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Introduction 
• An inter-agency collaboration to evaluate 

groundwater flow paths in west Hawaii 
• University of Hawaii 

• Original concept of using an isotopic tracer 
• In-depth geochemical knowledge 
• Stable isotope analysis facilities 

• Commission on Water Resources Management 
• Desires a review of assumed groundwater flow paths 
• In-depth hydrogeological knowledge 

• Hawaii Dept. of Health 
• Needs validation of modeled captures zones for drinking water 

wells 
• Groundwater modeling expertise 



Specific Project Goals 

• Test two conceptual models of groundwater flow in 
West Hawaii 

• Investigate the utility of using isotopic tracers to 
understand groundwater flow paths 

• Re-evaluate drinking water well capture zone 
delineations 



Drinking Well -
Capture Zone 
Delineations 
• Done as part of the Source 

Water Assessment Program 
• Created using numerical 

models 
• MODFLOW to simulate 

groundwater flow paths 
• MODPATH particle 

tracking model to identify 
well capture zones 

• Purpose is to identify 
contributing area for risk 
assessment and source water 
protection 



Model Validation 
5 



The Study Area 
• West Hawaii Island 

• Three coalescing 
volcanoes 

Mauna Kea 



The Study Area 
• West Hawaii Island 

• Three coalescing 
volcanoes 

• Five aquifers 



The Study Area 
• West Hawaii Island 

• Three coalescing 
volcanoes 

• Five aquifers 
• Rift zones commonly form 

boundaries 
• Other boundaries along 

assumed flow lines 



The Study Area 
• West Hawaii Island 

• Three coalescing 
volcanoes 

• Five aquifers 
• Rift zones commonly form 

boundary 
• Other boundaries along 

assumed flow lines 

• Groundwater Elevations 



The Study Area 
• West Hawaii Island 

• Three coalescing 
volcanoes 

• Five aquifers 
• Rift zones commonly form 

boundary 

• Groundwater Elevations 
• Basal < 10 ft msl 
• High level > 40 ft msl 



The Study Area 
• West Hawaii Island 

• Three coalescing 
volcanoes 

• Five aquifers 
• Rift zones commonly form 

boundary 

• Groundwater Elevations 
• Basal < 10 ft msl 
• High level > 40 ft msl 

• What causes the high 
level water? 

• Buried rift zone 

(Oki et al., 2014) 



The Study Area 
• West Hawaii Island 

• Three coalescing 
volcanoes 

• Five aquifers 
• Rift zones commonly form 

boundary 

• Groundwater Elevations 
• Basal < 10 ft msl 
• High level > 40 ft msl 

• What causes the high 
level water? 

• Buried rift zone 
• Buried faults 

(Oki et al., 2014) 



The Study Area 
• West Hawaii Island 

• Three coalescing 
volcanoes 

• Five aquifers 
• Rift zones commonly form 

boundary 

• Groundwater Elevations 
• Basal < 10 ft msl 
• High level > 40 ft msl 

• What causes the high 
level water? 

• Buried rift zone 
• Buried faults 
• Buried dense lava flows 

(Oki et al., 2014) 
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West Hawaii Public Drinking 
Water Wells 
 
• 30+ Wells 
• Need capture zone 

delineations for each 
• No groundwater elevation 

data upgradient of PWS wells 



Groundwater Model Validation 
Problem 
• Insufficient groundwater elevation data 
• Still need some metric for model validation 

• Joe’s (Fackrell) big idea 
• Use oxygen isotopes as a natural tracer 

• Benefits 
• Know the oxygen isotopic distribution of rain fall 
• Minimal alteration of isotopic composition during recharge 
• Analysis is economical 
• Will be not altered by the unknown nature of the structures 

that cause the high level water 



Oxygen 16 
8 protons 
8 neutrons 
99.8% 

Oxygen 18 
8 protons 
10 neutrons 
0.20% 

• Dominant element (by mass) in water (H2O) 
• Two primary isotopes (16O and 18O) 
• Can analyze isotopic ratios with great precision 
 

Oxygen and its Isotopes 

Add 2 neutrons 

“Light” Oxygen “Heavy” Oxygen 

Isotopic composition expressed are the ratio of 18O/16O (sample):18O/16O (seawater) 
• δ18O in parts per thousand (o/oo) 
• δ18O seawater ~ 0 o/oo 
• If sample water is isotopically lighter than seawater then δ18O is negative 



δ18O = -3o/oo 
 

Seawater 
δ18O = 0o/oo 
 

• The light isotope 16O preferentially evaporates making atmospheric δ18O < 0 o/oo 

High-Level/Basal 
Divide 

Hualalai 

Mauna 
Loa 



δ18O = -3o/oo 
 

δ18O = -7 o/oo 

Seawater 
δ18O = 0o/oo 
 

• The light isotope 16O preferentially evaporates making atmospheric δ18O < 0 o/oo 
• Heavy isotope “rain out” first, leaving lighter isotope in the clouds 

High-Level/Basal 
Divide 

Hualalai 

Mauna 
Loa 



δ18O = -3o/oo 
 

δ18O = -7 o/oo 

δ18O = -10o/oo 
 

δ18O = -13o/oo 
 

Seawater 
δ18O = 0o/oo 
 

• The light isotope 16O preferentially evaporates making atmospheric δ18O < 0 o/oo 
• Heavy isotope “rain out” first, leaving lighter isotope in the clouds 
• Predictable relationship between precipitation elevation and isotopic weight  

High-Level/Basal 
Divide 

Hualalai 

Mauna 
Loa 



δ18O = -3o/oo 
 

δ18O = -7 o/oo 

δ18O = -10o/oo 
 

δ18O = -13o/oo 
 

Seawater 
δ18O = 0o/oo 
 

• The light isotope 16O preferentially evaporates making atmospheric δ18O < 0 o/oo 
• Heavy isotope “rain out” first, leaving lighter isotope in the clouds 
• Predictable relationship between precipitation elevation and isotopic weight  
• Data from USGS (Tillman, 2014) 

High-Level/Basal 
Divide 

Hualalai 

Mauna 
Loa 



RESULT: 
 
• Predictable distribution of 

δ18O 
• Strong correlation 

between δ18O and 
elevation 

• Lightest on Hualalai is -8.1 
o/oo 

δ18O (o/oo) 



Simplify a Complex Geologic Problem 
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• The purpose of the SWAP modeling is to define the flow path between 
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Simplify a Complex Geologic Problem 
• Since the nature of the structures producing the high level water is 

unknown 
• They cannot be modeled with any certainty 
• It is not necessary to model them 

• The SWAP modeling is defines the flow path between the well and the 
area of recharge 

• Only necessary to identify flow path from recharge to The well 
intake 

• A simple homogeneous flow and transport model is sufficient 

Hualalai 

Mauna Loa δ18O (o/oo) 
-13 
-10 
-8 
-6 
-4 
-2 δ18O = -3o/oo 

 

δ18O = -7 o/oo 
δ18O = -10o/oo 
 

δ18O = -13o/oo 
 

Model mixes water along flow path 



Conceptual Models 

We tested two conceptual models to evaluate 
regional groundwater flow in west Hawaii 
• Conceptual Model 1 - Groundwater flow 

constrained to within the aquifer boundaries 
• Conceptual Model 2 - Groundwater allowed to flow 

unrestricted from the Mauna Loa to the coast 



Groundwater  Flow Model 
Features common to both 
conceptual models 
• No flow is allowed into or out 

of the south, east, and 
northeast model boundaries 

• Recharge adds water to the 
model 

• Water is either captured by 
wells or discharges at the coast 

 

Conceptual Model 1 
 

Groundwater flow is constrained to 
within aquifer boundaries 
 

• Groundwater from Mauna Loa 
flows around Hualalai 

• Hualalai and Mauna Loa water 
don’t mix 

Recharge Values 
From Engott (2011) 



Conceptual Model 2 
 
Unobstructed flow from the 
flanks of Mauna Loa to the coast 
 
• Flow crosses aquifer 

boundaries 
• Hualalai and Mauna Loa water 

do mix 

Recharge Values 
From Engott (2011) 



Transport Model 
• Input  

• Isotopic composition of 
the recharge 
• Isotopically heavy 

near coast 
• Becomes Isotopically 

lighter as elevation 
increases 

• Validation Points 
• Measured isotopic 

composition of well water 
• Shown by the Triangles 

Groundwater d180 
(o/oo) 

Recharge d180 
(o/oo) 



Conceptual Model 1 
Results 
 

Groundwater flow is constrained to 
within the aquifer boundaries 
 

• Map shading show the isotopic 
composition of groundwater as 
a result of mixing along the flow 
paths 

• Measured (well water) δ18O 
tends to be lighter (lighter blue) 
than what the model predicts 

• The model fails to properly 
simulate the contribution of 
high elevation recharge at the  
well intakes 

• Examples 
• Hualalai Well 
• Note Komo Well (perched) 
• Waiaha Well 

 
 

Groundwater δ18O 
(o/oo) 

Modeled δ18O 
(o/oo) 

Hualalai 
Well 



Conceptual Model 2 
Results 
 
Unobstructed flow allowed 
from Mauna Loa to the coast  
• Match between isotopic 

composition of the well 
water and that modeled 
improves 

• Modeled is a little on the 
heavy side 

• Examples 
• Hualalai Well 
• Komo Well (perched) 
• Waiaha Well 

• Areas of significant 
difference 

• North Keauhou 
Aquifer 

• North Kiholo Aquifer 

Hualalai 
Well 



Too Light 

Too Heavy 

Within 1 o/oo 

Modeled d180 Error 
       (o/oo) 

Modeled d180  
(o/oo) 

    CM 1         CM2 
 Most Negative Error -3.08 -2.05  Model simulates too much high elevation water 
 Average Error  1.3 1.0     Model about right! 
 Most Positive Error  3.7  3.8    Model simulates too little high elevation water 
 Points with +/- 1 o/oo 38%   63% 

Too Light 

Too Heavy 

Within 1 o/oo 

Modeled d180 Error 
      (o/oo) 

Modeled d180  
(o/oo) 

Conceptual Model 1 Conceptual Model 2 



Summary and Conclusions 
Groundwater Flow Paths 
• Isotope modeling favors inter-

aquifer flow 
• Conceptual Model 2 

 
Capture Zone Delineations 
• δ18O data indicates longer 

flow path 
• Slightly different orientation 

from original CZDs 
• δ18O does not give time of 

travel 
• Need to develop method 

to estimate groundwater 
velocity 

 

Issues still unresolved 
• The nature of the Structures 

that produce the high level 
water 

• Role of perched water 
• Reason for the δ18O outliers 
 

 



So Where Does This Leave Us? 

• Allowing flow from Mauna Loa to coast produces 
better match between measured and model δ18O 

• The isotopically light water in the Honokohau, 
Hualalai, and Kalaoa Wells could come from 
Hualalai 

• However, mixing with heavier water makes this unlikely 

• Consider other secondary tracers for model 
validation (temperature for example) 

• Work with UH on refining groundwater flow paths 



MAHALO! 
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