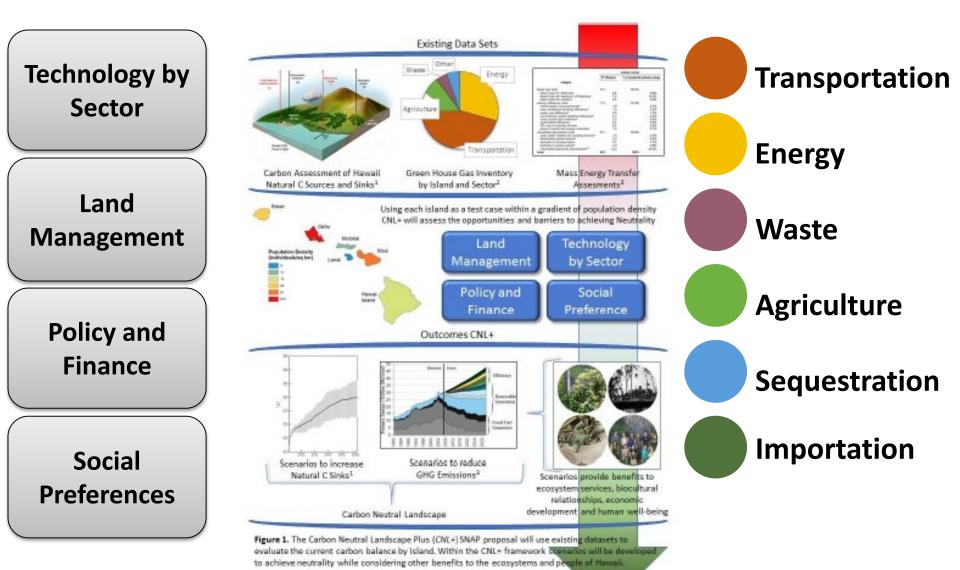
www.environment.yale.edu/profile/ chertow

Mass balances	1	+ 2 -	- 3	= 4	5 =	6 +	- 7	+ 8
Products (waste materials)	Imports	Domestic production	Exports	Apparent consum. ^a	Waste generation ^a	On-island recycling	Disposal	Waste exports
Lumber (C&D, wood)	350	9	270	89	58	8	50	0
Paper (paper)	110	0	40	70	360 ^b	0	290	70
Minerals (C&D, glass)	540	3,400	215	3,725	460	210	250	0
Metals (scrap)	2,450	0	1,600	850	176 ^b	0	21	155
Chemicals (hazardous)	145	0	69	76	30 ^b	15	2	13
Food and agriculture (scraps, sludge)	857	104	239	722	203	43	160	0
Biomass/green waste	0	200	0	200	160	80	80	0
Fossil fuels/ash	9,500	0	2,700	6,800	70	70	0	0
Final products/ discarded products	2,659	5	1,534	1,130	274	15	255	4
Total	16,611	3,718	6,667	13,662	1,791	441	1,108	242


Table I Island-wide material flows for Oahu, Hawaii, 2005 (in 1,000 tons, excluding water)

Note: 1,000 tons (short tons) = 2,000,000 pounds (lb) \approx 907,000 kilograms (kg, SI) = 907 metric tons. Consum. = consumption. C&D = construction and demolition.

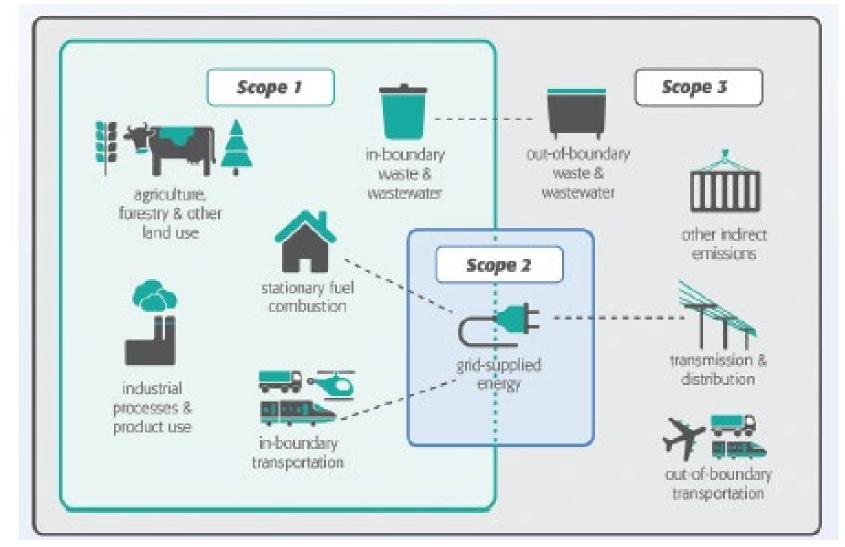
^aCalculated by mass balance


^bIncorporates waste from final products

Hawaii as a model system:

Population Density by Island

CO₂ Emissions by Island



- Selmants, P.G., Sendina, C.P., Jacobi, J.D., and Div, 25 Hampleds, 2007, Seed in and projected hittine carbon storage and carbon fluxes in and of Hawain 1:0.5. Seclogical Survey Professional Paper 1824, 134p.
- ICF International, 2008, Hawaii greathousepas Inventory: 1950 and 2007, Hawaii Department of Susheas, Economic Dave Revent & P.
 International, 2008, Hawaii greathousepas Inventory: 1950 and 2007, Hawaii Department of Susheas, Economic Dave Revent & P.
- 3. Johnson, J., & Chertow, M. (2008). Climate stabilization wedges in action: A systems approach to energy sustainability for Harvey and

Clearly define neutrality and so the task at hand

Adopt a framework and build a plan

Framework for Long-Term Deep Carbon Reduction Planning

Most Recent Climate Action Plans of Alliance Cities

OTHER RESOURCES

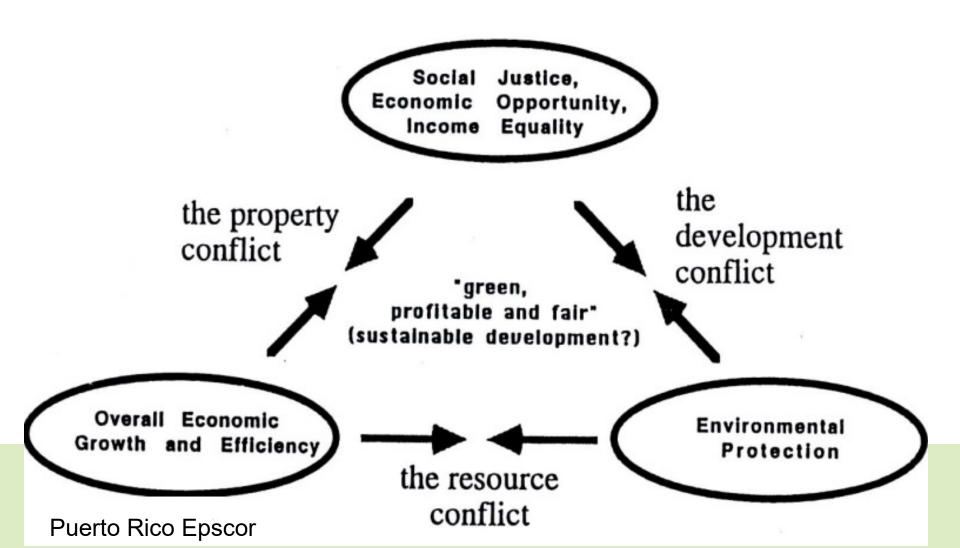
Most Recent Clima	te Action Plans of Alliance Cities				
Berlin Boston	<u>"Climate-Neutrality Berlin 2050: Results of a Feasibility Study"</u> "2014 Climate Action Plan Update"	Carbon Neutral Cities Alliance	The Urban Sustainability Directors Network	Cities striving for carbon neutrality recognize that averting the worst impacts of climate change will require cutting GHG emissions by at least 80% by 2050.	
Boulder	"Boulder's Climate Commitment 2015 [Draft]"	Scan of Leading Edge	Innovation Network for Communities	The project identifies and details 9 core strategies that need to be implemented at scale in a developmental way	
Copenhagen	"Copenhagen Energy Vision 2050;" "CPH 2025 Climate Plan (2)	Thinking and Practice		over the next four decades for cities to achieve 80x50	
London	"2020 Vision: The Greatest City on Earth"	on Carbon-Neutral Communities		goals. The project report also identifies opportunities for collaboration and networking among cities to accelerate	
Melbourne	"Net Zero Emissions By 2020: Update 2014"			their progress towards these goals.	
Minneapolis	"Climate Action Plan (June 2013)"	Measuring Up 2015:			
New York City	"New York City's Pathways to Deep Carbon Reductions (Decemb	How US Cities Are Accelerating Progress	World Wildlife Fund & ICLEI	A scan of what leading-edge cities in the U.S. are doing to reduce carbon emissions, with a focus on Atlanta,	
Oslo	"Environment and Climate Report 2013"	Toward National Climate Goals	& ICLEI	Minneapolis and Portland.	
Portland	"Climate Action Plan 2015"				
San Francisco	"Climate Action Strategy 2013 Update;" "San Francisco Climate	<u>"Climate Action in</u> Megacities: C40		A comprehensive analysis of what the mayors of the C40 megacities are doing to tackle climate change	
Seattle	"Getting to Zero: A Pathway to a Carbon Neutral Seattle (2011);" ; (June 2013)"	Cities Baseline and Opportunities"	Arup		
Stockholm	"Roadmap for a Fossil Fuel-Free Stockholm 2050"		Institute for	This 2014 report by the Deep Decarbonization Pathway	
Sydney	"Sustainable Sydney 2030: Community Strategic Plan (2014)"	"Dethurove to Deep	Sustainable Development and International Relations and Sustainable Development Solutions Network	Project (DDPP) summarizes preliminary findings of the technical pathways developed by the DDPP Country Research Partners with the objective of achieving emission reductions. The DDPP is a knowledge network	
Vancouver	"Greenest City: 2020 Action Plan;" "Renewable City Strategy 20	<u>"Pathways to Deep</u> <u>Carbonization,"</u>			
Washington DC	"Sustainable D.C."	September 2014		comprising 15 Country Research Partners, and several	
Yokohama	"FutureCity Initiative (2012);" "Yokohama Action Plan 2013-2017"			Partner Organizations who develop and share methods, assumptions, and findings related to deep decarbonization.	
		<u>Transform</u> <u>Communities' Energy</u> <u>Systems</u>	Rocky Mountain Institute	By 2050, we need all U.S. communities to have transformed how they use energy in transportation, industry, buildings, and electricity. To achieve this, we need to work with individual communities to create beacons of success and share the models that will enable other communities to follow a similar path.	
	A	Sustainable_ Transportation	UC Davis, Institute	This chapter explores how such deep reduction targets (50 to 80 percent) could be met in the transportation sector by 2050, with a focus on California and the United States as a whole. It presents a framework for understanding	
Research & Becelopment Research Station		Energy Pathways: A Research Summary for Decision Makers	of Transportation Studies	emission reductions in the transportation sector, lays out the major mitigation options for reducing emissions, and presents scenarios to explore how deep reductions could be achieved.	

Table I-1: Total Capacity Buildouts for the Years 2017-2025 by PSIP Scenario (MW)

Energy Source	E3	E3 with LNG
Wind	368	113
Utility-Scale Photovoltaic	572	329
Biofuels	40	20
Geothermal	0	0
Hydro	4	1
Battery storage	568	496
Liquefied natural gas	0	106
Flexible dispatchable generation	54	54
Combined cycle turbine	0	3
Synchronized condenser	61	55
Internal combustion engine	18	0
Unspecified	150	50

Hawaii Greenhouse Gas Emissions Report for 2015

Hu Honua is a 30 MW facility



Project name	Island	Developer	Size	Storage	Cost per KWh
Waikoloa Solar	Hawaii	AES	30 MW	120 MWh	\$0.08
Hale Kuawehi	Hawaii	Innergex	30 MW	120 MWh	\$0.09
Kuihelani Solar	Maui	AES	60 MW	240 MWh	\$0.08
Paeahu Solar	Maui	Innergex	15 MW	60 MWh	\$0.12
Hoohana	Oahu	174 Power Global	52 MW	208 MWh	\$0.10
Mililani I Solar	Oahu	Clearway	39 MW	156 MWh	\$0.09
Waiawa Solar	Oahu	Clearway	36 MW	144 MWh	\$0.10

Social Acceptance and Adoption of Carbon Neutral Lifestyles:

Establish principles for the operating environment

- Use the best available science
- Lead by example
- Make carbon management everyone's responsibility
- Don't reinvent the wheel_{ZEV}
- Base decisions on data
- Seek strategies that produce co-benefits
- Don't hesitate / don't delay
- Integrate targets into other planning processes
- All hands on deck
- Embrace social equity in climate action

Mahalo!

Berlin	Since 1990, GHG emissions have dropped 29%, while GDP has grown 19% and population has increased 1%.
Copenhagen	Since 2005, GHG emissions have decreased 31%, while population increased 15% and the local economy grew by 18%.
London	Since 1990, GHG emissions have decreased 11%, 14% since 2008. Population increased by 600,000 since 2008—the fastest rate in the city's history. As a result, per-person carbon emissions reduced 30% from 1990 level and 19% since 2008.
Minneapolis	Between 2006-2013, GHG emissions have decreased 9.4%, while population increased 6.5% and the regional GDP increased 22%.
Oslo	Since 2013, GHG emissions have decreased 22%.
Portland	Since 1990, GHG emissions have decreased 14%, while population increased 31% and jobs increased 20%.
San Francisco	Since 1990, GHG emissions have decreased 23%, while population has increased 15% and there has been a 49% increase in the local economy.
Seattle	Since 1990, through 2012, GHG emissions have decreased 4% (after accounting for offsets), while population has grown 23% and the number of jobs increased 14%. On a per-person basis, GHG emissions have declined 22% since 1990 and 6% since 2008.
Stockholm	Between 2011-2013, GHG emissions have decreased by approximately 9%, while population grew by approximately 4% and the local economy grew by approximately 3%.
Sydney	From 2006 to 2012, GHG emissions have decreased 12%, while population increased 16% and GDP grew 23%.
Vancouver	From 1990, to 2014, GHG emissions have decreased 7%, while population has grown 34% and the number of jobs increased 30%. On a per-person basis, GHG emissions have declined 30% since 1990 and 13% since 2007.
Washington D.C.	Between 2006-2013, GHG emissions have decreased 16%, and per capita emissions 24%, while population increased 11%, employment grew 8%, and GDP grew 9%.

