Soil Carbon in Hawaiian Rangelands

NICK KRUEGER

Presentation Outline

Rationale

Context

Methods

Preliminary Results

Rationale

Growing interest in carbon

Baseline data

Identification of soil carbon drivers

Additional income source for local producers

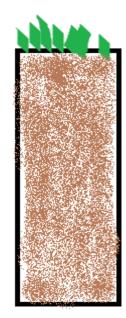
Soil Carbon: Two Ways of Expressing

Agronomic: Concentration

- Mass carbon / Mass soil = Percent
- Determined on a mg/kg basis by combustion analysis

Carbon Sequestration: Stock

Mass carbon / area to given depth

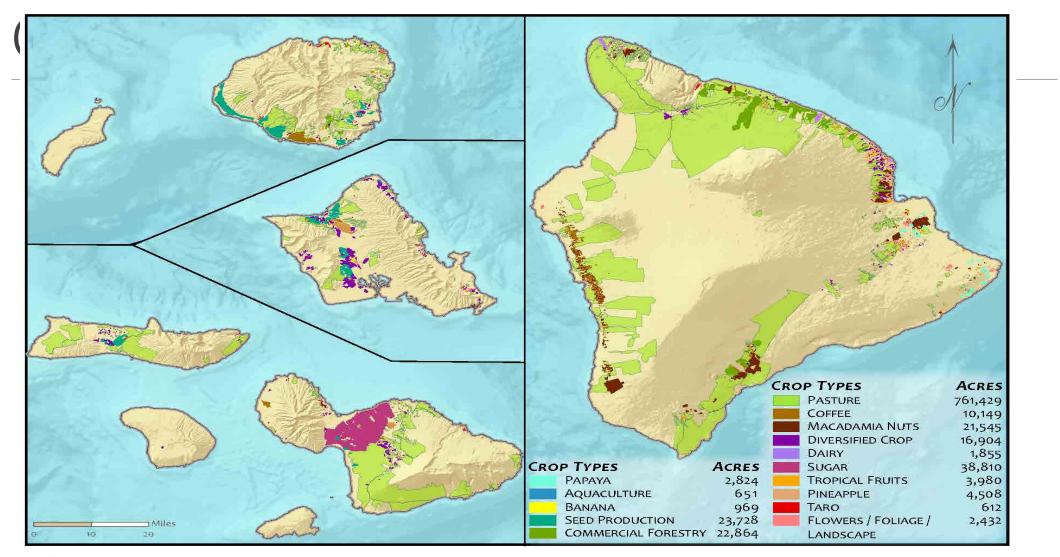

Soil mass varies greatly between soil types

Example of soil mass variation

1,570 kg soil for a grassland soil from Iowa per m² to 1m depth

920 kg soil for a grassland soil from Honoka'a per m² to 1m depth

National Cooperative Soil Survey National Cooperative Soil Survey Characterization Database http://ncsslabdatamart.sc.egov.usda.gov/

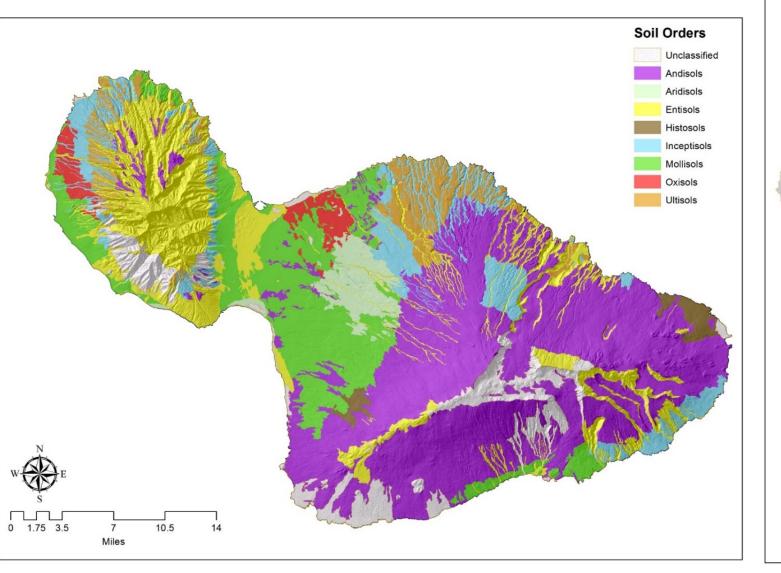

Stocks

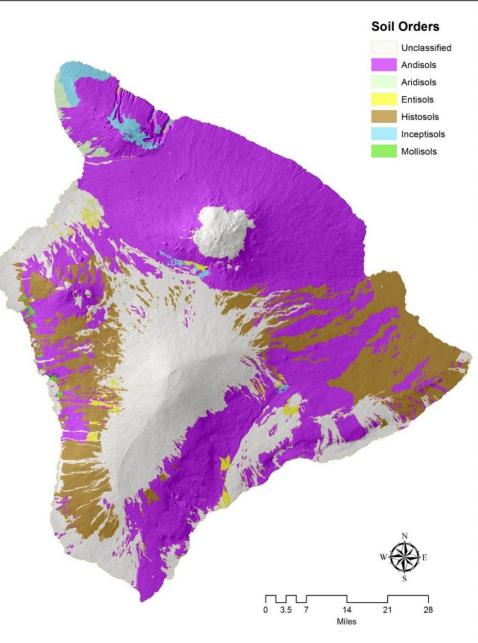
Mass of carbon per area to defined depth

1,570 kg soil for a grassland 32 kg carbon stock 2% Carbon soil from lowa per m² to 1m per m² to 1m **Concentration** depth depth 920 kg soil for a 74 kg carbon stock grassland soil from 8% Carbon per m² to 1m Honoka'a per m² to 1m **Concentration** depth depth

National Cooperative Soil Survey National Cooperative Soil Survey Characterization Database http://ncsslabdatamart.sc.egov.usda.gov/

Rangelands in Hawaii





HAWAI'I AGRICULTURAL LAND UTILIZATION (2015)

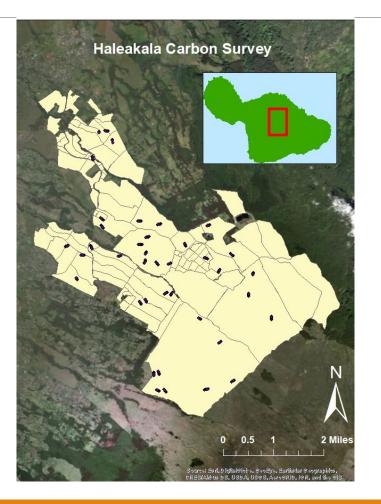
Soil Orders throughout Maui and Hawaii Island

Andisols

If the world's soils

Store 1.8 – 5% of the world's soil organic carbon

■≈39% of Hawaii's land area (818,479 acres)


Not all Andisols are equal

Methods

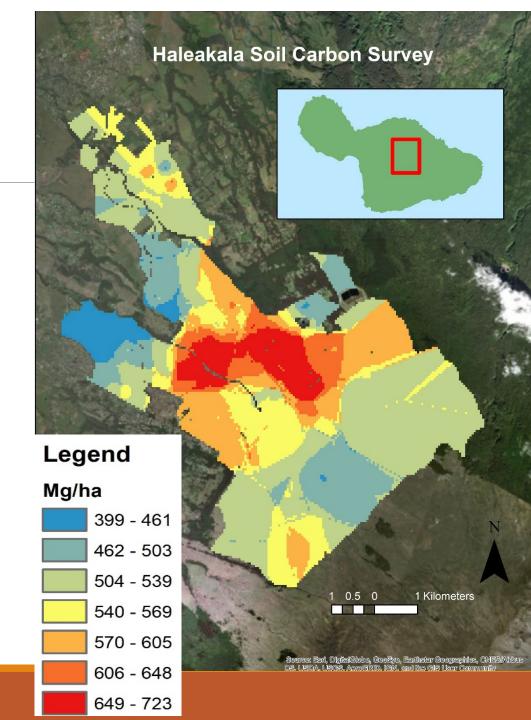
Sample collection along transects

Sampling sites were representative, actively grazed areas

Majority of ranch situated on Andisols

Preliminary Results

Average carbon concentration and stock across pasture systems


System	Carbon Stock		
	Mg ha⁻¹		
Haleakalā Ranch 1m depth	552		
English pasture extensively managed 1m depth (Soil type not reported)	414		
Australian pasture rotationally grazed 30cm depth (Soil type not reported)	39		

Spatial Distribution of Soil Carbon

 Highest carbon sequestration potential occur at mid-elevation locations

 Carbon concentration (%) increases with elevation

Soil mass (Mg/ha) decreases with elevation

Soil carbon concentration, mass and stock between different soil types throughout Haleakalā Ranch

Series	Soil Type	Carbon Conc. (%)	Soil Mass (Mg ha ⁻¹)	Carbon Stock (Mg ha ⁻¹)
Laumaia	Andisol	10.1	5691	546
Kaipoioi	Andisol	9.9	5469	519
Kula	Andisol	9.1	6521	575
Olinda	Andisol	8.7	7046	596
Pane	Andisol	6.4	9885	553
Haliimaile	Inceptisol	4.8	11746	488

Comparison of soil carbon concentration and stock by depth increment between Haleakalā Ranch and a representative Midwestern productive soil.

Haleakalā Ranch		Clarion soil series Mollisol (Iowa).			
Depth	Carbon Conc.	Carbon Stock	Depth	Carbon Conc.	Carbon Stock
cm	%	Mg ha ⁻¹	cm	%	Mg ha⁻¹
0-15	10.5	113	0-23	1.7	64
15-30	7.7	89	23-33	1.3	20
30-50	7.4	107	33-48	0.9	21
50-75	7.0	123	48-70	0.5	17
75-100	6.4	119	70-87	0.4	11

Comparison of soil carbon stocks and aboveground carbon stocks of forest and grassland systems

Forest- Soil	Carbon Stocks (Mg/ha)			
Eucalyptus Forest	595	Aboveground	Carbon Stocks (Mg/ha)	
(Crow et al., 2016)				
Hamakua ohia forest	289	Closed canopy koa and ohia forest	93	
(Osher et al., 2003)	209	(Hughes et al., 2018)	55	
Hakalau Forest	252		57 2	
(Selmants et al., 2014)	253	Eucalyptus Forest		
Grassland- Soil	Carbon Stocks (Mg/ha)	(Crow et al., 2016)		
Haleakalā Ranch	552	Temperate grassland		
Hamakua pasture (Osher et al., 2003)	340	(Liu et al., 2016)		
Mauna Kea Native Grassland (Kramer & Chadwick, 2016)	11 - 150			

Comparison of carbon concentrations and stock throughout Hawaii soils

Soil Series	Soil Type	Av. Soil Mass/Volume (oven-dry,g/cm^3)	Av. Carbon to 1m (%)	Av. Carbon mass to 1m (Mg/ha)
Kula	Andisol	1.10	7.9	869
Pane	Andisol	1.01	7.4	747
Honoka'a	Andisol	0.92	4.8	442
Waimea	Andisol	0.82	4.6	377
Кара'а	Oxisol	1.23	1.4	172
Keahua	Mollisol	1.48	0.9	133
Wahiawa	Oxisol	1.50	0.8	120
Lualualei	Vertisol	1.25	0.4	50

Takeaways

Soil carbon stocks averaged 550 Mg carbon ha⁻¹ to 1 meter depth: comparatively high for both regional and global contexts

Mauka portion of Haleakalā Ranch contained over 2 million Mg soil carbon across 3,700 hectares
Currently priced at \$15/Mg (California Carbon Dashboard) = \$30 million USD

Substrate and environmental factors have large impact on soil carbon across similar management regimes

130+ years of managed grazing have resulted in high grassland productivity and permanent landcover

Mahalo's

- Dr. Becca Ryals
- Dr. Jonathan Deenik
- Greg Friel
- Jordan Jokiel
- Haleakalā Ranch
- Nā paniolo