COASTAL DATA EXCHANGE

MAUI'S EROSION BASED SETBACKS

Tara Owens, Coastal Processes Specialist University of Hawaii Sea Grant

James Buika, Shoreline Planner County of Maui Planning Department

KAHANA BAY, MAUI: November 2013

My Planning Toolbox

County Plans

General Plans

- Conservation District Use Permits
- Setbacks
- **Shoreline** Certification
- Shoreline Permits 🝝
- **U** Building Permits
- Special Area Management Permits
- **I** Flood Zones

Today's Focus

I use this planning tool to ...

- Protect public safety
- Manage growth in a sustainable manner
- Protect the public trust
- Coordinate decisions
- **Regulate shoreline activities**
- **Provide direction** for future decisions
- Administer regulations pertaining to statute/ code

81% of the states with federally approved Coastal Management Programs (CMPs) that regulate ocean or shorefront development employ "no-build areas".

National Oceanic and Atmospheric Administration (NOAA). 2012. Protecting the Public Interest through the National Coastal Zone Management Program: How Coastal States and Territories Use No-Build Areas along Ocean and Great Lake Shorefronts. NOAA Office of Ocean and Coastal Resource Management. http://coastalmanagement.noaa.gov/resources/publications.html 40% of the states that employ "no-build areas" are using erosion rates to delineate them.

National Oceanic and Atmospheric Administration (NOAA). 2012. Protecting the Public Interest through the National Coastal Zone Management Program: How Coastal States and Territories Use No-Build Areas along Ocean and Great Lake Shorefronts. NOAA Office of Ocean and Coastal Resource Management. http://coastalmanagement.noaa.gov/resources/publications.html

MAUI'S SHORELINE SETBACK RULES

- MC §12-203: Shoreline Rules for the Maui Planning Commission
- Adopted November 27, 2003
- Purpose:
 - Move out of harms way
 - Plan for the obsolescence of structures in the setback
 - Ensure shoreline access
 - Limit the types of structures and activities in the shoreline area

MAUI'S SETBACK CALCULATIONS

Setback is the greater of A or B:

A. Erosion-based Setback

<u>Current Calculation:</u> 50 yrs x AEHR + 25 feet

Example if AEHR = 1.4 ft/yr: (50 yrs x 1.4 ft/yr) + 25 ft = 95 ft setback B. Lot Depth-based Setback

<u>Current Calculation:</u> *If lot depth is:* Setback is: 100 ft or less25 feet 100 to 160 ft40 feet 160 ft or more25% of avg. lot depth (150 ft max.)

EROSION HAZARD SETBACK

Hazards Not Addressed = At Risk Properties = Opportunity For Refinement:

- 50 year multiplier too low: average life expectancy of structures = 70 years (American Society of Coastal Engineers, 2002)
- 2. Historic erosion rate may not adequately account for episodic events
- Minimum setback allows structures to exist within 5 feet of "Imminent Threat" classification
- 4. Sea level rise not a factor

EPISODIC EVENTS

Keawakapu Beach Erosion Rate: 0.5 ± 1.9 ft/yr

SEA LEVEL RISE

- Multiple Ways of Incorporating SLR
 - As a percentage (Coastal Hazard Mitigation Guidebook)
 - From a Simple Geometric
 Model (Bruun Rule)
 - SLR threshold
 - Beach Slope

Gauge: 1615680, HI, Kahului: 60 yrs All values are in feet				
Year	USACE Low	USACE Int	USACE High	
2010	0.13	0.16	0.25	
2020	0.20	0.27	0.49	
2030	0.28	0.40	0.81	
2040	0.35	0.55	1.20	
2050	0.42	0.72	1.67	
2060	0.49	0.90	2.21	
2070	0.57	1.11	2.82	
2080	0.64	1.33	3.51	
2090	0.71	1.56	4.27	
2100	0.78	1.82	5.11	

TESTING POTENTIAL FORMULAS

Setbacks Resulting from a Variety of Formulas (sensitivity analysis)

	Low Erosion Rate (0.4 ± 0.8 ft/yr)	High Erosion Rate (2.0 ± 3.1 ft/yr)
Existing Formula (50 * AEHR) + 25	45	125
Increase Multiplier (70 * AEHR) + 25	53	165
Include Uncertainty [50 * (AEHR + UR)] + 25	85	280
Include sea level rise as percentage 50 * (AEHR x 1.1) + 25	47	135
Include 1m sea level rise from Bruun Rule (50 * AEHR) + 25 + SLR	81	161
Include 1m sea level rise from Bruun Rule & increase multiplier & add uncertainty {70 * [(AEHR + UR]} + 25 + SLR	145	418

ROCKY POINT, OAHU: December 2013

CHARLEY YOUNG BEACH, MAUI: August 2013