

Principles

- Clarifying how stormwater impact assessment relates to the environmental review process
- Acknowledging how stormwater characteristics in Hawaii's varied environments may differ from mainland conditions
- Incorporating Best Management Practices and creative offsite practices as mitigation measures that can be translated to permit conditions

Primary & Secondary Impacts

Primary (Direct)

- Occur at same time & place as cause
- Effects on project site
- Pertinent factors:

nutrient load

bare soilimpervious surface

- peak flow

but reasonably foreseeable • Offsite and down gradient from project

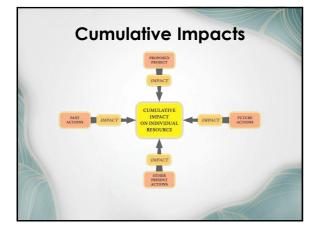
Secondary

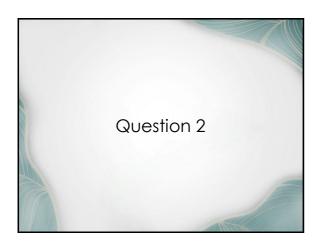
Examples:

• Occur later in time or

removed in distance

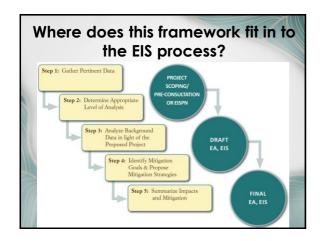
growth-inducing effects


 † sediment in down
 stream water body


Cumulative Impacts

 Results from incremental impact of the action when added to past, present, and reasonably foreseeable future actions

 Occurs within boundaries of a watershed



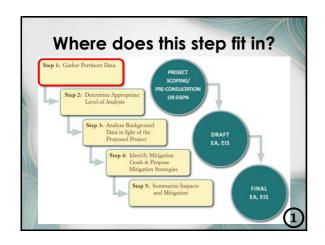
Relationship to State Planning Policies

- Hawaii State Plan Goal (HRS § 226-4 (2))
- Hawaii State Plan Priority Guideline (HRS §226-109)
- Federal Coastal Zone Management Act (HRS §205A-2)
- Significance Criteria (HAR §11-200-12)

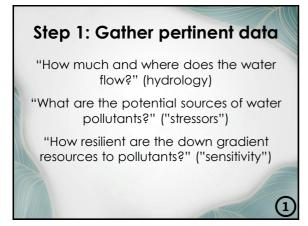
Five-Step Framework

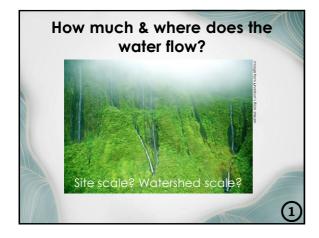
- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts
- 5. Summarize impacts & mitigation

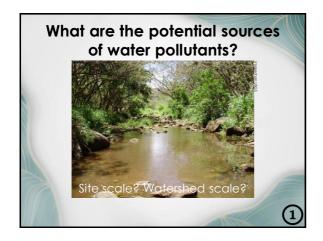
Five-Step Framework


- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts
- 5. Summarize impacts & mitigation

Step 1: Gather pertinent data


Objective: Collect & document pertinent data about existing site & watershed conditions


Methodology: Use best available data and early consultation to document site and watershed hydrology, stressors and sensitivity. Document anticipated stormwater permit requirements as well as management programs that pertain to site and watershed resources.


1

Hawaii County Grading Permits

Hawaii County Code Chapter 10

- Exclusions to permit (HCC §10-3)
- Erosion & sediment control measures (HCC §10-18→10-23)
 - Height
- Preparation of ground surface
- Cut slopes - Fill slopes
- Placement &
- Distance from property line
- compaction -Vegetation
- Drainage
- Area opened – Fill material
- provisions

Exclusions to Permit

HCC §10-3

- Mining or quarrying operations
- Basements, footings, etc. of building authorized by valid permit
- Individual cemetery plots
- Sanitary filling and operation of dumps
- Exploratory excavations < 50 yd³

Exclusions to Permit

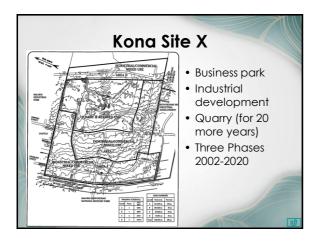
HCC §10-3

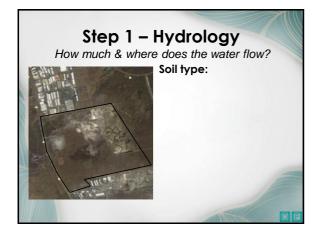
- Agricultural operations in conformance with soil conservation practices and in accordance with an actively pursued comprehensive conservation program
- Trenching & backfilling for utility and drainage conduits
- Clearing, excavation, and filling req'd for installation of pole lines


Limited Exclusion to Permit

HCC §10-3(6) & (7)

• Excavation or fill < 100 yd³ and < 5 ft. vertical height at its highest/deepest point


- Must follow cut slopes/fill slopes and distance to property line requirements



Step 1 – Hydrology

How much & where does the water flow?

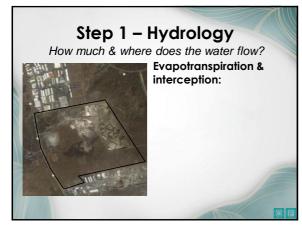
Wetlands or embayments?

Receiving waterbodies:

Step 1 – Hydrology

How much & where does the water flow?

- · Gently sloping • 40 feet above sea
- level to 320 feet at mauka border

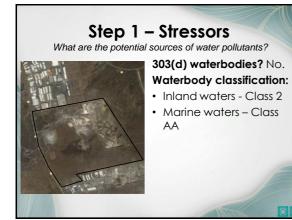

Step 1 – Hydrology

How much & where does the water flow?

- Flooding hazard: FIRM Zone X
- . Community flood insurance study - moderate or minimal hazard Annual rainfall and

seasonal distribution: • 15-20-inches per year

- . 1.63-inches per hour for 10-year storm
- 2.02 inches per hour for 50-year storm •
- Mostly during winter storm season


Step 1 – Hydrology How much & where does the water flow?

State LUD: Conservation **County General Plan:** Industrial & Urban Expansion

Zoning: Open Aquifer: Thin, brackish, slow moving basal lens in contact with saline water

Existing infrastructure: None

Step 1 – Sensitivity

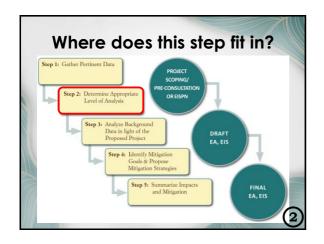
How resilient are down gradient resources to pollutants?

Potentially impacted resources:

- Aquatic?
- Riparian?
- Cultural?
- Recreational?
- Ag demand?
- Aquifer?

<section-header>Step 1 - SensitivityHow resilient are down gradient resources to pollutants?How resilient are down gradient resources to pollutants?HomogeneticsHomogeneticsHomogeneticsState WQ standards?Horestence of
Threatened or
Endangered species?Consider site and
watershed)

Five-Step Framework


- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts
- 5. Summarize impacts & mitigation

Step 2: Determine appropriate level of analysis

Objective: Determine what level of analysis is sufficient to give stormwater concerns appropriate consideration in the planning phase.

<u>Methodology:</u> Stormwater volume generated on site. Does the stressors + sensitivity + intensity = need for an estimate of volume of pollutants?

(2

Step 2 – Watershed Impairment/Stressors

Has a TMDL been established for any stream segment in the sub-watershed or for the receiving waterbody?

Is there an impaired stream or waterbody in the sub-watershed that is classified as category 5 under §303(d) of the Clean Water Act?

Step 2 – Watershed Impairment/Stressors

Is there an impaired stream or waterbody in the sub-watershed that is classified as category 4a, 4b, 4c, or 3 under §303(d) of the Clean Water Act?

Step 2 – Watershed Sensitivity

Is the receiving waterbody:

- Designated Class 1 or Class AA?
- Subject to Hawai'i's Local Action Strategy to Address Land Based Pollution Threats to Coral Reefs?
- Identified as sensitive on Hawai'i Watershed Priority Project?

O

Step 2 – Watershed Sensitivity

Do site conditions or combination of site conditions lend themselves to excessive runoff?

Step 2 – Development Intensity

Is the site located in a <u>small urban</u> watershed or <u>sub-watershed</u> (measuring no more than 1 square mile in area and anywhere between 25% and 100% impervious surfaces)?

Step 2 – Development Intensity

Is the action subject to an NPDES permit?

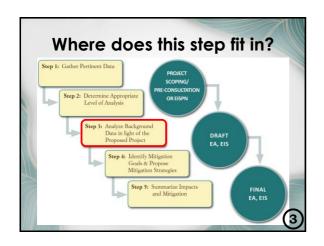
Is LEED® certification desired?

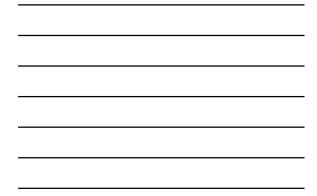
Is the action subject to a County Grading, Grubbing, Tree removal or Erosion and Sediment Control Permit?

Step 2 – Summary

- Sufficient to prepare for applicable NPDES and grading req's
- Using existing data and knowledge of the proposed action, document possible pollutant inputs. If potential pollutants inputs are expected to directly impact Class I or Class AA waters, consider an analysis that estimates the pre- and post-development runoff volume and volume of pollutants in the runoff pre- and post-development.

Five-Step Framework


- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts
- 5. Summarize impacts & mitigation


Step 3: Analyze background information in light of the proposed action

- 3a. Analyze primary (direct) impacts at the project scale
- 3b. Secondary impacts (offsite, down gradient)

(3

3c. Cumulative impacts

Step 3a: Primary impacts

Objective: Discuss impacts & proposed mitigation during construction.

Discuss anticipated direct impacts from the proposed action

Step 3a: Primary impacts

 Construction impacts

- NPDES permit?
- Grading permit?
- Pre- vs. Postdevelopment Long-term impacts

Step 3b: Secondary impacts

Objective: The analysis of secondary impacts should assess:

- Potential for down gradient flooding
- Impacts to down gradient sensitive resources

Step 3c: Cumulative impacts

Objective: The analysis of cumulative impacts should assess the impacts on sensitive resources from all parts of the watershed relative to existing conditions and potential buildout.

Step 3c: Cumulative impacts

<u>Methodology:</u> Minimum planning-level assessment

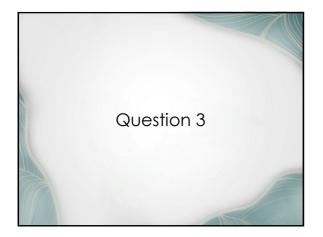
- Assess existing status of sensitive resources
 - Discuss past actions
 - Discuss present actions
 - Discuss reasonably foreseeable future impacts

3

Step 3c: Cumulative impacts

Methodology: Small, urban watershed assessment

- Assess existing buildout relative to potential buildout
 - Existing impervious area
- State LUD "Urban" as indicator of future imperviousness

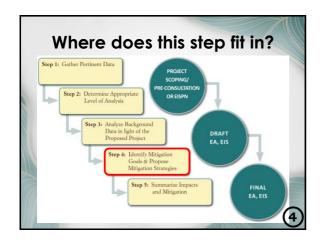


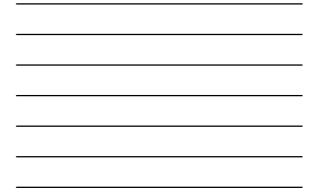
(3

Step 3c: Cumulative impacts

<u>Methodology:</u> Watershed modeling for unique circumstances

- Necessity determined in Step 2
- Review for appropriate calculations and summarized results


Five-Step Framework


- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts
- 5. Summarize impacts & mitigation

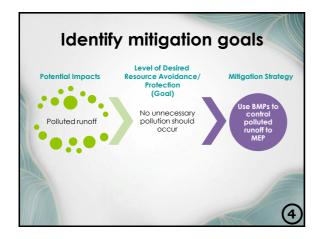
Step 4: Identify mitigation goals & propose mitigation strategies

Objective: Integrate the primary, secondary, and cumulative impacts to determine the desired extent of mitigation, while considering site and watershed conditions to formulate mitigation strategies.

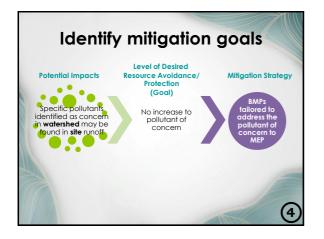
Identify mitigation goals

- Robust enough to support a FONSI
- Anticipate required permits
- Acknowledge role of engineering in design development

Clear in concept, but not overly prescriptive!

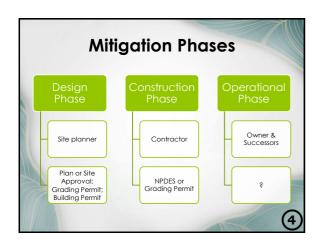

(4

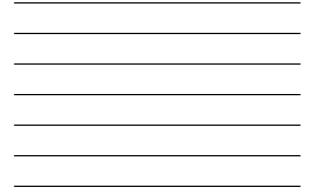
(4

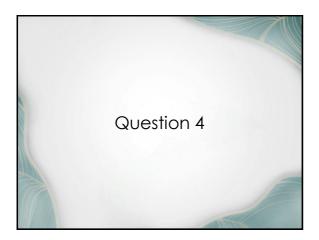

Identify mitigation goals

Mitigation performance criteria

- Maximum extent practicable
- Best available technology
- Range of outcomes



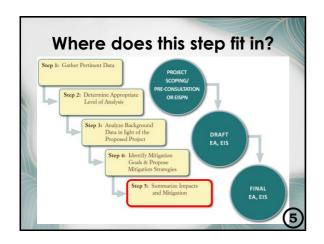




BMP Strategy Considerations

- Low Impact Development Concepts
- LEED© Standards
- Innovative
- Permanent vs. Temporary

Five-Step Framework

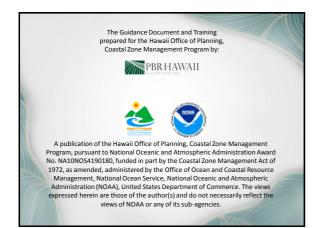

- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts
- 5. Summarize impacts & mitigation

Step 5: Summarize impacts & mitigation applicable to project

Objective: Documentation of impacts, mitigation measures and their projected results.

Methodology: The Draft EA or EIS should summarize all anticipated impacts as described in HAR §200-11(I.) as well as proposed mitigation strategy as described in HAR §200-11(M.)

(5



Reviewer's Checklist Exercise

• Using the Reviewer's Checklist in Appendix C, analyze the provided example for completeness.

