January 12, 2022

Ms. Mary Alice Evans, Director
State of Hawai‘i
Office of Planning and Sustainable Development
Environmental Review Program
235 South Beretania Street, Suite 702
Honolulu, Hawai‘i 96813

Dear Ms. Evans:

SUBJECT: Hawai‘i Revised Statutes Chapter 343, DEA-AFONSI
Kahului Civic Center Mixed-Use Complex
Kahului, Island of Maui, Hawai‘i
Tax Map Key: (2) 3-7-004:003 (por.)

With this letter, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawai‘i Housing Finance & Development Corporation (HHFDC) hereby transmits the Draft Environmental Assessment and Anticipated Finding of No Significant Impact (DEA-AFONSI) for the Kahului Civic Center Mixed-Use Complex Project, to be published on January 23, 2022 in the Office of Planning and Sustainable Development, Environmental Review Program’s (ERP) semi-monthly publication, The Environmental Notice.

A PDF copy of the DEA-AFONSI (searchable) and a Project Location Map (shapefile) have been submitted via ERP’s online submittal form.

Should you have any questions, please contact Sery Berhanu (HHFDC Project Manager) via email: sergut.berhanu@hawaii.gov or phone: (808) 587-0546; or our consultant, Jeff Overton (G70 Principal) via email: Jeff@g70.design or phone: (808) 523-5866.

Sincerely,

Francis Paul Keeno
Executive Assistant
**From:** webmaster@hawaii.gov  
**To:** DBEDT OPSD Environmental Review Program  
**Subject:** New online submission for The Environmental Notice  
**Date:** Friday, January 14, 2022 4:00:50 PM

<table>
<thead>
<tr>
<th>Action Name</th>
<th>Kahului Civic Center Mixed-Use Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type of Document/Determination</strong></td>
<td>Draft environmental assessment and anticipated finding of no significant impact (DEA-AFNSI)</td>
</tr>
<tr>
<td><strong>HRS §343-5(a) Trigger(s)</strong></td>
<td>(1) Propose the use of state or county lands or the use of state or county funds</td>
</tr>
<tr>
<td><strong>Judicial district</strong></td>
<td>Wailuku, Maui</td>
</tr>
<tr>
<td><strong>Tax Map Key(s) (TMK(s))</strong></td>
<td>TMK: (2) 3-7-004:003 (por.)</td>
</tr>
<tr>
<td><strong>Action type</strong></td>
<td>Agency</td>
</tr>
<tr>
<td><strong>Other required permits and approvals</strong></td>
<td>Numerous (See Section 2.7 of the DEA-AFNSI)</td>
</tr>
<tr>
<td><strong>Proposing/determining agency</strong></td>
<td>State of Hawai‘i, Hawaii Housing Finance &amp; Development Corporation</td>
</tr>
<tr>
<td><strong>Agency contact name</strong></td>
<td>Sery Berhanu</td>
</tr>
<tr>
<td><strong>Agency contact email (for info about the action)</strong></td>
<td><a href="mailto:Sergut.berhanu@hawaii.gov">Sergut.berhanu@hawaii.gov</a></td>
</tr>
<tr>
<td><strong>Email address or URL for receiving comments</strong></td>
<td><a href="mailto:kahuluiaccoments@g70.design">kahuluiaccoments@g70.design</a></td>
</tr>
<tr>
<td><strong>Agency contact phone</strong></td>
<td>(808) 587-0546</td>
</tr>
</tbody>
</table>
| **Agency address**           | 677 Queen Street, Suite 300  
Honolulu, Hawaii’i 96813  
United States  
[Map It](#) |
| **Was this submittal prepared by a consultant?** | Yes |
**Consultant**

G70

**Consultant contact name**

Jeff Overton

**Consultant contact email**

jeff@g70.design

**Consultant contact phone**

(808) 523-5866

**Consultant address**

111 S. King Street, Suite 170  
Honolulu, Hawai‘i 96813  
United States  
[Map It](#)

**Action summary**

The State of Hawai‘i (State), Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC) is proposing to undertake the “Kahului Civic Center Mixed-Use Complex” (Project) on Tax Map Key (TMK): (2) 3-7-004:003 (por.), located at the intersection of West Ka‘ahumanu Avenue and Kane Street. The Project is a collaborative effort between the HHFDC and State, Department of Accounting and General Services. The Project primarily involves the construction of affordable and market-rate multi-family housing (multi-family housing) and a State Kahului Civic Center (Civic Center). Approximately 300 multi-family dwelling units (mixture of 1-, 2-, and 3-bedroom units) with approximately 414 parking spaces will be developed. An approximately 66,000-square foot Civic Center with approximately 182 parking spaces will be developed.

**Reasons supporting determination**

See Section 6.1 of the DEA-AFNSI.

**Attached documents (signed agency letter & EA/EIS)**

- [220114_HHFDCKahului_DEA_AFNSI.pdf](#)
- [220112_HHFDCKahuluiDEA_ERPTransmittal.pdf](#)

**Action location map**

[Kahului_ProjectLocation.zip](#)

**Authorized individual**

Michele Leong

**Authorization**

The above named authorized individual hereby certifies that he/she has the authority to make this submission.
**Kahului Civic Center Mixed-Use Complex**

**DRAFT ENVIRONMENTAL ASSESSMENT/ANTICIPATED FINDING OF NO SIGNIFICANT IMPACT**

**KAHULUI, ISLAND OF MAUI**

---

### ENTITLEMENT EXHIBITS

**Kahului Civic Center Mixed-Use Complex**

#### Civic Center pkg deck
- County Transit Hub
- Vevau Street ramp
- Multi-Family Housing
- Multi-Family Housing
- Ka'ahumanu Avenue
- Kane Street
- School Street
- 3rd Street
- Driveway Entry/Exit

#### Greenway
- Landscape Buffer

#### Driveway Entry/Exit
- Office Plaza

#### 3rd Street
- Entry to parking podium within building

#### Project Boundary

---

### LAND AREA AND ZONING INFORMATION

<table>
<thead>
<tr>
<th>Parcel</th>
<th>Total Lot Area</th>
<th>Zoning</th>
<th>Land Use</th>
<th>Height</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.572  acre</td>
<td>242,716 sf</td>
<td>None</td>
<td>B-2</td>
<td>90-ft</td>
<td>2. FAR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residential Subtotal</th>
<th>300 du</th>
<th>Density 1.6 FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Required by Code*</td>
<td>774 stalls</td>
<td>County Code requirement without mixed use reduction</td>
</tr>
<tr>
<td>Retail or Office</td>
<td>5,000 gsf</td>
<td></td>
</tr>
<tr>
<td>Parking Target **</td>
<td>596 stalls</td>
<td>Retail/Office at 1stall/500sf 86 stalls</td>
</tr>
<tr>
<td>School</td>
<td>7,000 gsf</td>
<td>School 8 per classroom 56 stalls</td>
</tr>
<tr>
<td>Office</td>
<td>38,000 gsf</td>
<td></td>
</tr>
<tr>
<td>Library</td>
<td>16,000 gsf</td>
<td></td>
</tr>
<tr>
<td>Non-Residential Subtotal</td>
<td>66,000 gsf</td>
<td></td>
</tr>
</tbody>
</table>

**Total Floor Area**
- 381,000 Parking Provided 596 stalls

**LAND Allowable SF**
- 485,433 sf

---

**PROPOSING AGENCY AND DETERMINING AGENCY:**

**STATE OF HAWAIʻI**
**DEPARTMENT OF BUSINESS, ECONOMIC DEVELOPMENT & TOURISM**
**HAWAIʻI HOUSING FINANCE & DEVELOPMENT CORPORATION**

---

**PREPARED BY:**

**G7O**

**JANUARY 2022**
PROPOSING AGENCY AND DETERMINING AGENCY:

STATE OF HAWAI'I
DEPARTMENT OF BUSINESS, ECONOMIC DEVELOPMENT & TOURISM
HAWAI'I HOUSING FINANCE & DEVELOPMENT CORPORATION
677 QUEEN STREET, SUITE 300
HONOLULU, HI 96813

The document and all ancillary documents were prepared under my direction and in accordance with the content requirements of Chapter 343, Hawai‘i Revised Statutes, and Title 11, Chapter 200.1, Hawai‘i Administrative Rules.

PREPARED BY:

G7O
111 S. KING STREET, SUITE 170
HONOLULU, HI 96813

JANUARY 2022
# Table of Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iii</td>
</tr>
<tr>
<td>Appendices</td>
<td>iv</td>
</tr>
<tr>
<td>Acronyms and Abbreviations</td>
<td>v</td>
</tr>
<tr>
<td>1.0 Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Project Information Summary</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Project Overview</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3 Basis for Environmental Review</td>
<td>1-2</td>
</tr>
<tr>
<td>2.0 Description of the Proposed Action</td>
<td></td>
</tr>
<tr>
<td>2.1 Description of Existing Facilities and Uses</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Description of the Proposed Action</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 Project Background</td>
<td>2-4</td>
</tr>
<tr>
<td>2.4 Project Purpose and Need</td>
<td>2-4</td>
</tr>
<tr>
<td>2.5 Project Site Location</td>
<td>2-5</td>
</tr>
<tr>
<td>2.6 Schedule and Costs</td>
<td>2-5</td>
</tr>
<tr>
<td>2.6.1 Preliminary Schedule</td>
<td>2-5</td>
</tr>
<tr>
<td>2.6.2 Costs</td>
<td>2-5</td>
</tr>
<tr>
<td>2.7 Required Permits and Approvals</td>
<td>2-6</td>
</tr>
<tr>
<td>2.8 Early Consultation</td>
<td>2-7</td>
</tr>
<tr>
<td>3.0 Existing Conditions, Potential Impacts, and Mitigation Measures</td>
<td></td>
</tr>
<tr>
<td>3.1 Geology, Topography, and Soils</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Climate, Climate Change, and Sea Level Rise</td>
<td>3-4</td>
</tr>
<tr>
<td>3.3 Natural Hazards</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.1 Flooding</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.2 Hurricanes and Tropical Storms</td>
<td>3-9</td>
</tr>
<tr>
<td>3.3.3 Seismic Activity</td>
<td>3-10</td>
</tr>
<tr>
<td>3.3.4 Tsunami</td>
<td>3-10</td>
</tr>
<tr>
<td>3.4 Water Resources</td>
<td>3-13</td>
</tr>
<tr>
<td>3.5 Flora and Fauna</td>
<td>3-15</td>
</tr>
<tr>
<td>3.5.1 Flora</td>
<td>3-15</td>
</tr>
<tr>
<td>3.5.2 Fauna</td>
<td>3-15</td>
</tr>
<tr>
<td>3.6 Air Quality</td>
<td>3-17</td>
</tr>
</tbody>
</table>
3.7 Noise Conditions .................................................................................................................. 3-19
3.8 Utilities and Infrastructure .................................................................................................. 3-21
  3.8.1 Potable Water .................................................................................................................. 3-21
  3.8.2 Wastewater ...................................................................................................................... 3-22
  3.8.3 Drainage .......................................................................................................................... 3-23
  3.8.4 Solid and Hazardous Waste ............................................................................................ 3-24
  3.8.5 Electrical System ............................................................................................................ 3-26
  3.8.6 Telecommunications ....................................................................................................... 3-27
3.9 Transportation System ........................................................................................................ 3-27
  3.9.1 Roadways, Access, and Traffic ...................................................................................... 3-28
  3.9.2 Mass Transit .................................................................................................................... 3-31
  3.9.3 Pedestrian and Bicycle Facilities .................................................................................... 3-31
3.10 Public Facilities and Services ............................................................................................ 3-33
  3.10.1 Recreational Facilities .................................................................................................. 3-33
  3.10.2 Police ........................................................................................................................... 3-33
  3.10.3 Fire .................................................................................................................................. 3-34
  3.10.4 Emergency Medical ...................................................................................................... 3-34
  3.10.5 Public School .................................................................................................................. 3-35
3.11 Historic Architecture, Archaeological, and Cultural Resources ........................................ 3-36
  3.11.1 Historic Architecture .................................................................................................... 3-36
  3.11.2 Archaeological Resources ............................................................................................. 3-37
  3.11.3 Cultural Resources ........................................................................................................ 3-39
3.12 Socio-Economic Characteristics ....................................................................................... 3-40
3.13 Visual and Scenic Resources ............................................................................................. 3-40
3.14 Potential Cumulative and Indirect Impacts ........................................................................ 3-41

4.0 Alternatives to the Proposed Action

  4.1 Alternative A – No Action .................................................................................................... 4-1
  4.2 Alternative B – Delayed Action ............................................................................................ 4-1
  4.3 Alternative C – Different Location ...................................................................................... 4-2
  4.4 Alternative D – Different Design ......................................................................................... 4-2

5.0 Relationship to Plans and Policies

  5.1 Hawai‘i State Plan .................................................................................................................. 5-1
  5.2 State Housing Functional Plan ............................................................................................. 5-24
  5.3 Hawai‘i 2050 Sustainability Plan .......................................................................................... 5-26
  5.4 Hawai‘i State Land Use District Boundaries ...................................................................... 5-27
  5.5 Hawai‘i Coastal Zone Management Program .................................................................... 5-29
  5.6 Maui County General Plan 2030 ........................................................................................ 5-35
    5.6.1 Countywide Policy Plan .................................................................................................. 5-35
    5.6.2 Maui Island Plan .............................................................................................................. 5-37
5.6.3 Wailuku-Kahului Community Plan ................................................................. 5-41
5.7 Maui County Zoning Code, MCC Title 19 .......................................................... 5-49

6.0 Findings Supporting the Anticipated Determination
6.1 Anticipated Determination .................................................................................. 6-1
6.2 Summary ............................................................................................................ 6-4

7.0 Agencies, Organizations, and Individuals Consulted in the EA Process
7.1 Early Consultation ............................................................................................... 7-1
7.2 Public Involvement ............................................................................................. 7-5

8.0 References

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Project Location and Tax Map Key</td>
<td>1-3</td>
</tr>
<tr>
<td>2-1</td>
<td>Conceptual Site Plan</td>
<td>2-9</td>
</tr>
<tr>
<td>2-2</td>
<td>Pedestrian/Bicycle Circulation and Open Space Plan</td>
<td>2-10</td>
</tr>
<tr>
<td>2-3</td>
<td>View Along West Ka‘ahumanu Avenue</td>
<td>2-11</td>
</tr>
<tr>
<td>2-4</td>
<td>View Looking Makai</td>
<td>2-12</td>
</tr>
<tr>
<td>3-1</td>
<td>Soils</td>
<td>3-3</td>
</tr>
<tr>
<td>3-2</td>
<td>Sea Level Rise Exposure Area</td>
<td>3-6</td>
</tr>
<tr>
<td>3-3</td>
<td>Flood Zones</td>
<td>3-8</td>
</tr>
<tr>
<td>3-4</td>
<td>Tsunami Evacuation Zone</td>
<td>3-12</td>
</tr>
<tr>
<td>3-5</td>
<td>Surface Waters</td>
<td>3-14</td>
</tr>
<tr>
<td>5-1</td>
<td>State Land Use District</td>
<td>5-28</td>
</tr>
<tr>
<td>5-2</td>
<td>Special Management Area</td>
<td>5-34</td>
</tr>
<tr>
<td>5-3</td>
<td>Wailuku-Kahului Community Plan Land Use</td>
<td>5-48</td>
</tr>
<tr>
<td>5-4</td>
<td>County Zoning</td>
<td>5-50</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>List of Required Government Permits and Approvals</td>
<td>2-6</td>
</tr>
<tr>
<td>3-1</td>
<td>Summary of Estimated Project Emissions (Tons per Year)</td>
<td>3-18</td>
</tr>
<tr>
<td>5-1</td>
<td>Hawai‘i State Plan</td>
<td>5-1</td>
</tr>
<tr>
<td>7-1</td>
<td>Consultation with Agencies, Organizations, and Individuals</td>
<td>7-1</td>
</tr>
</tbody>
</table>
Appendices

Appendix A: Conceptual Plans and View Studies
Appendix B: Natural Resources Assessment
Appendix C: Air Quality Technical Report
Appendix D: Acoustic Study
Appendix E: Preliminary Engineering Report
Appendix F: Phase 1 Environmental Site Assessment Report
Appendix G: Hazardous Materials Survey
Appendix H: Limited Asbestos, TCPL, and Lead-Based Paint Sampling and Analysis
Appendix I: Mobility Analysis Report
Appendix J: Historical Resource Evaluation Report
Appendix K: Archaeological Inventory Survey
Appendix L: Cultural Impact Assessment
Appendix M: Early Consultation Package
Appendix N: Early Consultation Comments and Responses
### Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Archaeological Assessment</td>
</tr>
<tr>
<td>ACM</td>
<td>Asbestos Containing Materials</td>
</tr>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>AFNSI</td>
<td>Anticipated Finding of No Significant Impact</td>
</tr>
<tr>
<td>AMSL</td>
<td>Above Mean Sea Level</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>AWSC</td>
<td>All-Way Stop Control</td>
</tr>
<tr>
<td>BFE</td>
<td>Base Flood Elevations</td>
</tr>
<tr>
<td>BMPs</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>BSM</td>
<td>Blackburn’s Sphinx Moth</td>
</tr>
<tr>
<td>C&amp;D</td>
<td>Construction and demolition</td>
</tr>
<tr>
<td>CAB</td>
<td>Clean Air Branch, DOH, State</td>
</tr>
<tr>
<td>CATV</td>
<td>Cable Television</td>
</tr>
<tr>
<td>CDP</td>
<td>Census-designated Place</td>
</tr>
<tr>
<td>cfs</td>
<td>Cubic Feet per Second</td>
</tr>
<tr>
<td>CIA</td>
<td>Cultural Impact Assessment</td>
</tr>
<tr>
<td>CO₂e</td>
<td>Carbon Dioxide Equivalents</td>
</tr>
<tr>
<td>County</td>
<td>County of Maui</td>
</tr>
<tr>
<td>CPHC</td>
<td>Central Pacific Hurricane Center</td>
</tr>
<tr>
<td>CRC</td>
<td>Cultural Resources Commission, County</td>
</tr>
<tr>
<td>CWB</td>
<td>Clean Water Branch, DOH, State</td>
</tr>
<tr>
<td>CWRM</td>
<td>Commission on Water Resource Management, DLNR, State</td>
</tr>
<tr>
<td>CZM</td>
<td>Coastal Zone Management</td>
</tr>
<tr>
<td>DAGS</td>
<td>Department of Accounting and General Services, State</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>dBA</td>
<td>A-weighted decibels</td>
</tr>
<tr>
<td>DBEDT</td>
<td>Department of Business, Economic Development and Tourism, State</td>
</tr>
<tr>
<td>DCAB</td>
<td>Disability and Communication Access Board, DOH, State</td>
</tr>
<tr>
<td>DEA</td>
<td>Draft Environmental Assessment</td>
</tr>
<tr>
<td>DEM</td>
<td>Department of Environmental Management, County</td>
</tr>
<tr>
<td>DFPS</td>
<td>Department of Fire and Public Safety, County</td>
</tr>
<tr>
<td>DLNR</td>
<td>Department of Land and Natural Resources, State</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>DNL</td>
<td>Day-Night Average Sound Level</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Education, State</td>
</tr>
<tr>
<td>DOFAW</td>
<td>Division of Forestry and Wildlife, DLNR, State</td>
</tr>
<tr>
<td>DOH</td>
<td>Department of Health, State</td>
</tr>
<tr>
<td>DPW</td>
<td>Department of Public Works, County</td>
</tr>
<tr>
<td>DWS</td>
<td>Department of Water Supply, County</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>ED</td>
<td>Engineering Division, DPW, County</td>
</tr>
<tr>
<td>ENPRO</td>
<td>ENPRO Environmental</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency, United States</td>
</tr>
<tr>
<td>ESA</td>
<td>Environmental Site Assessment</td>
</tr>
<tr>
<td>°F</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>Fd</td>
<td>Fill Land</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FIRM</td>
<td>Flood Insurance Rate Map</td>
</tr>
<tr>
<td>FONSI</td>
<td>Finding of No Significant Impact</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gas</td>
</tr>
<tr>
<td>gpd</td>
<td>gallons per day</td>
</tr>
<tr>
<td>gpm</td>
<td>gallons per minute</td>
</tr>
<tr>
<td>HAR</td>
<td>Hawai‘i Administrative Rules</td>
</tr>
<tr>
<td>HDOT</td>
<td>Department of Transportation, State</td>
</tr>
<tr>
<td>HECO</td>
<td>Hawaiian Electric Co. Ltd.</td>
</tr>
<tr>
<td>HHFDC</td>
<td>Hawai‘i Housing Finance and Development Corporation, DBEDT, State</td>
</tr>
<tr>
<td>HRER</td>
<td>Historical Resource Evaluation Report</td>
</tr>
<tr>
<td>HRHP</td>
<td>Hawai‘i Registry of Historic Place</td>
</tr>
<tr>
<td>HRS</td>
<td>Hawai‘i Revised Statutes</td>
</tr>
<tr>
<td>HTCO</td>
<td>Hawaiian Telcom</td>
</tr>
<tr>
<td>IRHB</td>
<td>Indoor and Radiological Health Branch, DOH, State</td>
</tr>
<tr>
<td>KCC</td>
<td>Ka‘ahumanu Community Corridor</td>
</tr>
<tr>
<td>LCA</td>
<td>Land Commission Awards</td>
</tr>
<tr>
<td>LID</td>
<td>Low Impact Development</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of Service</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MAR</td>
<td>Mobility Analysis Report</td>
</tr>
<tr>
<td>MCC</td>
<td>Maui County Code</td>
</tr>
<tr>
<td>MCSA</td>
<td>McKinley Community School for Adults</td>
</tr>
<tr>
<td>MDOT</td>
<td>Department of Transportation, County</td>
</tr>
<tr>
<td>MFI</td>
<td>Median Family Income</td>
</tr>
<tr>
<td>mgd</td>
<td>Million Gallons per Day</td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligram per Litre</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>MPD</td>
<td>Maui Police Department, County</td>
</tr>
<tr>
<td>mph</td>
<td>Miles per Hour</td>
</tr>
<tr>
<td>MT/yr</td>
<td>Metric Tons Per Year</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>nd</td>
<td>No date</td>
</tr>
<tr>
<td>No.</td>
<td>Number</td>
</tr>
<tr>
<td>NOx</td>
<td>nitrogen oxides</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NRA</td>
<td>Natural Resources Assessment</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Registry of Historic Place</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PCB</td>
<td>Polychlorinated Biphenyl</td>
</tr>
<tr>
<td>PD</td>
<td>Planning Department, County</td>
</tr>
<tr>
<td>PER</td>
<td>Preliminary Engineering Report</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>psi</td>
<td>Pounds per square Inch</td>
</tr>
<tr>
<td>PTWC</td>
<td>Pacific Tsunami Warning Center, NOAA</td>
</tr>
<tr>
<td>PZUE</td>
<td>Pu‘u‘one Sand</td>
</tr>
<tr>
<td>RECs</td>
<td>Recognized Environmental Conditions</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposal</td>
</tr>
<tr>
<td>ROG</td>
<td>Reactive Organic Gases</td>
</tr>
<tr>
<td>ROW</td>
<td>Right-of-Way</td>
</tr>
<tr>
<td>RPBp</td>
<td>Reduce Pressure Backflow Preventer</td>
</tr>
<tr>
<td>RRFB</td>
<td>Rectangular Rapid-Flashing Beacon</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Project Information Summary

Type of Document: Draft Environmental Assessment - Anticipated Finding of No Significant Impact

Project Name: Kahului Civic Center Mixed-Use Complex

Proposing Agency: State of Hawaiʻi (State)
Department of Business, Economic Development & Tourism
Hawaii Housing Finance & Development Corporation (HHFDC)
677 Queen Street, Suite 300
Honolulu, Hawaiʻi 96813
Contact: Sery Berhanu, Project Manager

Determining Agency: HHFDC
677 Queen Street, Suite 300
Honolulu, Hawaiʻi 96813
Contact: Sery Berhanu, Project Manager

Agent: G70
111 S. King Street, Suite 170
Honolulu, Hawaiʻi 96813
Contact: Jeff Overton, Principal

Hawaiʻi Revised Statutes (HRS) Chapter 343 Trigger: HRS §343-5(a)(1), Use of State lands and funds Use of County Lands (off-site improvements)

Project Location: 153 West Kaʻahumanu Avenue
Kahului, Hawaiʻi 96732

Tax Map Key (TMK) and Recorded Fee Owner: TMK: (2) 3-7-004:003 (por.) – State

Project Site: Approximately 4.722 acres (TMK parcel is 5.57 acres)

State Land Use District: Urban District

County Zoning: B-2 – Business-Community


Maui Island Plan: Urban

Special Management Area (SMA): Within SMA

Flood Zone: Zone X – Determined to be outside the 500-year flood plain

Determination: Anticipated Finding of No Significant Impact
1.2 Project Overview

The State of Hawai‘i (State), Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC) is proposing to undertake the “Kahului Civic Center Mixed-Use Complex” (Project). The Project is a collaborative effort between the HHFDC and State, Department of Accounting and General Services (DAGS).

The Project site (Site) is on Tax Map Key (TMK): (2) 3-7-004:003 (por.), located at the intersection of West Ka‘ahumanu Avenue and Kane Street. See Figure 1-1, Project Location and Tax Map Key.

The Site is owned by the State, which was set aside to the HHFDC via Executive Order No. 4590 (dated July 29, 2019), for the purpose of developing the Project and the new Central Maui Transit Hub (Transit Hub). The Transit Hub is currently being constructed by the County, Department of Transportation (MDOT) on the southeast portion (0.85 acres) of the Site along Vevau Street and is not within the scope of the Project.

The Project involves the construction of affordable and market-rate multi-family housing (multi-family housing) and a State Kahului Civic Center (Civic Center). Approximately 300 multi-family dwelling units (mixture of 1-, 2-, and 3-bedroom units) with approximately 414 parking spaces will be developed. More than 50% of the dwelling units will be affordable to households earning 140% or below the Area Median Family Income (IMFI) as defined by the U.S. Department of Housing and Urban Development (HUD), pursuant to Hawai‘i Revised Statutes (HRS) Chapter 201H. An approximately 66,000-square foot (SF) Civic Center with approximately 182 parking spaces will be developed. The Civic Center will include State office space; classroom and support space for the State Department of Education (DOE) McKinley Community School for Adults (MCSA) – Maui Campus; and space for a new Kahului Public Library. Approximately 5,000 SF of community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center. The Project will also include new landscaping, site improvements, and off-site vehicular and pedestrian facilities improvements. Demolition of existing buildings and structures, and partial removal of a stone wall will be required to accommodate the Project. See Appendix A, Conceptual Plans and View Studies.

1.3 Basis for Environmental Review

This Draft Environmental Assessment (EA) has been prepared in accordance with the requirements of HRS Chapter 343, and Hawai‘i Administrative Rules (HAR) Chapter 11-200.1. This Project triggers a need for an environmental review under HRS §343-3(a)(1), as it proposes the use of State land and funds, and County land (off-site improvements). This Draft EA is also a requirement of the HRS §201H-38 application process, and a Special Management Area (SMA) Use permit application, pursuant to Maui County Code (MCC) Chapter 202, Special Management Area Rules.

This Draft EA is presented in eight chapters and includes the following: a description of the Project; a list of necessary permits/approvals; a description of the existing environment, potential impacts and proposed mitigation measures on identified natural, cultural, and socioeconomic resources; a description of alternatives; a discussion of the Project’s relationship to land use plans and policies; findings supporting the anticipated determination; a list of stakeholders who participated in the consultation of the Draft EA; and a list of references. The Draft EA will be published in the State Office of Planning and Sustainable Development, Environmental Review Program’s (ERP) periodic bulletin, The Environmental Notice, which will commence a 30-day public comment period. After the 30-day comment period has concluded, comments received will be considered and addressed to the extent feasible in the Final EA.
Figure 1-1  
Project Location and Tax Map Key
Chapter 2

Description of the Proposed Action
Chapter 2

Description of the Proposed Action

This chapter primarily describes the Proposed Action/Project components, the purpose, need and background of the Project, anticipated Project schedule, costs and permits/approvals required.

2.1 Description of Existing Facilities and Uses

The existing facilities and uses on the Site comprises of the DOE MCSA building (one-story), a DOE lawnmower maintenance/operations building (one-story), a collapsed building (one-story), an asphalt parking lot with 21 marked parking spaces, an open grass lawn, and a low perimeter stone wall fronting West Kaʻahumanu Avenue and a portion of Kane Street.

The DOE MCSA and DOE lawnmower maintenance/operations buildings were built in 1920 and are in a deteriorated state. The DOE MCSA will be relocated to the Civic Center. The DOE lawnmower maintenance/operations will be relocated off-site, as the use and space requirements are not compatible with the Project. The Project involves the demolition of existing buildings and structures, and partial removal of the stone wall.

2.2 Description of Proposed Action

The Project (Proposed Action) primarily involves the construction of multi-family housing and a Civic Center. The Project will provide a total of approximately 381,000 SF of floor area and approximately 596 parking spaces. See Figure 2-1, Conceptual Site Plan, Figure 2-2, Pedestrian/Bicycle Circulation and Open Space Plan, Figure 2-3, View Along West Kaʻahumanu Avenue, Figure 2-4, View Looking Makai, and Appendix A, Conceptual Plans and View Studies. Specific Project components include the following:

- Demolition of existing buildings and structures, and partial removal of a stone wall will be required to accommodate the Project.
- Construction of approximately 300 multi-family dwelling units (mixture of 1-, 2- and 3-bedroom units) will be provided in two buildings (both roughly six stories) totaling approximately 315,000 SF of floor area. Two three-level parking podiums will provide approximately 414 parking spaces for the two buildings.
  - More than 50% of the dwelling units will be affordable to households earning 140% or below the MFI as defined by the HUD, pursuant to HRS Chapter 201H.
  - The multi-family housing buildings may contain space for a community center.
- Construction of an approximately 66,000-SF Civic Center (roughly four stories). A parking deck built over a surface parking lot will provide approximately 182 parking spaces for the Civic Center.
  - The preliminary program for the Civic Center includes approximately 38,000-43,000 SF of State office space; approximately 7,000 SF of classroom and support space for the MCSA; and approximately 16,000 SF for the Kahului Public Library. The program spaces may be adjusted due to the needs and priorities of State agencies and availability of funding.
• Approximately 5,000 SF of community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center.
• Installation of new landscaping, including a deep landscaped setback along West Ka‘ahumanu Avenue, along with site improvements, and off-site vehicular and pedestrian facilities improvements are included in the Conceptual Site Plan.
  o On-site design features such as preferred parking spaces for carpool/vanpool, bicycle parking, and showers, will be explored to encourage multi-modal transportation usage and enhance the pedestrian, bicyclist, and transit user experience. Additionally, a shared parking arrangement between the multi-family housing buildings and Civic Center will be explored, if necessary.
  o Off-site vehicular and pedestrian improvements may include the installation of a rectangular rapid-flashing beacon (RRFB) or an all-way stop control (AWSC) on Kane Street; restriping of the southbound Kane Street approach to Vevau Street to be a southbound right-turn lane, a southbound through lane, and a southbound left-turn lane; a curb extension on the southwest corner of the Kane Street/Vevau Street intersection to shorten the pedestrian crossing distance; relocation of a speed limit sign on Kane Street; a multi-use path along the east side of Kane Street fronting the Site (a portion of the multi-use path near the West Ka‘ahumanu Avenue intersection is on the Site); and a pedestrian path along the north side of Vevau Street fronting the Site. See Figure 4, Striping and Roadway Improvements in Appendix E, Preliminary Engineering Report.
  ▪ Note: The County Department of Public Works (DPW) is currently preparing plans for Complete Streets improvements along Kane Street from West Kaahumanu Avenue to West Kamehameha Avenue. These improvements include wider sidewalks, separate bicycle facilities, and enhancements at the Kane Street/Vevau Street intersection to shorten pedestrian crossings and manage vehicle speeds. Alternative plans are still being developed; thus, HHFDC will continue to coordinate with the DPW to ensure the Project designs align with the County’s Complete Streets improvements.

Below is a list of State agencies that currently rent office space in the Wailuku-Kahului region and may be relocated to the Civic Center:
• Department of Budget and Finance, Office of the Public Defender – Maui
• Department of Health (DOH), Adult Mental Health Division, Maui Community Mental Health Center
• DOH, Child & Adolescent Mental Health Division, Maui Family Guidance Center
• DOH, Developmental Disabilities Division, Case Management & Information Services Section
• DOH, Environmental Management Division
• Department of Human Services (DHS), Benefit, Employment & Support Services Division (BESSD)
• DHS, BESSD, First-To-Work – Maui
• DHS, BESSD, Investigations Office
• DHS, Med-QUEST Division
• DHS, Social Services Division, Adult Protective and Community Services Branch
• Department of Public Safety, Hawaii Correctional Industries – Maui

The Project will be implemented through a public-private partnership. HHFDC plans to issue a Request for Proposals (RFP), tentatively scheduled in 2022, to seek an eligible (multi-family housing) developer to develop a comprehensive master plan, and for the design, entitlement, construction, and leasehold ownership and operation of the multi-family housing (including ancillary parking) in one or more phases. A long-term land lease will be negotiated with the developer. Negotiation with the developer
may also include a long-term land lease for commercial space. The design, entitlements, and construction of the Civic Center (including ancillary parking) may be developed under a separate RFP. A separate condominium land lease at nominal lease rent for 65 years is proposed to be issued to DAGS, who will issue space assignments to applicable agencies for the various uses at the Civic Center. The Transit Hub may be included in the leasehold condominium for the Project or may be subdivided as a separate parcel. Either way, the Transit Hub will have a separate land lease from HHFDC at nominal lease rent for 65 years.

It should be noted that the Conceptual Site Plan is conceptual in nature and the site layout, building massing and heights, parking count, and open space and circulation plan may change as the Project evolves. The developer selected through the RFP process will be required to engage the community and State and County agencies to obtain input on the final design of the Project. The feedback received by the developer and conditions imposed as the Project moves through the entitlement process, may result in changes to the Conceptual Site Plan. The developer may also pursue exemption from statutes, ordinances, charter provisions, and rules relating to planning, zoning, development and improvement of land, and the construction of dwelling units under HRS §201H-38.

To the extent practicable, the Project design will strive to address and implement the urban design principles listed below, as well as those listed in the Wailuku-Kahului Community Plan (2002). The design will not be finalized until an RFP has been issued and a developer is selected. The RFP may require these urban design principles to be implemented by the developer and vetted by the community. The developer should develop a robust community engagement program to obtain input from the residents, businesses, community stakeholders, and State and County agencies on the final Project design.

- **Mixed-Uses** – Create a vibrant community and live-work neighborhood by integrating a variety of uses within the Site.
- **Building Scale** – Consider the scale of the existing adjacent buildings and design the Project buildings so that they have a human-scale perspective. Building mass can be further broken down and softened through the provision of landscaping and architectural treatments.
- **Building Setbacks** – Building setbacks from the street should be intentionally established. From West Ka‘ahumanu Avenue, a wider building setback should be established to provide a visual relief and landscaped open space which is consistent with existing development. However, building setbacks along Vevau Street and Kane Street hug tighter to the street and bookend the pedestrian experience with active ground floor spaces. Setbacks may provide space for streetlights, furnishings, planters, trash and recycling bins, and short-term bicycle parking.
- **Active Frontages** – Create an interesting and inviting streetscape by utilizing transparent windows on the ground levels of building façades; positioning building entrances to provide convenient access to pedestrians; and providing ground-level, public gathering spaces.
- **Alternative Modes of Transportation** – Provide canopy trees, continuous and safe sidewalks, benches, and proper lighting to encourage walking. Provide safe bicycle infrastructure as well as bicycle parking within close proximity to building entrances to encourage bicycling. Provide convenient connections to the adjacent Transit Hub to increase transit use. Provide convenient connections for pedestrian and bicyclist access.
- **Parking** – Parking structures and lots should be screened from public streets and accessed from internal driveways or secondary streets (Vevau Street and/or Kane Street). Parking structures or lots adjacent to public Right-of-Ways (ROW) should be screened with landscaping or other visually interesting treatments. Parking spaces should be reduced
through the provision of shared parking arrangements and alternative modes of transportation. Parking podiums may also be designed for adaptive reuse so that they can be converted to other uses, if the need for parking spaces is reduced.

2.3 Project Background

The Site was initially reserved for a DAGS Kahului Civic Center via Executive Order No. 3586 (dated May 20, 1993). However, the County requested to relocate the existing Transit Hub from the Queen Ka’ahumanu Center to approximately 0.85 acres of the Site (TMK (2) 3-7-004:003). The State agreed to lease a portion of the Site to the County for a new Transit Hub, and in exchange, the County agreed to lease a County-owned parcel to DAGS in Wailuku (TMK (2) 3-4-013:014) (Wailuku Property) for $1.00 a year for 65 years. A Memorandum of Understanding (MOU) dated December 24, 2018, allows the DAGS to construct a Civic Center in conjunction with a State Office Building at the Wailuku Property.

The Site was set aside to the HHFDC via Executive Order No. 4590 (dated July 29, 2019), for the purpose of developing the Project and the new Transit Hub. Therefore, the Project is a collaborative effort between the HHFDC and DAGS to primarily address the affordable housing shortage and State office space shortage on Maui. The Hawai‘i Housing Planning Study (2019) estimates that more than 5,500 new affordable housing units will be needed on Maui from 2020 through 2025, for households earning 140% or below the MFI. DAGS proposes to develop a Civic Center, principally for State office space, to align with the DAGS Office and Civic Center Master Plan (Master Plan), which is currently being prepared to determine future office space needs in Kahului and Wailuku. Incidentally, a 2020 State mandate requires DAGS to reduce General Fund spending for annual lease rent expenses; this mandate is a response to the drastic State revenue reduction, caused by the COVID-19 pandemic.

The Transit Hub is being developed as a separate project by the MDOT, on the southeast portion (0.85 acres) of the Site along Vevau Street. A Final EA and Finding of No Significant Impact for the Proposed Transit Hub Relocation project was published in the ERP’s periodic bulletin, The Environmental Notice, on October 8, 2019.

2.4 Project Purpose and Need

The purpose of the Project is multi-fold; the principal purpose is to increase the affordable housing stock on Maui, and to address the shortage of State office space in the Wailuku-Kahului area.

According to the Hawai‘i Housing Planning Study (2019), it is estimated that more than 5,500 new affordable housing units will be needed on Maui from 2020 through 2025, for households earning 140% or below the MFI. The Project will provide approximately 300 multi-family dwelling units (mixture of 1-, 2-, and 3-bedroom units), more than 50% of which will be affordable to households earning 140% or below the MFI. The DAGS is currently preparing a Master Plan to determine future State agency office space needs in the Wailuku-Kahului region. The Project will provide a Civic Center which will include office space for various State agencies in Kahului. The Civic Center will also provide classroom and support space for the MCSA, and space for the Kahului Public Library. Approximately 5,000 SF of community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center. The mixed-use development will create a vibrant community and live-work neighborhood that creates short- and long-term employment opportunities for Maui residents. Incidentally, the Project will also support a 2020 State mandate to reduce General Fund spending for lease rent expenses.
The Project is located near the new Transit Hub, is within the County Ka‘ahumanu Ave. Community Corridor (KCC) study area and will support the County’s efforts to promote Transit-Oriented Development (TOD). TOD is a development strategy aimed to provide a mix of land uses such as housing, commercial/retail space, and public services near mass transit, to reduce reliance on automobiles and simultaneously encourage alternative modes of transportation such as walking and biking.

2.5 Project Site Location

The Site is approximately 4.72 acres and is located on TMK: (2) 3-7-004:003 (por.) at 153 West Ka‘ahumanu Avenue in Kahului, on the island of Maui (Figure 1-1, Project Location and Tax Map Key). The Site is located within the “Urban” State Land Use District, the “B-2 – Business-Community” zoning district and is designated for “B – Business/Commercial” use per the County’s Wailuku-Kahului Community Plan (2002).

The Site is surrounded by a mix of commercial, residential, and resort uses. North of the Site is the Maui Beach Hotel, and west of the Site is the Queen Ka‘ahumanu Center – a shopping center with a variety of retailers. The Waterfront Apartments at Kahului are east of the Site. South of the Site is Kahului Lani – an affordable senior housing complex, which is currently being developed by Catholic Charities Housing Development Corporation and GSF, LLC. The Transit Hub is currently being constructed by the MDOT, on the southeast portion (0.85 acres) of the Site along Vevau Street.

2.6 Schedule and Costs

2.6.1 Preliminary Schedule

Following acceptance of the Final EA, the timetable for development of the Project is anticipated to follow several steps. The State is anticipated to complete the RFP process and select a developer in 2022. The selected developer would complete the SMA use permit process, Project design, and permitting during 2022-2024. Under this preliminary timetable, construction would occur during 2024-2026. Residents are anticipated to occupy the multi-family housing and government agencies and commercial tenants are anticipated to occupy the Civic Center by 2026 (subject to availability of funding). The Civic Center may be developed under a separate RFP; in which case, the developer of the Civic Center would complete the SMA use permit process, design, permitting and construction of the Civic Center, and occupancy would likely occur after 2026.

2.6.2 Costs

Act 039 Session Laws of Hawaii 2018 appropriated $1.5 million of Dwelling Unit Revolving Fund to HHFDC for the planning and preparation of an EA for the Project and the Wailuku Property. The development budget for the Project is estimated at approximately $192 million.
2.7 Required Permits and Approvals

The State and County permits and approvals that are likely to be required for the Project are listed below in Table 2-1, List of Required Government Permits and Approvals.

<table>
<thead>
<tr>
<th>Permit or Approval</th>
<th>Approving Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Assessment</td>
<td>State, Department of Business, Economic Development and Tourism, Hawai‘i Housing Finance and Development Corporation</td>
</tr>
<tr>
<td>National Pollutant Discharge Elimination System Permits</td>
<td>State, Department of Health (DOH)</td>
</tr>
<tr>
<td>Project Plans</td>
<td>State, DOH, Disability and Communication Access Board</td>
</tr>
<tr>
<td>Noise Permit (and noise variance if nighttime construction is anticipated)</td>
<td>State, DOH, Indoor and Radiological Health Branch</td>
</tr>
<tr>
<td>HRS Chapter 6E Compliance</td>
<td>State, Department of Land and Natural Resources, State Historic Preservation Division</td>
</tr>
<tr>
<td>Condominium Registration</td>
<td>State, Department of Commerce and Consumer Affairs, Real Estate Commission</td>
</tr>
<tr>
<td>Design Review</td>
<td>County, Cultural Resources Commission</td>
</tr>
<tr>
<td>Special Management Area Use Permit</td>
<td>County, Planning Commission</td>
</tr>
<tr>
<td></td>
<td>County, Urban Design Review Board</td>
</tr>
<tr>
<td>Landscape Planting Plan Review</td>
<td>County, Planning Department (PD)</td>
</tr>
<tr>
<td>Parking Waiver</td>
<td>County, PD</td>
</tr>
<tr>
<td>Sewage Connection</td>
<td>County, Department of Environmental Management</td>
</tr>
<tr>
<td>Building Permits for Building, Electrical, Plumbing, Sidewalk/Driveway, and Demolition Work</td>
<td>County, Department of Public Works (DPW)</td>
</tr>
<tr>
<td>Grubbing, Excavation, Grading, and Stockpiling</td>
<td>County, DPW</td>
</tr>
<tr>
<td>Permit to Excavate Public Right-of-Way</td>
<td>County, Department of Transportation</td>
</tr>
<tr>
<td>Water Use Permit</td>
<td>County, Department of Water Supply</td>
</tr>
</tbody>
</table>
2.8 Early Consultation

Listed below are the agencies, elected officials, organizations, and neighbors who were engaged during the early consultation period, including those who participated in the public meeting prior to the publication of this Draft Environmental Assessment (EA), and stakeholders who will receive notification of the publication of the Draft EA. For more information regarding the comments received and associated responses, see Chapter 7.

**Federal Agencies**
United States Department of the Interior, Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office

**State of Hawai’i Agencies**
Department of Accounting and General Services
Department of Budget and Finance, Office of the Public Defender – Maui
Department of Business, Economic Development and Tourism (DBEDT), Hawai’i Housing Finance and Development Corporation
DBEDT, Office of Planning and Sustainable Development
Department of Education, Maui District
Department of Hawaiian Homelands
Department of Health (DOH), Adult Mental Health Division (AMHD)
  DOH, AMHD, Maui Community Mental Health Center
DOH, Child and Adolescent Mental Health Division
DOH, Developmental Disabilities Division
DOH, Disability and Communication Access Board
DOH, Environmental Management Division (EMD)
  DOH, EMD, Clean Air Branch
  DOH, EMD, Clean Water Branch
  DOH, EMD, Indoor and Radiological Health Branch
  DOH, EMD, Safe Drinking Water Branch
  DOH, EMD, Solid and Hazardous Waste Branch
  DOH, EMD, Wastewater Branch
Department of Human Services (DHS), Benefit, Employment and Support Services Division
  DHS, Med-QUEST Division
  DHS, Social Services Division
Department of Land and Natural Resources (DLNR)
  DLNR, Division of Forestry and Wildlife
  DLNR, Land Division, Maui District
  DLNR, State Historic Preservation Division
Department of Public Safety (DPS), Hawai’i Correctional Industries – Maui
Department of Transportation
Hawai’i State Public Library System
Office of Hawaiian Affairs

**County of Maui Agencies**
Department of Environmental Management
Department of Fire and Public Safety
Department of Housing and Human Concerns
Department of Management
Department of Parks and Recreation
Department of Public Works
Department of Transportation
Department of Water Supply
Emergency Management Agency
Maui County Cultural Resources Commission
Planning Department (PD)
    PD, Kaʻahumanu Ave. Community Corridor
Police Department

Elected Officials
State Senator Gilbert Keith-Agaran (District 5)
State Representative Kyle Yamashita (District 12)
Office of the Mayor, County of Maui
Maui County Councilmember Tasha Kama (Kahului)
    Evan Dust, Senior Executive Assistant for Council Tasha Kama
Maui County Councilmember Yuki Lei Sugimura (Upcountry)
Maui County Councilmember Alice Lee

Utility Companies
Hawaiian Electric
Hawaiian Telcom

Organizations and Individuals
Family Life Center
Foodland Kaʻahumanu
Historic Hawaii Foundation
Janet Powell
Kahului Lani
Kathleen Tom
Maui Chamber of Commerce
Maui Economic Development Board
Maui Economic Opportunity, Inc.
Maui News
Nelson Nygaard Consulting Associates Inc.
Queen Kaʻahumanu Center
The Waterfront Apartments at Kahului
Zahra Bhattacharya
Figure 2-1 Conceptual Site Plan

Kahului Civic Center Mixed-Use Complex

LAND AREA AND ZONING INFORMATION

<table>
<thead>
<tr>
<th>Land</th>
<th>Available SF</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAHULU CIVIC CENTER MIXED-USE PROGRAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>246,716 sf</td>
<td></td>
</tr>
<tr>
<td>Land Use</td>
<td>4,931 sf</td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Residential Units</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential Subtotal</td>
<td>315,000 sf</td>
<td></td>
</tr>
<tr>
<td>Parking Required by Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Space</td>
<td>774 stalls</td>
<td></td>
</tr>
<tr>
<td>Residential Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School</td>
<td>5,000 sf</td>
<td></td>
</tr>
<tr>
<td>Parking Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>7,000 sf</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td>67 stalls</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>30,000 sf</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td>40 stalls</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>10,000 sf</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td>10 stalls</td>
<td></td>
</tr>
<tr>
<td>Non-Residential</td>
<td>66,000 sf</td>
<td></td>
</tr>
<tr>
<td>School</td>
<td>10 stalls</td>
<td></td>
</tr>
<tr>
<td>Total Floor Area</td>
<td>381,000</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Diagrams and tabulations are preliminary and subject to change. Total building floor areas and space counts are not final and will be adjusted as the building design evolves and support/ circulation/mechanical areas are identified.
Figure 2-3

View Along West Kaʻahumanu Avenue

Disclaimer: View studies of the project are for planning purposes. They are preliminary, subject to change and will be adjusted with the design of the building.
Kahului Civic Center Mixed-Use Complex
Draft Environmental Assessment Anticipated Finding of No Significant Impact

Figure 2-4
View Looking Makai

Disclaimer: View studies of the project are for planning purposes. They are preliminary, subject to change and will be adjusted with the design of the building.
Chapter 3

Existing Conditions, Potential Impacts and Mitigation Measures
Chapter 3

Existing Conditions, Potential Impacts and Mitigation Measures

This chapter describes the existing environmental setting and conditions, evaluates the potential impacts of the Proposed Action and proposes mitigation measures to diminish and/or resolve potential impacts.

3.1 Geology, Topography, and Soils

Existing Conditions

Maui was formed by the merging of two volcanoes, the East Maui volcano, known as Haleakalā, and the West Maui volcano, Maui Komohana. The merging of these volcanoes created the second largest island in the Hawaiian Islands. Maui Komohana is a deeply dissected volcano rising to 5,788 feet above mean sea level (AMSL). Haleakalā is a dormant volcano rising to 10,025 feet AMSL.

Kahului is located near the northern coast in central Maui. To the west, Pu’u Kukui reaches an elevation of 5,788 feet AMSL. To the southeast, the terrain rises gradually to the summit of Haleakalā (Arcadis, 2022).

The Site is relatively flat; elevations range from approximately 6 to 12 feet AMSL. According to the United States Department of Agriculture, Natural Resources Conservation Service, Pu’uone Sand (PZUE) (7 to 30% slopes) is on the mauka portion of the Site, while Fill Land (Fd) is on the makai portion of the Site (G70, 2021). PZUE soil is derived from coral and seashells. Permeability for PZUE is high (between 6.3 and 20.0 inches per hour) and has a low corrosivity. Fd soil consists of material dredged from the ocean or hauled from nearby areas; Fd typically occurs adjacent to the ocean (ENPRO, 2019a). See Figure 3-1, Soils.

Potential Impacts and Mitigation Measures

During construction, clearing and grubbing activities will temporarily disturb and expose soils. To minimize erosion, the Contractor will comply with applicable Federal, State, and County regulations for erosion control and will implement Best Management Practices (BMPs), which may include the following:

- Minimizing disturbed areas to reduce the fugitive dust;
- Centralizing on-site vehicular traffic routes, and locating potential dust-generating equipment in areas of the least impact;
- Retaining existing ground cover as long as possible;
- Providing a water truck on-site during the construction period to provide for immediate sprinkling when ground cover is removed;
• Watering graded areas when construction activity for each day has ceased; and
• Installing silt and dust fences and filter socks around active work areas and inlet protection devices near drainage outlets.

Limited earthwork such as excavation and grading will be required to accommodate construction of the Project. Site improvements and grading will match existing elevations to the maximum extent possible; however, portions of the Site will likely require fill to match the elevation of surrounding streets (G70, 2021). In the final stage of construction, the Site will be stabilized with pavement, gravel, or vegetative ground cover. Grubbing, Excavation, Grading, and Stockpiling permits will be obtained from the County.

The Project is not anticipated to result in a significant adverse impact on geology, topography, or soils, as the proposed improvements do not involve the alteration of topographic conditions that adversely impact drainage patterns; or the excavation and/or disturbance of hazardous contaminants that compromise public health and safety. No additional mitigation is recommended.
Figure 3-1  Soils
3.2 Climate, Climate Change, and Sea Level Rise

Existing Conditions

Climate

The National Weather Service (NWS) defines weather as the “state of the atmosphere at a given time and place, with respect to variables such as temperature, moisture, wind speed and direction, and barometric pressure.” Whereas climate is defined as the “expected frequency of specific states of the atmosphere, ocean, and land including variables such as temperature (land, ocean, and atmosphere), salinity (oceans), soil moisture (land), wind speed and direction (atmosphere), current strength and direction (oceans).” Climate encompasses the weather over time and relates to the interactions of the earth system’s components (NWS, 2020a).

Hawai‘i’s climate is typically characterized by mild temperatures throughout the year, moderate humidity, persistent northeasterly trade winds, significant differences in rainfall within short distances, and infrequent severe storms (NWS, 2020b). The Site is located in Kahului, Maui; the climate in Kahului is typical of most of Hawai‘i.

Kahului Airport has recorded temperatures in the low 90s°F to the low 50s°F. However, the normal temperature range in Kahului from August (warmest month) to February (coldest month) is only 7.2°F. Moderate temperatures are associated with the slight seasonal variation in energy from the sun and the tempering effect of the ocean. The contrast between the dry season (May through October) and the wet season (November through April) in Kahului is evident. Rainstorms usually occur several times during the wet season but are infrequent during the dry season. Approximately 50% of the normal annual rainfall occurs between December through February, and 80% occurs within the six-month wet season (Arcadis, 2022).

Climate Change and Sea Level Rise

The NWS defines climate change as “any significant change in the measures of climate lasting for an extended period of time...includes major changes in temperature, precipitation, or wind patterns, among others, that occur over several decades or longer” (NWS, 2020c). Climate change is considered a threat to Maui. “We see the impacts of climate change every day with chronic drought and more intense and sustained heat waves turning our open spaces into wildfire tinderboxes. Worsening coastal erosion threatens shoreline structures, miles of coastal roads and infrastructure,” said Mayor Michael Victorino (County, 2020).

Planning for climate change and sea level rise (SLR) is challenging as there are multiple variables and changing and unknown factors. The County Council adopted Resolution No. 20-170 on December 4, 2020, which proposes to amend MCC, Chapter 2.80B, General Plan and Community Plans. This amendment would add a new goal, new/revised objectives, policies and implementing actions to the Countywide Policy Plan, which is a component of the County’s General Plan 2030. This amendment would be a step in the direction of mitigating climate change and working toward resilience (County, 2021).

because of SLR. Three chronic flooding hazards were modeled: passive “bathtub” flooding, annual high wave flooding, and coastal erosion. The three hazards were then combined to define the projected extent of chronic flooding due to SLR, called the SLR exposure area (SLR-XA). The Hawai‘i Sea Level Rise Viewer is an online interactive map which illustrates the scale of potential SLR-XA at 0.5 feet, 1.1 feet, 2.0 feet and 3.2 feet. While the Intergovernmental Panel on Climate Change’s predicts up to 3.2 feet of global SLR by year 2100, based on a “business as usual” scenario where greenhouse gas\(^1\) (GHG) emissions continue at the current rate of increase, recent observations and projections suggest that SLR could occur as early as 2060 (Tetra Tech et. al., 2017). It should be noted that the 2017 SLR Report and the SLR-XA model are “resources,” which provide guidance, they are not laws, regulations, or ordinances. The SLR-XA model is a planning tool with limitations that requires verification at each individual site.

The National Oceanic and Atmospheric Administration (NOAA), Office for Coastal Management’s “Sea Level Rise Viewer” illustrates a 6.0 feet SLR (passive flooding) scenario. Passive flooding refers to still water high tide flooding in areas that are connected to the ocean (marine flooding) and isolated low-lying areas (groundwater inundation).

The Site and surrounding areas have a low risk of being impacted by 3.2 feet and 6.0 feet of SLR as illustrated in Figure 3-2, Sea Level Rise Exposure Area.

**Potential Impacts and Mitigation Measures**

Construction-related activities will result in the temporary production of GHG emissions due to the generation of exhaust from construction vehicles and equipment. Construction-related activities will include grubbing, grading, demolition, excavation, structure construction, and asphalt paving and architectural coatings (Arcadis, 2022).

Once the Project is developed, GHG emissions will result from on-site/stationary sources (e.g., energy usage, water usage, solid waste generation, landscaping equipment, and consumer products) and mobile sources (e.g., vehicle trips). The quantity of GHG emissions during the operation of the Project will not result in a significant adverse impact on existing air quality (Arcadis, 2022). The potential contributions of GHG related to the construction and operational phases of the Project have been calculated, as presented in **Section 3.6, Air Quality**. Energy efficient fixtures and appliances will be installed in the multi-family dwelling units and Civic Center. Electric vehicle charging stations will be provided for multi-family housing residents and Civic Center workers. Furthermore, to the extent practicable, the Project will comply with HRS §196-9, regarding energy efficiency and environmental standards for State facilities. Proposed landscaping and trees will help to mitigate and absorb local GHG emissions.

The impacts of GHG emissions are inherently indirect and cumulative. The Project is not anticipated to have a significant adverse impact on the climate or significantly contribute to climate change, as the proposed improvements will not lead to a substantial increase in GHG emissions, associated with the consumption of electricity, compared to baseline conditions. The Project will also incorporate sustainable design features to the extent possible to reduce the Project’s contribution to climate change. No additional mitigation is recommended.

---

\(^1\) GHGs include carbon dioxide (CO\(_2\)), methane (CH\(_4\)), nitrous oxide (N\(_2\)O), and several chlorofluorocarbons.
Figure 3-2

Sea Level Rise Exposure Area
3.3 Natural Hazards

3.3.1 Flooding

**Existing Conditions**

Flooding in Hawai‘i primarily occurs as a result of stream overflow and surface runoff, following torrential rains that fall on steep slopes of mountain ranges. While floods are principally a natural event, most flood damage is a result of development on lands susceptible to flooding (Fletcher, et al., 2002).

The Federal Emergency Management Agency (FEMA) prepares Flood Insurance Rate Maps (FIRM) based on flood studies to identify flood hazard areas and associated base flood elevations (BFE), or the elevation which water is anticipated to rise during the base flood. Based on the FEMA-FIRM No. 1500030392E (effective September 25, 2009), the Site is in Flood Zone X, an area determined to be of minimal flood risk, and outside of the 0.2% annual chance or 500-year floodplain. The Site is not located within a FEMA Special Flood Hazard Area. See Figure 3-3, Flood Zones.

**Potential Impacts and Mitigation Measures**

During construction, the Site will be at minimal risk from the threat of flooding. However, the Site is no more vulnerable to flood events than the surrounding area in Flood Zone X. In the event of a flood, construction activities will cease; equipment and materials will be secured; and Federal, State and County regulations will be adhered to, to ensure the safety of construction workers and community members near the Site.

The FEMA Flood Insurance Program does not have regulations for development within Flood Zone X. The Project will be designed to comply with MCC, Chapter 19.62, *Flood Hazard Areas*, as applicable. The Project will have an emergency response plan in place for the safe and orderly evacuation during a major flood event.

The Project is not anticipated to result in a significant impact to the surrounding neighborhood during a flood event. No additional mitigation is recommended.
Figure 3-3

Legend
- Project Area
- 1% Annual Chance of Flooding
- Area of Minimal Flood Hazard

Source: FEMA DFRM, 2018

Flood Zones
3.3.2 Hurricanes and Tropical Storms

Existing Conditions

Tropical cyclones (hurricanes, tropical storms, and tropical depressions) form in warm tropical waters and typically have sustained winds exceeding 73 miles per hour (mph). Hurricanes in Hawai‘i typically occur during the summer to early winter months (June 1 to November 30). Hawai‘i is impacted by hurricane near misses, which generate large wave swells and moderately high winds; however, hurricane strikes have been relatively rare (Fletcher, et al., 2002).

Hawai‘i has been affected by significant hurricanes twice since 1982; hurricane ‘Iwa was a category 1 hurricane (sustained winds of 74-95 mph), which passed over Kaua‘i on November 23, 1982 and hurricane ‘Iniki was a category 4 hurricane (sustained winds of 130-156 mph), which passed over Kaua‘i on September 11, 1992. The most recent hurricane to threaten Hawai‘i was hurricane Douglas, which entered the Central Pacific basin on July 24, 2020 as a category 4 hurricane, and weakened to a category 1 hurricane as it passed northwest of Maui. While hurricane strikes are a rare phenomenon in Hawai‘i, it is prudent to assume that future events will occur.

Potential Impacts and Mitigation Measures

During construction, the Site will be at minimal risk from the threat of natural hazards, such as hurricanes. The Site is no more vulnerable to hurricanes than the entire island of Maui. High winds associated with hurricanes can cause strong uplift forces on structures, construction materials and debris, which can attain high velocity and cause property damage and harm to life.

The Central Pacific Hurricane Center (CPHC) issues tropical cyclone warnings, watches, and advisories for tropical cyclones. The CPHC is activated when a tropical cyclone moves into the Central Pacific from the Eastern Pacific or the West, or forms in the Central Pacific. During Central Pacific tropical cyclone events, bulletins are regularly scheduled every six hours (CPHC, nd). A “Hurricane Watch” is typically issued 48 hours in advance of a potential hurricane and a “Hurricane Warning” is typically issued when sustained winds of at least 74 mph are expected within 36 hours. Upon issuance of a “Hurricane Warning,” construction activities will cease, construction workers will secure the Site, and evacuate the Site until the hurricane threat has passed. Upon issuance of a “Hurricane Watch,” construction workers will secure the Site as follows:

- Remove or secure equipment, machinery, construction materials, and portable toilets;
- Clean up all construction debris;
- Stop scheduled deliveries of building materials;
- Remove jobsite signage, dust screens, silt screens, and other temporary installations; and
- Locate and turn off jobsite utilities, including electricity, water, and gas.

The Project will be designed to comply with MCC, §16.26B.423, State and County-owned public high occupancy buildings. The Project will have an emergency response plan in place for the safe and orderly evacuation during a hurricane.

The development of this Project will not affect the surrounding neighborhood during a hurricane event. No additional mitigation is recommended.
3.3.3 Seismic Activity

Existing Conditions

Thousands of earthquakes occur every year in Hawai‘i. Most are insignificant, too small to be felt, and can only be detected by seismometers. On the other hand, some are strong enough to be felt on multiple islands, and others can cause significant damage across the State. The majority of earthquakes in Hawai‘i occur on and around Hawai‘i Island, especially near Kīlauea, Mauna Loa, and the Lō‘ihi volcanoes (USGS, nda). Approximately 95% of the earthquakes on the Hawai‘i Island are related to volcanic activity or the movement of magma within Kīlauea or Mauna Loa (Fletcher, et al., 2002). There are rare occurrences of seismic events/earthquakes on Maui.

The severity of an earthquake is classified by magnitude and intensity. Magnitude is a measure of the amount of energy released during an earthquake, while intensity is a measure of the severity of ground shaking. Seismic events are often characterized by peak ground acceleration (PGA), which is defined as the greatest increase in velocity or ground shaking at a particular geographic point during an earthquake (measure in percentage of gravity). A Seismic Design Category (SDC) is a classification assigned to buildings/structures based on occupancy and the severity of an earthquake, to ensure buildings/structures are earthquake resistant. The County is in SDC classification C area (USGS, ndb).

Potential Impacts and Mitigation Measures

During construction, the Site will be at minimal risk from the threat of earthquakes. However, the Project is no more vulnerable to seismic events than the entire island of Maui. The United States Geological Survey, Region 12 – Pacific Islands Office is the official source for seismic information in Hawai‘i, and provides updates on seismic activity. In the event of an intense earthquake of high magnitude, construction activities will cease; equipment and materials will be secured; and Federal, State and County regulations will be adhered to, to ensure the safety of construction workers and community members near the Site.

The Project will be designed to comply with current International Building Code and seismic design standards, per MCC, Chapter 16.26B, Building Code. The Project will have an emergency response plan in place for the safe and orderly evacuation during an earthquake.

The development of this Project will not affect the surrounding neighborhood during a seismic event. No additional mitigation is recommended.

3.3.4 Tsunami

Existing Conditions

A tsunami involves the generation of destructive waves, created by sea floor movements, often triggered by earthquakes, landslides, submarine faulting or volcanic eruptions. Tsunamis that impact Hawai‘i typically originate from distant, seismically active areas bordering the Pacific Ocean, or from local, undersea earthquakes near Hawai‘i Island (Fletcher, et al., 2002). While tsunamis are a rare phenomenon in Hawai‘i, it is prudent to assume that future events will occur.

The National Oceanic and Atmospheric Administration (NOAA) assists in preparing Tsunami Evacuation Zone Maps for Hawai‘i. The Site is located in the “tsunami evacuation zone”. As shown in Figure 3-4, Tsunami Evacuation Zone. Note: The tsunami evacuation zone for this area of Kahului extends mauka to Wakea Avenue and beyond.
**Potential Impacts and Mitigation Measures**

During construction, the Site will be at minimal risk from the threat of tsunamis. However, the Site is no more vulnerable to tsunamis than the surrounding area, and in some cases the rest of Maui. The NOAA, Pacific Tsunami Warning Center (PTWC) issues four different tsunami alerts: a warning, an advisory, a watch, and an information statement. When a tsunami watch is issued, the public is advised to be prepared to act. When a tsunami advisory is issued, local officials start to evacuate the ocean and beaches. When a tsunami warning is issued, a potential tsunami with significant widespread inundation is imminent or expected and the public should evacuate the “tsunami evacuation zone.” Depending on the type of tsunami warning issued by the NOAA, PTWC, construction activities may have to come to a halt; equipment and materials will be secured; and Federal, State and County regulations will be adhered to, to ensure the safety of construction workers and community members near the Site. The Project will have an emergency response plan in place for the safe and orderly evacuation in the event a tsunami.

The Project does not involve improvements that increase the risk to the public’s safety during a tsunami event. The development of this Project will not affect the surrounding neighborhood during a tsunami event. No additional mitigation is recommended.
Figure 3-4

Tsunami Evacuation Zone

Legend
- Project Area
- Tsunami Evacuation Zones

Source: Pacific Disaster Center (2013)
3.4 Water Resources

Existing Conditions

The DLNR, Commission on Water Resource Management (CWRM) defines and regulates groundwater management areas. The Site is not located within the groundwater management areas (DLNR, CWRM, 2005). The DLNR, CWRM also establishes groundwater hydrologic units for island regions/sub-regions, to provide a basis for managing groundwater resources and optimizing island-wide pumpage for aquifer systems. The Site is located within the Kahului region, Kahului sub-region (aquifer code: 60301) and has a hydrologic unit sustainable yield of 1 million gallons per day (mgd) (DLNR, CWRM, 2018).

Groundwater beneath the Site occurs in two distinct aquifers within the Kahului Aquifer System. The shallow aquifer is classified as a basal, unconfined, sedimentary aquifer, occurring in non-volcanic lithology. The groundwater status is reported as currently used, but not for drinking water, and it is considered ecologically important. The deeper aquifer is classified as a basal, confined, flank aquifer, occurring in horizontally extensive lavas. The groundwater status is reported as currently used, but not for drinking water, and it is considered ecologically important (ENPRO, 2019).

There are no surface waters (e.g., streams, lakes, ponds, or wetlands) on the Site. The nearest body of water to the Site is the Kahului Harbor, located approximately 620 feet to the north, connecting to Kahului Bay and the Pacific Ocean. See Figure 3-5, Surface Waters.

Potential Impacts and Mitigation Measures

During construction, groundwater may be encountered. The Contractor will shore up and seal excavated work areas during deep excavation, to minimize the potential of groundwater infiltrating active work areas and to prevent potential pollutants discharging into and arising from groundwater, as necessary. During construction, there is also the potential for minor impacts to surface water quality, as surface waters are susceptible to point-source (i.e., from a discrete or distinct source) and non-point source pollution (i.e., from a diffuse or widely spread, scattered un-concentrated source). The Contractor will install BMPs such as filter socks around active work areas and inlet protection devices near drainage outlets to slow and filter stormwater runoff. These actions will mitigate potential construction-related pollutants (e.g., sediment, pollutants, petroleum products, and debris) from entering surface waters.

The Project will comply with HAR Chapters 11-54 and 11-55. National Pollutant Discharge Elimination System (NPDES). A NPDES General Permit for stormwater runoff discharges, will be obtained from the State, DOH, Clean Water Branch (CWB). NPDES General Permits for dewatering and hydrotesting water discharges may also be obtained from the DOH, CWB.

The Project is not anticipated to have a significant impact on groundwater or surface waters, as the proposed improvements do not involve the installation of an injection well or detention/infiltration basin, or a long-term release of pollutants. No additional mitigation is recommended.
3.5 Flora and Fauna

A Natural Resources Assessment (NRA) was prepared by AECOS, Inc. (2021). A biologist surveyed the Site for flora and fauna species in April 2021. See Appendix B, Natural Resources Assessment.

3.5.1 Flora

Existing Conditions

The northern half of the Site is predominantly covered by a maintained lawn with intermittent trees, shrubbery, and weeds. The southern half of the Site is occupied by the MCSA building and associated parking lot, and a lawnmower operation building. Most of the flora species on the Site are ornamental or naturalized, non-native species, except for three Polynesian-introduced species: ‘ulu or breadfruit (Artocarpus altilis), niu or coconut (Cocos nucifera), and ki or ti (Cordyline fruticosa). Table 1 in the NRA includes a full listing of flora species observed on the Site. There were no observed Federal or State protected, rare, threatened, or endangered flora species on the Site (AECOS, 2021).

Potential Impacts and Mitigation Measures

During construction, the existing grass, shrubs, and trees will be removed to accommodate the development of the Project.

The Project involves the installation of significant new landscaping and trees which will border the Site and be interspersed between the multi-family housing buildings, Civic Center, surface parking and parking deck. A wide landscaped setback will front West Ka‘ahumanu Avenue, adjacent to the existing sidewalk, and will provide seamless shade coverage with connection to the multi-use path along Kane Street and a tree-lined greenway between the multi-family housing buildings. The tree-lined greenway will provide a buffer between the multi-family housing buildings and will further connect to the interior network of shaded pedestrian paths. The plaza crowning the Civic Center (off Kane Street) will serve as an entryway and provide inviting greenspace, shade and respite for employees and pedestrians.

Per HRS §103D-408, Hawaiian plants shall be incorporated in project landscaping that utilizes public funds. Drought-tolerant flora species will be planted where possible. Per early consultation letter from the Department of Land and Natural Resources, Division of Forestry and Wildlife (DLNR, DOFAW) (dated November 10, 2020) the Hawai‘i-Pacific Weed Risk Assessment website will be consulted to determine the potential invasiveness of proposed landscaping plants. An automatic drip irrigation system will be considered to conserve water.

The Project is not anticipated to have a significant impact on Federal or State protected, rare, threatened, or endangered flora species. No additional mitigation is recommended.

3.5.2 Fauna

Existing Conditions

The Site is in a highly urbanized area and does not provide a good habitat for wildlife. Based on early consultation with the United States Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office (USFWS) (letter dated October 26, 2020), the following federally listed species may occur in the vicinity or transit through the Site: ‘Ôpe'a’ape’a or Hawaiian Hoary Bat (Lasiurus cinereus semotus); Nēnē or Hawaiian Goose (Branta sandvicensis); Hawaiian Seabirds; Hawaiian Waterbirds; Blackburn’s Sphinx
Moth (Manduca blackburni); and the Hawaiian Yellow-faced Bee (Hylaeus anthracinus, H. assimulans, H. facilis, H. hilaris, and H. longiceps). According to an early consultation letter from the DLNR, DOFAW (dated November 10, 2020) the Blackburn’s Sphinx Moth has a historic range that encompasses the Site.

The Site serves as habitat for typical non-native fauna species of common birds and feral mammalian species. Mammalian species observed during the survey included the feral domestic cat (Felis catus) and small Indian mongoose (Herpestes javanicus). Potentially, one or more of the four introduced rats and mice (Muridae) traverse the Site to some extent. Cats, mongooses, rats, and mice are introduced and deleterious to native ecosystems and native fauna (AECOS, 2021).

Avian species were surveyed during an eight-minute point-count on April 15, 2021. A total of 61 birds comprised of 11 species were observed; all are common, non-native avian species established in Hawai‘i. The Common Mynah (Acidotheres tristis) and the House Sparrow (Passer domesticus) were the most frequently observed. The kōlea or Pacific Golden Plover (Pluvialis fulva) was observed outside of the eight-minute point-count and was the only native avian species observed. Table 2 in the NRA includes a full listing of avian species observed on the Site (AECOS, 2021).

The Hawaiian Hoary Bat was not observed; however, there are trees on the Site that are suitable for the Hawaiian Hoary Bat to roost in. The Hawaiian Goose, Hawaiian Seabirds and Waterbirds were not observed on the Site. The Blackburn’s Sphinx Moth or its host plants such as tree tobacco or plants in the Family Solanaceae were not observed on the Site. The Hawaiian Yellow-faced Bee was not observed during the survey and no potential habitat or food sources are present on the Site. It is possible that endangered damselfly species, including the flying earwig damselfly (Megalagrion resiotes), Pacific damselfly (M. pacificum), and orange-black damselfly (M. xanthomelas) traverse over the Site. However, presence of the endangered damselflies at the Site is unlikely as there were no breeding areas observed at or near the Site. There is no Federally-delineated Critical Habitat present in the Project area (AECOS, 2021).

**Potential Impacts and Mitigation Measures**

During construction, non-native fauna species will be displaced from the Site.

Per early consultation with the DLNR, DOFAW, the movement of plant or soil material between worksites will be avoided throughout construction; and equipment, materials, and personnel will be cleaned of excess soil and debris to minimize the risk of spreading fungal pathogens (e.g., Rapid 'Ōhi'a Death), vertebrate and invertebrate pests (e.g., Little Fire Ants), or invasive plant parts. Additionally, per early consultation with the USFWS and DLNR, DOFAW, the following mitigation measures will be implemented prior to or during construction to minimize potential impacts to the following species:

- **Hawaiian Hoary Bat**: Woody plants greater than 15 feet tall will not be disturbed, removed, or trimmed during the bat birthing and pup-rearing season (June 1 through September 15). Additionally, barbed wire will not be used for fencing. If this cannot be avoided, woody plants greater than 15 feet tall should not be disturbed, removed, or trimmed without consulting USFWS and DLNR, DOFAW.

- **Hawaiian Seabirds**: Nighttime construction will be avoided during the seabird fledging period (September 15 through December 15) to prevent injury to seabirds. Outdoor lights will be shielded to the maximum extent possible, so the bulb can only be seen from below and as much as possible the lowest wattage bulbs will be used. The Contractor will provide construction crews with information about seabird fallout prior to the initiation of work. If a downed seabird is found, the Contractor will contact the USFWS immediately.
• **Blackburn's Sphinx Moth:** Prior to clearing vegetation, a biologist will survey the Site and confirm that eggs, larvae and host plants of native 'aiea or tree tobacco are not present. The biologist will concurrently contact the DLNR, DOFAW Maui office for further information about where the Blackburn’s Sphinx Moth may be present. Surveys should be conducted during the wettest portion of the year (November - April) or several weeks after a significant rain and within four to six weeks prior to construction. The USFWS and DLNR, DOFAW will be contacted if Blackburn’s Sphinx Moth or the native ‘aiea or tree tobacco over 3 feet tall are found. The Contractor will remove any tree tobacco that is less than 3 feet tall and monitor the Site for new tree tobacco growth throughout construction.

The multi-family housing buildings and Civic Center exteriors will have security lights. The Site is in an urban area where night lights are prevalent; therefore, the brightness of exterior lights will be equivalent to existing exterior lights on nearby buildings and will not result in light spillage. To avoid impacts to seabirds, permanent exterior lights will be shielded to the maximum extent possible; automatic motion sensor switches and timer controls will be installed in low-traffic areas, so lights turn off when human activity is not present. For security reasons, walkways and lighting around the Civic Center may be continuously lit. Exterior lights will comply with HRS §201-8.5, *Night Sky Protection Strategy.*

The Project is not anticipated to have a significant impact on fauna species, as the proposed improvements will not result in a substantial decline or take of a Federal or State protected, threatened, or endangered species. The Project will not result in substantial damage of a designated critical habitat or a substantial interference with seasonal movements of migratory avifauna. No additional mitigation is recommended.

### 3.6 Air Quality

**Existing Conditions**

The Clean Air Act (42 U.S.C. 7401 et seq.) requires the United States Environmental Protection Agency (EPA) to set National Ambient Air Quality Standards (NAAQS) for seven criteria pollutants that are harmful to public health and the environment: carbon monoxide, nitrogen dioxide, sulfur dioxide, lead, ozone, and particulate matter (PM) less than 10 and 2.5 microns respectively (PM$_{10}$ and PM$_{2.5}$) (Arcadis, 2022).

The DOH, Clean Air Branch (CAB) has established State Ambient Air Quality Standards (SAAQS) for criteria pollutants in HAR §11-59, *Ambient Air Quality Standards* and §11-60, *Air Pollution Control.* The DOH, CAB, Air Surveillance and Analysis Section, collects measurements of ambient level pollutants in the air through a statewide monitoring network.

An *Air Quality Technical Report* (Air Report) was prepared by Arcadis U.S., Inc. (2022). See Appendix C, *Air Quality Technical Report.* The purpose of the Air Report is to characterize existing ambient air quality and quantify criteria pollutant and GHG emissions associated with the Project during the construction and operational phases of the Project. Based on DOH, CAB’s air monitoring data, the State is currently in attainment for all applicable NAAQS and SAAQS (Arcadis, 2022).

**Potential Impacts and Mitigation Measures**

During construction, fugitive dust, criteria pollutants and GHG emissions will result from grubbing, grading, demolition, excavation, structure construction, asphalt paving and architectural coatings. The
estimated annual emissions generated from the construction of the Project were calculated using the California Emissions Estimator Model software (version 2016.3.2), and are shown in Table 3-1, Summary of Estimated Project Emissions (Tons per Year). Construction-related emissions are relatively minimal due to the scale and intensity of construction activities; the maximum annual criteria pollutant emissions from construction are estimated to be less than 12 tons per year. Calculation assumptions regarding construction activities, duration and type of equipment are listed in Table 2 of the Air Report. Calculations were also based on the assumption that the following mitigation measures will be implemented:

- Replacement of ground cover on disturbed areas;
- Application of water on disturbed areas and haul roads (three times a day); and
- Reduction of speeds on unpaved roads to <15 mph (Arcadis, 2022).

Additionally, the Contractor will comply with HAR Chapter 60.1, Air Pollution Control and may implement BMPs such as phasing/limiting disturbed areas, installing dust screens around the Project area, covering open-bodied trucks when in motion when transporting materials, and scheduling construction workers to commute on off-peak hours. Construction-generated emissions will be short-term, intermittent, and spread over several acres.

<table>
<thead>
<tr>
<th>Project Phase Total</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO₂</th>
<th>PM₁₀</th>
<th>PM₂.₅</th>
<th>CO₂e (MT/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Phase - 2024</td>
<td>0.10</td>
<td>0.80</td>
<td>0.87</td>
<td>2.26x10⁻³</td>
<td>0.14</td>
<td>0.06</td>
<td>203</td>
</tr>
<tr>
<td>Construction Phase - 2025</td>
<td>1.19</td>
<td>9.21</td>
<td>11.61</td>
<td>0.03</td>
<td>1.83</td>
<td>0.67</td>
<td>3,095</td>
</tr>
<tr>
<td>Construction Phase - 2026</td>
<td>5.62</td>
<td>0.15</td>
<td>0.22</td>
<td>4.90x10⁻⁴</td>
<td>0.02</td>
<td>0.01</td>
<td>44</td>
</tr>
<tr>
<td>Operational Phase Total</td>
<td>2.80</td>
<td>4.28</td>
<td>9.88</td>
<td>0.034</td>
<td>2.86</td>
<td>0.80</td>
<td>5,020</td>
</tr>
</tbody>
</table>

**Notes:** Reactive organic gases (ROG); nitrogen oxides (NOx); metric tons per year (MT/yr)
**Source:** Tables 3 and 4 in the Air Report (Arcadis, 2022).

Once the Project is developed, criteria pollutant and GHG emissions will result from on-site/stationary sources (e.g., energy usage, water usage, solid waste generation, landscaping equipment, and consumer products) and mobile sources (e.g., vehicle trips). The estimated annual emissions generated from the long-term operations of the Project are shown in Table 3-1. Anticipated vehicle trips were based on the Mobility Analysis Report for the Project prepared by Fehr & Peers in 2021. Calculations indicate that criteria pollutant and GHG emissions are projected to increase with Project operations; however, the quantity will not result in a significant adverse impact on existing air quality (Arcadis, 2022).

The Project is not anticipated to have a significant adverse impact on air quality, as the proposed improvements do not involve permanent air-polluting activities that will impair the State’s ability to meet Federal or State air quality standards. No additional mitigation is recommended.
3.7 Noise Conditions

Existing Conditions

Noise is defined as any unwanted or unpleasant sound that causes a disturbance or interferes with normal activities. It may be intermittent or continuous, steady, or impulsive, and stationary or temporary. Existing ambient noise in the Project vicinity is attributable to both the natural environment and human activity, from sources that are typical of urban environments.

The Day-Night Average Sound Level (DNL) noise descriptor developed by the EPA is used by federal agencies to measure and assess environmental noise. Determining noise levels using the DNL metric requires definition of an average sound level, typical duration, and frequency of occurrence. A 65 DNL is used as a noise impact threshold/regulatory standard in Hawai‘i for residences and other noise sensitive land uses. A 75 DNL is generally considered acceptable for commercial, industrial, and other non-noise sensitive land uses. Noise which occurs at night (10:00 PM to 7:00 AM) is penalized by an additional 10 decibel (dB) when calculating annual average DNL value, based on the assumption that nighttime noise is more disturbing (Ebisu, 2021). There are no fines or violations associated with exceeding the 65 DNL threshold; it is primarily used to determine the need for noise mitigation on federal projects.

In Hawai‘i, noise is regulated by the DOH, Indoor and Radiological Health Branch (IRHB), in accordance with HAR §11-46, Community Noise Control. HAR §11-46-3 defines maximum permissible sound levels (at property lines) for three land use classifications (i.e., zoning districts) and provides for the abatement and control of excessive noise sources, including stationary and temporary construction and industrial generated noise sources. “Class A” zoning districts include residential, conservation, preservation, public space, open space, or similar types of zoning districts; “Class B” zoning districts include multi-family dwelling, apartment, business, commercial, hotel, resort, or similar types of zoning districts; and “Class C” zoning districts include agriculture, country, industrial or similar types of zoning districts. The Site is in the Class B zoning district. The maximum permissible sound levels in the Class B zoning district are 60 A-weighted decibels (dBA) (7:00 AM to 10:00 PM) and 50 dBA (10:00 PM to 7:00 AM). If impulsive sounds exceed 120 impulses in any 20-minute period, the noise limit is 10 dB above the maximum permissible sound level. State maximum permissible sound levels expressed in DNL for residential, commercial, and industrial lands equate to approximately 55 DNL, 60 DNL and 76 DNL, respectively (Ebisu, 2021). Per HAR §11-46, noise levels are not permitted to exceed the maximum permissible sound levels for more than 10% of the time within any 20-minute period, except by permit or variance from DOH, IRHB.

An Acoustic Study was prepared by Y. Ebisu & Associates (2021). See Appendix D, Acoustic Study. The Acoustic Study determined existing/base year traffic noise levels (2017) and projected future traffic noise levels (2026) with and without the Project and assessed potential short-term and long-term noise impacts. 2017 traffic counts were utilized for the Acoustic Study because traffic counts in the Project vicinity at the study intersections are not available prior to the COVID-19 pandemic. Traffic noise calculations for 2017 and 2026 were determined using the Federal Highway Administration (FHWA) Traffic Noise Model, Version 2.5. Traffic noise measurements were obtained at six study locations (A-F) in the Project vicinity from March 8–9, 2021 to validate the FHWA Traffic Noise Model. Location A was along Kahului Beach Road, Locations B and E were along Kane Street, Location C was along West Kamehameha Avenue, Location D was along West Ka‘ahumanu Avenue and Location F was along Lono Avenue. In 2017, traffic noise from West Ka‘ahumanu Avenue was the dominant noise source at the Site; the 65 DNL traffic noise contours were located at approximately 170 feet from the centerline of West Ka‘ahumanu Avenue, 40 feet from the centerline of Kane Street and 16 feet from the centerline of Vevau Street (Ebisu, 2021).
Based on early consultation with the State, Department of Transportation (HDOT) (letter dated October 29, 2020), due to the Project’s proximity to the Kahului Airport, noise may occur from the occasional aircraft flight over the Site.

**Potential Impacts and Mitigation Measures**

During construction, short-term noise impacts will occur during site work and earthwork phases (e.g., excavation, grading, sheet pile driving, concrete pouring, and hammering). Construction-related noise outside nearby buildings (with a direct line-of-site to the Site) will range on average from 74 to 86 dBA at 50 to 200 feet. Noise levels from pile driving may be 15 dBA louder than non-impulsive construction noise sources. Inside naturally ventilated buildings (windows open) within 70 to 200 feet of the Site may experience noise levels of 64 to 73 dBA. Inside air-conditioned buildings within 70 to 200 feet of the Site may experience noise levels of 54 to 63 dBA. The Waterfront Apartments at Kahului is predicted to experience the greatest noise levels during site work and excavation due to its proximity to the Site (Ebisu, 2021). Construction noise will gradually diminish as the exterior structure of the building is built and roofed. Noise impacts will be temporary and intermittent.

If required, the Contractor will obtain a noise permit from DOH, IRHB. A noise permit is required for construction activities (during 7:00 AM to 6:00 PM Monday through Friday and 9:00 to 6:00 PM on Saturday) that exceed 78 dBA or have a total cost of more than $250,000 (based on the value of the building permit). Additionally, the Contractor will employ the following mitigation measures to minimize noise impacts:

- Construction equipment and vehicles will be appropriately muffled and maintained to reduce backfires. Generators will be housed in baffle boxes (a sound-resistant box placed over or around a generator), be equipped with an attached muffler, or use other noise-abatement methods in accordance with industry standards;
- Construction equipment use, including pile drivers, hydraulic hammers, and jackhammers, will be limited to Monday through Friday (9:00 AM to 5:30 PM);
- Broadband back up alarms will be used rather than high frequency beeper backup alarms on operating equipment; and
- Equipment staging and storage areas will be distanced from noise sensitive neighbors.

In 2026, future traffic noise levels due to Project traffic are not anticipated to exceed 0.4 DNL along the six study locations (A-F) in the Project vicinity. Future traffic noise levels due to non-Project traffic are predicted to increase from 0.5 to 5.8 DNL, with greater increases occurring along Vevau Street, West Kamehameha Avenue (east of Lona Avenue) and Kane Street (east of West Kamehameha Avenue). The greatest increase in future traffic noise levels due to Project and non-Project traffic is anticipated to be 6.1 DNL along Vevau Street, primarily due to the Transit Hub. In 2026 the 65 DNL traffic noise contours are projected to extend approximately 178 feet from the centerline of West Ka‘ahumanu Avenue, 51 feet from the centerline of Kane Street and 31 feet from the centerline of Vevau Street. Future traffic noise levels are anticipated to range from 71 DNL on the ground floor to 72 DNL on the sixth floor along the north side of the 6-story building fronting West Ka‘ahumanu Avenue. Future traffic noise levels are anticipated to range from 68 DNL on the ground floor to 69 DNL on the sixth floor along the west side of the 6-story building fronting Kane Street. Units on the upper floors facing West Ka‘ahumanu Avenue and Kane Street may require closure and the use of air conditioning to attenuate traffic noise. The closure of windows and air-conditioning should provide adequate noise mitigation (Ebisu, 2021). The Project is not anticipated to result in a significant impact to existing noise conditions. No additional mitigation is recommended.
3.8 Utilities and Infrastructure

A Preliminary Engineering Report (PER) was prepared by G70 (2021). The PER evaluates the existing availability of potable water, wastewater, drainage, electrical, telecommunications, transportation infrastructure, and requirements for servicing the Project. See Appendix E, Preliminary Engineering Report.

3.8.1 Potable Water

**Existing Conditions**

The Department of Water Supply (DWS) manages the County potable water system, which comprises of an interconnected distribution network of reservoirs, wells, shafts, water tunnels, booster and pumping stations and water mains. The DWS provides potable water to approximately 36,400 customers in in the County, divided into five main system sections (Central Maui, Upcountry Maui, West Maui, East Maui, and Molokai). The Central Maui system has the most customers and includes Wailuku, Kahului, Pāʻia, Puʻunene, and Kihei. Central Maui potable water is sourced from groundwater from the ‘Iao Aquifer beneath the West Maui Mountains, which is naturally filtered by lava rocks (DWS, 2021a). The ‘Iao Water Treatment Plant treats approximately 1.70 mgd, using a next generation membrane barrier filtration and a non-hazardous on-site sodium hypochlorite generation system for disinfection (DWS, 2021b). The DWS, Engineering Division develops and maintains water supply standards and inspects the construction of water system facilities for adherence to standards and policies (DWS, 2021c).

Potable water service to the Site is provided by an existing 12-inch waterline (County) within the West Kaʻahumanu Avenue ROW. Based on early consultation with the DWS (letter dated October 15, 2020), there is an existing 2-inch water meter within the West Kaʻahumanu Avenue ROW with a capacity of 160 gallons per minute (gpm). There are three fire hydrants located in the Project vicinity. Fire hydrant No. 002 is located along West Kaʻahumanu Avenue, while fire hydrants No. 118 and No. 119 are located on corner of Kane Street and Vevau Street and the corner of West Kaʻahumanu Avenue and Kane Street, respectively. Fire hydrant No. 002 connects to a 12-inch water line main within West Kaʻahumanu Avenue with a static pressure of 94 pounds per square Inch (psi). Fire hydrant No. 118 and fire hydrant No. 119 both connect to an 8-inch water line main within Kane Street with static pressure values of 92 psi and 94 psi, respectively (G70, 2021).

**Potential Impacts and Mitigation Measures**

Construction activities will require use of potable water for dust control, vehicle wash down, concrete mixing, pipe pressure testing, and general housekeeping activities. These uses will be intermittent, of short duration, and will cease upon Project completion. The existing potable water system is anticipated to have sufficient capacity to accommodate the temporary demands from construction-related activities and is not anticipated to disrupt or adversely affect the potable water system.

The Project will require potable water for drinking, sanitation, irrigation, and a fire sprinkler system. The anticipated average daily potable water demand for the Project (excluding irrigation) is estimated at 171,000 gallons per day (gpd). A new 4-inch compound water meter, water meter box, 6-inch lateral, and reduced pressure backflow preventer for potable water are expected to be installed to serve the Project. Final meter and lateral sizes will be determined during the Project design. Per MCC, §20.30, commercial properties are required to use recycled water for irrigation in areas where reclaimed water service is available; however, reclaimed water service is not available within the Site vicinity. Irrigation
water demand will be determined during the Project design. The Project will require a new detector check meter, water lateral, and reduced pressure backflow preventer from West Ka’ahumanu Avenue for the sprinkler systems. Additional on-site fire hydrants may be required by the County, Department of Fire and Public Safety (DFPS). The fire protection system will be designed to comply with the County Fire Code, Uniform Fire Code (2012), and HAR 12-45.2, Water System Standards (2002). The fire protection system will be reviewed by the DFPS during the building permit review process (G70, 2021).

Based on early consultation with DWS (letter dated October 15, 2020), the Project is considered a subdivision and is subject to MCC, §14.05, to ensure an adequate water system is provided for domestic, fire protection, and irrigation services. The DAGS office, library, and the MCSA are considered ‘public facilities’ per MCC, §19.04.040; and therefore, are exempt from HAR Chapter 201, which limits new water service to 3,000 gpd per day per parcel. Correspondence with the DWS (March 05, 2021) recommends obtaining a determination from the County Planning Department (PD) to clarify whether the community-oriented commercial space is exempt from the HAR Chapter 201 (G70, 2021). Correspondence with the DWS (March 26, 2021) indicates that water availability within Central Maui is dependent on DWS obtaining water use permit approval from the DLNR, CWRM. Water availability and the scope of required water infrastructure improvements will not be finalized until construction drawings and a building permit application are submitted to DWS. Improvements within the West Ka’ahumanu Avenue ROW (State) will require concurrent review and approval by the HDOT.

The Project is not anticipated to result in a significant adverse impact on the existing potable water system, as the proposed improvements do not involve the creation of point-source pollution; a substantial alteration to any portion of the existing potable water system; or a substantial consumption of Central Maui’s potable water. No additional mitigation is recommended.

3.8.2 Wastewater

Existing Conditions

The County, Department of Environmental Management, Wastewater Reclamation Division (DEM, WRD) is comprised of the Wastewater Administration and Wastewater Operations, which collectively share the responsibilities of achieving public health through maintenance of the County’s wastewater facilities. Wastewater Operations consists of the Wastewater Facilities Program and Wastewater Collection System. The Wastewater Facilities Program manages, operates, maintains, and repairs the County wastewater and pumping facilities. The Wastewater Collection System manages, installs, maintains, and repairs County wastewater collection lines, force mains, and manholes (DEM, 2021). The County’s Wailuku-Kahului Wastewater Reclamation Facility (WRF) serves the Site. The Wailuku-Kahului WRF has a design capacity of 7.9 mgd.

Wastewater service in the Project vicinity is currently provided by an 8-inch sewer line within the Kane Street ROW and a 15-inch sewer line within the Vevau Street ROW. Based on correspondence with the DEM, WRD (March 2019), the 15-inch sewer line is encased with reinforced concrete along the Project frontage along Vevau Street and new sewer lateral connections are not permitted. The WRD also indicated that two lateral connections are associated with the Site when only one is permitted per parcel under the MCC. The two sewer laterals associated with the Site include an existing 4-inch sewer lateral connecting to the MCSA along Vevau Street and an 8-inch sewer lateral stub provided by the Bus Hub (G70, 2021).
Potential Impacts and Mitigation Measures

During the period of construction, the Contractor will provide portable toilets for use by the construction workers. Wastewater from the portable toilets will be collected and discharged into a sewer manhole (SMH) designated to receive septage. The Contractor will adhere to BMPs to prevent construction-related wastewater pollutants from discharging with stormwater runoff.

The Project is anticipated to create an average wastewater flow of 81,705 gpd (based on 300 residential units and 272 employees). The existing 8-inch sewer lateral provided by the Transit Hub will be used for the Project and will have sufficient capacity to accommodate the Project’s wastewater demand. The 8-inch sewer lateral connects to a property manhole and subsequently to a public sewer manhole (SMH No. KA01000800) which discharges into an 18-inch sewer main within Vevau Street. The WRD stated the peak flow observed in the 18-inch sewer main was one-third full despite numerous facilities and businesses upstream. Preliminary analysis by WRD based on the average wastewater flow of 81,705 gpd day confirmed that the Wailuku/Kahului WRF and the Kahului Wastewater Pump Station has the capacity to serve the Project. Final capacity of both systems will be determined during building permit process, as the capacity could be affected by other developments and regulatory changes (G70, 2021).

The Project is not anticipated to result in a significant adverse impact on the existing wastewater system. The increased wastewater generation from the Project will be accommodated by the County’s wastewater service facilities, with modest improvements to ensure suitable system connections and flow controls. No additional mitigation is recommended.

3.8.3 Drainage

Existing Conditions

The DPW, Engineering Division (ED) provides engineering and inspection services for the planning, designing, and construction of the County’s drainage system. The DPW, ED aims to improve the water quality that enters the County’s drainage system, which discharges into waterways and eventually the Pacific Ocean.

The Site currently does not have any stormwater infrastructure or stormwater runoff mitigation measures. Current runoff flows to four discharge points on-site, which include over the Site boundary along Kane Street and through three openings in the rock wall along West Ka‘ahumanu Avenue. A portion of the runoff is retained in low spots at the center of the Site. Runoff conveyed towards Kane Street sheet flows to a catch basin near the intersection of West Ka‘ahumanu Avenue and Kane Street. Runoff conveyed towards the openings in the rock wall travels via sheet flow and gutter flow into two catch basins along West Ka‘ahumanu Avenue. All three catch basins discharge 3.09 cubic feet per second (cfs) of runoff into the State’s 36-inch drain line within Kane Street and West Ka‘ahumanu Avenue (G70, 2021).

Potential Impacts and Mitigation Measures

During construction, there is the potential for pollution associated with stormwater runoff to discharge into County drainage system and nearby surface waters. The Contractor will install BMPs such as filter socks around active work areas and inlet protection devices near drainage outlets to handle the treatment of runoff and mitigate potential construction-related pollutants from entering drainage infrastructure and surface waters. The Project will comply with HAR Chapters 11-54 and 11-55. A NPDES General Permit for potential stormwater runoff discharges will be obtained from the DOH, CWB.
NPDES General Permits for dewatering and hydrotesting water discharges may also be obtained from the DOH, CWB. Per early consultation with DPW (letter dated November 6, 2020) required roadway improvements fronting the Site will be coordinated with DPW, ED. The Contractor will be required to restore damaged pavement as a result of construction to a previous or improved condition.

The Project is estimated to result in a 50-year, 1-hour stormwater discharge of 1.86 cfs to the State’s drainage system, which does not exceed the existing 50-year, 1-hour discharge peak flow of 3.09 cfs. The runoff will primarily be detained in an underground chamber detention basin, which will be conservatively sized to detain the entire Site’s 50-year stormwater runoff of 19,855 cubic feet. Flows will discharge from the detention basin into an existing catch basin along West Ka‘ahumanu Avenue. Grading on-site will also convey stormwater away from the buildings to on-site landscaping and Low Impact Development (LID) features. Potential LID features include bioretention planters and planter boxes, which are intended to manage runoff and prevent offsite overflows (G70, 2021).

The Project will result in an increase in impervious surfaces and related stormwater runoff; however, the increases in runoff will be negligible and will be retained and treated on-site. The Project is not anticipated to have a significant adverse impact on existing drainage infrastructure or surrounding properties.

3.8.4 Solid and Hazardous Waste

Existing Conditions

Residential and commercial solid waste, recyclables and compost generated in Central Maui are disposed/recycled at the Central Maui Landfill Refuse & Recycling Center in Pu‘unēnē, situated approximately 6.0 miles from the Site. Construction and demolition (C&D) wastes are accepted at the Central Maui Landfill by customers who have a C&D landfill account and job number. Solid waste generated at the Site is hauled away by Maui Disposal Co. Inc.

ENPRO Environmental (ENPRO) conducted a Phase 1 Environmental Site Assessment (Phase 1 ESA) for the Site in 2019, in conformance with the scope and limitations of the American Society for Testing and Materials (ASTM) Practice E 1527-13. See Appendix F, Phase 1 Environmental Site Assessment Report. The purpose of the Phase 1 ESA is to evaluate the presence of recognized environmental conditions (RECs) at the Site. A REC is defined by ASTM as the presence or likely presence of any hazardous substance or petroleum product in, on, or at the property. There are two types of RECs – historical RECs and controlled RECs. The Phase 1 ESA involved a review of environmental databases and records, a site reconnaissance and walkthrough inspection (April 17, 2019), and interviews with key personnel. Most of the Site was available for the walkthrough inspection with the following exceptions: the roof of the MCSA building and lawnmower baseyard; the interior of the condemned building to the northeast; and most of southeast portion of the Site due to dense vegetation. The Phase 1 ESA discovered no evidence of RECs at the Site. De minimis petroleum stains on the pavement in the lawnmower baseyard beneath and adjacent to the lawnmowers (ENPRO, 2019a).

A Hazard Materials Survey was also prepared for the MCSA building in 2019. See Appendix G, Hazardous Materials Survey. The purpose of this study was to assess the presence of readily accessible and identifiable hazardous materials. These hazardous materials include: Polychlorinated Biphenyl (PCB)-containing ballasts/transformers, mercury-containing lamps, stored chemicals, asbestos-containing material, and lead-containing paints. No asbestos-containing material was discovered in the samples. However, approximately 3,800 SF of canec ceiling and 60,000 SF of canec walls were discovered during the investigation that may contain asbestos. Five paint samples were
analyzed for total lead content. Three samples were determined to be lead-containing paint and one was determined to be lead-based paint. A total of eighty-six fluorescent light fixtures were observed on the Site. All ballasts associated with the eighty-six light fixtures are assumed to contain PCBs and mercury (ENPRO, 2019b).

A Limited Asbestos, Toxicity Characteristic Leaching Procedure (TCPL), and Lead-Based Paint Sampling and Analysis Report was subsequently prepared for the collapsed building in 2020. See Appendix H, Limited Asbestos, TCPL, and Lead-Based Paint Sampling and Analysis. Roof material samples from the MCSA building were also collected and analyzed for asbestos as part of this study. Asbestos was found in the roofing material of the collapsed building only. A composite sample of components of the waste to be generated during demolition of the collapsed building was also collected for TCLP testing for leachable lead. The analytical results indicated the leachable lead presence of 2.4 milligrams per litre (mg/L), which is below the EPA’s regulatory level of 5 mg/L. Two paint chip samples were collected from the collapsed building and were analyzed for lead. Lead-based paint is defined as any paint containing 5,000 milligrams per kilogram of lead or greater. Based on the analytical results, both samples were determined to be lead-based paint (ENPRO, 2020).

**Potential Impacts and Mitigation Measures**

During construction, green waste and non-hazardous C&D materials will be generated from grubbing, grading, demolition of existing buildings, and construction of the multi-family housing buildings and Civic Center. Green waste and non-hazardous C&D materials will be recycled or disposed of at the Central Maui Landfill or another approved facility. Any discovered hazardous waste will follow applicable Federal, State and County regulations and will be handled and disposed of at a facility permitted by the DOH, Solid and Hazardous Waste Branch (SHWB). The Project will comply with HAR Chapters 11-501, 11-503, and 11-504 as applicable.

All workers exposed to airborne arsenic concentrations greater than the Occupational Safety and Health Administration (OSHA) Action Level will require specialized training and may require respiratory protection. The Central Maui Landfill does not regulate the disposal of canec fiberboard materials which may contain arsenic. In accordance with HAR 11-261-4(b)(9), wood and wood products with arsenic are exempt from hazardous waste disposal regulations. The Contractor will contact the Central Maui Landfill (or approved facility) and prepare the documentation necessary to ensure acceptance. The canec material will be segregated from other demolition debris and properly wrapped in polyethylene sheeting to meet the landfill acceptance requirements. All fluorescent light lamps will also be disposed of as regulated universal waste. Ballasts associated with these fluorescent lights will be separated according to their labels for PCB and non-PCB containing ballasts. Leaking PCB ballasts will require special handling and disposal. All other ballasts meet the definition of a non-regulated Small Capacitor and therefore do not have specialized disposal requirements (ENPRO, 2019b).

Based on the TCLP sampling result and analysis, the roofing material of the collapsed building will be segregated and disposed as asbestos containing material to the extent feasible. Due to the condition of the collapsed building, a variance and an Asbestos Abatement Work Plan will be prepared and submitted to the DOH for approval before demolition work commences. OSHA requires lead awareness training for all workers who may be exposed to airborne lead concentrations above the OSHA Action Level of 30 micrograms per cubic meter for an 8-hour time-weighted average. Demolished materials will be sampled and tested per TCLP to meet municipal disposal site acceptance criteria. Following the demolition and removal of the collapsed building, soils beneath the building footprint will be sampled and analyzed for lead and organochlorine termiticides. No special handling or disposal requirements are anticipated for other building materials from the collapsed building (ENPRO, 2020).
The operation of the multi-family housing and Civic Center will result in the generation of solid waste, which will be collected, recycled, and disposed at the Central Maui Landfill (or approved facility). A proactive recycling program will be established at the multi-family housing and Civic Center. Composting of green waste due to the maintenance of landscaping will be encouraged. Per early consultation with the DOH, SHWB (letter dated October 15, 2020), the Project will comply with HRS Chapters 342H and 3421 and HAR §11-260.1 to 11-279.1, 11-58.1, and 11-280.1 as applicable.

The Project is not anticipated to result in a significant adverse impact on the existing solid waste disposal system, as the proposed improvements will not lead to a substantial increase in the generation of solid waste during and/or post-construction or a delay or disruption in the collection of solid waste for the surrounding community. No additional mitigation is recommended.

### 3.8.5 Electrical System

**Existing Conditions**

Electrical power on Maui is generally provided by Hawaiian Electric Co. Ltd. (HECO).

Existing HECO infrastructure in the Project vicinity includes overhead transmission and distribution lines on West Ka’ahumanu Avenue and overhead distribution lines on Kane Street and Vevau Street. Overhead distribution lines on Vevau Street currently provide electrical power to the MCSA building. There is remnant electrical power equipment on the Site that previously provided service to removed or condemned buildings, which can be demolished (ECM, Inc., 2021 in G70, 2021).

**Potential Impacts and Mitigation Measures**

During construction, the Project will not adversely impact the provision of electrical power to the surrounding community. To mitigate potential impacts to underground utilities, coordination with HECO will be undertaken to locate service lines prior to excavation. The existing HECO system is anticipated to meet the electrical power requirements during construction activities. In the event of an electrical power outage, the Contractor will be prepared with an on-site generator.

The operation of the Project will require a service voltage load of approximately 2,280 kilowatts. Light fixtures for internal driveways will be installed and will be coordinated with HECO and the County to ensure compliance with applicable design standards. There are several options available to connect to the HECO overhead electrical lines from West Ka’ahumanu Avenue, Kane Street or Vevau Street. It is recommended that the Contractor request three-phase service from HECO to service the Project loads. It is also recommended that the multi-family housing buildings and Civic Center be provided with an overhead to underground riser to accommodate a primary voltage feeder, a pad-mount transformer, switchgear, and handholes. The developer will be responsible for installing auxiliary infrastructure (e.g., handholes, conduit, concrete pads for the transformer and switchgear), which HECO would affix equipment onto. Required easements for underground service lines will be coordinated with HECO (ECM, Inc., 2021 in G70, 2021). The Project design will strive to implement energy and water conservation best practices. Energy efficient fixtures and appliances will be installed in the multi-family housing and Civic Center. Furthermore, to the extent practicable, the Project will comply with HRS §196-9, regarding energy efficiency and environmental standards for State facilities.

The Project is not anticipated to have a significant adverse impact on HECO facilities. Project engineers will coordinate with HECO to install the necessary infrastructure to meet the electrical power requirements of the Project, without causing disruptions to the surrounding community. No additional mitigation is recommended.
3.8.6 Telecommunications

Existing Conditions

Telephone and cable services on Maui are provided by Hawaiian Telcom (HTCO) or Spectrum.

Existing telecommunications service to the Site is currently provided by overhead HTCO telephone and Cable Television (CATV) lines on Kane Street and Vevau Street, which connect to the MCSA building (ECM, Inc., 2021 in G70, 2021).

Potential Impacts and Mitigation Measures

During construction, the Project is not anticipated to have an adverse impact on existing telecommunication systems. To mitigate potential impacts to underground utilities, coordination with HTCO and Spectrum will be undertaken to locate service lines prior to excavation.

Existing HTCO and Spectrum overhead lines surrounding the Site are adequate to provide telephone, CATV, and internet services to the Site. However, it is anticipated that the Project will require the installation of underground conduits for telephone, CATV, and internet services to serve the multi-family housing buildings and Civic Center. The developer will be responsible for installing auxiliary infrastructure, which HTCO and Spectrum would affix cable and equipment onto. Required easements for underground service lines will be coordinated with HTCO and Spectrum (ECM, Inc., 2021 in G70, 2021).

The Project is not anticipated to have a significant adverse impact on existing telecommunication infrastructure, as the proposed improvements are not anticipated to cause delays or disruptions to the surrounding community. No additional mitigation is recommended.

3.9 Transportation System

A Mobility Analysis Report (MAR) was prepared by Fehr & Peers (2021). See Appendix I, Mobility Analysis Report. The MAR evaluated potential impacts of the Project on access, walking, biking, transit, and traffic operations in the Project vicinity. Note: The MAR was completed in 2020-2021 under atypical COVID-19 pandemic conditions with very light traffic flows. The MAR relies upon valid baseline traffic data from 2017-2018 with an added growth factor. The MAR evaluated potential transportation impacts at the below-listed seven intersections in the Project vicinity for existing (2020) and future (2026) conditions (with and without the Project) during weekday AM and PM peak hours:

- Kahului Beach Road-Kane Street/West Ka‘ahumanu Avenue
- Lono Avenue/West Ka‘ahumanu Avenue
- Kane Street/Vevau Street
- Lono Avenue/Vevau Street
- Kane Street/Kamehameha Avenue
- Lono Avenue/Kamehameha Avenue
- Kamehameha Avenue/Wakea Avenue
3.9.1 Roadways, Access, and Traffic

Existing Conditions

Roadways and Access

Current access to the Site is provided by driveways on Kane Street and Vevau Street. Main roadways providing access to or in the vicinity of the Site are described below:

- **Ka’ahumanu Avenue** (Route 32) is a principal arterial under the jurisdiction of the State, HDOT. It extends as a three-lane facility from Kinipopo Street to approximately 400 feet west of the Naniloa Drive overcrossing, where it becomes a four-lane facility to Kahului Beach Road-Kane Street. East of Kane Street, it continues as a six-lane facility to Hana Highway east of Wharf Street. The street is designated West Ka’ahumanu Avenue to the west of Puunene Avenue. The posted speed limit is 30 mph near the Project area.

- **Kamehameha Avenue** is a two- to four-lane facility under the jurisdiction of the County. It extends as a local roadway from its western terminus at Meheu Circle to South Papa Avenue, and from there it continues as a minor collector to Hana Highway. The four-lane section extends between Lono Avenue and Hana Highway. The posted speed limit is 30 mph near the Site.

- **Kahului Beach Road** is a four-lane minor arterial that is under the jurisdiction of the County. It extends from Waiehu Beach Road (where it intersects with Lower Main Street) to West Ka’ahumanu Avenue, where it connects with Kane Street. Between Kaihee Place and West Ka’ahumanu Avenue, a third southeast-bound lane is also provided. The posted speed limit is 35 mph.

- **Kane Street** is a two-lane local roadway under the jurisdiction of the County. It extends from West Ka’ahumanu Avenue, where it connects opposite Kahului Beach Road, to an eastern terminus at Kaulawahine Street. Between West Ka’ahumanu Avenue and Kamehameha Avenue, a second southbound lane is also provided. The posted speed limit is 20 mph.

- **Lono Avenue** is a two-lane minor collector under the jurisdiction of the County. It extends from West Ka’ahumanu Avenue to Makalii Street. The posted speed limit is 20 mph north of Kamehameha Avenue and 30 mph south of Kamehameha Avenue.

- **Vevau Street** is a two-lane roadway that extends from Kane Street to Lono Avenue. It is a private roadway between Kane Street and School Street, and under the jurisdiction of the County between School Street and Lono Avenue. No speed limit is posted, but the assumed speed limit is 20 mph.

- **West Wakea Avenue** is a two-lane roadway extending from West Ka’ahumanu Avenue to South Pu’unene Avenue (with East Wakea Avenue extending further east from South Pu’unene Avenue to Hana Highway). It is a collector roadway under the jurisdiction of the County. The posted speed limit is 30 mph in the vicinity of West Kamehameha Avenue near the Site (Fehr & Peers, 2021).

Traffic

According to the 2016 *Highway Capacity Manual (6th Edition)* (HCM 6), published by the Transportation Research Board, roadway facilities are described by their level of service (LOS), which is qualified by traffic flow factors such as speed, travel time, delay, and freedom to maneuver. Six LOS are defined, from LOS A, with the least congested operating conditions, to LOS F, with the most congested operating conditions. LOS E represents “at-capacity” operations. Operations are designated as LOS F when volumes exceed capacity, resulting in stop-and-go conditions. The MDOT and the HDOT usually define a significant intersection impact as when the operation of an intersection or turning movement changes from LOS D or better to LOS E or F (Fehr & Peers, 2021).
Given the ongoing COVID-19 pandemic, it was not possible to conduct new traffic counts that reflect typical levels of peak hour volumes. Accordingly, the analysis of existing traffic conditions is based on historic 2017 and 2018 counts collected for the environmental analysis of the nearby Transit Hub and the Kahului Lani affordable senior housing complex. These counts were increased to account for growth in the greater Kahului area through the year 2020 plus traffic generated from recently constructed developments within the MAR study area. The analysis of traffic operations under this scenario was conducted for the peak hours and existing intersection configurations (Fehr & Peers, 2021).

The existing (2020) seven study intersections generally operate at a LOS D or better during AM and PM peak hours. The one exception is at the Kane Street/Vevau Street intersection, where the eastbound approach (exiting the Queen Ka’ahumanu Center driveway) operates at a LOS F during the PM peak hour (Fehr & Peers, 2021).

**Potential Impacts and Mitigation Measures**

During construction, construction-related traffic will be temporarily noticeable, but will not significantly increase traffic on surrounding streets. During construction, the following mitigation measures are recommended, for optimal traffic conditions:

- Trucks delivering construction material and disposing of construction waste should be scheduled on weekdays during times of non-peak commuter periods (9:00 AM to 3:00 PM).
- All construction vehicles will be kept in proper operating condition to prevent adverse impacts on public roadways.
- A Traffic Control Plan (TCP) will be prepared and submitted to the MDOT for review and approval prior to the start of construction activities.
- Per early consultation with the HDOT (letter dated October 29, 2020), construction plans for all work done within an HDOT ROW must be submitted to the HDOT, Highway Division, Maui District Engineer for review and approval.

Future (2026) conditions without the Project (based on areawide traffic growth and planned projects in the immediate vicinity of the Project including the Transit Hub and the Kahului Lani affordable senior housing complex) forecasted the Kane Street/Vevau Street intersection to operate at a LOS F during the PM peak hour. The intersection does not meet a traffic signal warrant, but an AWSC would be warranted, even without the Project. The Kahului Beach Road-Kane Street/West Ka'ahumanu Avenue intersection is forecasted to operate at LOS E during the AM and PM peak hours (Fehr & Peers, 2021).

Based on the 2017 *Trip Generation Manual* (10th Edition) published by the Institute of Transportation Engineers and the Mixed-Use Trip Generation Model developed by Fehr & Peers and the EPA, with the assumption that trips generated by existing uses on-site would be replaced by the Project, the Project is anticipated to generate 2,378 new daily vehicle trips, including 151 vehicle trips during the AM peak hour and 223 vehicle trips during the PM peak hour. Additionally, another 128 daily trips will be internal to the project, 186 daily trips are expected to be made by transit, and 865 daily trips are projected to be made via a combination of walking and biking.

Future (2026) conditions with the Project at the Kane Street/Vevau Street (unsignalized intersection) is forecasted to exacerbate LOS F conditions during the PM peak hour; otherwise, traffic will remain acceptable (LOS D or better) with the addition of Project-generated traffic. The intersection does not meet a traffic signal warrant. Therefore, the Project is not determined to have a significant impact at the Kane Street/Vevau Street intersection. The Project will also exacerbate LOS E conditions at the...
West Kaʻahumanu Avenue/Kahului Beach Road-Kane Street intersection; however, it is forecasted to add 2.8 seconds of delay at most. Therefore, the Project is not determined to have a significant impact at the West Kaʻahumanu Avenue/Kahului Beach Road-Kane Street intersection (Fehr & Peers, 2021).

To mitigate the traffic and vehicle delays at the Kane Street/Vevau Street intersection, an AWSC or RRFB is warranted at this intersection. Because the Project exacerbates undesirable conditions that are projected to occur without the Project, the Project is expected to contribute its fair share (30.1%) to the cost of improvements. An AWSC or RRFB would add delay to the northbound and southbound approaches, which currently are uncontrolled movements, but is not expected to substantially affect operations at adjacent intersections. An AWSC or RRFB would also enhance pedestrian safety. The County will make the final determination on an AWSC implementation at the Kane Street/Vevau Street intersection. (Fehr & Peers, 2021).

Vehicle access to the Site is provided via two driveways: one on Kane Street and one on Vevau Street. Left turns out of the Kane Street driveway will be prohibited, as vehicles crossing a left-turn lane to enter the southbound travel lane could result in potential safety issues. Project vehicles that are destined for Kane Street south of Vevau Street could simply turn right from the Vevau Street driveway, and then left onto Kane Street. Also, due to proximity of the Kane Street driveway to the Kane Street/Vevau Street intersection, a short length of painted median to distinguish between left-turn pocket at the Kane Street driveway and the Kane Street/Vevau Street intersection will be provided. With the implementation of an AWSC, queues are projected to only extend up to 100 feet, which can be accommodated by the proposed pocket length. The driveway on Vevau Street will be full access. The 20-mph speed limit sign on Kane Street will also be moved closer to the West Kaʻahumanu Avenue intersection to slow down vehicles continuing south from Kahului Beach Road onto Kane Street. This will enhance safety for all users on Kane Street.

Parking

Existing Conditions

The Site currently provides 21 at-grade, marked parking stalls, and ample unmarked paved areas for additional parking serving the MCSA and DOE lawnmower operation. On-street parking is provided on the east side of Kane Street for a stretch of approximately 300 feet along the frontage of the King’s Chapel Polynesian, Family Life Center, and Seicho No-le Maui developments. On-street parking is not permitted along other study roadways (Fehr & Peers, 2021).

Potential Impacts and Mitigation Measures

The Project will provide approximately 182 parking spaces in both surface parking and parking deck structure for the Civic Center, which meets the required parking per the MCC §19.36B.020. The Project will also provide approximately 414 parking spaces for the multi-family housing, which will be a 31% reduction from the 600 parking spaces required per the MCC. Overall, the parking provided will be a 23% reduction from what is required per the MCC. However, the Project is centrally located within Kahului, which provides nearby transit, pedestrian, and bicycle access. The Site is also located within the County KCC study area which supports mixed-use developments and multi-modal transportation. Furthermore, the Project is a live/work mixed-use development which will allow for the sharing of parking deck spaces. For example, overnight residential parking demand will be accommodated within the Civic Center’s parking deck structure while the State offices are closed. Additionally, the Project meets the criteria for up to 50% parking reduction per the MCC §19.36B.100. Therefore, on-site parking at the Project is expected to be sufficient, and no on-site vehicle circulation issues are anticipated (Fehr & Peers, 2021).
The Project is not anticipated to result in a significant adverse impact on parking in the surrounding area. No additional mitigation is recommended.

3.9.2 Mass Transit

**Existing Conditions**

Maui Bus Service, operated by Roberts Hawaiʻi, provides public transit service around the island with 13 bus routes. Each route typically operates seven days a week, including holidays. It is noted that, due to the COVID-19 pandemic, Maui Bus Service routes 2 and 6 were suspended between April 13, 2020 and June 30, 2020, and routes 15 and 25 were suspended on April 13, 2020 and were not in operation. Transit routes 1, 2, 5, 6, 8, 10, 20, 35, 39, and 40 all provide service along the study roadways and serve the major transfer center at Kaʻahumanu Center, located on Kane Street opposite the Site. Sufficient transit service is currently provided to Kahului by the Maui Bus Service. The Transit Hub is currently being constructed immediately southeast of the Site, which will be able to serve Project residents, commuters, and visitors at the time of Project buildout (Fehr & Peers, 2021).

**Potential Impacts and Mitigation Measures**

Per early consultation with the MDOT (letter dated October 30, 2020), if the closure of Vevau Street and/or Kane Street is required during construction, the MDOT will be notified at least one month in advance to allow the Maui Bus to plan its operations accordingly.

The Project is anticipated to result in a moderate increase in transit usage, which can be accommodated by the existing Maui Bus Service operations and future planned bus stop amenities within the Project vicinity.

The Project is not anticipated to result in a significant adverse impact on mass transit, as the proposed improvements do not involve the obstruction or removal of a transit stop that would permanently limit the public’s use of mass transit. No additional mitigation is recommended.

3.9.3 Pedestrian and Bicycle Facilities

** Existing Conditions**

A sidewalk is provided on both sides of West Kaʻahumanu Avenue east of Kahului Beach Road-Kane Street immediately fronting the Site. A narrow sidewalk is provided on the north/makai side of Kamehameha Avenue between Kane Street and Lono Street. Sidewalks are provided on the west side of the Kahului Beach Road from Kaihee Place to West Kaʻahumanu Avenue. Sidewalks are provided on the west side of Kane Street along the Project frontage and are also provided on the east side of the Project from Vevau Street to approximately 200 feet west of Kamehameha Avenue. All study intersections include high-visibility crosswalks to enhance pedestrian movement.

Bicycle lanes or routes are provided along West Kaʻahumanu Avenue and West Kamehameha Avenue, while on Kane Street and Vevau Street bicyclists share the road with vehicles. Kane Street and Vevau Street both include posted 20-mph speed limits that help to enhance safety for cyclists by limiting vehicle speeds (Fehr & Peers, 2021).
**Potential Impacts and Mitigation Measures**

A goal of the Project is to promote walkability and accessibility to and through the Site. The Project proposes the construction of a multi-use path along the east side of Kane Street between West Ka'ahumanu Avenue and Vevau Street. The multi-use path is proposed to connect to the existing sidewalk along West Ka'ahumanu Avenue, and may also connect to the planned multi-use path along the east side of Kahului Beach Road. A pedestrian path is proposed along the north side of Vevau Street, which will connect to the multi-use path along the east side of Kane Street. Internal pedestrian paths are also proposed along both sides of the Kane Street driveway, on the east side of the Civic Center, and between the multi-family housing buildings.

In support of the County’s desire to improve the pedestrian crossing at Kane Street/Vevau Street as identified in the *Hele Mai Maui 2040* and the *Central Maui Pedestrian and Bicycle Master Plan for 2030*, the following additional pedestrian improvements will be implemented:

- Installation of an AWSC or RRFB;
- Restriping of the southbound Kane Street approach to Vevau Street to be a southbound right-turn lane, a southbound through lane, and a southbound left-turn lane; and
- Construction of a curb extension on the southwest corner of the intersection to shorten the pedestrian crossing distance.

The Project is not expected to generate a significant increase in bicycle trips. Fewer than 15 bicycle trips on a single bicycle facility in one direction (during the peak hours) are anticipated. The existing bicycle facilities will be able to accommodate Project-generated bicycle trips (Fehr & Peers, 2021).

Per early consultation with the PD (letter dated November 9, 2020), temporary bicycle parking (e.g., bicycle racks) may be provided near the main entrance of the Civic Center to allow employees and visitors to secure their bicycles while inside the Project. Permanent bicycle storage may also be provided in or near the residential buildings. Bicycle parking would not interfere with pedestrian movement or accessibility per the Americans with Disabilities Act (ADA). Per early consultation with the State, Disability and Communication Access Board (DCAB) (letter dated November 4, 2020), the Project will comply with the Department of Justice 2010 ADA Standards for Accessible Design, DCAB’s interpretive opinions, and ADA Title II provisions to ensure that the design incorporates requirements for persons with disabilities. Additionally, construction drawings will be submitted to DCAB for formal review under HRS §103-50.

The Project is not expected to conflict with any existing or planned pedestrian and bicycle facilities. No significant impacts to pedestrians and bicyclists are forecasted to occur with buildout of the Project.
3.10 Public Facilities and Services

3.10.1 Recreational Facilities

**Existing Conditions**

The County, Department of Parks and Recreation operates and maintains the County's parks, recreation areas and recreational programs. There is an abundance of public recreational facilities in Kahului. Public recreational facilities located near the Site include the following (listed from nearest to farthest):

- Ho`aloha Beach Park – approximately 0.25 miles northeast of the Site;
- Kahului Pool – approximately 0.3 miles southeast of the Site;
- Kahului Community Center and Park – approximately 0.5 miles southwest of the Site;
- Kokua Pool – approximately 0.65 miles southwest of the Site;
- Lihikai Park – approximately 0.82 miles southwest of the Site;
- Maui High School Park – approximately 1.0 mile southwest of the Site;
- Pomaikai Park – approximately 1.17 miles southwest of the Site;
- Kamalii Park – approximately 1.25 miles southeast of the Site;
- Maui Lani Regional Park – approximately 1.74 miles southwest of the Site;
- Central Maui Regional Sports Complex – approximately 2.0 miles southwest of the Site; and
- Kanaha Beach Park – approximately 2.15 miles northeast of the Site.

**Potential Impacts and Mitigation Measures**

During construction, traffic congestion and detours may have a minimal and temporary impact on public access to nearby recreational facilities.

The existing public recreational facilities in the Project vicinity will be more than sufficient for the multi-family housing residents. The Project will not create an increased demand for additional public recreational facilities in Kahului. The Project meets the definition of ‘Subdivision’ under MCC §18.16.320A, which requires a park dedication for new dwelling units.

The Project is not anticipated to have a significant impact on existing recreational resources/facilities, as the Project does not involve long-term loss of access or use of recreational facilities. No additional mitigation is recommended.

3.10.2 Police

**Existing Conditions**

The County, Maui Police Department (MPD) provides police protection services for Maui. The MPD has six patrol districts; the Site is within District 1 – Wailuku (MPD, 2021). The nearest MPD station is located at 55 Mahalani Street in Wailuku, approximately 1.0 mile from the Site.
**Potential Impacts and Mitigation Measures**

During construction, there may be an increase in phone calls to the police concerning Project-related traffic and noise. This may result in minor adjustments of police allocation within Kahului, to provide traffic control at the Site. However, this reallocation of police services would be minimal and temporary. Per consultation with the MPD (letter dated October 14, 2020), the Project area is busy throughout the day with vehicular traffic; therefore, measures will be taken to control noise levels, dust, and runoff to minimize impacts to neighboring properties and surrounding roadways.

The Project is not anticipated to result in a significant impact on MPD operations, as it is not anticipated to significantly increase long-term demand for police services. No additional mitigation is recommended.

**3.10.3 Fire**

**Existing Conditions**

The Department of Fire and Public Safety (DFPS) provides emergency and non-emergency services for Maui. DFPS responds to emergencies, including fires, medical emergencies, hazardous materials incidents, motor vehicle accidents, natural disasters, and technical rescues. DFPS provides non-emergency services including public education, fire inspections, and permit review. The DFPS has 10 fire stations on Maui (DFPS, 2021). The nearest DFPS fire station is the Kahului Fire Station, located at 200 Dairy Road, approximately 1.75 miles from the Site.

**Potential Impacts and Mitigation Measures**

During construction, there may be a minimal increase in the demand on fire services, should worker safety emergency situations arise. Coordination with the DFPS will be necessary to ensure fire vehicle access to the Site is maintained.

The Project will be designed and constructed in compliance with MCC, Chapter 16.04C, *Fire Code*. The multi-family housing buildings and Civic Center will be installed with a sprinkler system. The actual required fire flow will be determined based on the sprinkler system layout. Driveways will have unobstructed width and vertical clearance to meet DFPS requirements. Per early consultation with DFPS (letter dated October 20, 2020), the DFPS will review construction drawings during the building permit review process, to ensure that fire department access, water supply for fire protection, and fire and life safety requirements are addressed.

The Project is not anticipated to result in a significant adverse impact on DFPS’ operations. The proposed improvements are not anticipated to result in significant demand for fire services. No additional mitigation is recommended.

**3.10.4 Emergency Medical**

**Existing Conditions**

Medical facilities located near the Site include the following (listed from nearest to farthest):

- The Maui Medical Group-Wailuku – approximately 0.60 miles east of the Site on Hana Highway.
- The Maui Memorial Medical Center – approximately 1.28 miles southwest of the Site at 221 Mahalani Street. This is the only acute and emergency care hospital on Maui.
**Potential Impacts and Mitigation Measures**

During construction, there may be a minimal increase in the demand for medical services, should worker safety emergency situations arise. Emergency vehicle access to the Site will be maintained for the duration of construction.

Approximately 5,000 SF of community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center, which could be leased to a community service-oriented business such as a medical group or an out-patient facility to increase medical services in the Project area.

The Project is not anticipated to result in a significant impact on emergency medical services. No additional mitigation is recommended.

### 3.10.5 Public School

**Existing Conditions**

Numerous public and private educational facilities are located near the Site. The Project is within the DOE Maui High School Complex service area. Nearby DOE schools that would service residents (18 years old and younger) of the multi-family housing include the following:

- Kahului Elementary School, located approximately 1.0 mile from the Site;
- Maui Waena Middle School, located approximately 1.7 miles from the Site; and
- Maui High School, located approximately 1.4 miles from the Site.

The DOE MCSA building (one-story) and a DOE lawnmower maintenance/operation building (one-story) are existing facilities on the Site. The MCSA offers basic adult education, English language classes, general educational development, and workforce development diploma programs.

The Hawai’i State Legislature via Act 245 authorized the Board of Education to approve School Impact Districts, which allows the collection of impact fees. These School Impact Districts are in areas of high growth that require new schools, or the expansion of existing schools, to accommodate the increase in new families and projected school enrollments. The Project is in the Central Maui School Impact District (DOE, 2021). Per the DOE Office of Facilities and Operations Facilities Development Branch, Planning Section, there is no exemption for affordable housing projects or State and County housing projects from the school impact fee.

**Potential Impacts and Mitigation Measures**

The Civic Center will include approximately 7,000 SF of classroom and support space for the MCSA. DAGS will continue to coordinate with the DOE; program spaces may be adjusted due to the needs and priorities of State agencies and availability of funding.

Residents (18 years old and younger) of the multi-family housing will likely enroll in schools within the DOE Maui High School Complex service area. As a result, the Project will likely be subject to a DOE impact fee. The Project will be required to contribute approximately 0.004 acre of land and $913.00 in construction fees per multi-family dwelling unit, or an in-lieu fee and construction fee, which would equal $2,371.00 per multi-family dwelling unit (DOE, 2021).
The Project is not anticipated to have a significant impact on existing educational facilities in the Project vicinity, as the proposed improvements will not result in significant population growth or demographic shift. No additional mitigation is recommended.

3.11 Historic Architecture, Archaeological, and Cultural Resources

3.11.1 Historic Architecture

*Existing Conditions*

A Historical Resource Evaluation Report (HRER) was prepared for the Project by Yarbrough Architectural Resources in 2022 in accordance with HRS §6E-8 and HAR §13-276 and §13-275-6. See Appendix J, *Historical Resource Evaluation Report*. The purpose of the report is to identify any historic properties that may be located on the Site. The HRER included a survey recorded by photographs and notes. A historical field survey and historic property identification effort were conducted on June 7 and June 8, 2021. The property has three buildings and a stone-and-mortar wall that has been affected by a recent demolition and regrading at the northwest portion of a parcel (Yarbrough, 2022).

The property currently houses the MCSA, which includes two buildings that were constructed in 1920 and occupy the southern portion of the parcel. The Administration Building is the largest remaining building on the property and is in fair to good condition. The Cafeteria Building is in an advanced state of collapse that it is unable to convey any historical significance that it may have had as a feature or contributed to the property. A utility shed is situated between the Administrative and Cafeteria buildings. The utilitarian structure is ubiquitous and of uncertain construction date (Yarbrough, 2022).

The stone-and-mortar wall exhibits two placards indicating a construction date of 1939 with the inscription “W.P.A.,” referring to the Works Progress Administration. The W.P.A. or WPA was a widespread infrastructure and employment program established in 1935 as part of the New Deal, which aimed at restoring the U.S. economy after the Great Depression. The WPA initiated and funded public works and arts projects throughout the U.S., including many in Hawai‘i. The wall is in good condition, although it has some sections of missing rocks and other segments that have quite clearly undergone significant repairs. The portion along Kane Street is partially collapsed and has significant oxidation to support poles and chain link fence. This wall is historic in age and functioned as a partial boundary for the property. It is representative of basalt wall construction during the Territorial era in Hawai‘i and is an important vestige of the effort to restore the economy after the Great Depression (Yarbrough, 2022).

The historic properties were evaluated for significance under Hawai‘i Registry of Historic Place (HRHP) criteria a to e established in HAR §13-275-6 and under National Registry of Historic Place (NRHP) criteria A to D. The property is deemed significant under criteria a and c of the HRHP and A and C of the NRHP. Under criterion a/A, a property must be identified with an important event in history. The property conveys the local significance of education in early-20th Century Kahului and Maui through the devotion of quality construction and design for the Administration Building and dedication of durable design of the stone and mortar wall. Under criterion c/C, a resource must be identified with important movements in, or masters of, design and construction or as representative of a historically significant architectural or engineering type. This property’s Administrative Building is illustrative of quality design, construction, and materials representative of its construction in 1920. Similarly, the
1939 Stone and Mortar Wall also is representative of the quality of construction typically found in WPA and New Deal infrastructure. Neither the Cafeteria Building nor the utility shed contribute to the property’s significance under HRHP or NRHP criteria (Yarbrough, 2022).

**Potential Impacts and Mitigation Measures**

The Project involves the demolition of existing structures and partial removal of the WPA-era stone and mortar wall. The collapsed building, which is the former Kahului School cafeteria, exemplifies a loss of historic integrity due to its current condition, and stabilization efforts are improbable. The Administrative Building and the stone and mortar wall are character-defining features of the historically significant property and retain integrity to convey the Site’s historical significance under HAR §13-275-6 and are eligible for listing on the HRHP and NRHP (Yarbrough, 2022).

The proposed effect for the Administrative Building and the stone and mortar wall is “Effect, with proposed mitigation commitments” since the work has the potential to affect the significant historic property. The mitigation agreements will be made in consultation with the State Historic Preservation Division (SHPD). The proposed mitigation measure for the Administrative Building would be an architectural recordation. For the stone and mortar wall, design alternatives should be explored to minimize impacts to the extent possible and the remainder of the wall should be preserved. Since the proposed improvements will affect structures that are eligible for listing on the historic registry, the design of the Project will be reviewed by the Maui Cultural Resources Commission in accordance with the County Administrative Rules §12-531-6(6) (Yarbrough, 2022).

**3.11.2 Archaeological Resources**

**Existing Conditions**

A Draft Archaeological Inventory Survey (AIS) was prepared by Keala Pono Archaeological Consulting, LLC for the Project (2022). The Draft AIS was prepared in accordance with HRS §6E-8 and HAR §13-275. The Draft AIS consists of a literature review, findings from a pedestrian and subsurface survey, and recommendations. See Appendix K, Archaeological Inventory Survey.

**Context**

In pre-contact times, the Wailuku region was one of five population centers on Maui, as well as an area of chiefly residence. Portions of the current city of Wailuku were also built atop former agricultural terraces. In the post-contact era, sugar interests took the forefront of the Wailuku and Kahului economy, and cane fields, mills, ditches, a railroad, and other infrastructure forever changed the landscape. According to historic maps, the vicinity surrounding the Site was not under heavy development or cultivation until at least the mid-20th century. Vestiges of the sugar industry still remain, particularly the Kahului Railroad, which is not far from the Site to the north (Keala Pono, 2022a).

The Site was the location of the former Kahului School campus, which was first established in 1900 as a one-room school. In the 1920s the two-story Kahului School building and the former Maui Vocational School (MVS) building were built. Then in 1939 the school annex and the boundary wall on the northern edge of the property were constructed. The former MVS building is currently being used by the DOE MCSA – Maui Campus (MCSA building) (Keala Pono, 2022a).

Previous archaeological studies in the vicinity of the Site can be dated back to 1909; however, no previous archaeological work has been conducted within the Site. Archaeological studies nearest the
Site identified historic artifacts and intact portions of the Kahului Railroad infrastructure. Just outside the immediate vicinity of the Site, traditional Hawaiian artifacts, and human burials were identified (Keala Pono, 2022a).

**Methodology**

Consultation under HRS Chapter 6E was initiated with SHPD in March 2021. A subsurface testing plan was submitted to the SHPD for review and approval. The pedestrian survey and subsurface testing were conducted on June 14 and 15, 2021. The pedestrian survey involved a visual inspection of the ground surface spanning the entire site, to identify surface archaeological remains. Test trenches were excavated in 17 locations throughout the Site, per the subsurface testing plan approved by SHPD (Keala Pono, 2022a).

**Findings**

The Site encompasses the former Kahului School campus (SIHP 50-50-04-08872), remaining features include a historic stone boundary wall and three historic buildings. The stone boundary wall, constructed in 1939 (Feature 1), and the MCSA/Administration building, built in 1920 (Feature 2) are historically significant. Two additional historic buildings on the Site include a collapsed cafeteria building (Feature 3) and a utility shed (Feature 4) are not historically significant but are associated with the Kahului School Campus. The boundary wall (Feature 1) demarcates the northern property boundary; some segments are missing rocks and others have undergone significant repairs. However, the boundary wall is representative of basalt-and-mortar construction during the Territorial era in Hawai‘i and is associated with the Works Progress Administration, which was important in the effort to restore the economy after the Great Depression. Therefore, the boundary wall retains integrity of feeling (partial), location, materials, design, workmanship, and association, and is historically significant under criterion “a” and “c.” Feature 1 is a contributing resource to the Kahului School Campus (SIHP 50-50-04-08872). The MCSA building (Feature 2) is characteristic of the 1920s building style of Hawai‘i, and encompasses a complex building plan and roofline, broad eaves, high single-story edifice and internal breezeway, quality craftsmanship and materials, relieved sharp-edged clapboard, and large-scale fenestration. Therefore, the MCSA building retains integrity of location, design, materials, workmanship, and association, and is historically significant under criterion “c.” Feature 2 is a contributing resource to the Kahului School Campus (SIHP 50-50-04-08872) (Keala Pono, 2022a). The Kahului School Campus (SIHP 50-50-04-08872) as a whole, including Features 1—4, contributes to the Kahului Historic District (SIHP 50-50-04-1607). For further discussion on the three historic buildings, see Section 3.11.1, Historic Architecture.

The 17 trenches did not yield any evidence of subsurface archaeological deposits or features. Two historic artifacts were collected: a glass bottle fragment dating to post-1908 and a ceramic sherd dating to post-1820. The Site has been disturbed by modern use, including probable bulldozing in the northern yard (Keala Pono, 2022a).

**Potential Impacts and Mitigation Measures**

The Project involves the demolition of existing structures, construction of two multi-family housing buildings, a Civic Center, parking podiums, installation of landscaping and other on-site improvements, as well as off-site vehicular and pedestrian facilities improvements.

The majority of the boundary wall (Feature 1) will be preserved. However, a portion of Feature 1 is proposed to be removed, to accommodate a portion of the multi-use path along the east side of Kane Street, and to provide connection from the existing sidewalk along the south side of West Ka‘ahumanu
Avenue into the Site. Per consultation with the Maui County Cultural Resources Commission (CRC) and SHPD, a portion of the boundary wall will either be moved to a nearby location on the Site or its rocks will be incorporated in the design of the building(s) with accompanying interpretive signage. The MCSA building (Feature 2), collapsed cafeteria building (Feature 3) and utility shed (Feature 4) will be demolished to accommodate the Civic Center. Per consultation with the CRC and SHPD, a Historic American Buildings Survey or similar documentation will be conducted for the MCSA building and cafeteria. Additionally, a HRER was prepared for the Project by Yarbrough Architectural Resources in 2021 in accordance with HRS §6E-8 and HAR §13-276 and §13-275-6; therefore.

The Draft AIS will be submitted to the SHPD for review and approval; consultation with SHPD, the CRC and other stakeholders is ongoing. If human skeletal remains are inadvertently discovered during construction, work shall cease immediately, and appropriate agencies will be notified.

3.11.3 Cultural Resources


The CIA took the form of background research and an ethnographic survey consisting of three interviews. The background study indicated that the entire Project area was encompassed by LCA 7713:23, which was awarded to Princess Victoria Kamāmalu. The LCA constituted 391 acres of the former ‘ili of Kula which consisted of lands from Wailuku to the portion of Kahului that borders the bay (Keala Pono, 2022b).

The background research and oral history interviews also identified several archaeological resources within the vicinity of the Project area. The interviewees have several recommendations for the Project including having a cultural monitoring during construction; allowing access to the facilities for all community members; planting usable foliage on the property for the community to gather and to hold cultural classes on the property using these plants; using native plants for landscaping; consulting community members if any trees on the property will be cut down; and keeping open communication with the community regarding the Project (Keala Pono, 2022b).

Potential Impacts and Mitigation Measures

The Project is not anticipated to result in a significant impact to existing cultural resources as the Site is not customarily used by native Hawaiians or others for resource gathering or traditional cultural practices. The Project is not anticipated to disturb traditional sacred sites or traditional cultural objects. An archaeological monitoring will be implemented during construction to prevent adverse impacts to cultural resources on-site.

The Site is not within a designated view corridor as identified in the Maui Island Plan. The buildings and landscaping improvements will be complimentary to the character of the surrounding buildings and within the allowable development limits per the MCC. The design will be attractive and reflect sense of place, as well as supports pedestrian-oriented environment. As the Project is a public facility, community residents will have access to public amenities and facilities at the Site. Native plants that support cultural activities will be used for the Project. Public engagement will also be conducted throughout the planning and design of the Project.
3.12 Socio-Economic Characteristics

**Existing Conditions**

The estimated population of the Kahului Census-Designated Place (CDP) was 26,337 on April 1, 2010. Approximately 65.7% of the Kahului CDP population 16+ years old was in the labor force, during 2015-2019. The median household income in the Kahului CDP was $86,129 (in 2019 dollars), during 2015-2019 (USCB, 2019).

The County’s Socio-Economic Forecast Report (2006) indicates that the Wailuku-Kahului region remains the economic and population center of the island. It is expected to grow faster than other parts of Maui Island, as home to over a third of Maui’s households. The population of the Wailuku-Kahului region is estimated to increase to 71,223 by 2030 (PD, 2006).

**Potential Impacts and Mitigation Measures**

During construction, the Project will generate short-term economic benefits through the employment of design and construction firms. Additionally, construction material suppliers and surrounding retail businesses can also be expected to benefit indirectly from the Project. In addition, the State and County will receive general excise tax revenues on building materials, as well as conveyance and income tax revenues.

The Project will increase the housing stock on Maui by providing approximately 300 multi-family dwelling units (mixture of 1-, 2- and 3-bedroom units), more than 50% of which will be affordable to households earning 140% or below the MFI. According to the Hawai‘i Housing Planning Study (2019), it is estimated that more than 5,500 new affordable dwelling units will be needed on Maui from 2020 through 2025, for households earning 140% or below the MFI. Additionally, the Project will provide approximately 38,000-43,000 SF of State office space as part of the Civic Center, which will help address the State’s office space shortage in the Wailuku-Kahului area and support the State’s mandate to reduce General Fund spending for lease rent expenses.

The Project is anticipated to result in a long-term beneficial socio-economic impact, as the proposed improvements will result in increased affordable and market-rate housing for Maui residents; increased public services; and direct, indirect, and cumulative impacts on jobs, earnings, and tax revenues. No mitigation is recommended.

3.13 Visual and Scenic Resources

**Existing Conditions**

Visual and scenic resources include panoramic views and vistas, landmarks, and landscape features such as significant trees and open space areas.

The Site is not within a designated historic district or view corridor. The Maui Island Plan identifies the following as protected views: Haleakalā, ʻĪao Valley, the Mauna Kahalawai (West Maui Mountains), Pu‘u ʻOʻiia‘i, Kaho‘olawe, Molokini, Moloka‘i, and Lāna‘i, Mauna Kea, Mauna Loa, sea stacks, the Pacific Ocean, and significant water features, ridgelines, and landforms. The following roadways are also identified as scenic corridors: Haleakalā Highway, Honoapi’ilani Highway, Hāna Highway, Kula Highway, and Kahekili Highway (PD, 2012).
The Site has been previously developed and is situated in an urban residential and commercial mixed-used community in Kahului. Existing views into the Site include a one-story MCSA building, a collapsed building; parking area; a rock wall and open grassy area with sporadic trees. Surrounding views from the Site include the Queen Kaʻahumanu Center and parking lot; Maui Mall and parking lot; Maui Beach Hotel; University of Hawaiʻi Maui College; multi-story buildings; commercial buildings; Kaʻahumanu Avenue ROW; West Maui Mountains; and the Pacific Ocean. A significant portion of the surrounding landscape is dominated by “big-box” retailers and shopping malls, parking lots, low-rise hotels, and multi-family mid-rise residential buildings.

Prominent buildings in the Site vicinity and their associated heights (stories) are listed below:

- The Waterfront Apartments at Kahului (4 stories)
- Kahului Lani (6 stories)
- The Maui Beach Hotel (2-3 stories)
- The Queen Kaʻahumanu Center (2 stories)

**Potential Impacts and Mitigation Measures**

Construction activities and equipment will be visible from neighboring properties. However, construction-related visual impacts will be temporary. Dust screens will be installed around the Site, which will have a dual function of mitigating the dispersion of dust and screening views into the Site, thereby mitigating visual distractions to surrounding area.

A view study was prepared for the Project, illustrating birds-eye views of the Project along West Kaʻahumanu Avenue, and looking makai towards the Kahului Harbor. See Figure 2-3, View Along West Kaʻahumanu Avenue, Figure 2-4, View Looking Makai, and Appendix A, Conceptual Plans and View Studies. The design and scale of the Project will be compatible with the surrounding buildings. The multi-family housing buildings are efficiently massed on the Site, with a layout which provides appropriate setbacks from West Kaʻahumanu Avenue and Kane Street. The Project will comply with the allowable height and development limits per the MCC. The Project will greatly improve the overall aesthetics of the Site with well-designed multi-family housing, a Civic Center, public spaces, and landscaping. The Project will not significantly impact visual resources in the vicinity of the Site. It should be noted that the view study is preliminary and for planning purposes, is subject to change, and will be adjusted with the design of the building.

### 3.14 Potential Cumulative and Indirect Impacts

Cumulative impacts result from the incremental effects of an activity when added to other past, present, and reasonably foreseeable future actions, regardless of what agency or person undertake such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over time. Indirect/secondary impacts are associated with, but do not result directly from, an activity.

The Project is anticipated to have a beneficial short- and long-term direct, indirect, and cumulative impacts on jobs, earnings, and tax revenues.

The impacts of climate change are inherently indirect and cumulative, as they are removed in time and space from the boundaries of the Site. The Project will contribute to the cumulative adverse impacts of global GHG emissions; however, the Project’s individual contribution will be relatively negligible.
This page intentionally left blank.
Chapter 4

Alternatives to the Proposed Action
Chapter 4

Alternatives to the Proposed Action

This chapter describes a range of alternatives considered to the Proposed Action, and a high-level analysis of the potential impacts in comparison to the Proposed Action.

4.1 Alternative A – No Action

Alternative A or the “No Action” alternative refers to the future conditions that would result should the Project not proceed. Alternative A would fail to provide additional multi-family housing units, and therefore would not help to alleviate the affordable housing shortage on Maui. Alternative A would also fail to provide needed State office space in Kahului and therefore would not address the State mandate to reduce lease rent expenses. Therefore, Alternative A would not meet the objectives of the Proposed Action. Under Alternative A, there would be no potential short-term, construction-related impacts (e.g., dust generation, vehicular traffic, intermittent noise) or long-term, operational impacts to the existing natural environment (e.g., water resources, air quality, and flora/fauna) and existing human environment (e.g., potable water system, wastewater system, traffic conditions, noise conditions, and visual resources). However, Alternative A would not provide the multitude of beneficial long-term and cumulative impacts associated with the provision of affordable housing units co-located near the County’s Transit Hub and the creation of sufficient office space for State agencies in Kahului.

For these reasons, Alternative A was not considered a viable alternative.

4.2 Alternative B – Delayed Action

Alternative B or the “Delayed Action” alternative would involve postponing the development of the Project until a future date. As a result, the provision of additional affordable housing on Maui would be delayed. DAGS and other State agencies would continue to lease office space in Kahului.

Once the Project commences, Alternative B would generally result in the same potential impacts and proposed mitigation measures of the Proposed Action. Under Alternative B, there would be potential short-term, construction-related impacts (e.g., dust generation, vehicular traffic, intermittent noise); however, mitigation measures would be implemented, and potential impacts would cease upon the completion of the Project. Under Alternative B, there would also be potential long-term, operational impacts to the existing natural environment (e.g., water resources, air quality, and flora/fauna) and existing human environment (e.g., potable water system, wastewater system, traffic conditions, noise conditions, and visual resources). Though in the near term, delaying the commencement of the Project would also delay the multitude of benefits associated with the Proposed Action. Delaying construction to a future date would likely result in higher planning, entitling, design and construction costs due to inflation. Under Alternative B, the State would not maximize the present utilization of State land and capital.

Therefore, Alternative B would delay the purpose and need of the Proposed Action. For these reasons, Alternative B was not considered a viable alternative.
4.3 Alternative C – Different Location

Alternative C or the “Different Location” alternative involves siting the Project at a different location. The Site was designated for the Project and a Transit Hub according to the December 24, 2018 MOU; therefore, siting the Project at a different location would not satisfy the requirements of the MOU. Additionally, developing the Project at a different location would not optimize the development of an underutilized State property in an urban area, adjacent to the Transit Hub where infrastructure is readily available and would require the State to purchase or lease another property, further expending limited State funds. A different location would likely not be near the Transit Hub and would be outside of the KCC’s TOD study area, which would forego the benefits of multi-modal transportation for residents and workers. Under Alternative C, there would be potential short-term, construction-related impacts (e.g., dust generation, vehicular traffic, intermittent noise); however, mitigation measures would be implemented, and potential impacts would cease upon the completion of the Project. Under Alternative C, there would also be potential long-term, operational impacts to the existing natural environment (e.g., water resources, air quality, and flora/fauna) and existing human environment (e.g., potable water system, wastewater system, traffic conditions, noise conditions, and visual resources). However, it is unknown what the potential short and long-term impacts would be from the development of a different site. Therefore, the benefits and impacts of Alternative C, are imperceptible to those of the Proposed Action.

For these reasons, Alternative C was not considered a viable alternative.

4.4 Alternative D – Different Design

Alternative D or the “Different Design” alternative involves the consideration of different designs of either greater or lesser density and multi-family dwelling unit yield than the Proposed Action. Two different design configurations were considered. It should be noted that the site layout configurations illustrated in Options 1 and 2 are conceptual; it is possible that the exact locations of the residential housing buildings and Civic Center could be rearranged on the Site. However, alternative site layout configurations for Options 1 and 2 would not conclude different potential short and long-term impacts as discussed below. See Appendix A, Conceptual Plans and View Studies.

**Option 1 – “Towers and Community Park”**

Option 1 would utilize a higher floor area ratio (FAR) to develop approximately 400 multi-family dwelling units in two 17-story towers with a stand-alone, three-level parking structure; an approximately 66,000-SF Civic Center with a one-level parking deck; and an on-site community park. Community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center.

The towers in Option 1 would provide a greater number of multi-family dwelling units within the zoning district’s allowable FAR, and would also allow for a large open space on-site. However, the height of the towers would exceed the zoning district’s allowable height. Under Option 1, there would be potential short-term, construction-related impacts (e.g., dust generation, vehicular traffic, intermittent noise) similar to the Proposed Action; however, mitigation measures would be implemented, and potential impacts would cease after construction. Under Option 1, there would also be potential long-term, operational impacts to the existing natural environment (e.g., water resources, air quality, and flora/fauna) and existing human environment (e.g., potable water system, wastewater system, traffic conditions, noise conditions, and visual resources). However, the visual impacts of two 17-story residential towers would be an eyesore in comparison to the Proposed Action, the building scale and
mass would not create a human-scale perspective or an interesting and inviting streetscape for pedestrians, and thus would not fit the character of the surrounding community.

For these reasons, Option 1 was not considered a viable alternative.

**Option 2 – “Low Rise Mid-Density 4-Story”**

Option 2 would utilize a lower FAR to develop approximately 230 multi-family dwelling units in two four-story buildings wrapped around a two-level structured parking; an approximately 66,000-SF Civic Center with a one-level parking deck; and linear open space between the residential buildings. Community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center.

Development of a lower density configuration under Option 2 would provide less multi-family dwelling units than the zoning district’s allowable FAR limit. To address the shortfall of affordable housing units on Maui, the HHFDC would potentially need to develop on land elsewhere (without existing infrastructure) to construct additional multi-family housing units, which would not be an efficient use of State lands and funds. Under Option 2, there would be potential short-term, construction-related impacts (e.g., dust generation, vehicular traffic, intermittent noise) similar to the Proposed Action; however, mitigation measures would be implemented, and potential impacts would cease after construction. Under Option 2, there would also be potential long-term, operational impacts to the existing natural environment (e.g., water resources, air quality, and flora/fauna) and existing human environment (e.g., potable water system, wastewater system, traffic conditions, noise conditions, and visual resources). The residential buildings under Option 2 would have a slightly reduced visual impact than the Proposed Action (4-stories vs. 6-stories). However, Option 2 would not meet the Project’s purpose to provide approximately 300 multi-family dwelling units at the Site and meaningfully increase the affordable housing stock on Maui.

For this reason, Option 2 was not considered a viable alternative.
Option 3 – “Alternative Site Layout”
Option 3 involves developing a program similar to the Project, but altering the siting of buildings, or modifying the Site's open space and circulation pattern.

Option 3 involves altering the location and massing of buildings and parking areas, and/or changing the circulation and open space pattern within the Site, while accommodating a similar development program of approximately 300 dwelling units and 66,000 SF of civic space. It is anticipated that the site layout may change as further input from the community and agencies is received, and as the project progresses through the future entitlement process. To the extent that impacts will be similar to the Proposed Action, Option 3 is considered a viable alternative.
Chapter 5

Relationship to Plans and Policies
Chapter 5

Relationship to Plans and Policies

This chapter outlines the Project’s consistency and compliance with applicable State and County land use plans and policies. Plans and policies include the Hawai‘i State Plan, Hawai‘i 2050 Sustainability Plan, Hawai‘i State Land Use District Boundaries, Hawai‘i Coastal Zone Management Program, Maui County General Plan 2030, and the Maui County Zoning Code Title 19.

5.1 Hawai‘i State Plan

The Hawai‘i State Planning Act, adopted in 1978, and promulgated in HRS Chapter 226, resulted in the Hawai‘i State Plan, recently revised in 1991. The Hawai‘i State Plan provides goals, objectives, policies, and priority guidelines for growth, development and the allocation of resources throughout the state in various areas of State interest. The purpose of the Hawai‘i State Plan is to improve the planning process in the State; increase the effectiveness of government and private actions; improve coordination among different agencies and levels of government; provide for wise use of Hawai‘i’s resources and to guide the future development of the State.

State goals under the Hawai‘i State Planning Act are set to guarantee, for present and future generations, those elements of choice and mobility to ensure that individuals and groups may approach their desired levels of self-reliance and self-determination:

- A strong, viable economy, characterized by stability, diversity, and growth, that enables the fulfillment of the needs and expectations of Hawai‘i present and future generations.
- A desired physical environment, characterized by beauty, cleanliness, quiet, stable natural systems, and uniqueness, that enhances the mental and physical well-being of the people.
- Physical, social, and economic well-being, for individuals and families in Hawai‘i, that nourishes a sense of community responsibility, of caring, and of participation in community life.

Objectives and policies of the Hawai‘i State Plan are discussed based on their relevance to the Project in the below Table 5.1, Hawai‘i State Plan.

<table>
<thead>
<tr>
<th>Table 5-1: Hawai‘i State Plan</th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1. Overall Theme, Goals, Objectives, and Policies</td>
<td>§226-1: Findings and Purpose</td>
<td>S</td>
<td>N/S</td>
</tr>
<tr>
<td>§226-2: Definitions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§226-3: Overall Theme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§226-4: State Goals. In order to guarantee, for the present and future generations, those elements of choice and mobility that insure that individuals and groups may approach their desired levels of self-reliance and self-determination, it shall be the goal of the State to achieve:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5-1: Hawai‘i State Plan
Part 1. Overall Theme, Goals, Objectives, and Policies
S = Supportive, N/S = Not Supportive, N/A = Not Applicable

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>A strong, viable economy, characterized by stability, diversity, and growth, that enables the fulfillment of the needs and expectations of Hawai‘i’s present and future generations</td>
<td>X</td>
</tr>
<tr>
<td>(2)</td>
<td>A desired physical environment, characterized by beauty, cleanliness, quiet, stable natural systems, and uniqueness, that enhances the mental and physical well-being of the people.</td>
<td>X</td>
</tr>
<tr>
<td>(3)</td>
<td>Physical, social and economic well-being, for individuals and families in Hawai‘i, that nourishes a sense of community responsibility, of caring, and of participation in community life.</td>
<td>X</td>
</tr>
</tbody>
</table>

**Discussion:** The goals specified in HRS §226-4(1-3) are not directly applicable to the Project.

§226-5: Objective and policies for population
(a) It shall be the objective in planning for the State’s population to guide population growth to be consistent with the achievement of physical, economic, and social objectives contained in this chapter;
(b) To achieve the population objective, it shall be the policy of this State to:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Manage population growth statewide in a manner that provides increased opportunities for Hawai‘i’s people to pursue their physical, social and economic aspirations while recognizing the unique needs of each county.</td>
<td>X</td>
</tr>
<tr>
<td>(2)</td>
<td>Encourage an increase in economic activities and employment opportunities on the neighbor islands consistent with community needs-and desires.</td>
<td>X</td>
</tr>
<tr>
<td>(3)</td>
<td>Promote increased opportunities for Hawai‘i’s people to pursue their socioeconomic aspirations throughout the islands.</td>
<td>X</td>
</tr>
<tr>
<td>(4)</td>
<td>Encourage research activities and public awareness programs to foster and understanding of Hawai‘i’s limited capacity to accommodate population needs and to address concerns resulting from an increase in Hawai‘i’s population.</td>
<td>X</td>
</tr>
<tr>
<td>(5)</td>
<td>Encourage federal actions and coordination among major governmental agencies to promote a more balanced distribution of immigrants among states, provided that such actions do not prevent the reunion of immediate family members.</td>
<td>X</td>
</tr>
<tr>
<td>(6)</td>
<td>Pursue an increase in federal assistance for states with a greater proportion of foreign immigrants relative to their state’s population</td>
<td>X</td>
</tr>
<tr>
<td>(7)</td>
<td>Plan the development and availability of land and water resources in a coordinated manner so as to provide for the desired levels of growth in each geographic area</td>
<td>X</td>
</tr>
</tbody>
</table>

**Discussion:** The Project will provide short- and long-term employment opportunities for Maui residents.

§226-6 Objectives and policies for the economy in general.
(a) Planning for the State’s economy in general shall be directed toward achievement of the following objectives:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Increased and diversified employment opportunities to achieve full employment, increased income and job choice, and improved living standards for Hawai‘i’s people.</td>
<td>X</td>
</tr>
<tr>
<td>(2)</td>
<td>A steadily growing and diversified economic base that is not overly dependent on a few industries and includes the development and expansion of industries on the neighbor islands.</td>
<td>X</td>
</tr>
</tbody>
</table>

(b) To achieve the general economic objectives, it shall be the policy of this State to:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Promote and encourage entrepreneurship within Hawai‘i by residents and nonresidents of the State.</td>
<td>X</td>
</tr>
<tr>
<td>(2)</td>
<td>Expand Hawai‘i’s national and international marketing, communication, and organizational ties, to increase the State’s capacity to adjust to and capitalize upon economic changes and opportunities occurring outside the State.</td>
<td>X</td>
</tr>
<tr>
<td>(3)</td>
<td>Promote Hawai‘i as an attractive market for environmentally and socially sound investment activities that benefit Hawai‘i’s people.</td>
<td>X</td>
</tr>
</tbody>
</table>
### Table 5-1: Hawai‘i State Plan

<table>
<thead>
<tr>
<th>Part 1. Overall Theme, Goals, Objectives, and Policies</th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) Transform and maintain Hawai‘i as a place that welcomes and facilitates innovative activity that may lead to commercial opportunities.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(5) Promote innovative activity that may pose initial risks, but ultimately contribute to the economy of Hawai‘i.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(6) Seek broader outlets for new or expanded Hawai‘i business investments.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(7) Expand existing markets and penetrate new markets for Hawai‘i’s products and services.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(8) Assure that the basic economic needs of Hawai‘i’s people are maintained in the event of disruptions in overseas transportation.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(9) Strive to achieve a level of construction activity responsive to, and consistent with, state growth objectives.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(10) Encourage the formation of cooperatives and other favorable marketing arrangements at the local or regional level to assist Hawai‘i’s small-scale producers, manufacturers, and distributors.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(11) Encourage labor-intensive activities that are economically satisfying, and which offer opportunities for upward mobility.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(12) Encourage innovative activities that may not be labor-intensive, but may otherwise contribute to the economy of Hawai‘i.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(13) Foster greater cooperation and coordination between the government and private sectors in developing Hawai‘i’s employment and economic growth opportunities.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(14) Stimulate the development and expansion of economic activities which will benefit areas with substantial or expected employment problems.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(15) Maintain acceptable working conditions and standards for Hawai‘i’s workers.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(16) Provide equal employment opportunities for all segments of Hawai‘i’s population through affirmative action and nondiscrimination measures.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(17) Stimulate the development and expansion of economic activities capitalizing on defense, dual-use, and science and technology assets, particularly on the neighbor islands where employment opportunities may be limited.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(18) Encourage businesses that have favorable financial multiplier effects within Hawai‘i’s economy.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(19) Promote and protect intangible resources in Hawai‘i, such as scenic beauty and the aloha spirit, which are vital to a healthy economy.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(20) Increase effective communication between the educational community and the private sector to develop relevant curricula and training programs to meet future employment needs in general, and requirements of new, potential growth industries in particular.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(21) Foster a business climate in Hawai‘i—including attitudes, tax and regulatory policies, and financial and technical assistance programs—that is conducive to the expansion of existing enterprises and the creation and attraction of new business and industry.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

**Discussion:** The Project is a public-private partnership that will stimulate development and economic activities on Maui, provide a good working environment for state employees, and provide short- and long-term employment opportunities on Maui. These economic activities will have favorable financial multiplier effects within Hawai‘i’s economy. The State and its development partner are also equal opportunity employers. The Project may encourage entrepreneurship by providing commercial space for community-oriented businesses. The new MCSA space will support education and training for Maui residents to meet future employment needs. The Project will be designed to complement the existing built environment and will not detract from the surrounding natural beauty of the islands.

### §226-7 Objectives and policies for the economy - agriculture.

(a) Planning for the State’s economy with regard to agriculture shall be directed towards achievement of the following objectives:
### Table 5-1: Hawai‘i State Plan

<table>
<thead>
<tr>
<th>Part 1. Overall Theme, Goals, Objectives, and Policies</th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Viability of Hawai‘i’s sugar and pineapple industries.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(2) Growth and development of diversified agriculture throughout the State.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(3) An agriculture industry that continues to constitute a dynamic and essential component of Hawai‘i’s strategic, economic, and social well-being.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

(b) To achieve the agriculture objectives, it shall be the policy of this State to:

| (1) Establish a clear direction for Hawai‘i’s agriculture through stakeholder commitment and advocacy. |   | X   |     |
| (2) Encourage agriculture by making best use of natural resources. |   | X   |     |
| (3) Provide the governor and the legislature with information and options needed for prudent decision making for the development of agriculture. |   | X   |     |
| (4) Establish strong relationships between the agricultural and visitor industries for mutual marketing benefits. |   | X   |     |
| (5) Foster increased public awareness and understanding of the contributions and benefits of agriculture as a major sector of Hawai‘i’s economy. |   | X   |     |
| (6) Seek the enactment and retention of federal and state legislation that benefits Hawai‘i’s agricultural industries. |   | X   |     |
| (7) Strengthen diversified agriculture by developing an effective promotion, marketing, and distribution system between Hawai‘i’s producers and consumer markets locally, on the continental United States, and internationally. |   | X   |     |
| (8) Support research and development activities that provide greater efficiency and economic productivity in agriculture. |   | X   |     |
| (9) Enhance agricultural growth by providing public incentives and encouraging private initiatives. |   | X   |     |
| (10) Assure the availability of agriculturally suitable lands with adequate water to accommodate present and future needs. |   | X   |     |
| (11) Increase the attractiveness and opportunities for an agricultural education and livelihood. |   | X   |     |
| (12) Expand Hawai‘i’s agricultural base by promoting growth and development of flowers, tropical fruits and plants, livestock, feed grains, forestry, food crops, aquaculture, and other potential enterprises. |   | X   |     |
| (13) Promote economically competitive activities that increase Hawai‘i’s agricultural self-sufficiency. |   | X   |     |
| (14) Promote and assist in the establishment of sound financial programs for diversified agriculture. |   | X   |     |
| (15) Institute and support programs and activities to assist the entry of displaced agricultural workers into alternative agricultural or other employment. |   | X   |     |
| (16) Facilitate the transition of agricultural lands in economically non-feasible agricultural production to economically viable agricultural uses. |   | X   |     |
| (17) Perpetuate, promote, and increase use of traditional Hawaiian farming systems, such as the use of loko i’a, māla, and irrigated lo‘i, and growth of traditional Hawaiian crops, such as kalo, ‘uala, and ‘ulu. |   | X   |     |
| (18) Increase and develop small-scale farms. |   | X   |     |

**Discussion:** The objectives and policies specified in HRS §226-7 are not directly applicable to the Project.

**§226-8 Objective and policies for the economy–visitor industry.**

(a) Planning for the State’s economy with regard to the visitor industry shall be directed towards the achievement of the objective of a visitor industry that constitutes a major component of steady growth for Hawai‘i’s economy.

(b) To achieve the visitor industry objective, it shall be the policy of this State to:
### Table 5-1: Hawai‘i State Plan
Part 1. Overall Theme, Goals, Objectives, and Policies

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Support and assist in the promotion of Hawai‘i’s visitor attractions and facilities.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>Ensure that visitor industry activities are in keeping with the social, economic, and physical needs and aspirations of Hawai‘i’s people.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>Improve the quality of existing visitor destination areas.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>Encourage cooperation and coordination between the government and private sectors in developing and maintaining well-designed, adequately serviced visitor industry and related developments which are sensitive to neighboring communities and activities.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>Develop the industry in a manner that will continue to provide new job opportunities and steady employment for Hawai‘i’s people.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>Provide opportunities for Hawai‘i’s people to obtain job training and education that will allow for upward mobility within the visitor industry.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>Foster a recognition of the contribution of the visitor industry to Hawai‘i’s economy and the need to perpetuate the aloha spirit.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>Foster an understanding by visitors of the aloha spirit and of the unique and sensitive character of Hawai‘i’s cultures and values.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

**Discussion:** The objectives and policies specified in HRS §226-8 are not directly applicable to the Project.

### §226-9 Objective and policies for the economy--federal expenditures.

(a) Planning for the State’s economy with regard to federal expenditures shall be directed towards achievement of the objective of a stable federal investment base as an integral component of Hawai‘i’s economy.

(b) To achieve the federal expenditures objective, it shall be the policy of this State to:

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Encourage the sustained flow of federal expenditures in Hawai‘i that generates long-term government civilian employment.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>Promote Hawai‘i’s supportive role in national defense.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>Promote the development of federally supported activities in Hawai‘i that respect state-wide economic concerns, are sensitive to community needs, and minimize adverse impacts on Hawai‘i’s environment.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>Increase opportunities for entry and advancement of Hawai‘i’s people into federal government service.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>Promote federal use of local commodities, services, and facilities available in Hawai‘i.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>Strengthen federal-state-county communication and coordination in all federal activities that affect Hawai‘i.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>Pursue the return of federally controlled lands in Hawai‘i that are not required for either the defense of the nation or for other purposes of national importance, and promote the mutually beneficial exchanges of land between federal agencies, the State, and the counties.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

**Discussion:** The Project may not include the expenditure of federal funds. The objectives and policies specified in HRS §226-9 are not directly applicable to the Project.

### §226-10 Objectives and policies for the economy--potential growth and innovative activities.

(a) Planning for the State’s economy with regard to potential growth and innovative activities shall be directed towards achievement of the objective of development and expansion of potential growth and innovative activities that serve to increase and diversify Hawai‘i’s economic base.

(b) To achieve the potential growth and innovative activity objective, it shall be the policy of this State to:

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Facilitate investment and employment growth in economic activities that have the potential to expand and diversify Hawai‘i’s economy, including but not limited to diversified agriculture, aquaculture, renewable energy development, creative media, health care, and science and technology-based sectors;</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
| Table 5-1: Hawai‘i State Plan  
Part 1. Overall Theme, Goals, Objectives, and Policies |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>S = Supportive, N/S = Not Supportive, N/A = Not Applicable</strong></td>
</tr>
<tr>
<td>(2) Facilitate investment in innovative activity that may pose risks or be less labor-intensive than other traditional business activity, but if successful, will generate revenue in Hawai‘i through the export of services or products or substitution of imported services or products;</td>
</tr>
<tr>
<td>(3) Encourage entrepreneurship in innovative activity by academic researchers and instructors who may not have the background, skill, or initial inclination to commercially exploit their discoveries or achievements;</td>
</tr>
<tr>
<td>(4) Recognize that innovative activity is not exclusively dependent upon individuals with advanced formal education, but that many self-taught, motivated individuals are able, willing, sufficiently knowledgeable, and equipped with the attitude necessary to undertake innovative activity;</td>
</tr>
<tr>
<td>(5) Increase the opportunities for investors in innovative activity and talent engaged in innovative activity to personally meet and interact at cultural, art, entertainment, culinary, athletic, or visitor-oriented events without a business focus;</td>
</tr>
<tr>
<td>(6) Expand Hawai‘i’s capacity to attract and service international programs and activities that generate employment for Hawai‘i’s people;</td>
</tr>
<tr>
<td>(7) Enhance and promote Hawai‘i’s role as a center for international relations, trade, finance, services, technology, education, culture, and the arts;</td>
</tr>
<tr>
<td>(8) Accelerate research and development of new energy-related industries based on wind, solar, ocean, underground resources, and solid waste;</td>
</tr>
<tr>
<td>(9) Promote Hawai‘i’s geographic, environmental, social, and technological advantages to attract new or innovative economic activities into the State;</td>
</tr>
<tr>
<td>(10) Provide public incentives and encourage private initiative to attract new or innovative industries that best support Hawai‘i’s social, economic, physical, and environmental objectives;</td>
</tr>
<tr>
<td>(11) Increase research and the development of ocean-related economic activities such as mining, food production, and scientific research;</td>
</tr>
<tr>
<td>(12) Develop, promote, and support research and educational and training programs that will enhance Hawai‘i’s ability to attract and develop economic activities of benefit to Hawai‘i;</td>
</tr>
<tr>
<td>(13) Foster a broader public recognition and understanding of the potential benefits of new or innovative growth-oriented industry in Hawai‘i;</td>
</tr>
<tr>
<td>(14) Encourage the development and implementation of joint federal and state initiatives to attract federal programs and projects that will support Hawai‘i’s social, economic, physical, and environmental objectives;</td>
</tr>
<tr>
<td>(15) Increase research and development of businesses and services in the telecommunications and information industries;</td>
</tr>
<tr>
<td>(16) Foster the research and development of nonfossil fuel and energy efficient modes of transportation; and</td>
</tr>
<tr>
<td>(17) Recognize and promote health care and health care information technology as growth industries.</td>
</tr>
</tbody>
</table>

**Discussion:** The new MCSA space will provide education and training for Maui residents, which will enhance Hawai‘i’s ability to attract and develop economic activities.

**§226-10.5 Objectives and policies for the economy--information industry.**

(a) Planning for the State’s economy with regard to telecommunications and information technology shall be directed toward recognizing that broadband and wireless communication capability and infrastructure are foundations for an innovative economy and positioning Hawai‘i as a leader in broadband and wireless communications and applications in the Pacific Region.

(b) To achieve the information industry objective, it shall be the policy of this State to:

(1) Promote efforts to attain the highest speeds of electronic and wireless communication within Hawai‘i and between Hawai‘i and the world, and make high speed communication available to all residents and businesses in Hawai‘i; | X |
Table 5-1: Hawai'i State Plan
Part 1. Overall Theme, Goals, Objectives, and Policies

<table>
<thead>
<tr>
<th></th>
<th>S = Supportive, N/S = Not Supportive, N/A = Not Applicable</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>Encourage the continued development and expansion of the telecommunications infrastructure serving Hawai'i to accommodate future growth and innovation in Hawai'i’s economy;</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>Facilitate the development of new or innovative business and service ventures in the information industry which will provide employment opportunities for the people of Hawai'i;</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>Encourage mainland- and foreign-based companies of all sizes, whether information technology-focused or not, to allow their principals, employees, or contractors to live in and work from Hawai'i, using technology to communicate with their headquarters, offices, or customers located out-of-state;</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>Encourage greater cooperation between the public and private sectors in developing and maintaining a well-designed information industry;</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>Ensure that the development of new businesses and services in the industry are in keeping with the social, economic, and physical needs and aspirations of Hawai'i’s people;</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>Provide opportunities for Hawai'i’s people to obtain job training and education that will allow for upward mobility within the information industry;</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>Foster a recognition of the contribution of the information industry to Hawai'i’s economy; and</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>Assist in the promotion of Hawai'i as a broker, creator, and processor of information in the Pacific.</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

**Discussion:** The objectives and policies specified in HRS §226-10.5 are not directly applicable to the Project.

§226-11 Objectives and policies for the physical environment—land-based, shoreline, and marine resources.

(a) Planning for the State’s physical environment with regard to land-based, shoreline, and marine resources shall be directed towards achievement of the following objectives:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Prudent use of Hawai'i’s land-based, shoreline, and marine resources.</td>
<td>X</td>
</tr>
<tr>
<td>(2) Effective protection of Hawai'i's unique and fragile environmental resources.</td>
<td>X</td>
</tr>
</tbody>
</table>

(b) To achieve the land-based, shoreline, and marine resources objectives, it shall be the policy of this State to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Exercise an overall conservation ethic in the use of Hawai'i’s natural resources.</td>
<td>X</td>
</tr>
<tr>
<td>(2) Ensure compatibility between land-based and water-based activities and natural resources and ecological systems.</td>
<td>X</td>
</tr>
<tr>
<td>(3) Take into account the physical attributes of areas when planning and designing activities and facilities.</td>
<td>X</td>
</tr>
<tr>
<td>(4) Manage natural resources and environs to encourage their beneficial and multiple use without generating costly or irreparable environmental damage.</td>
<td>X</td>
</tr>
<tr>
<td>(5) Consider multiple uses in watershed areas, provided such uses do not detrimentally affect water quality and recharge functions.</td>
<td>X</td>
</tr>
<tr>
<td>(6) Encourage the protection of rare or endangered plant and animal species and habitats native to Hawai'i.</td>
<td>X</td>
</tr>
<tr>
<td>(7) Provide public incentives that encourage private actions to protect significant natural resources from degradation or unnecessary depletion.</td>
<td>X</td>
</tr>
<tr>
<td>(8) Pursue compatible relationships among activities, facilities and natural resources.</td>
<td>X</td>
</tr>
<tr>
<td>(9) Promote increased accessibility and prudent use of inland and shoreline areas for public recreational, educational and scientific purposes.</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 5-1: Hawai‘i State Plan
Part 1. Overall Theme, Goals, Objectives, and Policies
$ = Supportive, N/S = Not Supportive, N/A = Not Applicable

Discussion: The Project is consistent with the State and County land use designations. The Project is located within the SMA but not in a shoreline area. No protected, threatened, or endangered flora or fauna species or critical habitat are present within the Site. The Project will be developed on an underutilized State property as an urban infill project, where infrastructure is readily available. The Project will be compatible with the surrounding private and public commercial and residential uses and within allowable development limits per the MCC.

§226-12 Objective and policies for the physical environment—scenic, natural beauty, and historic resources.
(a) Planning for the State’s physical environment shall be directed towards achievement of the objective of enhancement of Hawai‘i’s scenic assets, natural beauty, and multi-cultural/historical resources.
(b) To achieve the scenic, natural beauty, and historic resources objectives, it shall be the policy of this State to:

<table>
<thead>
<tr>
<th>Objective</th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Promote the preservation and restoration of significant natural and historic resources.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>(2) Provide incentives to maintain and enhance historic, cultural, and scenic amenities.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Promote the preservation of views and vistas to enhance the visual and aesthetic enjoyment of mountains, ocean, scenic landscapes, and other natural features.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Protect those special areas, structures, and elements that are an integral and functional part of Hawai‘i’s ethnic and cultural heritage.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(5) Encourage the design of developments and activities that complement the natural beauty of the islands.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Discussion: The Project is not anticipated to have an impact on significant natural and historic resources or view sheds and vistas. The Project will be designed to complement the existing built environment and will not detract from the surrounding natural beauty of the island. The Project will comply with MCC zoning regulations, including the provision to allow reduced parking for mixed-use projects located near mass transit service to promote multi-modal transportation usage.

§226-13 Objectives and policies for the physical environment—land, air, and water quality.
(a) Planning for the State’s physical environment with regard to land, air, and water quality shall be directed towards achievement of the following objectives:

<table>
<thead>
<tr>
<th>Objective</th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Maintenance and pursuit of improved quality in Hawai‘i’s land, air, and water resources.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>(2) Greater public awareness and appreciation of Hawai‘i’s environmental resources.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

(b) To achieve the land, air, and water quality objectives, it shall be the policy of this State to:

<table>
<thead>
<tr>
<th>Objective</th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Foster educational activities that promote a better understanding of Hawai‘i’s limited environmental resources.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>(2) Promote the proper management of Hawai‘i’s land and water resources.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>(3) Promote effective measures to achieve desired quality in Hawai‘i’s surface, ground and coastal waters.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>(4) Encourage actions to maintain or improve aural and air quality levels to enhance the health and well-being of Hawai‘i’s people.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>(5) Reduce the threat to life and property from erosion, flooding, tsunamis, hurricanes, earthquakes, volcanic eruptions, and other natural or man-induced hazards and disasters.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>(6) Encourage design and construction practices that enhance the physical qualities of Hawai‘i’s communities.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>(7) Encourage urban developments in close proximity to existing services and facilities.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>(8) Foster recognition of the importance and value of the land, air, and water resources to Hawai‘i’s people, their cultures and visitors.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 5-1: Hawai‘i State Plan
Part 1. Overall Theme, Goals, Objectives, and Policies

<table>
<thead>
<tr>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Discussion:** The Project is not anticipated to have significant impacts on land, air, and water resources. BMPS and sustainable features will be incorporated to the Project design to the extent possible. For further discussion, see Chapter 3. The Project will comply with the Federal, State, and County rules and regulations. The Project will be developed on an underutilized State property as an urban infill project, where infrastructure is readily available.

**§226-14 Objective and policies for facility systems—in general.**
(a) Planning for the State’s facility systems in general shall be directed towards achievement of the objective of water, transportation, waste disposal, and energy and telecommunication systems that support statewide social, economic, and physical objectives.
(b) To achieve the general facility systems objective, it shall be the policy of this State to:

1. Accommodate the needs of Hawai‘i’s people through coordination of facility systems and capital improvement priorities in consonance with state and county plans. X
2. Encourage flexibility in the design and development of facility systems to promote prudent use of resources and accommodate changing public demands and priorities. X
3. Ensure that required facility systems can be supported within resource capacities and at reasonable cost to the user. X
4. Pursue alternative methods of financing programs and projects and cost-saving techniques in the planning, construction, and maintenance of facility systems. X

**Discussion:** The public multi-use path proposed as part of this Project is consistent with the State’s goals to promote multi-modal transportation usage and to reduce the use of fossil-fuel. The Project will also be implemented through a public-private partnership and financing.

**§226-15 Objectives and policies for facility systems—solid and liquid wastes.**
(a) Planning for the State’s facility systems with regard to solid and liquid wastes shall be directed towards the achievement of the following objectives:

1. Maintenance of basic public health and sanitation standards relating to treatment and disposal of solid and liquid wastes. X
2. Provision of adequate sewerage facilities for physical and economic activities that alleviate problems in housing, employment, mobility, and other areas. X

(b) To achieve solid and liquid waste objectives, it shall be the policy of this State to:

1. Encourage the adequate development of sewerage facilities that complement planned growth. X
2. Promote re-use and recycling to reduce solid and liquid wastes and employ a conservation ethic. X
3. Promote research to develop more efficient and economical treatment and disposal of solid and liquid wastes. X

**Discussion:** Recycling program and water conservation measures will be incorporated to the Project design and operations to the extent possible to reduce solid and liquid wastes.

**§226-16 Objective and policies for facility systems—water.**
(a) Planning for the State’s facility systems with regard to water shall be directed towards achievement of the objective of the provision of water to adequately accommodate domestic, agricultural, commercial, industrial, recreational, and other needs within resource capacities.
(b) To achieve the facility systems water objective, it shall be the policy of this State to:

1. Coordinate development of land use activities with existing and potential water supply. X
2. Support research and development of alternative methods to meet future water requirements well in advance of anticipated needs. X
3. Reclaim and encourage the productive use of runoff water and wastewater discharges. X
Table 5-1: Hawai‘i State Plan
Part 1. Overall Theme, Goals, Objectives, and Policies

<table>
<thead>
<tr>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

| (4) | Assist in improving the quality, efficiency, service, and storage capabilities of water systems for domestic and agricultural use. |
| (5) | Support water supply services to areas experiencing critical water problems. |
| (6) | Promote water conservation programs and practices in government, private industry, and the general public to help ensure adequate water to meet long-term needs. |

Discussion: The existing water system is anticipated to be adequate to accommodate the Project. However, the availability of water will be confirmed when the building permit application is submitted. The Project will implement water conservation measures such as incorporating water efficient fixtures and drought tolerant landscaping to reduce irrigation water demands. For further discussion, see Section 3.8.1, Potable Water.

§226-17 Objectives and policies for facility systems—transportation.

(a) Planning for the State’s facility systems with regard to transportation shall be directed towards the achievement of the following objectives:

| (1) | An integrated multi-modal transportation system that services statewide needs and promotes the efficient, economical, safe, and convenient movement of people and goods. |
| (2) | A statewide transportation system that is consistent with and will accommodate planned growth objectives throughout the State. |

(b) To achieve the transportation objectives, it shall be the policy of this State to:

| (1) | Design, program, and develop a multi-modal system in conformance with desired growth and physical development as stated in this chapter; |
| (2) | Coordinate state, county, federal, and private transportation activities and programs toward the achievement of statewide objectives; |
| (3) | Encourage a reasonable distribution of financial responsibilities for transportation among participating governmental and private parties; |
| (4) | Provide for improved accessibility to shipping, docking, and storage facilities; |
| (5) | Promote a reasonable level and variety of mass transportation services that adequately meet statewide and community needs; |
| (6) | Encourage transportation systems that serve to accommodate present and future development needs of communities; |
| (7) | Encourage a variety of carriers to offer increased opportunities and advantages to inter-island movement of people and goods; |
| (8) | Increase the capacities of airport and harbor systems and support facilities to effectively accommodate transshipment and storage needs; |
| (9) | Encourage the development of transportation systems and programs which would assist statewide economic growth and diversification; |
| (10) | Encourage the design and development of transportation systems sensitive to the needs of affected communities and the quality of Hawai‘i’s natural environment; |
| (11) | Encourage safe and convenient use of low-cost, energy-efficient, non-polluting means of transportation; |
| (12) | Coordinate intergovernmental land use and transportation planning activities to ensure the timely delivery of supporting transportation infrastructure in order to accommodate planned growth objectives; and |
| (13) | Encourage diversification of transportation modes and infrastructure to promote alternate fuels and energy efficiency. |
### Table 5-1: Hawai‘i State Plan

<table>
<thead>
<tr>
<th>Part 1. Overall Theme, Goals, Objectives, and Policies</th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Discussion:</strong> The Project will be developed on an underutilized State property as an urban infill project, within the County KCC study area. As part of the Executive Order No. 4590, a portion of the Site has been designated for the Transit Hub, which will provide mass transportation service for Maui residents. The Project will fund and provide off-site vehicular and pedestrian facilities improvements. The proposed multi-use path supports State and County goals to promote multi-modal transportation and to reduce the use of fossil-fuels. The multi-use path could connect to the planned multi-use path along the east side of Kahului Beach Road. The multi-use path is also proposed to connect to the existing sidewalk on West Ka‘ahumanu Avenue and the proposed pedestrian path on Vevau Street. The Project will also be implemented through a public-private partnership and financing. To encourage and support multi-modal transportation usage, design features such as preferred parking spaces for carpool/vanpool, bicycle parking, showers, and other urban design elements will be also explored to enhance pedestrians, bicyclists, and transit users experience. For further discussion, see Section 3.9, Transportation System.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>§226-18 Objectives and policies for facility systems--energy.</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Planning for the State’s facility systems with regard to energy shall be directed toward the achievement of the following objectives, giving due consideration to all:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Dependable, efficient, and economical statewide energy systems capable of supporting the needs of the people;</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Increased energy security and self-sufficiency through the reduction and ultimate elimination of Hawai‘i’s dependence on imported fuels for electrical generation and ground transportation;</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Greater diversification of energy generation in the face of threats to Hawai‘i’s energy supplies and systems;</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Reduction, avoidance, or sequestration of greenhouse gas emissions from energy supply and use; and</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Utility models that make the social and financial interests of Hawai‘i’s utility customers a priority.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) To achieve the energy objectives, it shall be the policy of this State to ensure the short- and long-term provision of adequate, reasonably priced, and dependable energy services to accommodate demand.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) To further achieve the energy objectives, it shall be the policy of this State to:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Support research and development as well as promote the use of renewable energy sources;</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Ensure that the combination of energy supplies and energy-saving systems is sufficient to support the demands of growth;</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Base decisions of least-cost supply-side and demand-side energy resource options on a comparison of their total costs and benefits when a least-cost is determined by a reasonably comprehensive, quantitative, and qualitative accounting of their long-term, direct and indirect economic, environmental, social, cultural, and public health costs and benefits;</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Promote all cost-effective conservation of power and fuel supplies through measures, including:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A) Development of cost-effective demand-side management programs;</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) Education;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C) Adoption of energy-efficient practices and technologies; and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D) Increasing energy efficiency and decreasing energy use in public infrastructure;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Ensure to the extent that new supply-side resources are needed, the development or expansion of energy systems utilizes the least-cost energy supply option and maximizes efficient technologies;</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Support research, development, and demonstration of energy efficiency, load management, and other demand-side management programs, practices, and technologies;</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Promote alternate fuels and energy efficiency by encouraging diversification of transportation modes and infrastructure;</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Support actions that reduce, avoid, or sequester greenhouse gases in utility, transportation, and industrial sector applications; and</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5-1: Hawai‘i State Plan
Part 1. Overall Theme, Goals, Objectives, and Policies

<table>
<thead>
<tr>
<th></th>
<th>Hawai‘i State Plan</th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9)</td>
<td>Support actions that reduce, avoid, or sequester Hawai‘i’s greenhouse gas emissions through agriculture and forestry initiatives.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>Provide priority handling and processing for all state and county permits required for renewable energy projects;</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(11)</td>
<td>Ensure that liquefied natural gas is used only as a cost-effective transitional, limited-term replacement of petroleum for electricity generation and does not impede the development and use of other cost-effective renewable energy sources; and</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(12)</td>
<td>Promote the development of indigenous geothermal energy resources that are located on public trust land as an affordable and reliable source of firm power for Hawai‘i.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

**Discussion:** Energy efficient fixtures and appliances will be installed in the multi-family housing and Civic Center. The Project will also incorporate a multi-use path and design features that encourage and support multi-modal transportation usage. Furthermore, to the extent practicable, the Project will comply with HRS §196-9, regarding energy efficiency and environmental standards for State facilities.

§226-18.5 Objectives and policies for facility systems—telecommunications.

(a) Planning for the State’s telecommunications facility systems shall be directed towards the achievement of dependable, efficient, and economical statewide telecommunications systems capable of supporting the needs of the people.

(b) To achieve the telecommunications objective, it shall be the policy of this State to ensure the provision of adequate, reasonably priced, and dependable telecommunications services to accommodate demand.

(c) To further achieve the telecommunications objective, it shall be the policy of this State to:

1. Facilitate research and development of telecommunications systems and resources;  
2. Encourage public and private sector efforts to develop means for adequate, ongoing telecommunications planning;  
3. Promote efficient management and use of existing telecommunications systems and services; and  
4. Facilitate the development of education and training of telecommunications personnel.

**Discussion:** The objectives and policies specified in HRS §226-18.5 are not directly applicable to the Project.

§226-19 Objectives and policies for socio-cultural advancement—housing.

(a) Planning for the State’s socio-cultural advancement with regard to housing shall be directed toward the achievement of the following objectives:

1. Greater opportunities for Hawai‘i’s people to secure reasonably priced, safe, sanitary, and livable homes, located in suitable environments that satisfactorily accommodate the needs and desires of families and individuals, through collaboration and cooperation between government and nonprofit and for-profit developers to ensure that more rental and for sale affordable housing is made available to extremely low-, very low-, lower-, moderate-, and above moderate-income segments of Hawai‘i’s population.

2. The orderly development of residential areas sensitive to community needs and other land uses.

3. The development and provision of affordable rental housing by the State to meet the housing needs of Hawai‘i’s people.

(b) To achieve the housing objectives, it shall be the policy of this State to:

1. Effectively accommodate the housing needs of Hawai‘i’s people.

2. Stimulate and promote feasible approaches that increase affordable rental and for sale housing choices for extremely low-, very low-, lower-, moderate-, and above moderate-income households.

3. Increase homeownership and rental opportunities and choices in terms of quality, location, cost, densities, style, and size of housing.
### Table 5-1: Hawai'i State Plan
#### Part 1. Overall Theme, Goals, Objectives, and Policies

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) Promote appropriate improvement, rehabilitation, and maintenance of existing rental and for sale housing units and residential areas.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>(5) Promote design and location of housing developments taking into account the physical setting, accessibility to public facilities and services, and other concerns of existing communities and surrounding areas.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Facilitate the use of available vacant, developable, and underutilized urban lands for housing.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Foster a variety of lifestyles traditional to Hawai'i through the design and maintenance of neighborhoods that reflect the culture and values of the community.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Promote research and development of methods to reduce the cost of housing construction in Hawai'i.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Discussion:** The Project involves the construction of approximately 300 multi-family dwelling units (mixture of 1-, 2-, and 3-bedroom units), more than 50% of which will be affordable to households earning 140% or below the MFI. The Project will be developed on an underutilized State property as an urban infill project. The Project will have convenient access to the Transit Hub.

### §226-20 Objectives and policies for socio-cultural advancement--health.

**(a)** Planning for the State’s socio-cultural advancement with regard to health shall be directed towards achievement of the following objectives:

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Fulfillment of basic individual health needs of the general public.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Maintenance of sanitary and environmentally healthful conditions in Hawai'i’s communities.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**(b)** To achieve the health objectives, it shall be the policy of this State to:

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Provide adequate and accessible services and facilities for prevention and treatment of physical and mental health problems, including substance abuse.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Encourage improved cooperation among public and private sectors in the provision of health care to accommodate the total health needs of individuals throughout the State.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Encourage public and private efforts to develop and promote statewide and local strategies to reduce health care and related insurance costs.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Foster an awareness of the need for personal health maintenance and preventive health care through education and other measures.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Provide programs, services, and activities that ensure environmentally healthful and sanitary conditions.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Improve the State’s capabilities in preventing contamination by pesticides and other potentially hazardous substances through increased coordination, education, monitoring, and enforcement.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Prioritize programs, services, interventions, and activities that address identified social determinants of health to improve native Hawaiian health and well-being consistent with the United States Congress’ declaration of policy as codified in title 42 United States Code section 11702, and to reduce health disparities of disproportionately affected demographics, including native Hawaiians, other Pacific Islanders, and Filipinos. The prioritization of affected demographic groups other than native Hawaiians may be reviewed every ten years and revised based on the best available epidemiological and public health data.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Discussion:** The Project will meet the Federal, State, and County rules and regulations. Objectives and policies specified in HRS §226-20(b) are not directly applicable to the Project.

### §226-21 Objectives and policies for socio-cultural advancement--education.

**(a)** Planning for the State’s socio-cultural advancement with regard to education shall be directed towards achievement of the objective of the provision of a variety of educational opportunities to enable individuals to fulfill their needs, responsibilities, and aspirations.

**(b)** To achieve the education objective, it shall be the policy of this State to:
Table 5-1: Hawai'i State Plan
Part 1. Overall Theme, Goals, Objectives, and Policies

| (1) Support educational programs and activities that enhance personal development, physical fitness, recreation, and cultural pursuits of all groups. | S |
| (2) Ensure the provision of adequate and accessible educational services and facilities that are designed to meet individual and community needs. | X |
| (3) Provide appropriate educational opportunities for groups with special needs. | X |
| (4) Promote educational programs which enhance understanding of Hawai‘i’s cultural heritage. | X |
| (5) Provide higher educational opportunities that enable Hawai‘i’s people to adapt to changing employment demands. | X |
| (6) Assist individuals, especially those experiencing critical employment problems or barriers, or undergoing employment transitions, by providing appropriate employment training programs and other related educational opportunities. | X |
| (7) Promote programs and activities that facilitate the acquisition of basic skills, such as reading, writing, computing, listening, speaking, and reasoning. | X |
| (8) Emphasize quality educational programs in Hawai‘i’s institutions to promote academic excellence. | X |
| (9) Support research programs and activities that enhance the education programs of the State. | X |

Discussion: The new MCSA space will provide necessary education and training for Maui residents.

§226-22 Objective and policies for socio-cultural advancement—social services.

(a) Planning for the State’s socio-cultural advancement with regard to social services shall be directed towards the achievement of the objective of improved public and private social services and activities that enable individuals, families, and groups to become more self-reliant and confident to improve their well-being.

(b) To achieve the social service objective, it shall be the policy of the State to:

| (1) Assist individuals, especially those in need of attaining a minimally adequate standard of living and those confronted by social and economic hardship conditions, through social services and activities within the State’s fiscal capacities. | X |
| (2) Promote coordination and integrative approaches among public and private agencies and programs to jointly address social problems that will enable individuals, families, and groups to deal effectively with social problems and to enhance their participation in society. | X |
| (3) Facilitate the adjustment of new residents, especially recently arrived immigrants, into Hawai‘i’s communities. | X |
| (4) Promote alternatives to institutional care in the provision of long-term care for elderly and disabled populations. | X |
| (5) Support public and private efforts to prevent domestic abuse and child molestation, and assist victims of abuse and neglect. | X |
| (6) Promote programs which assist people in need of family planning services to enable them to meet their needs. | X |

Discussion: The Civic Center will be used for various State agency offices, which will provide various social services that are essential to the Maui community. The affordable housing provided by the Project, will also help low-income residents to attain adequate standard of living.

§226-23 Objective and policies for socio-cultural advancement—leisure.

(a) Planning for the State’s socio-cultural advancement with regard to leisure shall be directed towards the achievement of the objective of the adequate provision of resources to accommodate diverse cultural, artistic, and recreational needs for present and future generations.

(b) To achieve the leisure objective, it shall be the policy of this State to:


<table>
<thead>
<tr>
<th>Table 5-1: Hawai‘i State Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1. Overall Theme, Goals, Objectives, and Policies</td>
</tr>
</tbody>
</table>

| $S$ = Supportive, $N/S$ = Not Supportive, $N/A$ = Not Applicable |
|---|---|---|
| (1) Foster and preserve Hawai‘i’s multi-cultural heritage through supportive cultural, artistic, recreational, and humanities-oriented programs and activities. | X | |
| (2) Provide a wide range of activities and facilities to fulfill the cultural, artistic, and recreational needs of all diverse and special groups effectively and efficiently. | X | |
| (3) Enhance the enjoyment of recreational experiences through safety and security measures, educational opportunities, and improved facility design and maintenance. | X | |
| (4) Promote the recreational and educational potential of natural resources having scenic, open space, cultural, historical, geological, or biological values while ensuring that their inherent values are preserved. | X | |
| (5) Ensure opportunities for everyone to use and enjoy Hawai‘i’s recreational resources. | X | |
| (6) Assure the availability of sufficient resources to provide for future cultural, artistic, and recreational needs. | X | |
| (7) Provide adequate and accessible physical fitness programs to promote the physical and mental well-being of Hawai‘i’s people. | X | |
| (8) Increase opportunities for appreciation and participation in the creative arts, including the literary, theatrical, visual, musical, folk, and traditional art forms. | X | |
| (9) Encourage the development of creative expression in the artistic disciplines to enable all segments of Hawai‘i’s population to participate in the creative arts. | X | |
| (10) Assure adequate access to significant natural and cultural resources in public ownership. | X | |

**Discussion:** Appropriate artwork that reflects Kahului’s rich culture and history will be incorporated to the Project. The proposed multi-use path will also serve as a recreational facility that will support physical and mental well-being for Kahului residents.

§226-24 Objective and policies for socio-cultural advancement—individual rights and personal well-being.

(a) Planning for the State’s socio-cultural advancement with regard to individual rights and personal well-being shall be directed towards achievement of the objective of increased opportunities and protection of individual rights to enable individuals to fulfill their socio-economic needs and aspirations.

(b) To achieve the individual rights and personal well-being objective, it shall be the policy of this State to:

| (1) Provide effective services and activities that protect individuals from criminal acts and unfair practices and that alleviate the consequences of criminal acts in order to foster a safe and secure environment. | X | |
| (2) Uphold and protect the national and state constitutional rights of every individual. | X | |
| (3) Assure access to, and availability of, legal assistance, consumer protection, and other public services which strive to attain social justice. | X | |
| (4) Ensure equal opportunities for individual participation in society. | X | |

**Discussion:** The Project will provide increased opportunities for Maui residents to access affordable housing, employment and social services.


(a) Planning for the State’s socio-cultural advancement with regard to culture shall be directed toward the achievement of the objective of enhancement of cultural identities, traditions, values, customs, and arts of Hawai‘i’s people.

(b) To achieve the culture objective, it shall be the policy of this State to:

| (1) Foster increased knowledge and understanding of Hawai‘i’s ethnic and cultural heritages and the history of Hawai‘i. | X | |
| (2) Support activities and conditions that promote cultural values, customs, and arts that enrich the lifestyles of Hawai‘i’s people and which are sensitive and responsive to family and community needs. | X |
### Table 5-1: Hawai‘i State Plan
**Part 1. Overall Theme, Goals, Objectives, and Policies**

<table>
<thead>
<tr>
<th>S = Supportive, N/S = Not Supportive, N/A = Not Applicable</th>
<th>$</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) Encourage increased awareness of the effects of proposed public and private actions on the integrity and quality of cultural and community lifestyles in Hawai‘i.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(4) Encourage the essence of the aloha spirit in people’s daily activities to promote harmonious relationships among Hawai‘i’s people and visitors.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

**Discussion:** Appropriate artwork that reflects Kahului’s rich culture and history will be incorporated to the Project. Further discussion on cultural resources is included in Section 3.11.3, Cultural Resources.

### §226-26 Objectives and policies for socio-cultural advancement--public safety.

(a) Planning for the State’s socio-cultural advancement with regard to public safety shall be directed towards the achievement of the following objectives:

| (1) Assurance of public safety and adequate protection of life and property for all people. | X |
| (2) Optimum organizational readiness and capability in all phases of emergency management to maintain the strength, resources, and social and economic well-being of the community in the event of civil disruptions, wars, natural disasters, and other major disturbances. | X |
| (3) Promotion of a sense of community responsibility for the welfare and safety of Hawai‘i’s people. | X |

(b) To achieve the public safety objectives, it shall be the policy of this State to:

| (1) Ensure that public safety programs are effective and responsive to community needs. | X |
| (2) Encourage increased community awareness and participation in public safety programs. | X |

(c) To further achieve public safety objectives related to criminal justice, it shall be the policy of this State to:

| (1) Support criminal justice programs aimed at preventing and curtailing criminal activities. | X |
| (2) Develop a coordinated, systematic approach to criminal justice administration among all criminal justice agencies. | X |
| (3) Provide a range of correctional resources which may include facilities and alternatives to traditional incarceration in order to address the varied security needs of the community and successfully reintegrate offenders into the community. | X |

(d) To further achieve public safety objectives related to emergency management, it shall be the policy of this State to:

| (1) Ensure that responsible organizations are in a proper state of readiness to respond to major war-related, natural, or technological disasters and civil disturbances at all times. | X |
| (2) Enhance the coordination between emergency management programs throughout the State. | X |

**Discussion:** During construction, Federal, state, and county requirements will be implemented to ensure the safety of staff, construction crews and community members. Off-site pedestrian facility improvement, including curb extension and multi-use path will be provided to ensure public safety.

### §226-27 Objectives and policies for socio-cultural advancement--government.

(a) Planning the State’s socio-cultural advancement with regard to government shall be directed towards the achievement of the following objectives:

| (1) Efficient, effective, and responsive government services at all levels in the State. | X |
| (2) Fiscal integrity, responsibility, and efficiency in the state government and county governments. | X |

(b) To achieve the government objectives, it shall be the policy of this State to:

| (1) Provide for necessary public goods and services not assumed by the private sector. | X |
**Table 5-1: Hawai‘i State Plan**

<table>
<thead>
<tr>
<th>Part 1. Overall Theme, Goals, Objectives, and Policies</th>
<th>$</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Pursue an openness and responsiveness in government that permits the flow of public information, interaction, and response.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Minimize the size of government to that necessary to be effective.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(4) Stimulate the responsibility in citizens to productively participate in government for a better Hawai‘i.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Assure that government attitudes, actions, and services are sensitive to community needs and concerns.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Provide for a balanced fiscal budget.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Improve the fiscal budgeting and management system of the State.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Promote the consolidation of state and county governmental functions to increase the effective and efficient delivery of government programs and services and to eliminate duplicative services wherever feasible.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Discussion:** The Project will allow the State to provide efficient public services to the Maui community by co-locating the multi-family housing, near public facilities, services and the Transit Hub. The Project will also reduce the State General Fund spending in lease rent expenses in the long term. Public meetings will be held during the planning and design of the facility to keep the public informed, as well as to allow public participation in the development process. Thus, the Project will be able to incorporate community input and be reflective of community needs and concerns.

**§226-101 Purpose.** The purpose of this part is to establish overall priority guidelines to address areas of statewide concern.

**§226-102 Overall direction.** The State shall strive to improve the quality of life for Hawai‘i’s present and future population through the pursuit of desirable courses of action in seven major areas of statewide concern which merit priority attention: economic development, population growth and land resource management, affordable housing, crime and criminal justice, quality education, principles of sustainability, and climate change adaptation.

**Discussion:** The Project will contribute to improving the quality of life of Maui’s residents, by increasing the affordable housing stock and stimulating economic development, whilst ensuring prudent use of State lands and resources.

**§226-103 Economic priority guidelines.**

(a) Priority guidelines to stimulate economic growth and encourage business expansion and development to provide needed jobs for Hawai‘i’s people and achieve a stable and diversified economy:

(1) Seek a variety of means to increase the availability of investment capital for new and expanding enterprises.

(A) Encourage investments which:

   (i) Reflect long term commitments to the State; X

   (ii) Rely on economic linkages within the local economy; X

   (iii) Diversify the economy; X

   (iv) Reinvest in the local economy; X

   (v) Are sensitive to community needs and priorities; and X

   (vi) Demonstrate a commitment to provide management opportunities to Hawai‘i residents. X

(B) Encourage investments in innovative activities that have a nexus to the State, such as:

   (i) Present or former residents acting as entrepreneurs or principals; X

   (ii) Academic support from an institution of higher education in Hawai‘i; X

   (iii) Investment interest from Hawai‘i residents; X

   (iv) Resources unique to Hawai‘i that are required for innovative activity; and X
<table>
<thead>
<tr>
<th>Table 5-1: Hawai‘i State Plan</th>
<th>Part 1. Overall Theme, Goals, Objectives, and Policies</th>
<th>$</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v) Complementary or supportive industries or government programs or projects.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Encourage the expansion of technological research to assist industry development and support the development and commercialization of technological advancements.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Improve the quality, accessibility, and range of services provided by government to business, including data and reference services and assistance in complying with governmental regulations.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Seek to ensure that state business tax and labor laws and administrative policies are equitable, rational, and predictable.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Streamline the processes for building and development permit and review and telecommunication infrastructure installation approval and eliminate or consolidate other burdensome or duplicative governmental requirements imposed on business, where scientific evidence indicates that public health, safety, and welfare would not be adversely affected.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Encourage the formation of cooperatives and other favorable marketing or distribution arrangements at the regional or local level to assist Hawai‘i’s small-scale producers, manufacturers, and distributors.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Continue to seek legislation to protect Hawai‘i from transportation interruptions between Hawai‘i and the continental United States.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Provide public incentives and encourage private initiative to develop and attract industries which promise long-term growth potentials and which have the following characteristics:</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A) An industry that can take advantage of Hawai‘i’s unique location and available physical and human resources.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) A clean industry that would have minimal adverse effects on Hawai‘i’s environment.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C) An industry that is willing to hire and train Hawai‘i’s people to meet the industry’s labor needs at all levels of employment.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D) An industry that would provide reasonable income and steady employment.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) Support and encourage, through educational and technical assistance programs and other means, expanded opportunities for employee ownership and participation in Hawai‘i business.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) Enhance the quality of Hawai‘i’s labor force and develop and maintain career opportunities for Hawai‘i’s people through the following actions:</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A) Expand vocational training in diversified agriculture, aquaculture, information industry, and other areas where growth is desired and feasible.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) Encourage more effective career counseling and guidance in high schools and post-secondary institutions to inform students of present and future career opportunities.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C) Allocate educational resources to career areas where high employment is expected and where growth of new industries is desired.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D) Promote career opportunities in all industries for Hawai‘i’s people by encouraging firms doing business in the State to hire residents.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E) Promote greater public and private sector cooperation in determining industrial training needs and in developing relevant curricula and on-the-job training opportunities.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F) Provide retraining programs and other support services to assist entry of displaced workers into alternative employment.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Priority guidelines to promote the economic health and quality of the visitor industry:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Promote visitor satisfaction by fostering an environment which enhances the aloha spirit and minimizes inconveniences to Hawai‘i’s residents and visitors.</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Table 5-1: Hawai'i State Plan  
Part 1. Overall Theme, Goals, Objectives, and Policies  
S = Supportive, N/S = Not Supportive, N/A = Not Applicable | $ | N/S | N/A |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Encourage the development and maintenance of well-designed, adequately serviced hotels and resort destination areas which are sensitive to neighboring communities and activities and which provide for adequate shoreline setbacks and beach access.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Support appropriate capital improvements to enhance the quality of existing resort destination areas and provide incentives to encourage investment in upgrading, repair, and maintenance of visitor facilities.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Encourage visitor industry practices and activities which respect, preserve, and enhance Hawai'i's significant natural, scenic, historic, and cultural resources.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Develop and maintain career opportunities in the visitor industry for Hawai'i's people, with emphasis on managerial positions.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Support and coordinate tourism promotion abroad to enhance Hawai'i's share of existing and potential visitor markets.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Maintain and encourage a more favorable resort investment climate consistent with the objectives of this chapter.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Support law enforcement activities that provide a safer environment for both visitors and residents alike.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) Coordinate visitor industry activities and promotions to business visitors through the state network of advanced data communication techniques.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (c) Priority guidelines to promote the continued viability of the sugar and pineapple industries:  
(1) Provide adequate agricultural lands to support the economic viability of the sugar and pineapple industries. | X |  |  |
| (2) Continue efforts to maintain federal support to provide stable sugar prices high enough to allow profitable operations in Hawai'i. | X |  |  |
| (3) Support research and development, as appropriate, to improve the quality and production of sugar and pineapple crops. | X |  |  |
| (d) Priority guidelines to promote the growth and development of diversified agriculture and aquaculture:  
(1) Identify, conserve, and protect agricultural and aquacultural lands of importance and initiate affirmative and comprehensive programs to promote economically productive agricultural and aquacultural uses of such lands. | X |  |  |
| (2) Assist in providing adequate, reasonably priced water for agricultural activities. | X |  |  |
| (3) Encourage public and private investment to increase water supply and to improve transmission, storage, and irrigation facilities in support of diversified agriculture and aquaculture. | X |  |  |
| (4) Assist in the formation and operation of production and marketing associations and cooperatives to reduce production and marketing costs. | X |  |  |
| (5) Encourage and assist with the development of a waterborne and airborne freight and cargo system capable of meeting the needs of Hawai'i's agricultural community. | X |  |  |
| (6) Seek favorable freight rates for Hawai'i's agricultural products from interisland and overseas transportation operators. | X |  |  |
| (7) Encourage the development and expansion of agricultural and aquacultural activities which offer long-term economic growth potential and employment opportunities. | X |  |  |
| (8) Continue the development of agricultural parks and other programs to assist small independent farmers in securing agricultural lands and loans. | X |  |  |
| (9) Require agricultural uses in agricultural subdivisions and closely monitor the uses in these subdivisions. | X |  |  |
| (10) Support the continuation of land currently in use for diversified agriculture. | X |  |  |
### Table 5-1: Hawai‘i State Plan

**Part 1. Overall Theme, Goals, Objectives, and Policies**

<table>
<thead>
<tr>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(11) **Encourage residents and visitors to support Hawai‘i’s farmers by purchasing locally grown food and food products.** X

(e) **Priority guidelines for water use and development:**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Maintain and improve water conservation programs to reduce the overall water consumption rate.</td>
<td>X</td>
</tr>
<tr>
<td>(2)</td>
<td>Encourage the improvement of irrigation technology and promote the use of non-potable water for agricultural and landscaping purposes.</td>
<td>X</td>
</tr>
<tr>
<td>(3)</td>
<td>Increase the support for research and development of economically feasible alternative water sources.</td>
<td>X</td>
</tr>
<tr>
<td>(4)</td>
<td>Explore alternative funding sources and approaches to support future water development programs and water system improvements.</td>
<td>X</td>
</tr>
</tbody>
</table>

(f) **Priority guidelines for energy use and development:**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Encourage the development, demonstration, and commercialization of renewable energy sources.</td>
<td>X</td>
</tr>
<tr>
<td>(2)</td>
<td>Initiate, maintain, and improve energy conservation programs aimed at reducing energy waste and increasing public awareness of the need to conserve energy.</td>
<td>X</td>
</tr>
<tr>
<td>(3)</td>
<td>Provide incentives to encourage the use of energy conserving technology in residential, industrial, and other buildings.</td>
<td>X</td>
</tr>
<tr>
<td>(4)</td>
<td>Encourage the development and use of energy conserving and cost-efficient transportation systems.</td>
<td>X</td>
</tr>
</tbody>
</table>

(g) **Priority guidelines to promote the development of the information industry:**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Establish an information network that will serve as the catalyst for establishing a viable information industry in Hawai‘i.</td>
<td>X</td>
</tr>
<tr>
<td>(2)</td>
<td>Encourage the development of services such as financial data processing, a products and services exchange, foreign language translations, telemarketing, teleconferencing, a twenty-four-hour international stock exchange, international banking, and a Pacific Rim management center.</td>
<td>X</td>
</tr>
<tr>
<td>(3)</td>
<td>Encourage the development of small businesses in the information field such as software development, the development of new information systems and peripherals, data conversion and data entry services, and home or cottage services such as computer programming, secretarial, and accounting services.</td>
<td>X</td>
</tr>
<tr>
<td>(4)</td>
<td>Encourage the development or expansion of educational and training opportunities for residents in the information and telecommunications fields.</td>
<td>X</td>
</tr>
<tr>
<td>(5)</td>
<td>Encourage research activities, including legal research in the information and telecommunications fields.</td>
<td>X</td>
</tr>
<tr>
<td>(6)</td>
<td>Support promotional activities to market Hawai‘i’s information industry services.</td>
<td>X</td>
</tr>
<tr>
<td>(7)</td>
<td>Encourage the location or co-location of telecommunication or wireless information relay facilities in the community, including public areas, where scientific evidence indicates that the public health, safety, and welfare would not be adversely affected.</td>
<td>X</td>
</tr>
</tbody>
</table>

**Discussion:** The Project will incorporate energy and water conservation fixtures and equipment, as well as promote multi-modal transportation.

**§226-104 Population growth and land resources priority guidelines.**

(a) **Priority guidelines to effect desired statewide growth and distribution:**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Encourage planning and resource management to insure that population growth rates throughout the State are consistent with available and planned resource capacities and reflect the needs and desires of Hawai‘i’s people.</td>
<td>X</td>
</tr>
<tr>
<td>(2)</td>
<td>Manage a growth rate for Hawai‘i’s economy that will parallel future employment needs for Hawai‘i’s people.</td>
<td>X</td>
</tr>
</tbody>
</table>
### Table 5-1: Hawai‘i State Plan
#### Part 1. Overall Theme, Goals, Objectives, and Policies

<table>
<thead>
<tr>
<th></th>
<th>$</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(4)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(5)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(6)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(7)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
</tbody>
</table>

#### (b) Priority guidelines for regional growth distribution and land resource utilization:

<table>
<thead>
<tr>
<th></th>
<th>$</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(2)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(3)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(4)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(5)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(6)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(7)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(8)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(9)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(10)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(11)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(12)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
<tr>
<td>(13)</td>
<td>X</td>
<td>N/S</td>
<td>N/A</td>
</tr>
</tbody>
</table>
### Table 5-1: Hawai’i State Plan

#### Part 1. Overall Theme, Goals, Objectives, and Policies

<table>
<thead>
<tr>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
</table>

#### Discussion:
The Project will support future population growth by providing public services, affordable housing for Maui residents, as well as short- and long-term employment opportunities. The Project will be developed on an underutilized State property as an urban infill project, where infrastructure is readily available. The Project will also minimize impacts to historic and cultural sites, as well as scenic resources, while providing positive impacts to the economy. For further discussion see Sections 3.5, Flora and Fauna, 3.11, Historic Architecture, Archaeological, and Cultural Resources and Section 3.13, Visual and Scenic Resources.

#### §226-105 Crime and criminal justice. Priority guidelines in the area of crime and criminal justice:

| (1) | Support law enforcement activities and other criminal justice efforts that are directed to provide a safer environment. | X |
| (2) | Target state and local resources on efforts to reduce the incidence of violent crime and on programs relating to the apprehension and prosecution of repeat offenders. | X |
| (3) | Support community and neighborhood program initiatives that enable residents to assist law enforcement agencies in preventing criminal activities. | X |
| (4) | Reduce overcrowding or substandard conditions in correctional facilities through a comprehensive approach among all criminal justice agencies which may include sentencing law revisions and use of alternative sanctions other than incarceration for persons who pose no danger to their community. | X |
| (5) | Provide a range of appropriate sanctions for juvenile offenders, including community-based programs and other alternative sanctions. | X |
| (6) | Increase public and private efforts to assist witnesses and victims of crimes and to minimize the costs of victimization. | X |

#### Discussion:
The priority guidelines specified in HRS §226-105 are not directly applicable to the Project.

#### §226-106 Affordable housing. Priority guidelines for the provision of affordable housing:

| (1) | Seek to use marginal or nonessential agricultural land, urban land, and public land to meet housing needs of extremely low-, very low-, lower-, moderate-, and above moderate-income households. | X |
| (2) | Encourage the use of alternative construction and development methods as a means of reducing production costs. | X |
| (3) | Improve information and analysis relative to land availability and suitability for housing. | X |
| (4) | Create incentives for development which would increase home ownership and rental opportunities for Hawai’i’s extremely low-, very low-, lower-, and moderate-income households and residents with special needs. | X |
| (5) | Encourage continued support for government or private housing programs that provide low interest mortgages to Hawai’i’s people for the purchase of initial owner-occupied housing. | X |
| (6) | Encourage public and private sector cooperation in the development of rental housing alternatives. | X |
| (7) | Encourage improved coordination between various agencies and levels of government to deal with housing policies and regulations. | X |
| (8) | Give higher priority to the provision of quality housing that is affordable for Hawai’i’s residents and less priority to development of housing intended primarily for individuals outside of Hawai’i. | X |

#### Discussion:
The Project will be developed on an underutilized State property as an urban infill project, where infrastructure is readily available. The Project will increase the affordable housing stock on Maui through a public-private partnership.

#### §226-107 Quality education. Priority guidelines to promote quality education:

| (1) | Pursue effective programs which reflect the varied district, school, and student needs to strengthen basic skills achievement; | X |
Table 5-1: Hawai‘i State Plan
Part 1. Overall Theme, Goals, Objectives, and Policies

| (2) | Continue emphasis on general education "core" requirements to provide common background to students and essential support to other university programs; | X |
| (3) | Initiate efforts to improve the quality of education by improving the capabilities of the education workforce; | X |
| (4) | Promote increased opportunities for greater autonomy and flexibility of educational institutions in their decision-making responsibilities; | X |
| (5) | Increase and improve the use of information technology in education by the availability of telecommunications equipment for: | |
| (A) | The electronic exchange of information; | X |
| (B) | Statewide electronic mail; and | X |
| (C) | Access to the Internet. | X |
| (d) | Encourage programs that increase the public’s awareness and understanding of the impact of information technologies on our lives; | X |
| (6) | Pursue the establishment of Hawai‘i’s public and private universities and colleges as research and training centers of the Pacific; | X |
| (7) | Develop resources and programs for early childhood education; | X |
| (8) | Explore alternatives for funding and delivery of educational services to improve the overall quality of education; and | X |
| (9) | Strengthen and expand educational programs and services for students with special needs. | X |

Discussion: The new MCSA space will support education and training for Maui residents to meet future employment needs, as well as increase the use of information technology and access to internet. The library space will also provide access to internet and support educational activities. The Project may include community-oriented commercial space, which could be used to support early childhood education program.

§226-108 Sustainability. Priority guidelines and principles to promote sustainability shall include:

| (1) | Encouraging balanced economic, social, community, and environmental priorities; | X |
| (2) | Encouraging planning that respects and promotes living within the natural resources and limits of the State; | X |
| (3) | Promoting a diversified and dynamic economy; | X |
| (4) | Encouraging respect for the host culture; | X |
| (5) | Promoting decisions based on meeting the needs of the present without compromising the needs of future generations; | X |
| (6) | Considering the principles of the ahupua‘a system; and | X |
| (7) | Emphasizing that everyone, including individuals, families, communities, businesses, and government, has the responsibility for achieving a sustainable Hawai‘i. | X |

Discussion: The Project will incorporate sustainable design and operation features to the extent possible. The Project will minimize impacts to the natural environment, as well as historic and cultural sites. The Project will have positive impacts to the economy.

§226-109 Climate change adaptation priority guidelines. Priority guidelines to prepare the State to address the impacts of climate change, including impacts to the areas of agriculture; conservation lands; coastal and nearshore marine areas; natural and cultural resources; education; energy; higher education; health; historic preservation; water resources; the built environment, such as housing, recreation, transportation; and the economy shall:
Table 5.1: Hawai’i State Plan

<table>
<thead>
<tr>
<th>Part 1. Overall Theme, Goals, Objectives, and Policies</th>
<th>S</th>
<th>N/S</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Ensure that Hawai’i’s people are educated, informed, and aware of the impacts climate change may have on their communities;</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Encourage community stewardship groups and local stakeholders to participate in planning and implementation of climate change policies;</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(3) Invest in continued monitoring and research of Hawai’i’s climate and the impacts of climate change on the State;</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(4) Consider native Hawaiian traditional knowledge and practices in planning for the impacts of climate change;</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(5) Encourage the preservation and restoration of natural landscape features, such as coral reefs, beaches and dunes, forests, streams, floodplains, and wetlands, that have the inherent capacity to avoid, minimize, or mitigate the impacts of climate change;</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(6) Explore adaptation strategies that moderate harm or exploit beneficial opportunities in response to actual or expected climate change impacts to the natural and built environments;</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(7) Promote sector resilience in areas such as water, roads, airports, and public health, by encouraging the identification of climate change threats, assessment of potential consequences, and evaluation of adaptation options;</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(8) Foster cross-jurisdictional collaboration between county, state, and federal agencies and partnerships between government and private entities and other nongovernmental entities, including nonprofit entities;</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(9) Use management and implementation approaches that encourage the continual collection, evaluation, and integration of new information and strategies into new and existing practices, policies, and plans; and</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(10) Encourage planning and management of the natural and built environments that effectively integrate climate change policy.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Discussion: The Project planning has incorporated climate change impacts and adaptation strategies considerations. For further discussion, see Section 3.2, Climate, Climate Change, and Sea Level Rise.

5.2 State Housing Functional Plan

The 2017 State Housing Functional Plan (Housing Functional Plan) aims to implement the goals, objectives and policies of the Hawai’i State Plan and County General Plans, in accordance with HRS Chapter 226. The Housing Functional Plan provides specific and implementable strategies, policies and priority actions to address the current housing shortage in Hawai’i, based on joint public-private partnerships to finance, build, and maintain an adequate supply of affordable housing.

According to the Housing Functional Plan, approximately 44 percent of Maui’s households are cost-burdened, meaning they pay more than 30 percent of their income for housing costs; this is comparatively higher than the approximately 36 percent of Hawai’i households that are cost-burdened\(^2\). Additionally, 20.2 percent of households were crowded or doubled-up (housing units are occupied by two or more families or groups of persons who are not related by birth, marriage, or adoption) in 2016. Approximately 12,648 units will be needed by Maui’s workforce and lower income households (i.e., those earning 140% and below the MFI)\(^2\).

\(^2\) Data from the 2016 Hawai’i Housing Planning Study.
The following is a discussion of the Project’s consistency with the pertinent Housing Functional Plan objectives, strategies, policies, and implementing actions:

**OBJECTIVE A:** Increase and sustain the supply of permanent rental housing that is affordable and accessible to Hawai’i residents, particularly those with incomes at or below 80% AMI.

**STRATEGY:** Expand and preserve the supply of affordable rental housing units through joint public/private efforts. Expand and mobilize resources to better assist households seeking rental housing opportunities, including lower income households, the elderly, persons with disabilities, and homeless households. And, pursue sources of funding for rent subsidies.

**POLICY A(1):** Direct federal, state, and county resources toward the financing and development of rental housing projects.

- **IMPLEMENTING ACTION A(1)(a):** Efficiently utilize existing federal, state and county financing programs, including the Low Income Housing Tax Credit, Hula Mae Multifamily Revenue Bond, and the Rental Housing Revolving Fund programs, to facilitate the development of permanent rental housing projects in areas suitable for development (i.e., urbanized areas in proximity to schools, jobs, public transportation, etc.).
- **IMPLEMENTING ACTION A(1)(c):** Prioritize the development of rental housing on state land in TOD areas to enhance affordability.

**POLICY A (2):** Encourage increased participation from private developers and other state entities to develop rental housing.

- **IMPLEMENTING ACTION A(2)(a):** Form public/private partnerships and/or enter into public/private development agreements to develop rental housing.
- **IMPLEMENTING ACTION A(2)(b):** Form partnerships and/or enter into agreements with state agencies to develop mixed-use developments which include rental housing.

**POLICY A (3):** Ensure that (1) housing projects and (2) projects which impact housing provide a fair share/adequate amount of affordable housing opportunities, including rental housing opportunities.

- **IMPLEMENTING ACTION A(3)(a):** Impose realistic and fair housing requirements on projects that seek Urban land use designations, general or development plan amendments, zoning, or development permits.

**OBJECTIVE C: ADDRESS BARRIERS TO RESIDENTIAL DEVELOPMENT.**

**STRATEGY:** Coordinate and facilitate the production of housing by addressing development impediments including lack of land, infrastructure, and regulations that add to the cost of housing.

**POLICY C (1):** Utilize state and county land for mixed-use and mixed-income housing development with focus on rental housing.

- **IMPLEMENTING ACTION C(1)(b):** Lease suitable state and county land, particularly parcels in TOD areas, for rental housing development.

**POLICY C (2):** Coordinate and share regional infrastructure investments between State, counties, and private developers.

- **IMPLEMENTING ACTION C(2)(a):** Assist in financing regional state infrastructure improvements in areas of planned growth, such as near rail stations.

**Discussion:** The Project involves the development of approximately 300 multi-family dwelling units (mixture of 1-, 2-, and 3-bedroom units) on State land. More than 50% of the dwelling units will be affordable to households earning 140% or below the area MFI as defined by the HUD, pursuant to HRS Chapter 201H. Therefore, the Project will increase the number of units which are affordable to extremely, very low-, low-, moderate-, and above-moderate income households.
The Project also involves the development of an approximately 66,000-SF Civic Center with approximately 182 parking spaces. The Civic Center is planned to include State office space; classroom and support space for the DOE MCSA – Maui Campus; and space for a new Kahului Public Library. Approximately 5,000 SF of community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center. Therefore, the Project will be a part of a mixed-use development.

The Project will be implemented through a public-private partnership; HHFDC plans to issue a RFP, to seek an eligible (multi-family housing) developer to develop a comprehensive master plan, and for the design, entitlement, construction, and leasehold ownership and operation of the multi-family housing (including ancillary parking) in one or more phases. A long-term land lease will be negotiated with the developer. Negotiation with the developer may also include a long-term land lease for the commercial space.

The Project will also be near the County’s new Transit Hub, which is currently being constructed by the MDOT on the southeast portion (0.85 acres) of the Site. Therefore, residents will have access to convenient public mass transit at the adjacent Transit Hub. The State agreed to lease a portion of the Site to the County for the Transit Hub, which assists in the creation and coordination of needed infrastructure, though the Transit Hub is not within the scope of this Project.

### 5.3 Hawai‘i 2050 Sustainability Plan

The long-term strategy of the Hawai‘i 2050 Sustainability Plan is supported by its main goals and objectives of respect for culture, character, beauty, and history of the State’s island communities; balance among economic, community, and environmental priorities; and an effort to meet the needs of the present without compromising the ability of future generations to meet their own needs. The 2050 Plan delineates five goals toward a sustainable Hawai‘i accompanied by strategic actions for implementation and indicators to measure success or failure. The goals and strategic actions that are pertinent to the Project are as follows:

**Goal One:** Living sustainably is part of our daily practice in Hawai‘i. Strategic Actions: Develop a sustainability ethic.

**Goal Two:** Our diversified and globally competitive economy enables us to meaningfully live, work, and play in Hawai‘i. Strategic Actions: Develop a more diverse and resilient economy; support the building blocks for economic stability and sustainability.

**Goal Three:** Our natural resources are responsibly and respectfully used, replenished, and preserved for future generations. Strategic Actions: Provide greater protection for air, and land-, fresh water- and ocean-based habitats; conserve agricultural, open space and conservation lands and resources.

**Goal Four:** Our community is strong, healthy, vibrant and nurturing, providing safety nets for those in need. Strategic Actions: Provide access to diverse recreational facilities and opportunities.

**Goal Five:** Our Kanaka Maoli and island cultures and values are thriving and perpetuated. Strategic Actions: Honor Kanaka Maoli culture and heritage; Celebrate our cultural diversity and island way of life.

**Discussion:** The Project will be developed in a sustainable manner that implements energy and water conservation measures where possible. The Project will provide short- and long-term employment for the development and construction of the multi-family housing and Civic Center. The Project will be
developed in a manner that prioritizes the protection of air, land, water, and other natural resources. The Project will respect the Kanaka Maoli culture and heritage by adhering to the State historic preservation laws and processes.

5.4 Hawai'i State Land Use District Boundaries

The Hawai'i SLU law, HRS Chapter 205, was adopted in 1961. The law is meant to preserve and protect the state’s lands and encourage the uses to which the lands are best suited. Under HRS Chapter 205, State lands are classified in four categories: (1) Conservation, (2) Agricultural, (3) Urban, and (4) Rural. The State Land Use Commission is responsible for each district’s standards and for determining the boundaries of each district.

The Urban District generally includes lands characterized by “city-like” concentrations of people, structures, and services. This District also includes vacant areas for future development. Jurisdiction of this district lies primarily with the respective counties. Generally, lot sizes and uses permitted in the district area are established by the respective County through ordinances or rules.

**Discussion:** The Site is situated within the Urban SLU District. The Project is consistent with permitted uses for the Urban SLU District. See *Figure 5-1, State Land Use District.*
Figure 5-1

State Land Use District
5.5 Hawai‘i Coastal Zone Management Program

The Coastal Zone Management Act of 1972 (16 USC §1451), as amended through Public Law 104-150, created the coastal management program and the National Estuarine Research Reserve system. The coastal states are authorized to develop and implement a state coastal zone management (CZM) program. Hawai‘i CZM Program received federal approval in the late 1970’s. The objectives of the Hawai‘i CZM Program, HRS §205A-2, are to protect valuable and vulnerable coastal resources such as coastal ecosystems, special scenic and cultural values and recreational opportunities. The objectives of the program are also to reduce coastal hazards and to improve the review process for activities proposed within the coastal zone.

The Hawai‘i CZM Law charges each County with designating and administering the SMA within the State’s coastal areas that extends inland from the shoreline. Development within this SMA is subject to County approval to ensure the proposal is consistent with the policies and objectives of the Hawai‘i CZM Program. The Project is located within the SMA area and a SMA Use Permit approval by the County will be required as the Project valuation exceeds $500,000. See Figure 5-2, Special Management Area.

The following is a discussion of the Project’s consistency with the Hawai‘i CZM Program objectives and policies:

Recreational Resources
Objective: Provide coastal recreational opportunities accessible to the public.
(A) Improve coordination and funding of coastal recreation planning and management; and
(B) Provide adequate, accessible, and diverse recreational opportunities in the coastal zone management area by:
  • Protecting coastal resources uniquely suited for recreational activities that cannot be provided in other areas;
  • Requiring restoration of coastal resources that have significant recreational and ecosystem value, including, but not limited to coral reefs, surfing sites, fishponds, sand beaches, and coastal dunes, when these resources will be unavoidably damaged by development; or requiring monetary compensation to the State for recreation when restoration is not feasible or desirable;
  • Providing and managing adequate public access, consistent with conservation of natural resources, to and along shorelines with recreational value;
  • Providing an adequate supply of shoreline parks and other recreational facilities suitable for public recreation;
  • Ensuring public recreational uses of county, state, and federally owned or controlled shoreline lands and waters having recreational value consistent with public safety standards and conservation of natural resources;
  • Adopting water quality standards and regulating point and nonpoint sources of pollution to protect and where feasible, restore the recreational value of coastal waters;
  • Developing new shoreline recreational opportunities, where appropriate, such as artificial lagoons, artificial beaches, artificial reefs for surfing and fishing; and
  • Encouraging reasonable dedication of shoreline areas with recreational value for public use as part of discretionary approvals or permits by the land use commission, board of land and natural resources, and county authorities; and crediting that dedication against the requirements of section 46-6.
**Discussion**: The Project will not impact public access to coastal or recreational resources in the Project area. The Project will activate and improve the existing underutilized vacant land to include a multi-use path. Construction of the Project will include BMPs to protect and regulate point and nonpoint sources of pollution to protect the recreational value of coastal waters. LID features will be installed to manage stormwater runoff from the Site.

**Historic Resources**
Objective: Protect, preserve and, where desirable, restore those natural and man-made historic and pre-historic resources in the coastal zone management area that are significant in Hawai‘i and American history and culture.
(A) Identify and analyze significant archaeological resources;
(B) Maximize information retention through preservation of remains and artifacts or salvage operations; and
(C) Support state goals for protection, restoration, interpretation, and display of historic resources.

**Discussion**: A Draft AIS has been prepared to identify significant archeological resources that may exist at the Site as discussed in Section 3.11, Historic Architecture, Archaeological, and Cultural Resources. An archaeological monitoring plan will also be prepared for future development activities.

**Scenic and Open Space Resources**
Objective: Protect, preserve and where desirable, restore or improve the quality of coastal scenic and open space resources.
(A) Identify valued scenic resources in the coastal zone management area;
(B) Ensure that new developments are compatible with their visual environment by designing and locating those developments to minimize the alteration of natural landforms and existing public views to and along the shoreline;
(C) Preserve, maintain, and, where desirable, improve and restore shoreline open space and scenic resources; and
(D) Encourage those developments that are not coastal dependent to locate in inland areas.

**Discussion**: As discussed in Section 3.13, Visual and Scenic Resources of this Draft EA, the multi-family housing buildings and Civic Center will be visible from the surrounding area. However, the Project is not anticipated to have significant impacts to scenic view planes or resources. The Project design will be compatible with the existing commercial and residential buildings within the area and within allowable development limits per the MCC. A deep landscaped setback will also be provided along West Ka‘ahumanu Avenue to provide visual relief.

**Coastal Ecosystems**
Objective: Protect valuable coastal ecosystems, including reefs, beaches, and coastal dunes, from disruption and minimize adverse impacts on all coastal ecosystems.
(A) Exercise an overall conservation ethic, and practice stewardship in the protection, use, and development of marine and coastal resources;
(B) Improve the technical basis for natural resource management;
(C) Preserve valuable coastal ecosystems of significant biological or economic importance, including reefs, beaches, and dunes;
(D) Minimize disruption or degradation of coastal water ecosystems by effective regulation of stream diversions, channelization, and similar land and water uses, recognizing competing water needs; and
Promote water quantity and quality planning and management practices which reflect the tolerance of fresh water and marine ecosystems and maintain and enhance water quality through the development and implementation of point and nonpoint source water pollution control measures.

**Discussion:** The Project is located within the SMA area. There are no surface waters (e.g., streams, lakes, ponds, or wetlands) on the Site. Nearest body of water to the Site is the Kahului Harbor located approximately 690 feet north of the Site. A NPDES General Permit for stormwater runoff discharges will be obtained from the DOH, CWB prior to construction. NPDES General Permits for dewatering and hydrotesting water discharges may also be obtained from the DOH, CWB. Construction, grading and drainage plans for the Project will be submitted to appropriate agencies for review and approval. Design of the Project will incorporate landscaping and installation of LID features to mitigate adverse environmental impacts and protect potential long-term impacts to water quality.

**Economic Uses**
Objective: Provide public or private facilities and improvements important to the State's economy in suitable locations.
(A) Concentrate coastal dependent development in appropriate areas;
(B) Ensure that coastal dependent development and coastal related development are located, designed, and constructed to minimize exposure to coastal hazards and adverse social, visual, and environmental impacts in the coastal zone management area; and
(C) Direct the location and expansion of coastal development to areas designated and used for that development and permit reasonable long-term growth at those areas, and permit coastal development outside of designated areas when:
   (i) Use of designated locations is not feasible;
   (ii) Adverse environmental effects and risks from coastal hazards are minimized; and
   (iii) The development is important to the State's economy.

**Discussion:** The characteristics of the Site and surrounding environment are suitable for the development of the Project. It is located about 690 feet away from the shoreline and will not interfere with other important coastal-dependent or coastal-related development such as harbors and ports, visitor-industry facilities, and energy generating facilities. The Project will utilize available and underutilized urban lands for the Project, which will support anticipated population and job growth in the region.

**Coastal Hazards**
Objective: Reduce hazard to life and property from coastal hazards.
(A) Develop and communicate adequate information about the risks of coastal hazards;
(B) Control development, including planning and zoning control, in areas subject to coastal hazards;
(C) Ensure that developments comply with requirements of the National Flood Insurance Program; and
(D) Prevent coastal flooding from inland projects.

**Discussion:** The Project is consistent with the CZM Program’s objectives and policies regarding coastal hazards and is not expected to pose a hazard to life, property, or coastal ecosystems. The Site is within the Tsunami Evacuation Zone. An evacuation plan will be in place in case of a tsunami event. The Project is within the FEMA Flood Zone X (minimal flood risk, outside of 0.2% annual chance floodplain). The Federal Flood Insurance Program does not have regulations for development within this district. A
Special Flood Hazard Area Development Permit will not be required. The Project is also located outside of the 3.2 feet SLR-XA, as well as the 6 feet SLR-XA.

Managing Development
Objective: Improve the development review process, communication, and public participation in the management of coastal resources and hazards.
(A) Use, implement, and enforce existing law effectively to the maximum extent possible in managing present and future coastal zone development;
(B) Facilitate timely processing of applications for development permits and resolve overlapping or conflicting permit requirements; and
(C) Communicate the potential short and long-term impacts of proposed significant coastal developments early in their life cycle and in terms understandable to the public to facilitate public participation in the planning and review process.

Discussion: The Site is in the State Urban Land Use District and is zoned for business and community uses. All improvement activities will be conducted in compliance with Federal, State, and County rules and regulations. This Draft EA identifies and, where necessary, proposes mitigation measures to address anticipated impacts from the construction and operation of the Project. During early consultation, agencies, organizations, and residents were consulted and will continue to be informed throughout the planning process. Stakeholders were included in the early consultation and Draft EA review process.

Public Participation
Objective: Stimulate public awareness, education, and participation in coastal management.
(A) Promote public involvement in coastal zone management processes;
(B) Disseminate information on coastal management issues by means of educational materials, published reports, staff contact, and public workshops for persons and organizations concerned with coastal issues, developments, and government activities; and
(C) Organize workshops, policy dialogues, and site-specific mediations to respond to coastal issues and conflicts.

Discussion: Public notification of the Project will be provided with publication of the Draft EA, as previously discussed. See Chapter 7 for a list of agencies, organizations and individuals that have been consulted to date. A virtual public meeting was held for the Project on February 25, 2021 to inform and gather input from the community. Community questions were answered, and contact information was collected from interested parties that requested to be included on the Project’s contact list. Stakeholders listed in Chapter 7 will receive copies of the Draft EA.

Beach and Coastal Dune Protection
Objective: (1) Protect beaches and coastal dunes for: public use and recreation; the benefit of coastal ecosystems; and use as natural buffers against coastal hazards; and (2) Coordinate and fund beach management and protection.
(A) Locate new structures inland from the shoreline setback to conserve open space, minimize interference with natural shoreline processes, and minimize loss of improvements due to erosion;
(B) Prohibit construction of private shoreline hardening structures, including seawalls and revetments, at sites having sand beaches and at sites where shoreline hardening structures interfere with existing recreational and waterline activities;
(C) Minimize the construction of public shoreline hardening structures, including seawalls and revetments, at sites having sand beaches and at sites where shoreline hardening structures interfere with existing recreational and waterline activities;

(D) Minimize grading of and damage to coastal dunes;

(E) Prohibit private property owners from creating a public nuisance by inducing or cultivating the private property owner's vegetation in a beach transit corridor; and

(F) Prohibit private property owners from creating a public nuisance by allowing the private property owner’s unmaintained vegetation to interfere or encroach upon a beach transit corridor.

**Discussion:** The Project is not located along the coastal area, and therefore will not affect public beaches on Maui.

**Marine and Coastal Resources**

Objective: Promote the protection, use, and development of marine and coastal resources to assure their sustainability.

(A) Ensure that the use and development of marine and coastal resources are ecologically and environmentally sound and economically beneficial;

(B) Coordinate the management of marine and coastal resources and activities to improve effectiveness and efficiency;

(C) Assert and articulate the interests of the State as a partner with federal agencies in the sound management of ocean resources within the United States exclusive economic zone;

(D) Promote research, study, and understanding of ocean and coastal processes, impacts of climate change and sea level rise, marine life, and other ocean resources to acquire and inventory information necessary to understand how coastal development activities relate to and impact ocean and coastal resources; and

(E) Encourage research and development of new, innovative technologies for exploring, using, or protecting marine and coastal resources.

**Discussion:** The Project will not impact the protection or use of marine and coastal resources. During construction, BMPs will mitigate the potential for erosion and stormwater runoff from the Site, as described in **Section 3.1 Geology, Topography, and Soils** and **Section 3.8.3 Drainage**.
Kahului Civic Center Mixed-Use Complex
Draft Environmental Assessment-Anticipated Finding of No Significant Impact

Figure 5-2
Special Management Area
5.6 Maui County General Plan 2030

5.6.1 Countywide Policy Plan

The Countywide Policy Plan was adopted in March 2010 and is a comprehensive policy plan for the County. The Countywide Policy Plan is the first component of the General Plan 2030 update and acts as an over-arching values statement providing a policy framework for the Maui Island Plan and Community Plans. The Countywide Policy Plan provides broad goals, objectives, policies, and implementing actions that portray the desired direction of the County’s future.

The goals, objectives and policies are organized into the following 11 strategies: protect the natural environment; preserve the local cultures and traditions; improve education; strengthen social and healthcare services; expand housing opportunities for residents; strengthen the local economy; improve parks and public facilities; diversify transportation options; improve physical infrastructure; promote sustainable land use and growth management; and strive for good governance. The following is a discussion regarding the Project’s consistency with applicable goals, objectives, and policies of the Countywide Policy Plan.

PART A: Protect the Natural Environment

Objective (1): Improve the opportunity to experience the natural beauty and native biodiversity of the islands for present and future generations.
Objective (2): Improve the quality of environmentally sensitive, locally valued natural resources and native ecology of each island.
Objective (3): Improve the stewardship of the natural environment.

Discussion: In accordance with HRS Chapter 343, this Draft EA discusses the potential short-term and long-term impacts of the Project on the environment. Throughout the HRS Chapter 343 process, public review and comments are welcomed and will be incorporated into the overall environmental review and analysis. The Project will not impinge upon any significant public scenic view corridors and will have no significant impacts on views toward the ocean, the West Maui mountains or Haleakalā. The design objectives of the Project will encourage building forms that respect and maintain the unique topographic and landscape character of the land. The Project will be constructed and operated in accordance with State and federal water quality regulations. BMPs will be implemented to manage storm water on-site. Mitigation measures will be implemented to minimize the Project’s impacts to natural resources, views, economic, cultural, or recreational resources.

PART B: Preserve Local Cultures and Traditions

Objective (1): Perpetuate the Hawaiian culture as a vital force in the lives of residents.
Objective (2): Emphasize respect for our island lifestyle and our unique local cultures, family, and natural environment.
Objective (3): Preserve for present and future generations the opportunity to know and experience the arts, culture, and history of Maui County.
Objective (4): Preserve and restore significant historic architecture, structures, cultural sites, cultural districts, and cultural landscapes.

Discussion: The design of the building and landscape will incorporate cultural concepts, artworks, motifs, and native plants as appropriate. A CIA and Draft AIS were completed for the Project to ensure protection of cultural, and historic resources. The HHFDC and its contractors will comply with State and County rules and regulations regarding the preservation of archaeological and historic sites. Archaeological monitoring will be implemented during ground disturbance activities. Should significant
cultural materials and/or burials be inadvertently discovered during construction, all work in the immediate area of the find will cease and SHPD will be notified.

PART C: Improve Education
Objective (1): Encourage the State to attract and retain school administrators and educators of the highest quality.
Objective (2): Provide nurturing learning environments that build skills for the 21st century.
Objective (3): Provide all residents with educational opportunities that can help them better understand themselves and their surroundings and allow them to realize their ambitions.
Objective (4): Maximize community-based educational opportunities.

Discussion: The new MCSA space will be co-located with the Kahului Public Library in the proposed Civic Center. This will provide an environment which supports the 21st century learning for Maui residents.

PART E: Expand Housing Opportunities for Residents
Objective (1): Reduce the affordable housing deficit for residents.
Objective (2): Increase the mix of housing types in towns and neighborhoods to promote sustainable land use planning, expand consumer choice, and protect the County's rural and small-town character.
Objective (3): Increase and maintain the affordable housing inventory.

Discussion: The Project involves the construction of approximately 300 multi-family dwelling units (mixture of 1-, 2-, and 3-bedroom units), more than 50% of which will be affordable to households earning 140% or below MFI. The affordable dwelling units will help reduce the affordable housing deficit on Maui. The Project will be developed on an underutilized State property as an urban infill project, where infrastructure is readily available.

PART F: Strengthen the Local Economy
Objective (1): Promote an economic climate that will encourage diversification of the County's economic base and a sustainable rate of economic growth.

Discussion: The Project is considered an important investment for supporting future economic growth of the region. The new buildings will result in significant expenditures that will have a positive impact on the economies of the State and the County on a direct and indirect basis. The Project will result in the creation of short- and long-term jobs to support the construction and operation of the multi-family housing and Civic Center.

PART H: Diversify Transportation Options
Objective (1): Maui County will have an efficient, economical, and environmentally sensitive means of moving people and goods.
Objective (2): Reduce the reliance on the automobile and fossil fuels by encouraging walking, bicycling, and other energy-efficient and safe alternative modes of transportation.
Objective (5): Improve and expand the planning and management of transportation systems.

Discussion: The Project will provide a multi-use path along Kane Street to encourage the use of alternative modes of transportation. The multi-use path may connect to the County’s planned multi-use path along the Kahului Beach Road.
PART I: Improve Physical Infrastructure
Objective (1): Improve water systems to assure access to sustainable, clean, reliable, and affordable sources of water.
Objective (2): Improve waste-disposal practices and systems to be efficient, safe, and as environmentally sound as possible.
Objective (3): Significantly increase the use of renewable and green technologies to promote energy efficiency and energy self-sufficiency.
Objective (4): Direct growth in a way that makes efficient use of existing infrastructure and to areas where there is available infrastructure capacity.
Objective (5): Improve the planning and management of infrastructure systems.

Discussion: The Project will be developed on an underutilized State property as an urban infill project, where infrastructure is readily available. The Project will also incorporate sustainable design and construction practices to the extent possible to conserve energy, water usage, and reduce solid wastes. Energy efficient fixtures and appliances will be installed in the multi-family housing and Civic Center. Furthermore, to the extent practicable, the Project will comply with HRS §196-9, regarding energy efficiency and environmental standards for State facilities.

PART J: Promote Sustainable Land Use and Growth Management
Objective (1): Improve land use management and implement a directed-growth strategy.
Objective (3): Design all developments to be in harmony with the environment and to protect each community’s sense of place.
Objective (4): Improve and increase efficiency in land use planning and management.

Discussion: The Project will be developed on an underutilized State property where infrastructure is readily available. Design elements that support and encourage multi-modal transportation will also be incorporated. The physical design of the Project will be in harmony with the natural environment by using building forms that fit with the topographic and landscape character of the land. The Project design will also be compatible with the existing commercial and residential buildings within the area and within allowable development limits per the MCC.

PART K: Strive for Good Governance
Objective (1): Strengthen governmental planning, coordination, consensus building, and decision making.
Objective (2): Promote civic engagement.

Discussion: HHFDC has and will continue to coordinate with State and County agencies and engage stakeholders throughout the EA process. See Chapter 7 for a list of agencies, organizations, elected officials and individuals that have been consulted and will be notified of the publication of this Draft EA. A virtual public meeting was held on February 25, 2021, to inform and gather input from the community for the Project. A second public meeting will be held prior to the publication of the Final EA.

5.6.2 Maui Island Plan

The Maui Island Plan assesses the existing conditions, trends, and issues specific to the island of Maui; provides policy direction for the use and development of land, extension and improvement of transportation services and infrastructure, development of community facilities, expansion of the island’s economic base, provision of housing, and protection of natural and culture resources; establishes policies to manage change and to direct decisions about future land use and development; and provides the foundation to set capital improvement priorities, precise zoning ordinances, and
develop other implementation tools. The following is a discussion of the Project’s consistency with applicable objectives and policies of the Maui Island Plan.

**Chapter 1: Population**

**Goal 1.1:** Maui’s people, values, and lifestyles thrive through strong, healthy, and vibrant island communities.

**Objectives:**

1.1.1 Greater retention and return of island residents by providing viable work, education, and lifestyle options.

**Policies:**

1.1.1.a Expand programs that enable the community to meet the education, employment, housing, and social goals of youth and young adults.

1.1.1.b Expand housing, transportation, employment, and social opportunities to ensure residents are able to comfortably age within their communities.

**Discussion:** The Project will result in the creation of short- and long-term jobs to support the construction and operation of the multi-family housing and Civic Center. The Project will also increase the housing stock on Maui. The new MCSA space will help provide education and workforce development training for Maui residents. The proposed multi-use path along Kane Street near the adjacent Transit Hub will provide continuity in the provision alternative modes of transportation for the residents and visitors to the Site.

**Chapter 4: Economic Development**

**Goal 4.1:** Maui will have a balanced economy composed of a variety of industries that offer employment opportunities and well-paying jobs and a business environment that is sensitive to resident needs and the island’s unique natural and cultural resources.

**Objectives:**

4.1.1 A more diversified economy.

4.1.2 Increase activities that support principles of sustainability.

4.1.3 Improve the island’s business climate.

**Policies:**

4.1.1.b Support the creation of new jobs and industries that provide a living wage.

4.1.2.d Support the development of economic development clusters in targeted industry sectors.

4.1.3.b Ensure an adequate supply of affordable workforce housing.

4.1.3.c Develop neighborhoods and communities that are attractive to the workforce of a diversified economy.

**Goal 4.7:** Maui will have effective education and workforce development programs and initiatives that are aligned with economic development goals.

**Policies:**

4.7.2.c Encourage the education and training of our residents to meet the needs of a diversified economy.

**Discussion:** The Project will have a positive impact on the economies of the State and the County on a direct and indirect basis. The Project will result in the creation of short- and long-term jobs to support the construction and operation of the multi-family housing and Civic Center. The Project will increase the affordable housing stock on Maui and the new MCSA space will help provide education and workforce development training for Maui residents.
Chapter 5: Housing

Goal 5.1: Maui will have safe, decent, appropriate, and affordable housing for all residents developed in a way that contributes to strong neighborhoods and a thriving island community.

Objectives:

5.1.1 More livable communities that provide for a mix of housing types, land uses, income levels, and age.

5.1.2 Better monitoring, evaluation, and refinement of affordable housing policy in conjunction with the economic cycle.

5.1.3 Provide affordable housing, rental or in fee, to the broad spectrum of our island community.

5.1.4 Provide infrastructure in a more timely manner to support the development of affordable housing.

5.1.6 Reduce the cost to developers of providing housing that is affordable to families with household incomes 160 percent and below of annual income.

Policies:

5.1.1.a Promote livable communities (compact/walkable/bikeable access to transit) that provide for a mix of housing types and land uses, including parks, open space, and recreational areas.

5.1.1b Promote planning approaches that provide a mix of multifamily and single-family housing units to expand housing choices.

5.1.2.b Utilize the following approaches to promote resident housing and to minimize off-shore market impacts:

(1) Ensure that the future housing stock is composed of a mix of housing types (multifamily, small lots, ohana units, co-housing, cottage houses, etc.);

(2) Encourage new housing in proximity to jobs and services, in places that are conducive/affordable to island residents.

5.1.3.a Consider regulations that can help keep affordable housing available at affordable rents.

5.1.3.b Seek to have ownership of affordable for-sale and rental housing vested in non-profit community land trust, or other qualified housing provider, committed to keeping such housing affordable in perpetuity.

5.1.3.c Facilitate the use of public lands in urban areas that are suitable for affordable housing.

5.1.4.a Prioritize the development of infrastructure that supports the development of affordable housing.

5.1.4.b Utilize appropriate financing approaches and assistance tools to encourage the development of infrastructure and public facilities.

5.1.4.c Tailor infrastructure requirements to correspond with appropriate level-of-service standards to help control housing costs to maintain safety.

5.1.6.a Support fast-track processing procedures for the following housing-related entitlements: affordable housing projects/units; indigenous Hawaiian housing/units; and special-needs housing units (seniors, disabled, homeless, etc.).

5.1.6.b Require the construction of affordable for-sale and rental housing units as part of the construction of new housing developments.

Discussion: The Project will increase the housing stock on Maui by providing 300 multi-family dwelling units (mixture of 1-, 2- and 3-bedroom units), more than 50% of which will be affordable to households earning 140% or below the MFI.
Chapter 6: Infrastructure and Public Facilities

Public Facilities

**Goal:** Maui will have adequate public facilities that meet the diverse needs of residents.

**Objectives:**
6.7.1 More effective planning for public facilities to meet community needs.

**Policies:**
6.7.1.a Ensure the development and update of island-wide public facilities functional plans that incorporate prioritized facilities, programs, and a financial component.
6.7.1.b Establish appropriate level-of-service standards for public facilities provided by the County.
6.7.1.g Increase joint facilities utilization and program coordination between State and County agencies such as baseyards, communication centers, recreational facilities, etc., where feasible.

**Discussion:** The Project will support future population growth by ensuring adequate government services are provided. The Project is a partnership between the State and County to co-locate the multi-family housing, Civic Center, and Transit Hub on the same parcel. Co-locating these uses will provide mutual benefits for each of the uses.

Schools and Libraries

**Goal:** Maui will have school and library facilities that meet residents’ needs and goals.

**Objectives:**
6.8.1 Assist in providing appropriate school and library facilities in a timely manner and in a strategic location.

**Policies:**
6.8.1.a Work in partnership with all educational institutions to meet current and future needs including appropriate location, timing, and design for future facilities.
6.8.1.c Encourage the DOE to build and maintain smaller, community-oriented schools.
6.8.1.d Encourage better cooperation by the State and County for use of State and County facilities.
6.8.1.e Encourage the State to upgrade, modernize, and expand school facilities, including those in remote communities.
6.8.1.g Support partnerships (public/private/nonprofit) to build and staff new schools and improve existing facilities.

**Discussion:** The Project is a partnership between various State agencies, which proposes co-location of the new MCSA and the Kahului Public Library as part of the Civic Center. Co-locating public facilities will help deliver convenient services to Maui residents and will be an efficient use of the State land and fund in comparison to constructing each facility separately. The new MCSA and library space will be modernized and will support education and workforce development training for Maui residents.

Chapter 7: Land Use

Urban Areas

**Goal:** Maui will have livable human-scale urban communities, an efficient and sustainable land use pattern, and sufficient housing and services for Maui residents.

**Objectives:**
7.3.1 Facilitate and support a more compact, efficient, human-scale urban development pattern.
7.3.2 Facilitate more self-sufficient and sustainable communities.
Policies:

7.3.1.a Ensure higher-density compact urban communities, infill, and redevelopment of underutilized urban lots within Urban Growth Boundaries.

7.3.1.d Ensure future amendments to urban growth boundaries achieve the following: (1) provide a beneficial extension of the existing community; (2) are in areas where it cost-effective to provide and operate infrastructure/public service facilities; and (3) do not promote automobile-oriented land use patterns.

7.3.2.a When developing new communities, provide sufficient lands for commercial, appropriate industrial, educational, spiritual, and non-profit uses to serve the daily needs of community residents.

7.3.2.b Site community facilities such as schools, parks, libraries, and community centers within walking and biking distance of residences.

7.3.2.c Facilitate self-sufficient communities and shorten commutes by:
(1) Directing residential development to job-rich areas;
(2) Allowing for appropriate commercial development and community services to shorten commutes; and
(3) Allowing home occupations or home-based businesses that are compatible with surrounding neighborhoods and lifestyles.

7.3.2.f Facilitate the development of housing by focusing projects in locations where land and infrastructure costs facilitate the development of affordably-priced housing.

7.3.2.i Develop communities that provide sufficient parks, schools, libraries, and other essential public facilities and services to serve resident needs.

Discussion: The Site is within the Urban District. The Project will be developed on an underutilized State property as an urban infill project, where infrastructure is readily available. The Project is designed as a higher-density, compact, mixed-use urban infill development which supports multi-modal transportation. The Project will also ensure adequate government services and public facilities are provided and easily accessed by co-locating the State offices, the MSCA, and the library as part of the Civic Center.

5.6.3 Wailuku-Kahului Community Plan

The 2002 Wailuku-Kahului Community Plan (Community Plan) reflects current and anticipated conditions in the Wailuku-Kahului region and advances planning goals, objectives, policies, and implementation considerations to guide decision-making in the region through the year 2010. The Community Plan provides recommendations to address the goals, objectives, and policies in the General Plan 2030, while recognizing the historic values and unique spiritual significance of island cultures of Wailuku-Kahului, to enhance the region’s overall living environment.

The following is a discussion regarding the Project’s consistency with the applicable goals, objectives and policies, implementing actions, and planning standards of the Community Plan. To the extent practicable, the Project design will strive to address and implement the relevant urban design principles outlined in the Community Plan. It should be noted that the design will not be finalized until an RFP has been issued and a developer is selected. The RFP may require these urban design principles to be implemented by the developer and vetted by the community.

Economic Activity

Goal: A stable and viable economy that provides opportunities for growth and diversification to meet long-term community and regional needs and in a manner that promotes agricultural activity and preserves agricultural lands and open space resources.
**Objectives and Policies:**
5. Recognize the importance of small businesses to the region’s economy.
8. Accommodate mixed use residential/commercial development as a “transition” between residential districts and the civic center and business/commercial districts compatible with a residential scale and character and subject to a new zoning classification. Lands intended for this use shall be designated Service Business/Residential (SBR) on the Community Plan land use map.

**Discussion:** The Project is a mixed-use development that includes multi-family housing and a Civic Center, which will provide housing and employment opportunities for Maui residents. Approximately 5,000 SF of community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center, which would accommodate small businesses. For some residents, the Project may provide an opportunity to live and work in the same community and eliminate commuting. The Community Plan designated the Project area as Business/Commercial (B) which allows office and residential uses, as these are allowable uses per the underlying zoning designation.

**Environment**

**Goal:** A clean and attractive physical and natural environment in which man-made developments or alterations to the natural environment relate to sound environmental and ecological practices, and important scenic and open space resources are maintained for public use and enjoyment.

**Objectives and Policies:**
6. Encourage the use of siltation basins and other erosion control features in the design of drainage systems.
12. Promote recycling programs to reduce solid waste disposal in landfills, including convenient drop-off points for recycled material.
14. Promote the planting and maintenance of trees and other landscape planting to enhance the streetscapes and the built-environment.

**Discussion:** The Contractor will comply with applicable Federal, State, and County regulations for erosion control and will implement BMPs to prevent pollution from stormwater runoff.

A proactive recycling program will be established at the multi-family housing and Civic Center. Composting of green waste due to the maintenance of landscaping will be encouraged.

The Project involves the installation of trees and landscaping throughout and along the perimeter of the Site, which will provide shade and visual relief. Per HRS §103D-408, Hawaiian plants shall be incorporated in landscaping that utilizes public funds. Drought-tolerant plant species will be propagated where possible.

**Cultural Resources**

**Goal:** Identification, protection, preservation, enhancement, and where appropriate, use of cultural practices and sites, historic sites and structures, and cultural landscapes and view planes that:
2. Preserve and protect native Hawaiian rights and practices customarily and traditionally exercised for subsistence, cultural and religious purposes in accordance with Article XII, Section 7, of the Hawaii State Constitution, and the Hawaii Supreme Court’s PASH opinion, 79 HAW. 425 (1995).

**Objectives and Policies:**
2. Recognize the importance of historically and archaeologically sensitive sites and encourage their preservation through development project review.
3. Protect and preserve historic, cultural and archaeological sites and resources through on-going programs to identify and register important sites, and encourage their restoration. This shall include structures and elements that are a significant and functional part of Hawaii’s ethnic and cultural heritage.

5. Require development projects to identify all cultural resources located within the project area as part of initial project studies. Further, require that all proposed activity include recommendations to mitigate potential adverse impacts on cultural resources.

**Implementing Actions:**

2. Require development projects to identify all cultural resources located within or adjacent to the project area and consult with individuals knowledgeable about such cultural resources prior to application as part of the County development review process. Further, require that all proposed activity include recommendations to mitigate potential adverse impacts on cultural resources including site avoidance, adequate buffer areas, and interpretation. Particular attention should be directed toward dune areas, known and probable pre-contact habitation areas, and other sites and areas listed in No. 5 below, with review by the Cultural Resources Commission, where appropriate.

**Discussion:** A CIA was prepared to assess potential Project impacts on existing cultural resources and practices. See Section 3.11.3, Cultural Resources and Appendix L, Cultural Impact Assessment. A Draft AIS was prepared to assess potential Project impacts on archaeological and historic properties. See Section 3.11.2, Archaeological Resources and Appendix K, Archaeological Inventory Survey.

**Housing**

**Goal:** A sufficient supply and choice of attractive, sanitary and affordable housing accommodations for the broad cross section of residents, including the elderly.

**Objectives and Policies:**

1. Seek alternative residential growth areas within the planning region, with high priority given to the Wailuku and Kahului areas. This action should recognize that crucial issues of maintaining important agricultural lands, achieving efficient patterns of growth, and providing adequate housing supply and choice of price and location must be addressed and resolved.

6. Coordinate the planning, design and construction of public infrastructure improvements with major residential projects that have an affordable housing component.

**Implementing Actions:**

1. Develop a comprehensive housing strategy for low and moderate income groups involving government and private industry cooperation that provides an adequate supply of housing for the various strata of income. This approach would combine the resources of Federal, State, County, and private enterprise to improve the availability of rental and ownership housing targeted to various need groups. Anti-speculation and specification of a percentage of low and moderate income units in major projects are tools which should be considered as part of an overall housing program.

**Discussion:** The Project is proposing to provide approximately 300 dwelling units, more than 50% of which will be for households with incomes at or below 140% MFI. The Project will be developed on an underutilized government property in an urban area where infrastructure is readily available. The provision of multi-family housing in Kahului directs development to an urban area, indirectly protecting important agricultural lands. The Project will provide off-site vehicular and pedestrian improvements in coordination with State and County agencies. The Project will increase the affordable housing stock on Maui through a public-private partnership.
Social Infrastructure
Goal: Develop and maintain an efficient and responsive system of public services which promotes a safe, healthy and enjoyable lifestyle, accommodates the needs of young, elderly, disabled and disadvantaged persons, and offers opportunities for self-improvement and community well-being.

Education:
Objectives and Policies:
3. Coordinate the development of school facilities with the State Department of Education in conjunction with planned residential projects.
7. Support the improvement and maintenance of existing school facilities.

Discussion: The Civic Center is anticipated to provide approximately 7,000 SF of classroom and support space for the MCSA.

Government:
Goal: Government that demonstrates the highest standards of fairness; responsiveness to the needs of the community; fiscal integrity; effectiveness in planning and implementation of programs and projects; a fair and equitable approach to taxation and regulation; and efficient, results-oriented management.

Objectives and Policies:
5. Ensure that adequate infrastructure is or will be available to accommodate planned development.

Discussion: The Project will ensure adequate infrastructure is provided to support the development of the multi-family housing and Civic Center.

Land Use
Goal: An attractive, well-planned community with a mixture of compatible land uses in appropriate areas to accommodate the future needs of residents and visitors in a manner that provides for the social and economic well-being of residents and the preservation and enhancement of the region’s environmental resources and traditional towns and villages.

Objectives and Policies:
10. All zoning applications and/or proposed land uses and developments shall conform with the planned use designations, as specified in the adopted Community Plan Land Use Map, and be consistent with the Community Plan policies.
16. Upon adoption of this plan, allow no further development unless infrastructure, public facilities, and services needed to service new development are available prior to or concurrent with the impacts of new development.

Discussion: The Community Plan designated the Project area as Business/Commercial (B) which allows commercial and residential uses, per the County zoning designation (see Section 5.7, Maui County Zoning Code, MC Title 19). The Project will be developed on an underutilized State property in an urban area where infrastructure is readily available. The Project will create a vibrant community and live-work neighborhood by integrating a mixture of compatible land uses within the Site; the multi-family housing and Civic Center will accommodate the needs and enhance the well-being of residents and workers. See Figure 5-3, Wailuku-Kahului Community Land Use.
**Infrastructure**

**Goal:** Timely and environmentally sound planning, development and maintenance of infrastructure systems which serve to protect and preserve the safety and health of the region’s residents, commuters and visitors through the provision of clean water, effective waste disposal and drainage systems, and efficient transportation systems which meet the needs of the community.

**Water and Utilities:**
**Objectives and Policies:**
3. Promote water conservation and education programs.

**Liquid and Solid Waste:**
**Objectives and Policies:**
3. Reduce the disposal of solid waste in landfills through reducing the amount of material for disposal at the source (i.e. home composting of lawn or tree trimmings), reuse and recycling programs, bioconversion (i.e. composting) and the provision of convenient drop-off facilities.

**Drainage:**
**Objectives and Policies:**
2. Ensure that storm water run-off and siltation from proposed development will not adversely affect the marine environment and nearshore and offshore water quality. Minimize the increase in discharge of storm water runoff to coastal waters by preserving flood storage capacity in low-lying areas, and encouraging infiltration of runoff.

**Energy:**
**Objectives and Policies:**
2. Develop efficient circulation systems, public transportation and promote bicycle and pedestrian travel to reduce energy expenditures for travel.
6. Encourage energy efficient building design and site development practices.
8. Promote recycling programs to reduce solid waste disposal in landfills.

**Transportation:**
**Objectives and Policies:**
2. Provide bikeway and walkway systems in the Wailuku-Kahului area which offer safe and pleasant means of access, particularly along routes accessing residential districts, major community facilities and activity centers, school sites, and the shoreline between Kahului Harbor and Pa’ia.
5. For future residential development, prohibit direct lot access from primary roads.
6. Accommodate bicycle and pedestrian ways within planned roadway improvements.

**Discussion:** The Project will implement water conservation measures such as incorporating water efficient fixtures and drought tolerant landscaping to reduce irrigation water demands. A proactive recycling program will be established at the multi-family housing and Civic Center. Composting of green waste due to the maintenance of landscaping will be encouraged. The Contractor will comply with applicable Federal, State, and County regulations for erosion control and will implement BMPs to prevent pollution from stormwater runoff. Energy efficient fixtures and appliances will be installed in the multi-family dwelling units and Civic Center. Furthermore, to the extent practicable, the Project will comply with HRS §196-9, regarding energy efficiency and environmental standards for State facilities.

The Project proposes a multi-use path along the east side of Kane Street between West Ka‘ahumanu Avenue and Vevau Street, which will provide pedestrian and bicycle access. The multi-use path is proposed to connect to the existing sidewalk on West Ka‘ahumanu Avenue and a proposed
pedestrian path on Vevau Street fronting the Site, which will increase access to the Site and internal circulation within the Site to connect the multi-family housing, Civic Center and Transit Hub. Additionally, the Project’s proximity to the Transit Hub provides an opportunity for residents and workers to reduce their dependency on automobiles. Current access to the Site is provided by driveways on Kane Street and Vevau Street.

**Urban Design**

**Goal:** An attractive and functionally integrated urban environment that enhances neighborhood character, promotes quality design, defines a unified landscape planting and beautification theme along major public roads and highways, watercourses and at major public facilities, and recognizes the historic importance and traditions of the region.

**Objectives and Policies:**

3. Improve pedestrian and bicycle access within the region.
10. Incorporate drought tolerant plant species and xeriscaping in future landscape planting.
11. Use native Hawaiian plants for landscape planting in public projects to the extent practicable.
16. Encourage the review of architectural and landscape architectural plans for major government projects by the County’s Urban Design Review Board.

**Objectives and Policies for Kahului:**

3. Building Form and Character: maintain compatible scale relationships between the existing low-scale character of the area, adjacent public uses and higher buildings.
   a. The low-rise character of the central business area should be maintained. Higher building forms up to six stories should be sited in the central portion of commercial blocks.
   b. Building heights along the perimeter of commercial blocks should provide a transition in scale to adjacent public and quasi-public uses.
   c. Commercial uses along the perimeter of central business area blocks should be low-rise and provide sufficient setbacks to allow landscaped buffers along street frontages.
   d. Open parking areas should be landscaped to provide visual screening and shade.

**Discussion:** The Project proposes a multi-use path along the east side of Kane Street between West Ka’ahumanu Avenue and Vevau Street, which will provide pedestrian and bicycle access. The multi-use path is proposed to connect to an existing sidewalk on West Ka’ahumanu Avenue and a proposed pedestrian path on Vevau Street fronting the Site which will increase access to the Site and internal circulation within the Site to connect the multi-family housing, Civic Center and Transit Hub. The Project involves the creation of a deep landscaped setback along West Ka’ahumanu Avenue and the installation of trees and landscaping throughout and along the perimeter of the Site, which will provide shade and visual relief. Per HRS §103D-408, Hawaiian plants shall be incorporated in landscaping that utilizes public funds. Drought-tolerant plant species will be propagated where possible. Once a developer has been selected and a draft design proposal for the Project has been identified, the developer will present its proposal to the Urban Design Review Board. The Project is a mixed-use development consisting of multi-family housing in two buildings (both roughly six stories) and a Civic Center (roughly four stories). The Project will maintain compatible scale relationships with existing and proposed buildings adjacent to the Site – the existing Waterfront Apartments at Kahului is 4 stories tall, and the nearly completed Kahului Lani is 6 stories tall. The Project aims to maintain a low-rise, human-scale perspective, by creating a wide landscaped buffer and multi-use path between the multi-
family housing buildings and West Ka'ahumanu Avenue. Moreover, the positioning of the Civic Center setback along Vevau Street will create a low-rise, pedestrian-friendly environment and activate the streetscape. Parking structures and surface parking are sited in the central portion of the Site and will be screened by perimeter landscaping to provide visual interest and shade.

**Planning Standards:**

1. **Land Use:**
   a. All zoning applications and/or proposed land uses and developments shall conform with the planned use designations, as specified in the adopted Community Plan Map, and be consistent with the Community Plan policies.

**Discussion:** The Community Plan designated the Project area as Business/Commercial (B) which allows office and residential uses, as these are allowable uses per the underlying zoning designation.

2. **Cultural Resources:**
   a. Require development projects to identify significant cultural resources located within the project area as part of initial project studies. Further require that all proposed activity include recommendations to mitigate potential adverse impacts on cultural resources.

**Discussion:** A CIA was prepared to assess potential Project impacts on existing cultural resources and practices. See Section 3.11.3, Cultural Resources and Appendix L, Cultural Impact Assessment.

3. **Urban Design**
   a. **General**
      3. Incorporate drought tolerant plant species and xeriscaping in future landscape planting.
      4. Use native plants for landscape planting in public projects to the extent practicable.
   c. **Kahului**
      2. **Building Form and Character:** maintain compatible scale relationships between the existing low-scale character of the area, adjacent public uses and higher buildings.
      b. The low-rise character of the central business area should be maintained. Higher building forms up to six stories should be sited in the central portion of commercial blocks.
      c. Building heights along the perimeter of commercial blocks should provide a transition in scale to adjacent uses.
      d. Commercial uses along the perimeter of central business area blocks should be low-rise and provide sufficient setbacks to allow landscaped buffers along street frontages.

**Discussion:** The Project involves the installation of trees and landscaping throughout and along the perimeter of the Site, which will provide shade and visual relief. Per HRS §103D-408, Hawaiian plants shall be incorporated in landscaping that utilizes public funds. Drought-tolerant plant species will be propagated where possible. Visual interest may also be achieved by using contrasting earth-tone color schemes for the buildings. The Project is a mixed-use development consisting of multi-family housing in two buildings (both roughly six stories) and a Civic Center (roughly four stories). The Project will maintain compatible scale relationships with existing and proposed buildings adjacent to the Site – the existing Waterfront Apartments at Kahului is 4 stories tall, and the nearly completed Kahului Lani is 6 stories tall. The Project aims to maintain a low-rise, human-scale perspective, by creating a wide landscaped buffer and pedestrian path between the multi-family housing buildings and West Ka'ahumanu Avenue. Moreover, the positioning of the Civic Center setback along Vevau Street will create a low-rise, pedestrian-friendly environment and activate the streetscape.
Figure 5-3
Wailuku-Kahului Community Plan Land Use
5.7 Maui County Zoning Code, MCC Title 19

The purpose of MCC Title 19, Zoning, is to regulate the appropriate use of land, conserve property values, prevent activities that may be detrimental to existing land uses, and to promote health, safety, and welfare within each County district. The standards set forth in the MCC define the districts and development standards for land use zoning, as it relates to the permitted uses, special uses, area, height, yard areas, and off-street parking and loading for various purposes.

Discussion

The Project is in the B-2 Community Business District and to the extent feasible, will adhere to the development standards for the B-2 Community Business District. If zoning exemptions are necessary, an application for the exemptions will be submitted pursuant to HRS §201H-38. The Project proposes a reduced parking as allowable per the MCC §19.36B.110 to encourage alternative modes of transportation usage. The Project is located near the Transit Hub and is accessible via walking and bicycles. See Figure 5-4, County Zoning.
Figure 5-4  County Zoning
Chapter 6

Findings Supporting the Anticipated Determination
Chapter 6

Findings Supporting the Anticipated Determination

6.1 Anticipated Determination

Based on a review of the significance criteria outlined in HRS Chapter 343, and HAR §11-200.1, the Project has been determined to not result in significant impacts on the natural or human environment. It is anticipated that the HHFDC will issue a determination of Anticipated Finding of No Significant Impact (AFNSI) for the Project.

The potential impacts of the Project have been fully examined and discussed in this Draft EA. As stated earlier, there are no significant environmental impacts expected to result from the Project. This determination is based on the assessments as presented below for criterion (1) to (13).

(1) *Irrevocably commit a natural, cultural, or historic resource.*

The Project will not irrevocably commit a natural, cultural, or historic resource. The Project is not anticipated to result in the loss or destruction of natural resources. As discussed in Section 3.5, Flora and Fauna, no endangered or threatened plant or animal species or critical habitat are anticipated at the Site.

As discussed in Section 3.11, Historic Architecture, Archaeological, and Cultural Resources, a CIA, HRER, and Draft AIS were prepared for the Project. The Project is not anticipated to result in the loss of cultural resources. Archaeological monitoring will be implemented during ground disturbance activities. If remains are inadvertently discovered, appropriate agencies will be notified. The treatment of these resources will be conducted in strict compliance with applicable State historic preservation and burial laws and code of conduct. Appropriate mitigation measures will be implemented for affected historic structures on Site.

(2) *Curtail the range of beneficial uses of the environment.*

The Project will not curtail the range of beneficial uses of the environment. The Project involves the construction of multi-family housing and a Civic Center on an existing, developed, and underutilized lot, designated for business and community use. The Site is currently being used for the DOE’s MCSA and lawn mowing operation. The proposed use is compatible with surrounding uses in the area and will not alter the existing land use designation.

(3) *Conflict with the State’s environmental policies or long-term environmental goals established by law.*

The Project does not conflict with the State’s long-term environmental policies or goals and guidelines as expressed in HRS Chapter 344, and any revisions thereof and amendments thereto, court
decisions, or executive orders. Construction-related impacts mitigation for noise, dust, and emissions will comply with the DOH Administrative Rules. Sustainable features and BMPs will be implemented to the extent possible to minimize long-term impacts to the environment.

(4) **Have a substantial adverse effect on the economic welfare, social welfare, or cultural practices of the community and State.**

The Project will result in short- and long-term economic benefits from construction and operation that include direct, indirect, and induced employment opportunities and multiplier impacts. The Project is not anticipated to have a substantial adverse effect on cultural practices, see Section 3.11, Historic Architecture, Archaeological, and Cultural Resources. The Project design will be compatible with the surrounding residential and commercial uses and within allowable development limits per the MCC. The Project will have a beneficial effect on the community’s social welfare by providing affordable housing and necessary government services to Maui residents, as well as reducing the State General Fund spending on lease rent expenses in the long-term.

(5) **Have a substantial adverse effect on public health.**

The Project is consistent with existing land uses and is not anticipated to have a substantial adverse effect on public health. During construction, there is the potential for temporary, short-term impacts on existing air quality, noise conditions and surrounding traffic network in the immediate Project vicinity. The Project will comply with federal, State and county regulations during the construction and will implement BMPs to minimize temporary impacts. For further discussion on proposed mitigation measures see Section 3.6, Air Quality, Section 3.7, Noise Conditions and Section 3.9, Transportation System.

(6) **Involve adverse secondary impacts, such as population changes or effects on public facilities.**

The Project will provide multi-family housing and a Civic Center which will meet the existing needs Maui residents.

The Project is anticipated to increase vehicle delay at the Kane Street/Vevau Street intersection, which is currently operating at an undesirable level. A multi-way stop at the intersection is warranted without the Project. Thus, a RRFB or an AWSC may be installed at the intersection, and the southbound Kane Street approach to Vevau Street will be restriped to reduce vehicle delay.

The Project is not anticipated to involve adverse secondary impacts, such as population changes or effects on public facilities.

(7) **Involve a substantial degradation of environmental quality.**

The Project is not anticipated to involve a substantial degradation of environmental quality. Long-term impacts to soils, climate, water quality, flora/fauna, air quality, noise conditions, and natural resources are not anticipated. For further discussion on proposed mitigation measures see Section 3.1, Geology, Topography, and Soils, Section 3.2, Climate, Climate Change, and Sea Level Rise, Section 3.4, Water Resources, Section 3.5, Flora and Fauna, Section 3.6, Air Quality, and Section 3.7, Noise Conditions.

(8) **Be individually limited but cumulatively have substantial adverse effect upon the environment or involves a commitment for larger actions.**
The Project is not anticipated to cumulatively have a substantial adverse effect upon the environment or involve a commitment for larger actions. The development of the Project will not have significant impacts to the surrounding natural and cultural environment.

(9) Have a substantial adverse effect on a rare, threatened or endangered species, or its habitat.

The Site does not contain known rare, threatened, or endangered species or a critical habitat. Therefore, the Project is not anticipated to have impacts to rare, threatened or endangered plants or animal species.

(10) Have a substantial adverse effect on air or water quality or ambient noise levels.

The Project is not anticipated to have a substantial adverse effect on air or water quality or ambient noise levels. During construction, there is the potential for temporary, short-term impacts on existing air quality, noise conditions in the immediate Project vicinity. The Project will comply with federal, State and County regulations during the construction and will implement BMPs to minimize temporary impacts. For further discussion on proposed mitigation measures see Section 3.6, Air Quality, Section 3.7, Noise Conditions, and Section 3.4, Water Resources.

(11) Have a substantial adverse effect on or be likely to suffer damage by being located in an environmentally sensitive area such as flood plain, tsunami zone, sea level rise exposure area, beach, erosion-prone area, geologically hazardous land, estuary, fresh water, or coastal waters.

The Project is not anticipated to have a substantial adverse effect on or is likely to suffer damage by being located in an environmentally sensitive area such as flood plain, tsunami zone, SLR-XA, beach, erosion-prone area, geologically hazardous land, estuary, fresh water, or coastal waters. For further discussion on proposed mitigation measures see Section 3.2, Climate, Climate Change, and Sea Level Rise and Section 3.3, Natural Hazards.

(12) Have a substantial adverse effect on scenic vistas and viewplanes, during day or night, identified in county or state plans or studies.

The Project is not anticipated to have a substantial adverse effect on scenic vistas and viewplanes, during day or night, as identified in the county or state plans or studies. The Project design will be compatible with the surrounding commercial and residential buildings and within allowable development limits per the MCC. For further discussion on proposed mitigation measures see Section 3.13, Visual and Scenic Resources.

(13) Require substantial energy consumption or emit substantial greenhouse gases.

Construction and operation of the Project will require similar or less energy consumption and greenhouse gases emission relative to other similar-sized projects. After the Project is completed, energy will be conserved by using energy efficient appliances and fixtures and green design concepts as practicable, therefore limiting greenhouse gases emission. Design elements that support multi-modal transportation will be incorporated, which will contribute to the reduction in greenhouse gases emission. Furthermore, to the extent practicable, the Project will comply with HRS §196-9, regarding energy efficiency and environmental standards for State facilities. For further discussion on proposed mitigation measures see, Section 3.2, Climate, Climate Change, and Sea Level Rise.
6.2 Summary

Based on the information and findings in this Draft EA, it is determined that the Project will have no significant impact on the environment. The Draft EA recommends mitigation measures to alleviate impacts when such impacts are identified. Further evaluation of the Project's impacts through the preparation of an Environmental Impact Statement is not warranted. A determination of AFNSI is anticipated for this Project.
Agencies, Organizations, and Individuals Consulted in the EA Process
Chapter 7

Agencies, Organizations, and Individuals Consulted in the EA Process

7.1 Early Consultation

An early consultation letter and information handout for the Project was mailed on October 6, 2020 to stakeholders (e.g., State and County agencies, elected officials, organizations, and neighbors) to initiate the environmental review process. A copy of the early consultation letter and information handout are in Appendix M, Early Consultation Package. Copies of the written comments received (via mail and email) during the early consultation period are addressed in this Draft EA and are in Appendix N, Early Consultation Comments and Responses. Table 7-1, Consultation with Agencies, Organizations, and Individuals lists the stakeholders who were contacted during the early consultation period and those participated in the public meeting prior to the publication of the Draft EA; stakeholders who provided written comments; and stakeholders who will receive notification of the publication of the Draft EA.

<table>
<thead>
<tr>
<th>Stakeholders</th>
<th>Early Consultation Mail-out</th>
<th>Early Consultation Comments Received</th>
<th>Public Meeting #1 Attendance</th>
<th>Notification of Draft EA Mail-out</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Federal Agencies</strong></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td><strong>State of Hawai‘i Agencies</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Accounting and General Services</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Department of Budget and Finance, Office of the Public Defender – Maui</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Department of Business, Economic Development and Tourism (DBEDT), Hawai‘i Housing Finance &amp; Development Corporation</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DBEDT, Office of Planning and Sustainable Development</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Department of Education, Maui District</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Department of Hawaiian Homelands</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
## Table 7-1 Consultation with Agencies, Organizations, and Individuals

<table>
<thead>
<tr>
<th>Stakeholders</th>
<th>Early Consultation Mail-out</th>
<th>Early Consultation Comments Received</th>
<th>Public Meeting # 1 Attendance</th>
<th>Notification of Draft EA Mail-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Health (DOH), Adult Mental Health Division (AMHD)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DOH, AMHD, Maui Community Mental Health Center</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DOH, Child and Adolescent Mental Health Division</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DOH, Developmental Disabilities Division</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DOH, Disability and Communication Access Board</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DOH, Environmental Management Division (EMD), Clean Air Branch</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DOH, EMD, Clean Water Branch</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DOH, EMD, Indoor and Radiological Health Branch</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DOH, EMD, Safe Drinking Water Branch</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DOH, EMD, Solid and Hazardous Waste Branch</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DOH, EMD, Wastewater Branch</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Department of Human Services (DHS), Benefit, Employment and Support Services Division</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DHS, Med-QUEST Division</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DHS, Social Services Division</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Department of Land and Natural Resources (DLNR)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DLNR, Division of Forestry and Wildlife</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DLNR, Land Division, Maui District</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DLNR, State Historic Preservation Division</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Department of Public Safety , Hawai‘i Correctional Industries – Maui</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Department of Transportation</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Hawai‘i State Public Library System</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Office of Hawaiian Affairs</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td><strong>County of Maui Agencies</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Environmental Management</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Department of Fire and Public Safety</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Table 7-1 Consultation with Agencies, Organizations, and Individuals

<table>
<thead>
<tr>
<th>Stakeholders</th>
<th>Early Consultation Mail-out</th>
<th>Early Consultation Comments Received</th>
<th>Public Meeting # 1 Attendance</th>
<th>Notification of Draft EA Mail-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Housing and Human Concerns</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Department of Management</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Parks and Recreation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Department of Public Works</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Department of Transportation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Department of Water Supply</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Emergency Management Agency</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Maui County Cultural Resources Commission</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Planning Department (PD)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PD, Ka‘ahumanu Ave. Community Corridor</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Police Department</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td><strong>Elected Officials</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Senator Gilbert Keith-Agaran (District 5)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>State Representative Kyle Yamashita (District 12)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Office of the Mayor, County of Maui</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maui County Councilmember Tasha Kama (Kahului)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Evan Dust, Senior Executive Assistant for Council Tasha Kama</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maui County Councilmember Yuki Lei Sugimura (Upcountry)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Utility Companies</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaiian Electric</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaiian Telcom</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Organizations and Individuals</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Life Center</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Foodland Ka‘ahumanu</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Historic Hawaii Foundation</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Janet Powell</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kahului Lani</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Stakeholders</td>
<td>Early Consultation Mail-out</td>
<td>Early Consultation Comments Received</td>
<td>Public Meeting # 1 Attendance</td>
<td>Notification of Draft EA Mail-out</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Kathleen Tom</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maui Chamber of Commerce</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maui Economic Development Board</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maui Economic Opportunity, Inc.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Queen Ka'ahumanu Center</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>The Waterfront Apartments at Kahului</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Zahra Bhattachaya</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
7.2 Public Involvement

A virtual public meeting was held on February 25, 2021 to inform and gather input from stakeholders on the Project. A meeting invite was mailed out on February 10, 2021 to landowners within 500 feet of the Site and previously identified stakeholders who were contacted for early consultation. A press release for the virtual public meeting was published in the Maui News on February 15, 2021.

Approximately 30 individuals, including agency representatives, elected officials and staff, community organizations, and residents attended the virtual public meeting. A full listing of attendees is listed in Table 7-1, Consultation with Agencies, Organizations, and Individuals.

The following polling questions were asked at the virtual public meeting and received the corresponding percentage of responses.

1. The Kahului Civic Center Mixed-Use Complex Project is an opportunity to provide the following:
   a. Affordable housing options that reflect the demographics and cost of living (80%)
   b. Increase of multi-modal transportation options, such as safer streets for walking and biking (95%)
   c. Development of a transit-ready district by activating street frontages (50%)
   d. Creation of gathering spaces such as parks, plazas, community centers, and/or libraries (85%)
   e. Development of a landscape corridor along Ka‘ahumanu Avenue (45%)

2. In addition to affordable housing and the State office program planned for this Site, these project elements should be a priority for the Kahului Civic Center Mixed-Use Complex Project:
   a. A deep landscaped setback along Ka‘ahumanu Avenue (30%)
   b. Pedestrian connectivity through the Site (65%)
   c. Small-town character (25%)
   d. Sufficient parking (50%)
   e. Civic plaza fronting DABS office building (15%)
   f. Small food establishment or neighborhood shops (35%)
   g. Reduction of parking to encourage use of multi-modal transportation (20%)
   h. Community-service oriented businesses (25%)

3. As an undeveloped parcel at the core of a major TOD center for Kahului and adjacent to the new County Transit Hub:
   a. The State should develop this parcel as a compact, higher-density development that provides the maximum allowed affordable housing units (61%)
   b. The State should develop this parcel as a lower than allowed density to provide less housing that what is allowed. The State should look at other parcels to distribute affordable housing needs to other areas (39%)

4. How many cars do you think your household will need in the future? (10-20 years from now, given market changes in rideshare, investment in improving multi-modal transportation, TOD development, etc.):
   a. 0 (6%)
   b. 1 (50%)
   c. 2 (39%)
   d. 3+(6%)
5. If you were to live here in the future, would you consider not having a car assuming there is robust public transportation?
   a. Yes, I would consider not having a car (28%)
   b. No, I’d still NEED a car (33%)
   c. No, I’d still WANT a car (39%)

Participants were generally supportive of the Project. The following is a summary of oral and written comments that were provided by participants during and after the virtual public meeting.

- A public meeting should also be held during the design phase;
- Participants agreed that density is needed to support TOD, but green and open space should also be provided;
- Having pedestrian connectivity through the Site and mixed of uses are consistent with the County KCC vision;
- Based on a feedback from a County KCC public meeting, people need cars for shopping trips. Ride-share opportunity should be considered;
- The recent MCC updates support multi-modal transportation and higher density;
- The Project should be vibrant, active, and walkable;
- Concern about potential traffic congestion on Vevau Street;
- Need to consider future use for the current Kahului library site, since the library will be relocated to the Project;
- Recognizes affordable housing shortage on Maui, Bill 10 is being proposed to require 75% affordable housing of total units built;
- Challenge in creating TOD connectivity through “superblock”/surrounding private lands;
- Challenge in combining residential and non-residential RFP;
- Vehicular and pedestrian connections through 3rd Street, which is a private driveway as part of The Waterfront Apartments is not desirable by the property owner due to potential safety and operational issues; and
- The Project should add an open pavilion or outdoor multi-purpose court area for health/wellness, cultural, educational or other public activities.

The meeting materials and recording are posted on the Project website and can be viewed at: https://storymaps.arcgis.com/stories/2502e660fc614a46928a1f9b4e7a3dbf.

Comments received at the virtual public meeting are addressed in this Draft EA. Another public meeting will be held before the publication of the Final EA, and during the design phase of the Project.
Chapter 8

References


This Page Intentionally Left Blank.
Appendix A

Conceptual Plans and View Studies
Proposed Action
Disclaimer: View studies of the project are for planning purposes. They are preliminary, subject to change and will be adjusted with the design of the building.

Kahului Civic Center Mixed-Use Complex

View Along Ka‘ahumanu Highway
Disclaimer: View studies of the project are for planning purposes. They are preliminary, subject to change and will be adjusted with the design of the building.
Conceptual Plans

Alternative D: Options 1 and 2
OPTION 1 - TOWERS AND COMMUNITY PARK

Kahului Civic Center Mixed-Use Complex

![Diagram of Kahului Civic Center Mixed-Use Project]

**LAND AREA AND ZONING INFORMATION**

<table>
<thead>
<tr>
<th>PARCEL</th>
<th>LAND</th>
<th>Allowable SF</th>
<th>Setback</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.572 acre</td>
<td>242,716 sf</td>
<td>485,433 sf</td>
<td></td>
</tr>
</tbody>
</table>

**Total Lot Area**: 5.572 acre

- **Transit Plaza**: .85 acre
- **MUC**: 4.722 acre

**Zoning**
- Land Use: B-2
- Height: 90-ft
- Density: 2. FAR

**KAHULUI CIVIC CENTER MIXED-USE PROGRAM**

- **Total Residential Units**: 408 DU
- **Density**: 1.7 FAR

**Residential Subtotal**: 346,800 gsf

- **Parking Required by Code**
  - 998 stalls
  - *County Code requirement without mixed use reduction*

- **Residential 1stall/1bdrm; 1.5stall/2bdrm; 2stall/3bdrm**: 414 stalls

**Non-Residential Subtotal**: 66,000 gsf

- **School**: 7,000 gsf
  - **Parking Target**
  - **School 8 per classroom**: 56 stalls

- **Office**: 38,000 gsf
  - **Library 40 stalls**: 40 stalls

- **Retail or Office**: 5,000 gsf
  - **Parking Target**: 743 stalls

- **Library**: 16,000 gsf
  - **Residential 1stall/1bdrm; 1.5stall/2bdrm; 2stall/3bdrm**: 561 stalls

**Total Floor Area**: 412,800 gsf
OPTION 2 - LOW RISE MID-DENSITY 4-STORY

Kahului Civic Center Mixed-Use Project


civic center pkg deck

Ka'ahumanu Avenue

Vevau Street

3rd Street

Civic Center

3rd Street

Entry to parking podium within building

Driveway Entry/Exit

Office Plaza

Landscape Buffer

Greenway

Driveway Entry/Exit

Kahului Civic Center Mixed-Use Complex

ENTITLEMENT - CONCEPT SITE PLAN

ENT

PARCEL 5.572 acre Allowable SF Setback

Total Lot Area 5.572 acre Zoning Side/Rear

Transit Plaza .85 acre Land Use None or adjacent zone

MUC 4.722 acre Height 90-ft

Density 2.0 FAR

KAHULUI CIVIC CENTER MIXED-USE PROGRAM

Total Residential Units 232 DU Density 1.3 FAR

Residential Subtotal 252,000 gsf Parking Required by Code* 646 stalls

* County Code requirement without mixed use reduction

Retail or Office 5,000 gsf Parking Target ** 500 stalls

School 7,000 gsf

** Retail/Office at 1 stall/500sf

Office 38,000 gsf

** Library 40 stalls

Library 16,000 gsf

** Residential 1 stall/1bdrm; 1.5 stall/2bdrm; 2 stall/3bdrm

Non-Residential Subtotal 66,000 gsf

** School 8 per classroom

Total Floor Area 318,000 gsf

0' 40' 80' 160'
Appendix B

Natural Resources Assessment
A natural resources assessment for the Kahului Civic Center and Mixed-Use Complex, Kahului, Maui

AECOS Inc.
45-939 Kamehameha Highway
Suite 104
Kāneʻohe, Hawaiʻi 96744

April 27, 2021
revised January 5, 2022
Introduction

The State of Hawai‘i (State), Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC) is proposing to undertake the “Kahului Civic Center Mixed-Use Complex Project” (herein as the “Project”). The Project is a collaborative effort between the HHFDC and State Department of Accounting and General Services. The Project Site is located on Tax Map Key: (2) 3-7-004:003 (por.) at the intersection of Ka‘ahumanu Avenue and Kane Street (Figure 1 and Figure 2).

This State of Hawai‘i project involves construction of affordable and market-rate multi-family housing (multi-family housing) and a civic center (“Kahului Civic Center”). The multi-family housing and Civic Center will provide approximately 381,000 sq.ft. of floor area and approximately 596 parking spaces. Approximately 300 multi-family dwelling units (mixture of 1-, 2- and 3-bedroom units) will be provided in two buildings (both six stories), and approximately 414 parking spaces will be provided in two, three-level parking podiums for the multi-family housing. The preliminary program for the Civic Center (four stories) includes space for state offices, the State Department of Education, McKinley Community School for Adults, and the Kahului Public Library. A parking deck built over a surface parking lot will provide approximately 182 parking spaces for the Civic Center. Community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center. The Civic Center program spaces may be adjusted to accommodate the needs and priorities of state.
agencies and availability of funding. G70 contracted AECOS Inc. to undertake a survey of natural resource extant on the Project site and prepare this report.¹

Site Description

The Project site is a level lot mostly covered by a lawn with sporadic trees and ornamental shrubbery (see cover photo). The Maui Community School for Adults building and parking lot occupy the southwest corner of the Project parcel; a gravel lot and dilapidated building occupy the southeast corner. An ongoing construction project surrounded by construction fencing is present in the southeast corner of the parcel and, although not be directly accessed, could be viewed over the installed fencing.

![Figure 1. Project location (red dot) in Kahului, Maui.](image)

Methods

Botanical Survey

AECOS biologist, Bryson Luke, surveyed the Project site on April 15, 2021. Plant species were identified as they were encountered during wandering transects

¹This report will become part of the public record, incorporated into an EA for the subject project.
that covered most of the property. Plants not immediately recognized were photographed for subsequent identification at the laboratory. Species names follow *Manual of the Flowering Plants of Hawai‘i* (Wagner, Herbst, & Sohmer, 1990; Wagner & Herbst, 1999) for native and naturalized flowering plants and *A Tropical Garden Flora* (Staples & Herbst, 2005) for ornamental plants. More recent name changes for naturalized plant species follow Imada (2019).

Figure 2. Survey area (outlined in red).

Terrestrial Vertebrates Survey

* Avian Survey

A survey of birds was conducted in front of the The Maui Community School for Adults building in the morning hours of April 15. Birds were identified to species by visual observation, aided by Leica 8 X 42 binoculars, and by listening for vocalizations. Avian species abundance was estimated at the count station during a single eight-minute avian point-count. Additional species observed in the Project area outside of the timed count were noted as incidental observations.
Weather conditions were ideal, with unlimited visibility, no precipitation, and winds at 10 miles per hour. The avian phylogenetic order and nomenclature used in this report follows the 61st supplement to the AOS Check-List of North and Middle American Birds (Chesser et al., 2020).

**Mammalian Survey**

A list was made of mammals encountered during the survey. Indicators of mammalian presence, such as tracks, scat, and other sign were noted. Mammalian phylogenetic order and nomenclature follow Mammal Species of the World (Wilson and Reeder, 2005). Hawaiian names are given for native species.

![Figure 3. Much of the site is well-maintained lawn with plantings.](image-url)
Results

Vegetation

The vegetation of the site is limited to an expansive maintained lawn covering most of the northern half of the site and with scattered trees and areas of shrubs and weeds around margins (Figure 3, above). Some areas of ongoing construction and unmaintained ground are present on the southeast corner of the property. (Figure 4). The remainder of the southern half is a parking lot and buildings with some dense vegetation around an abandoned structure.

Figure 4. Area of construction disturbance with both graded and adjacent unmaintained ground present.

Flora

Table 1 is a listing of flowering plants (angiosperms) observed during the survey with 57 taxa identified. All of the species recorded are ornamentals or
naturalized, non-native plant species, except for three early Polynesian introductions (so-called “canoe plants”): ‘ulu or breadfruit (*Artocarpus altilis*), niu or coconut (*Cocos nucifera*), and *ki* or *ti* (*Cordyline fruticosa*). Fully 30% of the species identified are ornamentals or planted in the landscaping at the site.

**Table 1. Listing of extant plants (flora) on the Kahului Civic Center site.**

<table>
<thead>
<tr>
<th>Species listed by family</th>
<th>Common name</th>
<th>STATUS</th>
<th>ABUNDANCE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FLOWERING PLANTS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>DICOTYLEDONES</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ACANTHACEAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Asystasia gangetica</em> (L.) T. Anderson</td>
<td>Chinese violet</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td><strong>AMARANTHACEAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Amaranthus spinosus</em> L.</td>
<td>spiny amaranth</td>
<td>Nat</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td><strong>ANACARDIACEAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Mangifera indica</em> L.</td>
<td>mango</td>
<td>Nat</td>
<td>U &lt;1&gt;</td>
<td></td>
</tr>
<tr>
<td><em>Schinus terebinthifolius</em> Raddi</td>
<td>Christmas berry</td>
<td>Nat</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td><strong>APOCYNACEAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Catharanthus roseus</em> (L.) G. Don</td>
<td>Madagascar periwinkle</td>
<td>Nat</td>
<td>R &lt;1&gt;</td>
<td></td>
</tr>
<tr>
<td><em>Plumeria rubra</em> L.</td>
<td>plumeria, frangipani</td>
<td>Orn</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td><em>Thevetia peruviana</em> (Pers.) K. Schum.</td>
<td>be-still tree</td>
<td>Orn</td>
<td>O &lt;1&gt;</td>
<td></td>
</tr>
<tr>
<td><strong>ARALIACEAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Schefflera actinophylla</em> (Endl.) Harms</td>
<td>octopus tree</td>
<td>Nat</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td><strong>ASTERACEAE (COMPOSITAE)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Bidens alba</em> (L.) DC.</td>
<td>beggartick</td>
<td>Nat</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td><em>Calyptracarpus vialis</em> Less.</td>
<td>---</td>
<td>Nat</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td><em>Heterotheca grandiflora</em> Nutt.</td>
<td>telegraph weed</td>
<td>Nat</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Lactuca serriola</em> L.</td>
<td>prickly lettuce</td>
<td>Nat</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td><em>Senecio madagascariensis</em> Poir.</td>
<td>fireweed</td>
<td>Nat</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td><em>Tridax procumbens</em> L.</td>
<td>coat buttons</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td><em>Verbesina enceliodes</em> (Cav.) Benth. &amp; Hook.</td>
<td>golden crown-beard</td>
<td>Nat</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td><strong>BIGNONIACEAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Spathodea campanulata</em> P. Beauv.</td>
<td>African tulip</td>
<td>Nat</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td><strong>BORAGINACEAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Heliotropium procumbens</em> Mill.</td>
<td>---</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td><strong>BRASSICACEAE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Lepidium virginicum</em> L.</td>
<td>peppergrass</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (continued).

<table>
<thead>
<tr>
<th>Species listed by family</th>
<th>Common name</th>
<th>STATUS</th>
<th>ABUNDANCE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPPARACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Cleome gynandra</em> L.</td>
<td>wild spider flower</td>
<td>Nat</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>CONVOLVULACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Ipomoea obscura</em> (L.) Ker-Gawl.</td>
<td>---</td>
<td>Nat</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>EUPHORBIACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Codiaeum variegatum</em> (L.) Blume</td>
<td>croton</td>
<td>Orn</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td><em>Euphorbia hirta</em> L.</td>
<td>garden spurge</td>
<td>Nat</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td><em>Euphorbia hypericifolia</em> L.</td>
<td>graceful spurge</td>
<td>Nat</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td><em>Euphorbia prostrata</em> Aiton</td>
<td>prostrate spurge</td>
<td>Nat</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>FABACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Albizia saman</em> F. Muell.</td>
<td>monkeypod</td>
<td>Nat</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td><em>Leucaena leucocephala</em> (Lam.) deWit</td>
<td><em>koa haole</em></td>
<td>Nat</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td><em>Indigofera hendecaphyla</em> (Forssk.)</td>
<td>creeping indigo</td>
<td>Nat</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td><em>Macroptilium atropurpureum</em> (DC.) Urb.</td>
<td>---</td>
<td>Nat</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td><em>Peltophorum pterocarpum</em> (A. P. de Candolle) K. Heyne</td>
<td>yellow poinciana</td>
<td>Orn</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>LAMIACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Leonotis nepetifolia</em> (L.) R. Br.</td>
<td>lion’s ear</td>
<td>Nat</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>MALVACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Malva parviflora</em> L.</td>
<td>cheeseweed</td>
<td>Nat</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td><em>Malvastrum coronandelianum</em> (L.) Garck</td>
<td>false mallow</td>
<td>Nat</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td><em>Sida spinosa</em> L.</td>
<td>prickly sida</td>
<td>Nat</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td><em>Waltheria indica</em> L.</td>
<td>‘uhaloa’</td>
<td>Nat</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>MORACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Artocarpus altilis</em> Lam.</td>
<td>‘ulu, breadfruit</td>
<td>Pol</td>
<td>R</td>
<td>&lt;1&gt;</td>
</tr>
<tr>
<td><em>Ficus microcarpa</em> L. fil.</td>
<td>Chinese banyan</td>
<td>Nat</td>
<td>R</td>
<td>&lt;1&gt;</td>
</tr>
<tr>
<td>NYCTAGINACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Boerhavia coccinea</em> Mill.</td>
<td>false alena</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td><em>Bougainvillea</em> sp.</td>
<td>bougainvillea</td>
<td>Orn</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>PORTULACACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Portulaca pilosa</em> L.</td>
<td>---</td>
<td>Nat</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>RUBIACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Spermacoce assurgens</em> Ruiz &amp; Pav.</td>
<td>buttonweed</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>RUTACEAE</td>
<td><em>Murraya paniculata</em> (L.) W. Jack</td>
<td>mock orange</td>
<td>Orn</td>
<td>O</td>
</tr>
</tbody>
</table>
Table 1 (continued).

<table>
<thead>
<tr>
<th>Species listed by family</th>
<th>Common name</th>
<th>STATUS</th>
<th>ABUNDANCE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERBENACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Lantana camara</em> L.</td>
<td>lantana</td>
<td>Nat</td>
<td>R</td>
<td>&lt;1&gt;</td>
</tr>
<tr>
<td>MONOCOTYLEDONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARECACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Cocos nucifera</em> L.</td>
<td>niu, coconut</td>
<td>Pol</td>
<td>O</td>
<td>&lt;1&gt;</td>
</tr>
<tr>
<td>ASPARAGACEAE (AGAVOIDEAE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Cordyline fruticosa</em> L.</td>
<td>kī</td>
<td>Pol</td>
<td>O</td>
<td>&lt;1&gt;</td>
</tr>
<tr>
<td><em>Dracaena marginata</em> Vand.</td>
<td>money tree</td>
<td>Orn</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>CYPERACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Cyperus rotundus</em> L.</td>
<td>nut grass</td>
<td>Nat</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>LILIACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Hippeastrum</em> sp.</td>
<td>amaryllis</td>
<td>Orn</td>
<td>O</td>
<td>&lt;2&gt;</td>
</tr>
<tr>
<td>POACEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Bothriochloa pertusa</em> (L.) A. Camus</td>
<td>pitted beardgrass</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td><em>Cenchrus ciliaris</em> L.</td>
<td>buffelgrass</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td><em>Cenchrus echinatus</em> L.</td>
<td>common sandbur</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td><em>Chloris barbata</em> (L.) Sw.</td>
<td>swollen fingergrass</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td><em>Cynodon dactylon</em> (L.) Pers.</td>
<td>Bermuda grass</td>
<td>Nat</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td><em>Eleusine indica</em> (L.) Gaertn.</td>
<td>beach wiregrass</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td><em>Eragrostis amabilis</em> (L.) Wight &amp; Arnott</td>
<td>lovegrass</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td><em>Megathyrsus maximus</em> (Jacq.) B. K. Simon &amp; W. L. Jacobs</td>
<td>Guinea grass</td>
<td>Nat</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td><em>Stenotaphrum secundatum</em> (Walter) Kuntze</td>
<td>St. Augustin grass</td>
<td>Nat</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><em>Urochloa mutica</em> (Forssk.) T.Q. Nguyen</td>
<td>California grass</td>
<td>Nat</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

Legend to Table 1

STATUS = distributional status for the Hawaiian Islands:
- Nat = naturalized, exotic, plant introduced to the Hawaiian Islands since the arrival of Cook Expedition in 1778, and well-established outside of cultivation.
- Orn = exotic, ornamental or cultivated; plant not naturalized (not well-established outside of cultivation).
- Pol = Polynesian introduction before 1778.

ABUNDANCE = occurrence ratings for plants by area:
- R - Rare seen in only one or perhaps two locations.
- U – Uncommon seen at most in several locations.
Table 1 (continued).

<table>
<thead>
<tr>
<th>Occasional</th>
<th>seen with some regularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td>observed numerous times during the survey</td>
</tr>
<tr>
<td>Abundant</td>
<td>found in large numbers; may be locally dominant.</td>
</tr>
</tbody>
</table>

NOTES:

<1> – Planted here as a landscape plant.

<2> - Plant lacking definitive characteristics.

Avian Fauna

A total of 61 individual birds of 11 species was recorded from the point-count survey (Table 2). One additional species—Pacific Golden Plover or kōlea (Pluvialis fulva) was recorded outside the timed station count. Of the 12 bird species identified in the Project area, only kōlea is native to the Hawaiian Islands. The remaining 11 species are common, non-native (alien) species established in the Islands. Common Mynah (Acridotheres tristis) and House Sparrow (Passer domesticus) were the most common bird species and cumulatively account for 44% of the total birds counted.

Mammals

Feral Domestic cat and Mongoose were the only mammalian species encountered during our survey. Trees of suitable stature for roosting Hawaiian hoary bat are present, scattered across the property (see Figs. 3 & 4).

Discussion and Recommendations

Recommendations are partly based on U.S. Fish and Wildlife Service, Animal Avoidance and Minimization Measures (USFWS-PIFWO, nd). Implementation of the recommendations (provided below as bulleted items) by the Project contractor will minimize impacts to listed species to the maximum extent practicable.

Floral Resources

No plants of conservation concern or enjoying statutory protection (that is, listed as threatened or endangered; HDLNR, 1998; USFWS, nd-a) were noted on the Project site and, given the developed nature of the site, would not be expected to be growing there naturally.
<table>
<thead>
<tr>
<th>FAMILY</th>
<th>ORDER</th>
<th>Common Name</th>
<th>Status</th>
<th>Relative Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALLIFORMES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHASIANIDAE</td>
<td></td>
<td>Gallus gallus</td>
<td>NN</td>
<td>7</td>
</tr>
<tr>
<td>COLUMBIFORMES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLUMBIDAE</td>
<td></td>
<td>Columba livia</td>
<td>NN</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streptopelia chinensis</td>
<td>NN</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geopelia striata</td>
<td>NN</td>
<td>6</td>
</tr>
<tr>
<td>CHARADRIIFORMES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHARADRIIDAE</td>
<td></td>
<td>Pluvialis fulva</td>
<td>IM</td>
<td>1†</td>
</tr>
<tr>
<td>ARDEIDAE</td>
<td></td>
<td>Bubulcus ibis</td>
<td>NN</td>
<td>1</td>
</tr>
<tr>
<td>PELECANIFORMES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZOSTEROPIDAE</td>
<td></td>
<td>Zosterops japonicus</td>
<td>NN</td>
<td>2</td>
</tr>
<tr>
<td>STURNIDAE</td>
<td></td>
<td>Acridotheres tristis</td>
<td>NN</td>
<td>18</td>
</tr>
<tr>
<td>CARDINALIDAE</td>
<td></td>
<td>Cardinalis cardinalis</td>
<td>NN</td>
<td>1</td>
</tr>
<tr>
<td>THRAUPIDAE</td>
<td></td>
<td>Paroaria coronata</td>
<td>NN</td>
<td>3</td>
</tr>
<tr>
<td>FRINGILLIDAE</td>
<td></td>
<td>Haemorhous mexicanus</td>
<td>NN</td>
<td>5</td>
</tr>
<tr>
<td>PASSERIDAE</td>
<td></td>
<td>Passer domesticus</td>
<td>NN</td>
<td>9</td>
</tr>
</tbody>
</table>

Key to Table 2.

Status:
- **IM** = Indigenous, migratory species.
- **NN** = Naturalized, non-native species (introduced).

Relative Abundance: species count / number of point-count stations (n=3).
- † = Incidental observation, observed outside of timed counts.
Invertebrates

Blackburn’s sphinx moth (*Manduca blackburni*) is a federally listed insect found in Hawai‘i (USFWS, 2000) and a population is known from Maui not too distant from the Project site. The caterpillar of this moth feeds exclusively on plants in the Family Solanaceae (USFWS, 2003; HDLNR, 2005) and particularly on the widely distributed, non-native tree tobacco plant (*Nicotiana glauca*). Our survey found no tree tobacco growing at the Project site; no plants in the Family Solanaceae were observed (Table 1).

- Before undertaking clearing of site vegetation, the project contractor should confirm that tree tobacco is not present (has not appeared since the April 2021 survey). Plants found under three feet (1 m) in height may be removed. However, plants over three feet in height will need to be inspected by a biologist qualified to identify *M. blackburni* eggs and larvae.

- If evidence of Blackburn’s sphinx moth presence is found by the pre-construction survey, additional guidance with USFWS is required to avoid take.

Yellow-faced bees are listed as endangered in the Hawaiian Islands (USFWS, 2016) and five of seven species of yellow-faced bee are known to occur on Maui island (*Hylaeus anthracinus, H. assimulans, H. facilis, H. hilaris, and H. longiceps; USFWS-PIFWO, nd.*) in montane and coastal habitat. Coastal habitat for yellow-faced bee is restricted to a narrow (30 to 100 ft; 10-30 m) corridor on the coastline (USFWS-PIFWO, nd). No yellow-faced bee species was observed during the survey and no potential habitat or food sources are present in the Project area.

Six species of damselflies are endangered in Hawai‘i (USFWS-PIFWO, nd.). The three species that occur on Maui are flying earwig damselfly (*Megalagrion nesiotes*), Pacific damselfly (*M. pacificum*), and orange-black damselfly (*M. xanthomelas*). The damselfly naiad develops in aquatic environments and is especially susceptible to predation by non-native fishes and poor water quality. The Project site has no aquatic environments.

Avian Resources

With the exception of Pacific Golden-Plover, all avian species recorded at the Project site from this survey are non-natives. None of the species recorded from this survey receives special protections under state or federal endangered species statutes (listed as threatened or endangered; HDLNR, 2015; USFWS, nd-a).
Nēnē

Nēnē prefer open areas such natural and artificial grasslands, and thus could temporarily appear on the Project site. To avoid and minimize Project impacts to Hawaiian geese, consider the following recommendations:

- Do not approach, feed, or disturb Hawaiian geese if they appear on site.

- If observed loafing or foraging within the Project area during the breeding season (September through April), halt work and have a biologist familiar with the nesting behavior of Hawaiian geese survey for nests prior to resumption of any work within 150 ft (46 m) of the sighting. Repeat surveys after any subsequent delay of work of three or more days (during which period the birds may attempt to nest).

- Cease all work immediately and contact the U.S. Fish and Wildlife Service for further guidance if a nest is discovered on the Project site.

Seabirds

Protected night-flying seabirds in Hawai‘i include Hawaiian Petrel (*Pterodroma sandwichensis*), Wedge-tailed Shearwater (*Ardenna pacifica*), Newell’s Shearwater (*Puffinus newelli*), and Band-rumped Storm-petrel (*Oceanodroma castro*). Hawaiian Petrel and Newell’s Shearwater nest in upland mountainous habitat. In the summer and fall, protected night-flying seabirds (especially fledglings) transiting to the sea from inland locations can become disoriented by exterior lighting. Disoriented seabirds can collide with man-made structures or the ground and if not killed outright, become easy targets of opportunity for feral mammals (Podolsky et al., 1998; Ainley et al., 2001; Day et al., 2003). Collision with man-made structures is a significant cause of mortality of these seabirds in Hawai‘i. No suitable nesting habitat for seabird species occurs in the Project area.

- Deleterious impacts to transiting seabirds can be avoided if construction occurs during daylight hours and all outdoor lighting installed is fully “dark sky compliant” (HDLNR-DOFAW, 2016).

Mammalian Resources

Our survey identified only two mammals: domestic cat and small Indian mongoose (*Herpestes javanicus*). Potentially, one or more of the four alien Muridae (rats and mice) currently established on the Island utilize this area to some extent. All the aforementioned mammalian species are introduced and deleterious to native ecosystems and native fauna.
While not observed from this survey, it is possible that the endemic Hawaiian hoary bat or ‘ōpe’ape’a (*Lasiurus cinereus semotus*) utilizes resources in the Project vicinity. Hawaiian hoary bat is a solitary species and potentially widespread throughout the Main Hawaiian Islands. These bats establish multiple roosts within a home territory (Bonaccorso et al., 2015), so the disturbance associated with removal of any particular tree would be minimal. However, bats are vulnerable during the pupping season, where a female bat carrying a pup or an unattended pup may be unable to safely vacate a tree that is being felled. Potential roost trees are present on the site.

- To avoid potential deleterious impacts to roosting bats with pups, it is recommended that no woody vegetation taller than 15 ft (4.6 m) be removed during the bat pupping season between June 1 and September 15 (USFWS-PIFWO, nd.). The use of barbed wire to top fence lines may entangle flying bats and must be avoided (Zimpfer and Bonaccorso, 2010).

Other Resources of Potential Concern

**Critical Habitat**

Federally delineated Critical Habitat is not present in the project area (USFWS, nd-b). Thus, the project as currently proposed will not impinge on federally designated Critical Habitat. No equivalent habitat designation exists under state law.

References Cited


Appendix C

Air Quality Technical Report
Group 70 International, Inc.

FINAL AIR QUALITY TECHNICAL REPORT
Kahului Civic Center and Mixed-Use Complex

January 2022
FINAL AIR QUALITY TECHNICAL REPORT

Kahului Civic Center and Mixed-Use Complex

Prepared for:
Group 70 International, Inc.

Prepared by:
Arcadis U.S., Inc.
100 Montgomery Street
Suite 300
San Francisco
California 94104
Tel 415 374 2744
Fax 415 374 2745

Our Ref.: 

Date:
January 2022

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.
## ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CalEEMod</td>
<td>California Emissions Estimator Model</td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CO₂e</td>
<td>Carbon dioxide equivalent</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GWP</td>
<td>Global warming potential</td>
</tr>
<tr>
<td>MAR</td>
<td>Mobility Analysis Report</td>
</tr>
<tr>
<td>MT</td>
<td>Metric tons</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Particulate matter less than 10 microns</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Particulate matter less than 2.5 microns</td>
</tr>
<tr>
<td>ROG</td>
<td>Reactive organic gases</td>
</tr>
<tr>
<td>SAAQS</td>
<td>State Ambient Air Quality Standards</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulfur dioxide</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>yr</td>
<td>Year</td>
</tr>
<tr>
<td>µg/m³</td>
<td>Micrograms per cubic meters</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

The purpose of this Air Quality Technical Report is to quantify the emission associated with the proposed Project resulting from the construction and operation of the proposed project. During construction, emission sources are assumed to be primarily fugitive dust from demolition as well as vehicle and earth movement, construction equipment exhaust, and off-gassing of pollutants from applying asphalt paving and architectural coatings. Operational emissions sources are assumed to be from vehicle trips, energy usage, and area source emissions such as landscaping equipment and evaporative emissions from consumer product usage.

2 PROJECT DESCRIPTION

The State of Hawai‘i (State), Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC) is proposing to undertake the "Kahului Civic Center Mixed-Use Complex Project" (Project). The Project is a collaborative effort between the HHFDC and State Department of Accounting and General Services.

The Project primarily involves the construction of affordable and market-rate multi-family housing (multi-family housing) and a State Kahului Civic Center (Civic Center). The multi-family housing buildings and Civic Center will provide a total of approximately 381,000 SF of floor area and approximately 596 parking spaces. Approximately 300 multi-family dwelling units (mixture of 1-, 2- and 3-bedroom units) will be provided in two buildings (both roughly six stories); and approximately 414 parking spaces will be provided in two three-level parking podiums for the multi-family housing. The preliminary program for the Civic Center (roughly four stories) includes space for State offices, the State Department of Education's McKinley Community School for Adults, and the Kahului Public Library. A parking deck built over a surface parking lot will provide approximately 182 parking spaces for the Civic Center. Community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center. The Civic Center program spaces may be adjusted due to the needs and priorities of State agencies and availability of funding.

3 ENVIRONMENTAL SETTING

The Project location, climate and State of Hawaii ambient air quality standards are summarized in the following sections.

3.1 Project Location

The Project site is located in Kahului, Maui on an approximately 4.72-acre parcel at 153 West Ka‘ahumanu Avenue. The site is surrounded by a mix of commercial, residential, and resort uses. North of the Project site is the Maui Beach Hotel, and west of the Project site is the Queen Ka‘ahumanu Center, a shopping center with a variety of retailers. The Waterfront Apartments at Kahului are east of the Project site, and south is currently being developed by Kahului Lani, an affordable senior housing complex.
3.2 Climate

Hawaii is comprised of several islands with diverse topography, but is generally classified as mountainous. These factors contribute to a mixture of climate regimes that exist within the island chain. Diverse climates can exist within relatively short distances on the same island due to topographical effects on wind direction and speed and rainfall patterns.

Maui is the second largest of the Hawaiian Islands. Kahului is located in the central valley of Maui near the northern coast of the island with mountains of west Maui reaching an elevation of 5,788 feet above sea level at the crest of Pu‘u Kukui. To the southeast the terrain rises gradually to the summit of Haleakala at 10,023 feet. The moderate temperature range is associated with the small seasonal variation in energy received from the sun and the tempering effect of the surrounding ocean. The range in normal temperature between the warmest month, August and the coldest month, February, is 7.2 degrees Fahrenheit. Kahului Airport has recorded temperatures as high as the lower 90s and as low as the lower 50s.

Rainfall is relatively light. The contrast between the dry season (May through October) and the wet season (November through April) is pronounced. Major widespread rainstorms, which account for the bulk of the precipitation in the area, usually occur several times during each wet season, but are infrequent in the dry season. Approximately 50 percent of the normal annual rainfall occurs between December through February and 80 percent in the six-month wet season.

3.3 Ambient Air Quality

The ambient air quality in an area can be characterized in terms of whether it complies with National Ambient Air Quality Standards (NAAQS) and State Ambient Air Quality Standards (SAAQS), where applicable. The Clean Air Act (42 U.S.C. 7401 et seq.) requires the U.S. Environmental Protection Agency (USEPA) to set national standards for emissions that are considered harmful to public health and the environment (criteria pollutants). The seven criteria pollutants are: carbon monoxide (CO), nitrogen dioxide (NO\textsubscript{2}), sulfur dioxide (SO\textsubscript{2}), lead (Pb), ozone (O\textsubscript{3}), and particulate matter (PM\textsubscript{10} and PM\textsubscript{2.5}). Based on air monitoring data, Hawaii is currently classified as attainment for all Federal and State standards. Table 1 presents the NAAQS and SAAQS for each criteria pollutant and the 2018 attainment designations for the State of Hawaii.
## Table 1. Air Quality Standards Attainment Status for Hawaii

<table>
<thead>
<tr>
<th>Parameter</th>
<th>State Standard</th>
<th>Federal Standard</th>
<th>Ambient Air Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8-Hour</td>
<td>1-Hour</td>
<td></td>
</tr>
<tr>
<td>Ozone</td>
<td>0.08 ppm</td>
<td>0.070 ppm</td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>9 ppm</td>
<td>35 ppm</td>
<td></td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>4.4 ppm</td>
<td>9 ppm</td>
<td></td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td>0.04 ppm</td>
<td>0.075 ppm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-Hour</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>24-Hour</td>
<td>0.14 ppm</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.03 ppm</td>
<td>--</td>
</tr>
<tr>
<td>Particulate Matter (PM&lt;sub&gt;10&lt;/sub&gt;)</td>
<td>150 µg/m&lt;sup&gt;3&lt;/sup&gt;</td>
<td>150 µg/m&lt;sup&gt;3&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>50 µg/m&lt;sup&gt;3&lt;/sup&gt;</td>
<td>--</td>
</tr>
<tr>
<td>Particulate Matter – Fine (PM&lt;sub&gt;2.5&lt;/sub&gt;)</td>
<td>35 µg/m&lt;sup&gt;3&lt;/sup&gt;</td>
<td>3.0 µg/m&lt;sup&gt;3&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>12 µg/m&lt;sup&gt;3&lt;/sup&gt;</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:
-- = no standard available
µg/m<sup>3</sup> = micrograms per cubic meter
ppm = parts per million

PM<sub>2.5</sub> air quality measurement recorded at Kahului HDOH site. No other pollutants were monitored on the island of Maui.

Sources: HAR 11-59; Ambient Air Quality Standards; 40 CFR Part 50; National Primary and Secondary Ambient Air Quality Standard; State of Hawaii Department of Health: State of Hawaii Annual Summary 2018 Air Quality Data.

### 3.4 Greenhouse Gas

Greenhouse gases (GHGs) are compounds in the Earth’s atmosphere which play a critical role in determining temperature near the Earth’s surface. GHGs include carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), nitrous oxide (N<sub>2</sub>O), and several chlorofluorocarbons. GHGs are commonly quantified in the equivalent mass of CO<sub>2</sub>, denoted CO<sub>2</sub>e, which takes into account the global warming potential (GWP) of each individual GHG compound.

### 4 AIR QUALITY ANALYSIS

Air quality emissions for the Project are discussed in greater specificity below for construction and operations. Detailed emissions calculations are provided in Appendix A.
4.1 Construction

For the Project, construction air quality impacts would be intermittent and short term. Construction would generate emissions of the criteria pollutants as well as GHGs. Emissions were calculated using the California Emissions Estimator Model (CalEEMod) version 2016.3.2. The CalEEMod model provides a platform to calculate construction emissions using equipment emission factors (mass of emissions per unit time) from sources such as United States Environmental Protection Agency (USEPA), California Air Resources Board (CARB) and site-specific information. CalEEMod also provides default values when site-specific information is not available.

Construction activities on approximately 4.72 acres were estimated to last 12 months and occur in six phases: demolition, site preparation, grading, structure construction, paving, and architectural coatings. Construction activities, projected start date, projected duration, construction equipment, and assumptions are included in Table 2.

The CalEEMod software allows the user to select pre-programmed “Mitigations” to control certain emissions. The measures selected and assumed to be implemented are:

- Replacing ground cover of area disturbed
- Applying water to disturbed surfaces and haul roads three times a day; and
- Reducing speed on unpaved roads to <15 miles per hour

These measures are common practices that are required by local and state regulations to control dust.

Annual emission calculated from CalEEMod are summarized in Table 3. Emissions from the proposed action are minimal due to the relatively small scale and low intensity of construction activities. Modeling assumptions and results are presented in Appendix A.
### Table 2. Construction Assumptions by Activity

<table>
<thead>
<tr>
<th>Activity</th>
<th>Start</th>
<th>Duration</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>January 2022</td>
<td>20 days</td>
<td>1 Industrial saw</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 Excavators</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Rubber-tired dozers</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>January 2022</td>
<td>5 days</td>
<td>3 Rubber-tired dozers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 tractors</td>
</tr>
<tr>
<td>Grading</td>
<td>February 2022</td>
<td>8 days</td>
<td>1 Excavator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Grader</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Rubber-tired dozer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 Tractors</td>
</tr>
<tr>
<td>Structure Construction</td>
<td>February 2022</td>
<td>230 days</td>
<td>1 Crane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 Forklifts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Generator set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 Tractors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Welder</td>
</tr>
<tr>
<td>Paving</td>
<td>December 2022</td>
<td>18 days</td>
<td>2 Cement mixers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Paver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Paving equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Rollers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Tractor</td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>December 2022</td>
<td>18 days</td>
<td>1 Air compressor</td>
</tr>
</tbody>
</table>
Table 3. Estimated Proposed Construction Emissions (Tons per Year)

<table>
<thead>
<tr>
<th>Construction Year</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2e (MT/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>6.0</td>
<td>3.4</td>
<td>3.5</td>
<td>9.5x10^{-3}</td>
<td>0.54</td>
<td>0.24</td>
<td>863</td>
</tr>
</tbody>
</table>

CO - carbon dioxide; CO2e - carbon dioxide equivalent; MT/yr – metric tons per year; NOx - nitrogen oxides; PM2.5 - particulate matter less than 2.5 microns; PM10 - particulate matter less than 10 microns; ROG - reactive organic gases; SO2 – sulfur dioxide

4.2 Operations

For the Project, the primary air quality considerations for criteria pollutants associated with operational activities at the Site are on-site area and stationary sources and mobile sources. In addition, water use and solid waste generation were considered for GHG emissions. CalEEMod was used to estimate emissions from on-site area, stationary sources, water use and solid waste generation that would occur during long-term Project operations. For mobile sources, estimated vehicle trips were provided by the Mobility Analysis Report (MAR) for the Proposed Kahului Civic Center and Mixed-Use Complex prepared by Fehr & Peers (Fehr & Peers 2021).

Project annual emissions are presented in Table 4.

Table 4. Summary of Operational Emissions (Tons per Year)

<table>
<thead>
<tr>
<th>Source</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2e (MT/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>2.1</td>
<td>0.026</td>
<td>2.23</td>
<td>1.2x10^{-4}</td>
<td>0.012</td>
<td>0.012</td>
<td>3.8</td>
</tr>
<tr>
<td>Stationary</td>
<td>0.019</td>
<td>0.17</td>
<td>0.97</td>
<td>1.0x10^{-4}</td>
<td>0.013</td>
<td>0.013</td>
<td>1,731</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.68</td>
<td>4.09</td>
<td>7.55</td>
<td>0.032</td>
<td>2.83</td>
<td>0.78</td>
<td>2,999</td>
</tr>
<tr>
<td>Waste/Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>332</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.80</td>
<td>4.28</td>
<td>9.88</td>
<td>0.034</td>
<td>2.86</td>
<td>0.80</td>
<td>5,066</td>
</tr>
</tbody>
</table>

AD – awaiting data; CO - carbon dioxide; CO2e - carbon dioxide equivalent; MT/yr – metric tons per year; NOx - nitrogen oxides; PM10 - particulate matter less than 10 microns; PM2.5 – particulate matter less than 2.5 microns; ROG - reactive organic gases; SO2 – sulfur dioxide; Tons/yr – tons per year

Results indicate that criteria pollutants and GHG emissions will increase with operational activities, but the quantity would not be large enough to result in significant negative impacts to air quality.
5 CONCLUSIONS

Construction emissions will be intermittent and short term and will be spread over several acres. Maximum annual emissions of criteria pollutants from construction activities are projected at less than 6 tons per year. Operational emissions are projected to increase but would not result in significant negative impacts.
6 REFERENCES

California Air Pollution Control Officers Association (CAPCOA). 2016. California Emissions Estimator Model. CalEEMod Version 2016.3.2


Arcadis U.S., Inc.
100 Montgomery Street
Suite 300
San Francisco, California  94104
Tel 415 374 2744
Fax 415 374 2745

www.arcadis.com
1.0 Project Characteristics

1.1 Land Usage

<table>
<thead>
<tr>
<th>Land Uses</th>
<th>Size</th>
<th>Metric</th>
<th>Lot Acreage</th>
<th>Floor Surface Area</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Office Building</td>
<td>38.00</td>
<td>1000sqft</td>
<td>0.79</td>
<td>38,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Day-Care Center</td>
<td>5.00</td>
<td>1000sqft</td>
<td>0.11</td>
<td>5,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>7.00</td>
<td>1000sqft</td>
<td>0.16</td>
<td>7,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Library</td>
<td>16.00</td>
<td>1000sqft</td>
<td>0.37</td>
<td>16,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>126.00</td>
<td>Space</td>
<td>0.66</td>
<td>50,400.00</td>
<td>0</td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>414.00</td>
<td>Space</td>
<td>1.31</td>
<td>165,600.00</td>
<td>0</td>
</tr>
<tr>
<td>Parking Lot</td>
<td>56.00</td>
<td>Space</td>
<td>0.33</td>
<td>22,400.00</td>
<td>0</td>
</tr>
<tr>
<td>Health Club</td>
<td>5.00</td>
<td>1000sqft</td>
<td>0.11</td>
<td>5,000.00</td>
<td>0</td>
</tr>
<tr>
<td>Condo/Townhouse High Rise</td>
<td>300.00</td>
<td>Dwelling Unit</td>
<td>0.88</td>
<td>300,000.00</td>
<td>858</td>
</tr>
</tbody>
</table>

1.2 Other Project Characteristics

- **Urbanization**: Urban
- **Wind Speed (m/s)**: 2.2
- **Precipitation Freq (Days)**: 54
- **Climate Zone**: 13
- **Operational Year**: 2026
- **Utility Company**: Statewide Average
- **CO2 Intensity (lb/MWhr)**: 1001.57
- **CH4 Intensity (lb/MWhr)**: 0.029
- **N2O Intensity (lb/MWhr)**: 0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -
Land Use - Total project site 4.72 acres
Construction Phase - 17 month construction
Trips and VMT -
Demolition - Removal of current McKinley Community School
Vehicle Trips - based on Kahului Civic Center MAR (F&P 2021) project vehicle trip generation estimates
Woodstoves -
Construction Off-road Equipment Mitigation -
Mobile Land Use Mitigation -
Area Mitigation -

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Column Name</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblArchitecturalCoating</td>
<td>ConstArea_Parking</td>
<td>14,304.00</td>
<td>14,928.00</td>
</tr>
<tr>
<td>tblAreaCoating</td>
<td>Area_Parking</td>
<td>14304</td>
<td>14928</td>
</tr>
<tr>
<td>tblConstDustMitigation</td>
<td>WaterUnpavedRoadVehicleSpeed</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>230.00</td>
<td>176.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>230.00</td>
<td>198.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>230.00</td>
<td>220.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>230.00</td>
<td>110.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>230.00</td>
<td>132.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>NumDays</td>
<td>230.00</td>
<td>176.00</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>7/22/2027</td>
<td>3/2/2026</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>1/4/2023</td>
<td>7/18/2025</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>1/28/2022</td>
<td>10/28/2024</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>2/16/2022</td>
<td>11/14/2024</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>6/28/2027</td>
<td>2/4/2026</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>2/4/2022</td>
<td>11/4/2024</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>11/22/2023</td>
<td>9/17/2025</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>10/9/2024</td>
<td>11/18/2025</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>8/27/2025</td>
<td>8/8/2025</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>7/15/2026</td>
<td>10/9/2025</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseEndDate</td>
<td>6/2/2027</td>
<td>1/9/2026</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>6/29/2027</td>
<td>2/5/2026</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>2/17/2022</td>
<td>11/15/2024</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>1/3/2022</td>
<td>10/1/2024</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>2/5/2022</td>
<td>11/5/2024</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>6/3/2027</td>
<td>1/10/2026</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>1/29/2022</td>
<td>10/29/2024</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>1/5/2023</td>
<td>12/15/2024</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>11/23/2023</td>
<td>1/15/2025</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>10/10/2024</td>
<td>3/9/2025</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>8/28/2025</td>
<td>4/9/2025</td>
</tr>
<tr>
<td>tblConstructionPhase</td>
<td>PhaseStartDate</td>
<td>7/16/2026</td>
<td>5/9/2025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tblLandUse</th>
<th>LotAcreage</th>
<th>0.87</th>
<th>0.79</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>1.13</td>
<td>0.66</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>3.73</td>
<td>1.31</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>0.50</td>
<td>0.33</td>
</tr>
<tr>
<td>tblLandUse</td>
<td>LotAcreage</td>
<td>4.69</td>
<td>0.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tblVehicleTrips</th>
<th>ST_TR</th>
<th>4.31</th>
<th>3.97</th>
</tr>
</thead>
<tbody>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>6.21</td>
<td>34.80</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>2.46</td>
<td>8.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>20.87</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>11.23</td>
<td>99.86</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>ST_TR</td>
<td>46.55</td>
<td>51.25</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>3.43</td>
<td>3.97</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>5.83</td>
<td>34.80</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>1.05</td>
<td>8.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>26.73</td>
<td>0.00</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>1.21</td>
<td>99.86</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>SU_TR</td>
<td>25.49</td>
<td>51.25</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>4.18</td>
<td>3.97</td>
</tr>
<tr>
<td>tblVehicleTrips</td>
<td>WD_TR</td>
<td>74.06</td>
<td>34.80</td>
</tr>
</tbody>
</table>
2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2024</td>
<td>0.0962</td>
<td>0.8043</td>
<td>0.8675</td>
<td>2.2600e-003</td>
<td>0.1510</td>
<td>0.0300</td>
<td>0.1810</td>
<td>0.0593</td>
<td>0.0280</td>
<td>0.0873</td>
<td>0.0000</td>
<td>202.4541</td>
<td>202.4541</td>
<td>0.0312</td>
<td>0.0000</td>
<td>203.2349</td>
</tr>
<tr>
<td>2025</td>
<td>1.1929</td>
<td>9.2056</td>
<td>11.6143</td>
<td>0.0341</td>
<td>1.5679</td>
<td>0.2652</td>
<td>1.8332</td>
<td>0.4230</td>
<td>0.2494</td>
<td>0.6724</td>
<td>0.0000</td>
<td>3.086.3368</td>
<td>3.086.3368</td>
<td>0.3274</td>
<td>0.0000</td>
<td>3.094.5205</td>
</tr>
<tr>
<td>2026</td>
<td>5.6221</td>
<td>0.1481</td>
<td>0.2231</td>
<td>4.9000e-004</td>
<td>0.0177</td>
<td>5.6100e-003</td>
<td>0.0233</td>
<td>4.7600e-003</td>
<td>0.0100</td>
<td>43.7865</td>
<td>0.0000</td>
<td>43.7865</td>
<td>7.2200e-003</td>
<td>0.0000</td>
<td>43.9669</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>5.6221</td>
<td>9.2056</td>
<td>11.6143</td>
<td>0.0341</td>
<td>1.5679</td>
<td>0.2652</td>
<td>1.8332</td>
<td>0.4230</td>
<td>0.2494</td>
<td>0.6724</td>
<td>0.0000</td>
<td>3.086.3368</td>
<td>3.086.3368</td>
<td>0.3274</td>
<td>0.0000</td>
<td>3.094.5205</td>
</tr>
</tbody>
</table>

Mitigated Construction

<table>
<thead>
<tr>
<th>Year</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>2024</td>
<td>0.0962</td>
<td>0.8043</td>
<td>0.8675</td>
<td>2.2600e-003</td>
<td>0.1052</td>
<td>0.0300</td>
<td>0.1351</td>
<td>0.0356</td>
<td>0.0280</td>
<td>0.0636</td>
<td>0.0000</td>
<td>202.4539</td>
<td>202.4539</td>
<td>0.0312</td>
<td>0.0000</td>
<td>203.2349</td>
</tr>
<tr>
<td>2025</td>
<td>1.1929</td>
<td>9.2056</td>
<td>11.6143</td>
<td>0.0341</td>
<td>1.5679</td>
<td>0.2652</td>
<td>1.8332</td>
<td>0.4230</td>
<td>0.2494</td>
<td>0.6724</td>
<td>0.0000</td>
<td>3.086.3354</td>
<td>3.086.3354</td>
<td>0.3274</td>
<td>0.0000</td>
<td>3.094.5192</td>
</tr>
<tr>
<td>Quarter</td>
<td>Start Date</td>
<td>End Date</td>
<td>Maximum Unmitigated ROG + NOX (tons/quarter)</td>
<td>Maximum Mitigated ROG + NOX (tons/quarter)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------------------------------------</td>
<td>---------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7-3-2024</td>
<td>10-2-2024</td>
<td>0.0168</td>
<td>0.0168</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10-3-2024</td>
<td>1-2-2025</td>
<td>0.9166</td>
<td>0.9166</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1-3-2025</td>
<td>4-2-2025</td>
<td>2.1961</td>
<td>2.1961</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4-3-2025</td>
<td>7-2-2025</td>
<td>3.8874</td>
<td>3.8874</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7-3-2025</td>
<td>10-2-2025</td>
<td>3.1318</td>
<td>3.1318</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10-3-2025</td>
<td>1-2-2026</td>
<td>1.1330</td>
<td>1.1330</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1-3-2026</td>
<td>4-2-2026</td>
<td>5.9278</td>
<td>5.9278</td>
<td></td>
</tr>
</tbody>
</table>

### Highest

5.9278

---

### 2.2 Overall Operational

#### Unmitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>20.9158</td>
<td>0.3933</td>
<td>25.4675</td>
<td>0.0422</td>
<td>3.2703</td>
<td>3.2703</td>
<td>3.2703</td>
<td>3.2703</td>
<td>309.8873</td>
<td>133.6128</td>
<td>443.5001</td>
<td>0.2895</td>
<td>0.0244</td>
<td>458.0011</td>
</tr>
<tr>
<td>Energy</td>
<td>0.0190</td>
<td>0.1661</td>
<td>0.0970</td>
<td>1.0400</td>
<td>0.0131</td>
<td>0.0131</td>
<td>0.0131</td>
<td>0.0131</td>
<td>0.0000</td>
<td>1.680.6081</td>
<td>1.680.6081</td>
<td>0.0468</td>
<td>0.0124</td>
<td>1.685.4703</td>
</tr>
<tr>
<td>Mobile</td>
<td>0.6848</td>
<td>4.0886</td>
<td>7.5505</td>
<td>0.0323</td>
<td>2.8113</td>
<td>2.8343</td>
<td>0.7542</td>
<td>0.0215</td>
<td>0.7756</td>
<td>0.0000</td>
<td>2.995.7822</td>
<td>2.995.7822</td>
<td>0.1284</td>
<td>0.0000</td>
</tr>
<tr>
<td>Waste</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>47.1284</td>
<td>0.0000</td>
<td>47.1284</td>
<td>2.7852</td>
<td>0.0000</td>
</tr>
<tr>
<td>Water</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>8.7734</td>
<td>177.2297</td>
<td>186.0031</td>
<td>0.9062</td>
<td>0.0223</td>
</tr>
</tbody>
</table>
### Mitigated Operational

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Area</strong></td>
<td>2.0920</td>
<td>0.0257</td>
<td>2.2315</td>
<td>1.2000e-004</td>
<td>0.0124</td>
<td>0.0124</td>
<td>0.0124</td>
<td>0.0124</td>
<td>0.0000</td>
<td>3.6506</td>
<td>3.6506</td>
<td>3.5200e-003</td>
<td>0.0000</td>
<td>3.7384</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Energy</strong></td>
<td>0.0190</td>
<td>0.1661</td>
<td>0.0970</td>
<td>1.0400e-003</td>
<td>0.0131</td>
<td>0.0131</td>
<td>0.0131</td>
<td>0.0131</td>
<td>0.0000</td>
<td>1.680.6081</td>
<td>1.680.6081</td>
<td>0.0468</td>
<td>0.0124</td>
<td>1.685.4703</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mobile</strong></td>
<td>0.6848</td>
<td>4.0886</td>
<td>7.5505</td>
<td>0.0323</td>
<td>2.8113</td>
<td>0.0230</td>
<td>2.8343</td>
<td>0.7542</td>
<td>0.0215</td>
<td>0.7756</td>
<td>0.0000</td>
<td>2.995.7822</td>
<td>2.995.7822</td>
<td>0.1284</td>
<td>0.0000</td>
<td>2.998.9927</td>
</tr>
<tr>
<td><strong>Waste</strong></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>47.1284</td>
<td>0.0000</td>
<td>47.1284</td>
<td>2.7852</td>
<td>0.0000</td>
<td>116.7587</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Water</strong></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>8.7734</td>
<td>177.2297</td>
<td>186.0031</td>
<td>0.9062</td>
<td>0.0223</td>
<td>215.3162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>2.7957</td>
<td>4.2804</td>
<td>9.8790</td>
<td>0.0335</td>
<td>2.8113</td>
<td>0.0485</td>
<td>2.8598</td>
<td>0.7542</td>
<td>0.0499</td>
<td>0.8011</td>
<td>55.9018</td>
<td>4,857.2706</td>
<td>4,913.1724</td>
<td>3.6702</td>
<td>0.0347</td>
<td>5,020.2762</td>
</tr>
</tbody>
</table>

#### Percent Reduction

- **ROG**: 87.07%
- **NOx**: 7.91%
- **CO**: 70.17%
- **SO2**: 55.70%
- **Fugitive PM10**: 0.00%
- **Exhaust PM10**: 98.53%
- **PM10 Total**: 53.25%
- **Fugitive PM2.5**: 0.00%
- **Exhaust PM2.5**: 98.58%
- **PM2.5 Total**: 80.26%
- **Bio- CO2**: 84.72%
- **NBio- CO2**: 2.61%
- **Total CO2**: 8.22%
- **CH4**: 6.88%
- **N2O**: 41.24%
- **CO2e**: 8.30%

### 3.0 Construction Detail

#### Construction Phase

<table>
<thead>
<tr>
<th>Phase Number</th>
<th>Phase Name</th>
<th>Phase Type</th>
<th>Start Date</th>
<th>End Date</th>
<th>Num Days</th>
<th>Phase Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Demo</td>
<td>Demolition</td>
<td>10/1/2024</td>
<td>10/28/2024</td>
<td>5 20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Site Prep</td>
<td>Site Preparation</td>
<td>10/29/2024</td>
<td>11/4/2024</td>
<td>5 5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Grading</td>
<td>Grading</td>
<td>11/5/2024</td>
<td>11/14/2024</td>
<td>5 8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Residential Building - Foundation</td>
<td>Building Construction</td>
<td>11/15/2024</td>
<td>7/18/2025</td>
<td>5 176</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Residential Building - Shell &amp; Core</td>
<td>Building Construction</td>
<td>12/15/2024</td>
<td>9/17/2025</td>
<td>5 198</td>
<td></td>
</tr>
<tr>
<td>Phase Name</td>
<td>Offroad Equipment Type</td>
<td>Amount</td>
<td>Usage Hours</td>
<td>Horse Power</td>
<td>Load Factor</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Demo</td>
<td>Concrete/Industrial Saws</td>
<td>1</td>
<td>8.00</td>
<td>81</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>Demo</td>
<td>Excavators</td>
<td>3</td>
<td>8.00</td>
<td>158</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Demo</td>
<td>Rubber Tired Dozers</td>
<td>2</td>
<td>8.00</td>
<td>247</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Site Prep</td>
<td>Rubber Tired Dozers</td>
<td>3</td>
<td>8.00</td>
<td>247</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Site Prep</td>
<td>Tractors/Loaders/Backhoes</td>
<td>4</td>
<td>8.00</td>
<td>97</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Grading</td>
<td>Excavators</td>
<td>1</td>
<td>8.00</td>
<td>158</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Grading</td>
<td>Graders</td>
<td>1</td>
<td>8.00</td>
<td>187</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Grading</td>
<td>Rubber Tired Dozers</td>
<td>1</td>
<td>8.00</td>
<td>247</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Grading</td>
<td>Tractors/Loaders/Backhoes</td>
<td>3</td>
<td>8.00</td>
<td>97</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Foundation</td>
<td>Cranes</td>
<td>1</td>
<td>7.00</td>
<td>231</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Foundation</td>
<td>Forklifts</td>
<td>3</td>
<td>8.00</td>
<td>89</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Foundation</td>
<td>Generator Sets</td>
<td>1</td>
<td>8.00</td>
<td>84</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Foundation</td>
<td>Tractors/Loaders/Backhoes</td>
<td>3</td>
<td>7.00</td>
<td>97</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Foundation</td>
<td>Welders</td>
<td>1</td>
<td>8.00</td>
<td>46</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>Cement and Mortar Mixers</td>
<td>2</td>
<td>6.00</td>
<td>9</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>Pavers</td>
<td>1</td>
<td>8.00</td>
<td>130</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td>Quantity</td>
<td>Rate</td>
<td>Cost</td>
<td>VMT</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------------------</td>
<td>----------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td><strong>Paving</strong></td>
<td><strong>Paving Equipment</strong></td>
<td>2</td>
<td>6.00</td>
<td>132</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>Rollers</td>
<td>2</td>
<td>6.00</td>
<td>80</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>Tractors/Loaders/Backhoes</td>
<td>1</td>
<td>8.00</td>
<td>97</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td><strong>Arch Coating</strong></td>
<td><strong>Air Compressors</strong></td>
<td>1</td>
<td>6.00</td>
<td>78</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Office Building - Shell &amp; Core</td>
<td>Cranes</td>
<td>1</td>
<td>7.00</td>
<td>231</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Office Building - Building</td>
<td>Cranes</td>
<td>1</td>
<td>7.00</td>
<td>231</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Shell &amp; Core</td>
<td>Cranes</td>
<td>1</td>
<td>7.00</td>
<td>231</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Building</td>
<td>Cranes</td>
<td>1</td>
<td>7.00</td>
<td>231</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Office Building - Foundation</td>
<td>Cranes</td>
<td>1</td>
<td>7.00</td>
<td>231</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Office Building - Shell &amp; Core</td>
<td>Forklifts</td>
<td>3</td>
<td>8.00</td>
<td>89</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Office Building - Building</td>
<td>Forklifts</td>
<td>3</td>
<td>8.00</td>
<td>89</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Shell &amp; Core</td>
<td>Forklifts</td>
<td>3</td>
<td>8.00</td>
<td>89</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Building</td>
<td>Forklifts</td>
<td>3</td>
<td>8.00</td>
<td>89</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Office Building - Foundation</td>
<td>Forklifts</td>
<td>3</td>
<td>8.00</td>
<td>89</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Office Building - Shell &amp; Core</td>
<td>Generator Sets</td>
<td>1</td>
<td>8.00</td>
<td>84</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Office Building - Building</td>
<td>Generator Sets</td>
<td>1</td>
<td>8.00</td>
<td>84</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Shell &amp; Core</td>
<td>Generator Sets</td>
<td>1</td>
<td>8.00</td>
<td>84</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Building</td>
<td>Generator Sets</td>
<td>1</td>
<td>8.00</td>
<td>84</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Office Building - Foundation</td>
<td>Generator Sets</td>
<td>1</td>
<td>8.00</td>
<td>84</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Office Building - Shell &amp; Core</td>
<td>Tractors/Loaders/Backhoes</td>
<td>3</td>
<td>7.00</td>
<td>97</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Office Building - Building</td>
<td>Tractors/Loaders/Backhoes</td>
<td>3</td>
<td>7.00</td>
<td>97</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Shell &amp; Core</td>
<td>Tractors/Loaders/Backhoes</td>
<td>3</td>
<td>7.00</td>
<td>97</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Building</td>
<td>Tractors/Loaders/Backhoes</td>
<td>3</td>
<td>7.00</td>
<td>97</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Office Building - Foundation</td>
<td>Tractors/Loaders/Backhoes</td>
<td>3</td>
<td>7.00</td>
<td>97</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Office Building - Shell &amp; Core</td>
<td>Welders</td>
<td>1</td>
<td>8.00</td>
<td>46</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Office Building - Building</td>
<td>Welders</td>
<td>1</td>
<td>8.00</td>
<td>46</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Shell &amp; Core</td>
<td>Welders</td>
<td>1</td>
<td>8.00</td>
<td>46</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Residential Building - Building</td>
<td>Welders</td>
<td>1</td>
<td>8.00</td>
<td>46</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Office Building - Foundation</td>
<td>Welders</td>
<td>1</td>
<td>8.00</td>
<td>46</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

**Trips and VMT**
<table>
<thead>
<tr>
<th>Phase Name</th>
<th>Offroad Equipment Count</th>
<th>Worker Trip Number</th>
<th>Vendor Trip Number</th>
<th>Hauling Trip Number</th>
<th>Worker Trip Length</th>
<th>Vendor Trip Length</th>
<th>Hauling Trip Length</th>
<th>Vendor Vehicle Class</th>
<th>Worker Vehicle Class</th>
<th>Hauling Vehicle Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demo</td>
<td>6</td>
<td>15.00</td>
<td>0.00</td>
<td>35.00</td>
<td>10.80</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
<tr>
<td>Site Prep</td>
<td>7</td>
<td>18.00</td>
<td>0.00</td>
<td>0.00</td>
<td>10.80</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
<tr>
<td>Grading</td>
<td>6</td>
<td>15.00</td>
<td>0.00</td>
<td>0.00</td>
<td>10.80</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
<tr>
<td>Residential Building - Foundation</td>
<td>9</td>
<td>342.00</td>
<td>83.00</td>
<td>0.00</td>
<td>10.80</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
<tr>
<td>Paving</td>
<td>8</td>
<td>20.00</td>
<td>0.00</td>
<td>0.00</td>
<td>10.80</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
<tr>
<td>Arch Coating</td>
<td>1</td>
<td>68.00</td>
<td>0.00</td>
<td>0.00</td>
<td>10.80</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
<tr>
<td>Office Building - Shell &amp; Core</td>
<td>9</td>
<td>342.00</td>
<td>83.00</td>
<td>0.00</td>
<td>10.80</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
<tr>
<td>Office Building - Building</td>
<td>9</td>
<td>342.00</td>
<td>83.00</td>
<td>0.00</td>
<td>10.80</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
<tr>
<td>Residential Building - Shell &amp; Core</td>
<td>9</td>
<td>342.00</td>
<td>83.00</td>
<td>0.00</td>
<td>10.80</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
<tr>
<td>Residential Building - Building</td>
<td>9</td>
<td>342.00</td>
<td>83.00</td>
<td>0.00</td>
<td>10.80</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
<tr>
<td>Office Building - Foundation</td>
<td>9</td>
<td>342.00</td>
<td>83.00</td>
<td>0.00</td>
<td>10.80</td>
<td>7.30</td>
<td>20.00</td>
<td>LD_Mix</td>
<td>HDT_Mix</td>
<td>HHDT</td>
</tr>
</tbody>
</table>

### Mitigation Measures Construction

Replace Ground Cover

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

#### 3.2 Demo - 2024

Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>PM10 Total</th>
<th>PM10 Exhaust</th>
<th>PM2.5 Total</th>
<th>PM2.5 Exhaust</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.0224</td>
<td>0.2088</td>
<td>0.1971</td>
<td>3.9000e-004</td>
<td>3.8400e-003</td>
<td>9.6000e-003</td>
<td>9.6000e-003</td>
<td>5.8000e-004</td>
<td>8.9200e-003</td>
<td>8.9200e-003</td>
<td>0.0000</td>
<td>33.9961</td>
<td>33.9961</td>
<td>9.5100e-003</td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.0224</td>
<td>0.2088</td>
<td>0.1971</td>
<td>3.9000e-004</td>
<td>3.8400e-003</td>
<td>9.6000e-003</td>
<td>9.6000e-003</td>
<td>5.8000e-004</td>
<td>8.9200e-003</td>
<td>8.9200e-003</td>
<td>0.0000</td>
<td>33.9961</td>
<td>33.9961</td>
<td>9.5100e-003</td>
</tr>
<tr>
<td>Fugitive Dust</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0134</td>
<td>5.8000e-004</td>
<td>8.9200e-003</td>
<td>9.5000e-003</td>
<td>0.0000</td>
<td>33.9961</td>
<td>33.9961</td>
<td>9.5100e-003</td>
<td>0.0000</td>
<td>34.2338</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>8.0000e-005</td>
<td>2.7200e-003</td>
<td>7.2200e-004</td>
<td>1.0000e-005</td>
<td>3.0000e-004</td>
<td>1.0000e-005</td>
<td>3.0000e-004</td>
<td>8.0000e-005</td>
<td>0.0000</td>
<td>9.0000e-005</td>
<td>0.0000</td>
<td>1.2444</td>
<td>1.2444</td>
<td>6.0000e-005</td>
<td>0.0000</td>
<td>1.2458</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>4.4000e-004</td>
<td>2.8000e-004</td>
<td>3.1400e-003</td>
<td>1.0000e-005</td>
<td>1.1900e-003</td>
<td>1.0000e-005</td>
<td>1.2000e-003</td>
<td>3.2000e-004</td>
<td>1.0000e-005</td>
<td>3.2000e-004</td>
<td>0.0000</td>
<td>0.9293</td>
<td>0.9293</td>
<td>2.0000e-005</td>
<td>0.0000</td>
<td>0.9299</td>
</tr>
<tr>
<td>Total</td>
<td>5.2000e-004</td>
<td>3.0100e-003</td>
<td>3.8600e-003</td>
<td>2.0000e-005</td>
<td>1.4900e-003</td>
<td>2.0000e-005</td>
<td>1.5000e-003</td>
<td>4.0000e-004</td>
<td>1.0000e-005</td>
<td>4.1000e-004</td>
<td>0.0000</td>
<td>2.1737</td>
<td>2.1737</td>
<td>8.0000e-005</td>
<td>0.0000</td>
<td>2.1756</td>
</tr>
</tbody>
</table>

## Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>1.5000e-003</td>
<td>0.0000</td>
<td>1.5000e-003</td>
<td>2.3000e-004</td>
<td>0.0000</td>
<td>2.3000e-004</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.0224</td>
<td>0.2088</td>
<td>0.1971</td>
<td>3.9000e-004</td>
<td>9.6000e-003</td>
<td>9.6000e-003</td>
<td>8.9200e-003</td>
<td>8.9200e-003</td>
<td>0.0000</td>
<td>33.9960</td>
<td>33.9960</td>
<td>9.5100e-003</td>
<td>0.0000</td>
<td>34.2338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0224</td>
<td>0.2088</td>
<td>0.1971</td>
<td>3.9000e-004</td>
<td>1.5000e-003</td>
<td>9.6000e-003</td>
<td>0.0111</td>
<td>2.3000e-004</td>
<td>8.9200e-003</td>
<td>9.1500e-003</td>
<td>0.0000</td>
<td>33.9960</td>
<td>33.9960</td>
<td>9.5100e-003</td>
<td>0.0000</td>
<td>34.2338</td>
</tr>
</tbody>
</table>

## Mitigated Construction Off-Site
### 3.3 Site Prep - 2024

#### Unmitigated Construction On-Site

| Category          | ROG | NOx   | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|-------------------|-----|-------|----|-----|---------------|--------------|------------|---------------|--------------|------------|----------|----------|----------|-----------|-----|-----|------|
| **Hauling**       |     |       |    |     | 8.0000e-005  | 2.7300e-003 | 7.2000e-004 | 1.0000e-005  | 3.0000e-004  | 8.0000e-005 | 0.0000   | 1.2444   | 1.2444   | 8.0000e-005 |     |     | 1.2458 |
| **Vendor**        |     | 0.0000| 0.0000| 0.0000| 0.0000        | 0.0000       | 0.0000     | 0.0000        | 0.0000       | 0.0000     | 0.0000   | 0.0000   | 0.0000   | 0.0000    |     |     | 0.0000 |
| **Worker**        |     | 4.4000e-004 | 2.8000e-004 | 3.1400e-003 | 1.0000e-005 | 1.1900e-003 | 3.2000e-004 | 1.0000e-005 | 3.2000e-004 | 0.0000     | 0.9293   | 0.9293   | 2.0000e-005 |     |     | 0.9299 |
| **Total**         |     | 5.2000e-004 | 3.0100e-003 | 3.8600e-003 | 2.0000e-005 | 1.4900e-003 | 2.0000e-005 | 4.0000e-004 | 4.1000e-004 | 0.0000     | 2.1737   | 2.1737   | 8.0000e-005 |     |     | 2.1756 |

#### Unmitigated Construction Off-Site

| Category          | ROG | NOx   | CO | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|-------------------|-----|-------|----|-----|---------------|--------------|------------|---------------|--------------|------------|----------|----------|----------|-----------|-----|-----|------|
| **Hauling**       |     | 0.0000| 0.0000| 0.0000| 0.0000        | 0.0000       | 0.0000     | 0.0000        | 0.0000       | 0.0000     | 0.0000   | 0.0000   | 0.0000   | 0.0000    |     |     | 0.0000 |

---

**Vendor**

**Worker**

**Total**
### Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor</td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>1.3000e-004</td>
<td>8.0000e-005</td>
<td>9.4000e-004</td>
<td>0.0000</td>
<td>3.6000e-004</td>
<td>0.0000</td>
<td>3.6000e-004</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>0.0278</td>
<td>0.2788</td>
<td>1.0000e-005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.3000e-004</td>
<td>8.0000e-005</td>
<td>9.4000e-004</td>
<td>0.0000</td>
<td>3.6000e-004</td>
<td>0.0000</td>
<td>3.6000e-004</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>0.0278</td>
<td>0.2788</td>
<td>1.0000e-005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>1.3000e-004</td>
<td>8.0000e-005</td>
<td>9.4000e-004</td>
<td>0.0000</td>
<td>3.6000e-004</td>
<td>0.0000</td>
<td>3.6000e-004</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>0.0278</td>
<td>0.2788</td>
<td>1.0000e-005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.3000e-004</td>
<td>8.0000e-005</td>
<td>9.4000e-004</td>
<td>0.0000</td>
<td>3.6000e-004</td>
<td>0.0000</td>
<td>3.6000e-004</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>1.0000e-004</td>
<td>0.0000</td>
<td>0.0278</td>
<td>0.2788</td>
<td>1.0000e-005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 3.4 Grading - 2024

#### Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0262</td>
<td>0.0000</td>
<td>0.0262</td>
<td>0.0135</td>
<td>0.0000</td>
<td>0.0135</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Off-Road</td>
<td>6.6500e-003</td>
<td>0.0681</td>
<td>0.0590</td>
<td>1.2000e-004</td>
<td>2.9000e-003</td>
<td>2.9000e-003</td>
<td>2.6700e-003</td>
<td>0.0000</td>
<td>10.4256</td>
<td>10.4256</td>
<td>3.3700e-003</td>
<td>0.0000</td>
<td>10.5099</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6.6500e-003</td>
<td>0.0681</td>
<td>0.0590</td>
<td>1.2000e-004</td>
<td>0.0262</td>
<td>0.0291</td>
<td>0.0135</td>
<td>2.6700e-003</td>
<td>0.0161</td>
<td>0.0000</td>
<td>10.4256</td>
<td>10.4256</td>
<td>3.3700e-003</td>
<td>0.0000</td>
<td>10.5099</td>
<td></td>
</tr>
</tbody>
</table>

#### Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>1.8000e-004</td>
<td>1.1000e-004</td>
<td>1.2500e-003</td>
<td>0.0000</td>
<td>4.8000e-004</td>
<td>0.0000</td>
<td>4.8000e-004</td>
<td>1.3000e-004</td>
<td>0.0000</td>
<td>1.3000e-004</td>
<td>0.0000</td>
<td>0.3717</td>
<td>0.3717</td>
<td>1.0000e-005</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1.8000e-004</td>
<td>1.1000e-004</td>
<td>1.2500e-003</td>
<td>0.0000</td>
<td>4.8000e-004</td>
<td>0.0000</td>
<td>4.8000e-004</td>
<td>1.3000e-004</td>
<td>0.0000</td>
<td>1.3000e-004</td>
<td>0.0000</td>
<td>0.3717</td>
<td>0.3717</td>
<td>1.0000e-005</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

#### Mitigated Construction On-Site
<table>
<thead>
<tr>
<th>Category</th>
<th>tons/yr</th>
<th>MT/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugitive Dust</td>
<td>0.0102</td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0102</td>
<td></td>
</tr>
</tbody>
</table>

### Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>1.800e-004</td>
<td>1.100e-004</td>
<td>1.250e-003</td>
<td>0.0000</td>
<td>4.800e-004</td>
<td>0.0000</td>
<td>4.800e-004</td>
<td>1.300e-004</td>
<td>0.0000</td>
<td>1.300e-004</td>
<td>0.0000</td>
<td>0.3717</td>
<td>0.3717</td>
<td>1.000e-005</td>
<td>0.0000</td>
<td>0.3719</td>
</tr>
<tr>
<td>Total</td>
<td>1.800e-004</td>
<td>1.100e-004</td>
<td>1.250e-003</td>
<td>0.0000</td>
<td>4.800e-004</td>
<td>0.0000</td>
<td>4.800e-004</td>
<td>1.300e-004</td>
<td>0.0000</td>
<td>1.300e-004</td>
<td>0.0000</td>
<td>0.3717</td>
<td>0.3717</td>
<td>1.000e-005</td>
<td>0.0000</td>
<td>0.3719</td>
</tr>
</tbody>
</table>

### 3.5 Residential Building - Foundation - 2024

#### Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.0243</td>
<td>0.2218</td>
<td>0.2688</td>
<td>4.400e-004</td>
<td>0.0101</td>
<td>0.0101</td>
<td>9.520e-003</td>
<td>9.520e-003</td>
<td>0.0000</td>
<td>38.2551</td>
<td>38.2551</td>
<td>9.050e-003</td>
<td>0.0000</td>
<td>38.4813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0243</td>
<td>0.2218</td>
<td>0.2688</td>
<td>4.400e-004</td>
<td>0.0101</td>
<td>0.0101</td>
<td>9.520e-003</td>
<td>9.520e-003</td>
<td>0.0000</td>
<td>38.2551</td>
<td>38.2551</td>
<td>9.050e-003</td>
<td>0.0000</td>
<td>38.4813</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Unmitigated Construction Off-Site

| Category   | ROG     | NOx     | CO      | SO2    | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|------------|---------|---------|---------|-------|--------------|--------------|------------|----------------|--------------|------------|----------|----------|-----------|---------|-----|-----|------|
| Hauling    | 0.0000  | 0.0000  | 0.0000  | 0.0000| 0.0000       | 0.0000       | 0.0000     | 0.0000         | 0.0000       | 0.0000     | 0.0000  | 0.0000  | 0.0000    | 0.0000 |
| Vendor     | 2.8900e-003 | 0.1023 | 0.0255  | 3.6000e-004 | 9.0300e-003 | 1.2000e-004 | 9.1500e-003 | 2.6100e-003 | 1.1000e-004 | 2.7200e-003 | 0.0000 | 34.4697 | 34.4697 | 1.5500e-003 | 0.0000 | 34.5085 |
| Worker     | 0.0165  | 0.0105  | 0.1180  | 3.9000e-004 | 0.0449 | 3.1000e-004 | 0.0452 | 0.0119 | 2.8000e-004 | 0.0122 | 0.0000 | 34.9608 | 34.9608 | 8.1000e-004 | 0.0000 | 34.9810 |
| Total      | 0.0194  | 0.1128  | 0.1435  | 7.5000e-004 | 0.0539 | 4.3000e-004 | 0.0543 | 0.0145 | 3.9000e-004 | 0.0149 | 0.0000 | 69.4305 | 69.4305 | 9.0500e-003 | 0.0000 | 69.4895 |

### Mitigated Construction On-Site

| Category   | ROG     | NOx     | CO      | SO2    | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|------------|---------|---------|---------|-------|--------------|--------------|------------|----------------|--------------|------------|----------|----------|-----------|---------|-----|-----|------|
| Off-Road   | 0.0243  | 0.2218  | 0.2668  | 4.4000e-004 | 0.0101 | 0.0101 | 9.5200e-003 | 9.5200e-003 | 0.0000     | 38.2551 | 38.2551 | 9.0500e-003 | 0.0000 | 38.4812 |
| Total      | 0.0243  | 0.2218  | 0.2668  | 4.4000e-004 | 0.0101 | 0.0101 | 9.5200e-003 | 9.5200e-003 | 0.0000     | 38.2551 | 38.2551 | 9.0500e-003 | 0.0000 | 38.4812 |

### Mitigated Construction Off-Site
### 3.5 Residential Building - Foundation - 2025

#### Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>2.8900e-003</td>
<td>0.1023</td>
<td>0.0255</td>
<td>3.6000e-004</td>
<td>9.0000e-003</td>
<td>1.2000e-004</td>
<td>9.1500e-003</td>
<td>2.6100e-003</td>
<td>1.1000e-004</td>
<td>2.7200e-003</td>
<td>0.0000</td>
<td>34.4697</td>
<td>34.4697</td>
<td>1.5500e-003</td>
<td>0.0000</td>
<td>34.5085</td>
</tr>
<tr>
<td>Worker</td>
<td>0.0165</td>
<td>0.0105</td>
<td>0.1180</td>
<td>3.9000e-004</td>
<td>0.0449</td>
<td>3.1000e-004</td>
<td>0.0119</td>
<td>2.8000e-004</td>
<td>0.0122</td>
<td>0.0000</td>
<td>34.9608</td>
<td>34.9608</td>
<td>8.1000e-004</td>
<td>0.0000</td>
<td>34.9810</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0194</td>
<td>0.1128</td>
<td>0.1435</td>
<td>7.5000e-004</td>
<td>0.0539</td>
<td>4.3000e-004</td>
<td>0.0145</td>
<td>3.9000e-004</td>
<td>0.0149</td>
<td>0.0000</td>
<td>69.4305</td>
<td>69.4305</td>
<td>2.3600e-003</td>
<td>0.0000</td>
<td>69.4895</td>
<td></td>
</tr>
</tbody>
</table>

#### Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.0978</td>
<td>0.8916</td>
<td>1.1501</td>
<td>1.9300e-003</td>
<td>0.0377</td>
<td>0.0377</td>
<td>0.0355</td>
<td>0.0355</td>
<td>0.0000</td>
<td>165.8224</td>
<td>165.8224</td>
<td>0.0390</td>
<td>0.0000</td>
<td>166.7969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0978</td>
<td>0.8916</td>
<td>1.1501</td>
<td>1.9300e-003</td>
<td>0.0377</td>
<td>0.0377</td>
<td>0.0355</td>
<td>0.0355</td>
<td>0.0000</td>
<td>165.8224</td>
<td>165.8224</td>
<td>0.0390</td>
<td>0.0000</td>
<td>166.7969</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Hauling

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Worker</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.4383</td>
<td>0.0414</td>
<td>0.4797</td>
</tr>
<tr>
<td>0.1065</td>
<td>0.4735</td>
<td>0.5800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1600e-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2336</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.7900e-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2354</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.6600e-003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0647</td>
</tr>
<tr>
<td></td>
<td></td>
<td>294.1577</td>
</tr>
</tbody>
</table>

### Off-Road

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.0978</td>
<td>0.8916</td>
<td>1.1501</td>
<td>1.9300e-003</td>
<td>0.0377</td>
<td>0.0377</td>
<td>0.0355</td>
<td>0.0355</td>
<td>0.0355</td>
<td>0.0000</td>
<td>165.8222</td>
<td>165.8222</td>
<td>0.0390</td>
<td>0.0000</td>
<td>166.7967</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0978</td>
<td>0.8916</td>
<td>1.1501</td>
<td>1.9300e-003</td>
<td>0.0377</td>
<td>0.0377</td>
<td>0.0355</td>
<td>0.0355</td>
<td>0.0355</td>
<td>0.0000</td>
<td>165.8222</td>
<td>165.8222</td>
<td>0.0390</td>
<td>0.0000</td>
<td>166.7967</td>
<td></td>
</tr>
</tbody>
</table>

### Total

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.0799</td>
<td>0.4797</td>
<td>0.5800</td>
<td>3.1600e-003</td>
<td>0.2336</td>
<td>1.7900e-003</td>
<td>0.2354</td>
<td>0.0630</td>
<td>1.6600e-003</td>
<td>0.0647</td>
<td>0.0000</td>
<td>293.9132</td>
<td>293.9132</td>
<td>9.7800e-003</td>
<td>0.0000</td>
<td>294.1577</td>
</tr>
</tbody>
</table>
### 3.6 Residential Building - Shell & Core - 2024

#### Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>8.8300e-003</td>
<td>0.0807</td>
<td>0.0970</td>
<td>1.6000e-004</td>
<td>3.6800e-003</td>
<td>3.6800e-003</td>
<td>3.4600e-003</td>
<td>3.4600e-003</td>
<td>0.0000</td>
<td>13.9110</td>
<td>13.9110</td>
<td>3.2900e-003</td>
<td>0.0000</td>
<td>13.9932</td>
</tr>
<tr>
<td>Total</td>
<td>8.8300e-003</td>
<td>0.0807</td>
<td>0.0970</td>
<td>1.6000e-004</td>
<td>3.6800e-003</td>
<td>3.6800e-003</td>
<td>3.4600e-003</td>
<td>3.4600e-003</td>
<td>0.0000</td>
<td>13.9110</td>
<td>13.9110</td>
<td>3.2900e-003</td>
<td>0.0000</td>
<td>13.9932</td>
</tr>
</tbody>
</table>

#### Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>1.0500e-003</td>
<td>0.0372</td>
<td>9.2800e-003</td>
<td>1.3000e-004</td>
<td>3.2800e-003</td>
<td>4.0000e-005</td>
<td>3.3300e-003</td>
<td>9.5000e-004</td>
<td>4.0000e-005</td>
<td>9.9000e-004</td>
<td>0.0000</td>
<td>12.5344</td>
<td>12.5344</td>
<td>5.6000e-004</td>
</tr>
<tr>
<td>Worker</td>
<td>6.0100e-003</td>
<td>3.8100e-003</td>
<td>0.0429</td>
<td>1.4000e-004</td>
<td>0.0163</td>
<td>1.1000e-004</td>
<td>4.3400e-003</td>
<td>1.0000e-004</td>
<td>4.4400e-003</td>
<td>0.0000</td>
<td>12.7130</td>
<td>12.7130</td>
<td>2.9000e-004</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>7.0600e-003</td>
<td>0.0410</td>
<td>0.0522</td>
<td>2.7000e-004</td>
<td>0.0196</td>
<td>1.5000e-004</td>
<td>5.2900e-003</td>
<td>1.4000e-004</td>
<td>5.4300e-003</td>
<td>0.0000</td>
<td>25.2475</td>
<td>25.2475</td>
<td>8.5000e-004</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

#### Mitigated Construction On-Site
<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>PM2.5 Total</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>8.830e-003</td>
<td>0.0807</td>
<td>0.0970</td>
<td>1.6000e-004</td>
<td>3.6800e-003</td>
<td>3.6800e-003</td>
<td>3.4600e-003</td>
<td>3.4600e-003</td>
<td>0.0000</td>
<td>13.9109</td>
<td>13.9109</td>
<td>3.2900e-003</td>
<td>0.0000</td>
<td>13.9932</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.830e-003</td>
<td>0.0807</td>
<td>0.0970</td>
<td>1.6000e-004</td>
<td>3.6800e-003</td>
<td>3.6800e-003</td>
<td>3.4600e-003</td>
<td>3.4600e-003</td>
<td>0.0000</td>
<td>13.9109</td>
<td>13.9109</td>
<td>3.2900e-003</td>
<td>0.0000</td>
<td>13.9932</td>
<td></td>
</tr>
</tbody>
</table>

**Mitigated Construction Off-Site**

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>PM2.5 Total</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>1.0500e-003</td>
<td>0.0372</td>
<td>9.2800e-003</td>
<td>1.3000e-004</td>
<td>3.2800e-003</td>
<td>4.0000e-005</td>
<td>3.3300e-003</td>
<td>9.5000e-004</td>
<td>4.0000e-005</td>
<td>9.9000e-004</td>
<td>0.0000</td>
<td>12.5344</td>
<td>12.5344</td>
<td>5.6000e-004</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>6.0100e-003</td>
<td>3.8100e-003</td>
<td>0.0429</td>
<td>1.4000e-004</td>
<td>0.0163</td>
<td>1.1000e-004</td>
<td>0.0164</td>
<td>4.3400e-003</td>
<td>1.0000e-004</td>
<td>4.4400e-003</td>
<td>0.0000</td>
<td>12.7130</td>
<td>12.7130</td>
<td>2.9000e-004</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>7.0600e-003</td>
<td>0.0410</td>
<td>0.0522</td>
<td>2.7000e-004</td>
<td>0.0196</td>
<td>1.5000e-004</td>
<td>0.0198</td>
<td>5.2900e-003</td>
<td>1.4000e-004</td>
<td>5.4300e-003</td>
<td>0.0000</td>
<td>25.2475</td>
<td>25.2475</td>
<td>8.5000e-004</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

**3.6 Residential Building - Shell & Core - 2025**

**Unmitigated Construction On-Site**

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>PM2.5 Total</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.1272</td>
<td>1.1597</td>
<td>1.4959</td>
<td>2.5100e-003</td>
<td>0.0491</td>
<td>0.0491</td>
<td>0.0462</td>
<td>0.0462</td>
<td>0.0000</td>
<td>215.6851</td>
<td>215.6851</td>
<td>0.0507</td>
<td>0.0000</td>
<td>216.9526</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>ROG</td>
<td>NOx</td>
<td>CO</td>
<td>SO2</td>
<td>Fugitive PM10</td>
<td>Exhaust PM10</td>
<td>PM10 Total</td>
<td>Fugitive PM2.5</td>
<td>Exhaust PM2.5</td>
<td>PM2.5 Total</td>
<td>Bio-CO2</td>
<td>NBio-CO2</td>
<td>Total CO2</td>
<td>CH4</td>
<td>N2O</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td><strong>Unmitigated Construction Off-Site</strong></td>
<td></td>
</tr>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0158</td>
<td>0.5701</td>
<td>0.1385</td>
<td>2.0100e-003</td>
<td>0.0509</td>
<td>6.4000e-004</td>
<td>0.0515</td>
<td>6.1000e-004</td>
<td>0.0153</td>
<td>0.0000</td>
<td>193.0620</td>
<td>193.0620</td>
<td>8.5900e-003</td>
<td>0.0000</td>
<td>193.2767</td>
</tr>
<tr>
<td>Worker</td>
<td>0.0882</td>
<td>0.0538</td>
<td>0.6199</td>
<td>2.0900e-003</td>
<td>0.2529</td>
<td>1.9900e-003</td>
<td>0.2546</td>
<td>1.8500e-003</td>
<td>0.0688</td>
<td>0.0000</td>
<td>189.2307</td>
<td>189.2307</td>
<td>4.1300e-003</td>
<td>0.0000</td>
<td>189.3340</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>0.1040</td>
<td>0.6239</td>
<td>0.7544</td>
<td>4.1000e-003</td>
<td>0.3038</td>
<td>2.3300e-003</td>
<td>0.3061</td>
<td>2.1600e-003</td>
<td>0.0841</td>
<td>0.0000</td>
<td>382.2927</td>
<td>382.2927</td>
<td>0.0127</td>
<td>0.0000</td>
<td>382.6107</td>
</tr>
<tr>
<td><strong>Mitigated Construction On-Site</strong></td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>0.1272</td>
<td>1.1597</td>
<td>1.4959</td>
<td>2.5100e-003</td>
<td>0.0491</td>
<td>0.0491</td>
<td>0.0462</td>
<td>0.0462</td>
<td>0.0462</td>
<td>0.0000</td>
<td>215.6848</td>
<td>215.6848</td>
<td>0.0507</td>
<td>0.0000</td>
<td>216.9524</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>0.1272</td>
<td>1.1597</td>
<td>1.4959</td>
<td>2.5100e-003</td>
<td>0.0491</td>
<td>0.0491</td>
<td>0.0462</td>
<td>0.0462</td>
<td>0.0462</td>
<td>0.0000</td>
<td>215.6848</td>
<td>215.6848</td>
<td>0.0507</td>
<td>0.0000</td>
<td>216.9524</td>
</tr>
</tbody>
</table>

**Mitigated Construction Off-Site**
### 3.7 Residential Building - Building - 2025

#### Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0158</td>
<td>0.5701</td>
<td>0.1385</td>
<td>2.0100e-003</td>
<td>0.0590</td>
<td>6.4000e-004</td>
<td>0.0515</td>
<td>0.0147</td>
<td>6.1000e-004</td>
<td>0.0153</td>
<td>0.0000</td>
<td>193.0620</td>
<td>193.0620</td>
<td>8.5900e-003</td>
<td>0.0000</td>
<td>193.2767</td>
</tr>
<tr>
<td>Worker</td>
<td>0.0862</td>
<td>0.0538</td>
<td>0.6159</td>
<td>2.0900e-003</td>
<td>0.2529</td>
<td>1.6900e-003</td>
<td>0.2546</td>
<td>0.0672</td>
<td>1.5500e-003</td>
<td>0.0688</td>
<td>0.0000</td>
<td>189.2307</td>
<td>189.2307</td>
<td>4.1300e-003</td>
<td>0.0000</td>
<td>189.3340</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>0.1040</td>
<td>0.6239</td>
<td>0.7544</td>
<td>4.1000e-003</td>
<td>0.3038</td>
<td>2.3300e-003</td>
<td>0.3061</td>
<td>0.0820</td>
<td>2.1600e-003</td>
<td>0.0841</td>
<td>0.0000</td>
<td>382.2927</td>
<td>382.2927</td>
<td>8.5900e-003</td>
<td>0.0000</td>
<td>382.6107</td>
</tr>
</tbody>
</table>

---

#### Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.1504</td>
<td>1.3717</td>
<td>1.7693</td>
<td>2.9700e-003</td>
<td>0.0580</td>
<td>0.0580</td>
<td>0.0546</td>
<td>0.0546</td>
<td>0.0000</td>
<td>255.1114</td>
<td>255.1114</td>
<td>0.0600</td>
<td>0.0000</td>
<td>256.6106</td>
<td>0.0000</td>
<td>256.6106</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>0.1504</td>
<td>1.3717</td>
<td>1.7693</td>
<td>2.9700e-003</td>
<td>0.0580</td>
<td>0.0580</td>
<td>0.0546</td>
<td>0.0546</td>
<td>0.0000</td>
<td>255.1114</td>
<td>255.1114</td>
<td>0.0600</td>
<td>0.0000</td>
<td>256.6106</td>
<td>0.0000</td>
<td>256.6106</td>
</tr>
</tbody>
</table>
### Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.1504</td>
<td>1.3717</td>
<td>1.7693</td>
<td>2.9700e-003</td>
<td>0.0580</td>
<td>0.0580</td>
<td>0.0546</td>
<td>0.0546</td>
<td>0.0000</td>
<td>255.1111</td>
<td>255.1111</td>
<td>0.0600</td>
<td>0.0000</td>
<td>256.6103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.1504</td>
<td>1.3717</td>
<td>1.7693</td>
<td>2.9700e-003</td>
<td>0.0580</td>
<td>0.0580</td>
<td>0.0546</td>
<td>0.0546</td>
<td>0.0000</td>
<td>255.1111</td>
<td>255.1111</td>
<td>0.0600</td>
<td>0.0000</td>
<td>256.6103</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0187</td>
<td>0.6743</td>
<td>0.1638</td>
<td>2.3800e-003</td>
<td>0.0602</td>
<td>7.6000e-004</td>
<td>0.0610</td>
<td>0.0174</td>
<td>7.2000e-004</td>
<td>0.0181</td>
<td>0.0000</td>
<td>228.3529</td>
<td>228.3529</td>
<td>0.0102</td>
<td>0.0000</td>
<td>228.6069</td>
</tr>
<tr>
<td>Worker</td>
<td>0.1043</td>
<td>0.0636</td>
<td>0.7285</td>
<td>2.4700e-003</td>
<td>0.2991</td>
<td>2.0000e-003</td>
<td>0.3011</td>
<td>0.0795</td>
<td>1.8400e-003</td>
<td>0.0814</td>
<td>0.0000</td>
<td>223.8212</td>
<td>223.8212</td>
<td>4.8900e-003</td>
<td>0.0000</td>
<td>223.9435</td>
</tr>
<tr>
<td>Total</td>
<td>0.1230</td>
<td>0.7380</td>
<td>0.8923</td>
<td>4.8500e-003</td>
<td>0.3593</td>
<td>2.7600e-003</td>
<td>0.3621</td>
<td>0.0969</td>
<td>2.5600e-003</td>
<td>0.0995</td>
<td>0.0000</td>
<td>452.1741</td>
<td>452.1741</td>
<td>0.0151</td>
<td>0.0000</td>
<td>452.5503</td>
</tr>
</tbody>
</table>
### 3.8 Office Building - Foundation - 2025

#### Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>N Bio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.0752</td>
<td>0.6858</td>
<td>0.8847</td>
<td>1.4800e-003</td>
<td>0.0290</td>
<td>0.0290</td>
<td>0.0273</td>
<td>0.0273</td>
<td>0.0000</td>
<td>127.5557</td>
<td>0.0300</td>
<td>0.0000</td>
<td>128.3053</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0752</td>
<td>0.6858</td>
<td>0.8847</td>
<td>1.4800e-003</td>
<td>0.0290</td>
<td>0.0290</td>
<td>0.0273</td>
<td>0.0273</td>
<td>0.0000</td>
<td>127.5557</td>
<td>0.0300</td>
<td>0.0000</td>
<td>128.3053</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>N Bio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>9.3500e-003</td>
<td>0.3372</td>
<td>0.0819</td>
<td>1.1900e-003</td>
<td>0.0301</td>
<td>3.8000e-004</td>
<td>0.0305</td>
<td>8.7000e-003</td>
<td>3.6000e-004</td>
<td>9.0600e-003</td>
<td>0.0000</td>
<td>114.1764</td>
<td>114.1764</td>
<td>5.0800e-003</td>
<td>0.0000</td>
<td>114.3034</td>
</tr>
<tr>
<td>Worker</td>
<td>0.0521</td>
<td>0.0318</td>
<td>0.3643</td>
<td>1.2400e-003</td>
<td>0.1496</td>
<td>1.0000e-003</td>
<td>0.1506</td>
<td>0.0398</td>
<td>9.2000e-004</td>
<td>0.0407</td>
<td>0.0000</td>
<td>111.9106</td>
<td>111.9106</td>
<td>2.4400e-003</td>
<td>0.0000</td>
<td>111.9717</td>
</tr>
<tr>
<td>Total</td>
<td>0.0615</td>
<td>0.3690</td>
<td>0.4462</td>
<td>2.4300e-003</td>
<td>0.1797</td>
<td>1.3800e-003</td>
<td>0.1810</td>
<td>0.0485</td>
<td>1.2800e-003</td>
<td>0.0498</td>
<td>0.0000</td>
<td>226.0871</td>
<td>226.0871</td>
<td>7.5200e-003</td>
<td>0.0000</td>
<td>226.2752</td>
</tr>
</tbody>
</table>

#### Mitigated Construction On-Site

---

**Note:** The table above provides a detailed breakdown of emissions for different categories, including ROG, NOx, CO, SO2, and PM levels, as well as Bio-CO2 and N Bio-CO2 emissions. The values are presented in tons/yr and MT/yr.
<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.0752</td>
<td>0.6858</td>
<td>0.8847</td>
<td>1.4800e-003</td>
<td>0.0290</td>
<td>0.0290</td>
<td>0.0273</td>
<td>0.0273</td>
<td>0.0000</td>
<td>127.5556</td>
<td>127.5556</td>
<td>0.0300</td>
<td>0.0000</td>
<td>128.3052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0752</td>
<td>0.6858</td>
<td>0.8847</td>
<td>1.4800e-003</td>
<td>0.0290</td>
<td>0.0290</td>
<td>0.0273</td>
<td>0.0273</td>
<td>0.0000</td>
<td>127.5556</td>
<td>127.5556</td>
<td>0.0300</td>
<td>0.0000</td>
<td>128.3052</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>9.3500e-003</td>
<td>0.3372</td>
<td>0.0819</td>
<td>1.1900e-003</td>
<td>0.0301</td>
<td>3.8000e-004</td>
<td>0.0305</td>
<td>8.7000e-003</td>
<td>3.6000e-004</td>
<td>9.6000e-003</td>
<td>0.0000</td>
<td>114.1764</td>
<td>114.1764</td>
<td>5.0800e-003</td>
<td>0.0000</td>
<td>114.3034</td>
</tr>
<tr>
<td>Worker</td>
<td>0.0521</td>
<td>0.0318</td>
<td>0.3643</td>
<td>1.2400e-003</td>
<td>0.1496</td>
<td>1.0000e-003</td>
<td>0.1506</td>
<td>9.2000e-004</td>
<td>0.0407</td>
<td>0.0000</td>
<td>111.9106</td>
<td>111.9106</td>
<td>2.4400e-003</td>
<td>0.0000</td>
<td>111.9717</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0615</td>
<td>0.3690</td>
<td>0.4482</td>
<td>2.4300e-003</td>
<td>0.1797</td>
<td>1.3800e-003</td>
<td>0.1810</td>
<td>1.2800e-003</td>
<td>0.0498</td>
<td>0.0000</td>
<td>226.0871</td>
<td>226.0871</td>
<td>7.5200e-003</td>
<td>0.0000</td>
<td>226.2752</td>
<td></td>
</tr>
</tbody>
</table>

3.9 Office Building - Shell & Core - 2025

Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.0903</td>
<td>0.8230</td>
<td>1.0616</td>
<td>1.7800e-003</td>
<td>0.0348</td>
<td>0.0348</td>
<td>0.0328</td>
<td>0.0328</td>
<td>0.0000</td>
<td>153.0668</td>
<td>153.0668</td>
<td>0.0360</td>
<td>0.0000</td>
<td>153.9664</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- SO2: Sulfur Dioxide
- NOx: Nitric Oxide
- CO: Carbon Monoxide
- PM10: Particulate Matter 10 microns or less
- PM2.5: Particulate Matter 2.5 microns or less
- Bio-CO2: Bio-Carbon Dioxide
- NBio-CO2: Non-Bio-Carbon Dioxide
- Total CO2: Total Carbon Dioxide
- CH4: Methane
- N2O: Nitrous Oxide
- CO2e: Carbon Dioxide Equivalent
## Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
<td>153.0667</td>
<td>153.0667</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0112</td>
<td>0.4046</td>
<td>0.0983</td>
<td>1.4300e-003</td>
<td>0.0361</td>
<td>4.5000e-004</td>
<td>0.0366</td>
<td>0.0104</td>
<td>4.3000e-004</td>
<td>0.0109</td>
<td>0.0000</td>
<td>137.0117</td>
<td>137.0117</td>
<td>6.1000e-003</td>
<td>137.1641</td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>0.0626</td>
<td>0.0382</td>
<td>0.4371</td>
<td>1.4800e-003</td>
<td>0.1795</td>
<td>1.2000e-003</td>
<td>0.1807</td>
<td>0.0477</td>
<td>1.1000e-003</td>
<td>0.0488</td>
<td>0.0000</td>
<td>134.2928</td>
<td>134.2928</td>
<td>2.9000e-003</td>
<td>134.3661</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>0.0738</td>
<td>0.4428</td>
<td>0.5354</td>
<td>2.9100e-003</td>
<td>0.2156</td>
<td>1.6500e-003</td>
<td>0.2172</td>
<td>0.0582</td>
<td>1.5300e-003</td>
<td>0.0597</td>
<td>0.0000</td>
<td>271.3045</td>
<td>271.3045</td>
<td>9.0300e-003</td>
<td>271.5302</td>
<td></td>
</tr>
</tbody>
</table>

## Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.0903</td>
<td>0.8230</td>
<td>1.0616</td>
<td>1.7800e-003</td>
<td>0.0348</td>
<td>0.0348</td>
<td>0.0328</td>
<td>0.0328</td>
<td>0.0000</td>
<td>153.0667</td>
<td>153.0667</td>
<td>0.0360</td>
<td>0.0000</td>
<td>153.9662</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>0.0903</td>
<td>0.8230</td>
<td>1.0616</td>
<td>1.7800e-003</td>
<td>0.0348</td>
<td>0.0348</td>
<td>0.0328</td>
<td>0.0328</td>
<td>0.0000</td>
<td>153.0667</td>
<td>153.0667</td>
<td>0.0360</td>
<td>0.0000</td>
<td>153.9662</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Mitigated Construction Off-Site
### 3.10 Office Building - Building - 2025

**Unmitigated Construction On-Site**

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO₂</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO₂</th>
<th>NBio-CO₂</th>
<th>Total CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0112</td>
<td>0.4046</td>
<td>0.0983</td>
<td>1.4300e-003</td>
<td>0.0361</td>
<td>4.5000e-004</td>
<td>0.0109</td>
<td>0.0109</td>
<td>0.0109</td>
<td>0.0109</td>
<td>0.0109</td>
<td>0.0109</td>
<td>0.0109</td>
<td>0.0109</td>
<td>0.0109</td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>0.0626</td>
<td>0.0382</td>
<td>0.4071</td>
<td>1.4800e-003</td>
<td>0.1795</td>
<td>1.2000e-003</td>
<td>0.0179</td>
<td>0.0179</td>
<td>0.0179</td>
<td>0.0179</td>
<td>0.0179</td>
<td>0.0179</td>
<td>0.0179</td>
<td>0.0179</td>
<td>0.0179</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0738</td>
<td>0.4428</td>
<td>0.5354</td>
<td>2.9100e-003</td>
<td>0.2156</td>
<td>1.6500e-003</td>
<td>0.2156</td>
<td>0.2156</td>
<td>0.2156</td>
<td>0.2156</td>
<td>0.2156</td>
<td>0.2156</td>
<td>0.2156</td>
<td>0.2156</td>
<td>0.2156</td>
<td></td>
</tr>
</tbody>
</table>

### Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO₂</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO₂</th>
<th>NBio-CO₂</th>
<th>Total CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.1155</td>
<td>1.0537</td>
<td>1.3592</td>
<td>2.2800e-003</td>
<td>0.0446</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.1155</td>
<td>1.0537</td>
<td>1.3592</td>
<td>2.2800e-003</td>
<td>0.0446</td>
</tr>
</tbody>
</table>

Unmitigated Construction Off-Site
## Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>0.1155</td>
<td>1.0537</td>
<td>1.3592</td>
<td>2.2800e-03</td>
<td>0.0446</td>
<td>0.0446</td>
<td>0.0419</td>
<td>0.0419</td>
<td>0.0000</td>
<td>195.9717</td>
<td>195.9717</td>
<td>0.0461</td>
<td>0.0000</td>
<td>197.1234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.1155</td>
<td>1.0537</td>
<td>1.3592</td>
<td>2.2800e-03</td>
<td>0.0446</td>
<td>0.0446</td>
<td>0.0419</td>
<td>0.0419</td>
<td>0.0000</td>
<td>195.9717</td>
<td>195.9717</td>
<td>0.0461</td>
<td>0.0000</td>
<td>197.1234</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0144</td>
<td>0.5180</td>
<td>0.1258</td>
<td>1.8300e-03</td>
<td>0.0463</td>
<td>5.8000e-04</td>
<td>0.0468</td>
<td>0.0134</td>
<td>5.6000e-04</td>
<td>0.0139</td>
<td>0.0000</td>
<td>175.4165</td>
<td>175.4165</td>
<td>7.8100e-03</td>
<td>0.0000</td>
<td>175.6117</td>
</tr>
<tr>
<td>Worker</td>
<td>0.0801</td>
<td>0.0489</td>
<td>0.5596</td>
<td>1.9000e-03</td>
<td>0.2298</td>
<td>1.5300e-03</td>
<td>0.2313</td>
<td>0.0611</td>
<td>1.4100e-03</td>
<td>0.0625</td>
<td>0.0000</td>
<td>171.9354</td>
<td>171.9354</td>
<td>3.7500e-03</td>
<td>0.0000</td>
<td>172.0293</td>
</tr>
<tr>
<td>Total</td>
<td>0.0945</td>
<td>0.5669</td>
<td>0.6855</td>
<td>3.7300e-03</td>
<td>0.2760</td>
<td>2.1100e-03</td>
<td>0.2781</td>
<td>0.0745</td>
<td>1.9700e-03</td>
<td>0.0764</td>
<td>0.0000</td>
<td>347.3519</td>
<td>347.3519</td>
<td>0.0116</td>
<td>0.0000</td>
<td>347.6409</td>
</tr>
</tbody>
</table>
### 3.10 Office Building - Building - 2026

**Unmitigated Construction On-Site**

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>4.7900e-003</td>
<td>0.0436</td>
<td>0.0563</td>
<td>9.0000e-005</td>
<td>1.8500e-003</td>
<td>1.8500e-003</td>
<td>1.7400e-003</td>
<td>1.7400e-003</td>
<td>0.0000</td>
<td>8.1172</td>
<td>8.1172</td>
<td>1.9100e-003</td>
<td>0.0000</td>
<td>8.1649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.7900e-003</td>
<td>0.0436</td>
<td>0.0563</td>
<td>9.0000e-005</td>
<td>1.8500e-003</td>
<td>1.8500e-003</td>
<td>1.7400e-003</td>
<td>1.7400e-003</td>
<td>0.0000</td>
<td>8.1172</td>
<td>8.1172</td>
<td>1.9100e-003</td>
<td>0.0000</td>
<td>8.1649</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Unmitigated Construction Off-Site**

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>5.8000e-004</td>
<td>0.0212</td>
<td>5.0500e-003</td>
<td>8.0000e-005</td>
<td>1.9200e-003</td>
<td>2.0000e-005</td>
<td>1.9400e-003</td>
<td>5.5000e-004</td>
<td>2.0000e-005</td>
<td>5.8000e-004</td>
<td>0.0000</td>
<td>7.2234</td>
<td>7.2234</td>
<td>3.2000e-004</td>
<td>0.0000</td>
<td>7.2314</td>
</tr>
<tr>
<td>Worker</td>
<td>3.1500e-003</td>
<td>1.8600e-003</td>
<td>0.0216</td>
<td>8.0000e-005</td>
<td>9.5200e-003</td>
<td>6.0000e-005</td>
<td>9.5800e-003</td>
<td>2.5300e-003</td>
<td>6.0000e-005</td>
<td>2.5900e-003</td>
<td>0.0000</td>
<td>6.8652</td>
<td>6.8652</td>
<td>1.4000e-004</td>
<td>0.0000</td>
<td>6.8687</td>
</tr>
<tr>
<td>Total</td>
<td>3.7300e-003</td>
<td>0.0231</td>
<td>0.0267</td>
<td>1.6000e-004</td>
<td>0.0114</td>
<td>8.0000e-005</td>
<td>0.0115</td>
<td>3.0800e-003</td>
<td>8.0000e-005</td>
<td>3.1700e-003</td>
<td>0.0000</td>
<td>14.0886</td>
<td>14.0886</td>
<td>4.6000e-004</td>
<td>0.0000</td>
<td>14.1001</td>
</tr>
</tbody>
</table>

**Mitigated Construction On-Site**
### Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>4.7900e-003</td>
<td>0.0436</td>
<td>0.0563</td>
<td>9.0000e-005</td>
<td>1.8500e-003</td>
<td>1.8500e-003</td>
<td>1.7400e-003</td>
<td>1.7400e-003</td>
<td>0.0000</td>
<td>8.1172</td>
<td>8.1172</td>
<td>1.9100e-003</td>
<td>0.0000</td>
<td>8.1649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4.7900e-003</td>
<td>0.0436</td>
<td>0.0563</td>
<td>9.0000e-005</td>
<td>1.8500e-003</td>
<td>1.8500e-003</td>
<td>1.7400e-003</td>
<td>1.7400e-003</td>
<td>0.0000</td>
<td>8.1172</td>
<td>8.1172</td>
<td>1.9100e-003</td>
<td>0.0000</td>
<td>8.1649</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### 3.11 Paving - 2026

### Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>7.3800e-003</td>
<td>0.0078</td>
<td>0.1096</td>
<td>1.7000e-004</td>
<td>3.1700e-003</td>
<td>3.1700e-003</td>
<td>2.9300e-003</td>
<td>2.9300e-003</td>
<td>0.0000</td>
<td>14.7404</td>
<td>14.7404</td>
<td>4.6300e-003</td>
<td>0.0000</td>
<td>14.8562</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker</td>
<td>4.7000e-004</td>
<td>2.8000e-004</td>
<td>3.2500e-003</td>
<td>1.0000e-005</td>
<td>1.4300e-003</td>
<td>1.0000e-005</td>
<td>1.4400e-003</td>
<td>3.8000e-004</td>
<td>1.0000e-005</td>
<td>3.9000e-004</td>
<td>0.0000</td>
<td>1.0324</td>
<td>1.0324</td>
<td>2.0000e-005</td>
<td>0.0000</td>
<td>1.0329</td>
</tr>
<tr>
<td>Total</td>
<td>4.7000e-004</td>
<td>2.8000e-004</td>
<td>3.2500e-003</td>
<td>1.0000e-005</td>
<td>1.4300e-003</td>
<td>1.0000e-005</td>
<td>1.4400e-003</td>
<td>3.8000e-004</td>
<td>1.0000e-005</td>
<td>3.9000e-004</td>
<td>0.0000</td>
<td>1.0324</td>
<td>1.0324</td>
<td>2.0000e-005</td>
<td>0.0000</td>
<td>1.0329</td>
</tr>
</tbody>
</table>

### Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road</td>
<td>7.3800e-003</td>
<td>0.0678</td>
<td>0.1096</td>
<td>1.7000e-004</td>
<td>3.1700e-003</td>
<td>3.1700e-003</td>
<td>2.9300e-003</td>
<td>2.9300e-003</td>
<td>0.0000</td>
<td>14.7404</td>
<td>14.7404</td>
<td>4.6300e-003</td>
<td>0.0000</td>
<td>14.8562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paving</td>
<td>4.3000e-004</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7.8100e-003</td>
<td>0.0678</td>
<td>0.1096</td>
<td>1.7000e-004</td>
<td>3.1700e-003</td>
<td>3.1700e-003</td>
<td>2.9300e-003</td>
<td>2.9300e-003</td>
<td>0.0000</td>
<td>14.7404</td>
<td>14.7404</td>
<td>4.6300e-003</td>
<td>0.0000</td>
<td>14.8562</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Mitigated Construction Off-Site
### 3.12 Arch Coating - 2026

#### Unmitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>4.7000e-004</td>
<td>2.8000e-004</td>
<td>3.2500e-003</td>
<td>1.0000e-005</td>
<td>1.4300e-003</td>
<td>1.4400e-003</td>
<td>3.8000e-004</td>
<td>1.0000e-005</td>
<td>3.9000e-004</td>
<td>0.0000</td>
<td>1.0324</td>
<td>1.0324</td>
<td>2.0000e-005</td>
<td>0.0000</td>
<td>1.0329</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>4.7000e-004</td>
<td>2.8000e-004</td>
<td>3.2500e-003</td>
<td>1.0000e-005</td>
<td>1.4300e-003</td>
<td>1.4400e-003</td>
<td>3.8000e-004</td>
<td>1.0000e-005</td>
<td>3.9000e-004</td>
<td>0.0000</td>
<td>1.0324</td>
<td>1.0324</td>
<td>2.0000e-005</td>
<td>0.0000</td>
<td>1.0329</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

#### Unmitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archit. Coating</td>
<td>5.6021</td>
<td>0.0000</td>
</tr>
<tr>
<td>Off-Road</td>
<td>1.5400e-003</td>
<td>0.0103</td>
<td>0.0163</td>
<td>3.0000e-005</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>0.0000</td>
<td>2.2979</td>
<td>2.2979</td>
<td>1.3000e-004</td>
<td>0.0000</td>
<td>2.3011</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5.6037</td>
<td>0.0103</td>
<td>0.0163</td>
<td>3.0000e-005</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>0.0000</td>
<td>2.2979</td>
<td>2.2979</td>
<td>1.3000e-004</td>
<td>0.0000</td>
<td>2.3011</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

#### Unmitigated Construction Off-Site
### Mitigated Construction On-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archit. Coating</td>
<td>5.6021</td>
<td>0.0103</td>
<td>0.0163</td>
<td>3.0000e-005</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>0.0000</td>
<td>2.2979</td>
<td>2.2979</td>
<td>1.3000e-004</td>
<td>0.0000</td>
<td>2.3011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Road</td>
<td>1.5400e-003</td>
<td>0.0103</td>
<td>0.0163</td>
<td>3.0000e-005</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>0.0000</td>
<td>2.2979</td>
<td>2.2979</td>
<td>1.3000e-004</td>
<td>0.0000</td>
<td>2.3011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5.6037</td>
<td>0.0103</td>
<td>0.0163</td>
<td>3.0000e-005</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>4.6000e-004</td>
<td>0.0000</td>
<td>2.2979</td>
<td>2.2979</td>
<td>1.3000e-004</td>
<td>0.0000</td>
<td>2.3011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Mitigated Construction Off-Site

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauling</td>
<td>0.0000</td>
</tr>
<tr>
<td>Vendor</td>
<td>0.0000</td>
</tr>
<tr>
<td>Worker</td>
<td>1.6100e-003</td>
<td>9.5000e-004</td>
<td>0.0111</td>
<td>4.0000e-005</td>
<td>4.8700e-003</td>
<td>3.0000e-005</td>
<td>4.9000e-003</td>
<td>1.2900e-003</td>
<td>3.0000e-005</td>
<td>1.3200e-003</td>
<td>0.0000</td>
<td>3.5100</td>
<td>3.5100</td>
<td>7.0000e-005</td>
<td>0.0000</td>
<td>3.5118</td>
</tr>
<tr>
<td>Total</td>
<td>1.6100e-003</td>
<td>9.5000e-004</td>
<td>0.0111</td>
<td>4.0000e-005</td>
<td>4.8700e-003</td>
<td>3.0000e-005</td>
<td>4.9000e-003</td>
<td>1.2900e-003</td>
<td>3.0000e-005</td>
<td>1.3200e-003</td>
<td>0.0000</td>
<td>3.5100</td>
<td>3.5100</td>
<td>7.0000e-005</td>
<td>0.0000</td>
<td>3.5118</td>
</tr>
</tbody>
</table>
4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

<table>
<thead>
<tr>
<th>Category</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio-CO2</th>
<th>NBio-CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>0.6848</td>
<td>4.0886</td>
<td>7.5505</td>
<td>0.0323</td>
<td>2.8113</td>
<td>0.0230</td>
<td>2.8343</td>
<td>0.7542</td>
<td>0.0215</td>
<td>0.7756</td>
<td>0.0000</td>
<td>2.995782</td>
<td>2.9957822</td>
<td>0.1284</td>
<td>0.0000</td>
<td>2.9989927</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>0.6848</td>
<td>4.0886</td>
<td>7.5505</td>
<td>0.0323</td>
<td>2.8113</td>
<td>0.0230</td>
<td>2.8343</td>
<td>0.7542</td>
<td>0.0215</td>
<td>0.7756</td>
<td>0.0000</td>
<td>2.995782</td>
<td>2.9957822</td>
<td>0.1284</td>
<td>0.0000</td>
<td>2.9989927</td>
</tr>
</tbody>
</table>

4.2 Trip Summary Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Average Daily Trip Rate</th>
<th>Unmitigated</th>
<th>Mitigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday</td>
<td>Saturday</td>
<td>Sunday</td>
</tr>
<tr>
<td>Condo/Townhouse High Rise</td>
<td>1,191.00</td>
<td>1,191.00</td>
<td>1,191.00</td>
</tr>
<tr>
<td>Day-Care Center</td>
<td>174.00</td>
<td>174.00</td>
<td>174.00</td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>General Office Building</td>
<td>304.00</td>
<td>304.00</td>
<td>304.00</td>
</tr>
<tr>
<td>Health Club</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>699.02</td>
<td>699.02</td>
<td>699.02</td>
</tr>
<tr>
<td>Library</td>
<td>820.00</td>
<td>820.00</td>
<td>820.00</td>
</tr>
<tr>
<td>Parking Lot</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>3,188.02</td>
<td>3,188.02</td>
<td>3,188.02</td>
</tr>
</tbody>
</table>

4.3 Trip Type Information

<table>
<thead>
<tr>
<th>Land Use</th>
<th>H-W or C-W</th>
<th>H-S or C-C</th>
<th>H-O or C-NW</th>
<th>H-W or C-</th>
<th>H-S or C-C</th>
<th>H-O or C-NW</th>
<th>Primary</th>
<th>Diverted</th>
<th>Pass-by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Purpose %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 4.4 Fleet Mix

<table>
<thead>
<tr>
<th>Land Use</th>
<th>LDA</th>
<th>LDT1</th>
<th>LDT2</th>
<th>MDV</th>
<th>LHD1</th>
<th>LHD2</th>
<th>MHD</th>
<th>HHD</th>
<th>OBUS</th>
<th>UBUS</th>
<th>MCY</th>
<th>SBUS</th>
<th>MH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/Townhouse High Rise</td>
<td>0.56</td>
<td>0.03</td>
<td>0.19</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Day-Care Center</td>
<td>0.56</td>
<td>0.03</td>
<td>0.19</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>0.56</td>
<td>0.03</td>
<td>0.19</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>General Office Building</td>
<td>0.56</td>
<td>0.03</td>
<td>0.19</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Health Club</td>
<td>0.56</td>
<td>0.03</td>
<td>0.19</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>0.56</td>
<td>0.03</td>
<td>0.19</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Library</td>
<td>0.56</td>
<td>0.03</td>
<td>0.19</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Parking Lot</td>
<td>0.56</td>
<td>0.03</td>
<td>0.19</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

### 5.0 Energy Detail

Historical Energy Use: N

### 5.1 Mitigation Measures Energy
### 5.2 Energy by Land Use - Natural Gas

#### Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Natural Gas Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/Townhouse High Rise</td>
<td>2.22862e+006</td>
<td>0.0120</td>
<td>0.1027</td>
<td>0.0437</td>
<td>6.6000e-004</td>
<td>8.3000e-003</td>
<td>8.3000e-003</td>
<td>8.3000e-003</td>
<td>0.0000</td>
<td>118.9278</td>
<td>118.9278</td>
<td>2.2800e-003</td>
<td>2.1800e-003</td>
<td>119.6345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day-Care Center</td>
<td>29600</td>
<td>1.6000e-004</td>
<td>1.4500e-003</td>
<td>1.0000e-005</td>
<td>1.1000e-004</td>
<td>1.1000e-004</td>
<td>1.1000e-004</td>
<td>1.1000e-004</td>
<td>0.0000</td>
<td>1.5796</td>
<td>1.5796</td>
<td>3.0000e-005</td>
<td>3.0000e-005</td>
<td>1.5890</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Office Building</td>
<td>767220</td>
<td>4.1400e-003</td>
<td>0.0376</td>
<td>0.0316</td>
<td>2.3000e-004</td>
<td>2.8600e-003</td>
<td>2.8600e-003</td>
<td>2.8600e-003</td>
<td>0.0000</td>
<td>40.9418</td>
<td>40.9418</td>
<td>7.8000e-004</td>
<td>7.5000e-004</td>
<td>41.1851</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>254380</td>
<td>1.3700e-003</td>
<td>0.0125</td>
<td>0.0105</td>
<td>7.0000e-005</td>
<td>9.5000e-004</td>
<td>9.5000e-004</td>
<td>9.5000e-004</td>
<td>0.0000</td>
<td>13.5747</td>
<td>13.5747</td>
<td>2.6000e-004</td>
<td>2.5000e-004</td>
<td>13.6554</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Lot</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>0.0190</strong></td>
<td><strong>0.1661</strong></td>
<td><strong>0.0970</strong></td>
<td><strong>1.0400e-003</strong></td>
<td><strong>0.0131</strong></td>
<td><strong>0.0131</strong></td>
<td><strong>0.0131</strong></td>
<td><strong>0.0131</strong></td>
<td><strong>0.0000</strong></td>
<td><strong>187.9784</strong></td>
<td><strong>187.9784</strong></td>
<td><strong>3.6000e-003</strong></td>
<td><strong>3.4500e-003</strong></td>
<td><strong>189.0955</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Mitigated
### Natural Gas Use

<table>
<thead>
<tr>
<th>Land Use</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/Townhouse</td>
<td>0.0120</td>
<td>0.1027</td>
<td>0.0437</td>
<td>6.6000e-004</td>
<td>8.3000e-003</td>
<td>8.3000e-003</td>
<td>8.3000e-003</td>
<td>118.9278</td>
<td>118.9278</td>
<td>2.2800e-003</td>
<td>2.1800e-003</td>
<td>119.6345</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Rise</td>
<td>0.0120</td>
<td>0.1027</td>
<td>0.0437</td>
<td>6.6000e-004</td>
<td>8.3000e-003</td>
<td>8.3000e-003</td>
<td>8.3000e-003</td>
<td>118.9278</td>
<td>118.9278</td>
<td>2.2800e-003</td>
<td>2.1800e-003</td>
<td>119.6345</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day-Care Center</td>
<td>1.6000e-004</td>
<td>1.4500e-003</td>
<td>1.2200e-003</td>
<td>1.0000e-005</td>
<td>1.1000e-004</td>
<td>1.1000e-004</td>
<td>1.1000e-004</td>
<td>1.5796</td>
<td>1.5796</td>
<td>3.0000e-005</td>
<td>3.0000e-005</td>
<td>1.5890</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>0</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Office Building</td>
<td>4.1400e-003</td>
<td>0.0376</td>
<td>0.0316</td>
<td>2.3000e-004</td>
<td>2.8600e-003</td>
<td>2.8600e-003</td>
<td>2.8600e-003</td>
<td>40.9418</td>
<td>40.9418</td>
<td>7.8000e-004</td>
<td>7.5000e-004</td>
<td>41.1851</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>1.3700e-003</td>
<td>0.0125</td>
<td>0.0105</td>
<td>7.0000e-005</td>
<td>9.5000e-004</td>
<td>9.5000e-004</td>
<td>9.5000e-004</td>
<td>13.5747</td>
<td>13.5747</td>
<td>2.6000e-004</td>
<td>2.5000e-004</td>
<td>13.6554</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Lot</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>0.0190</td>
<td>0.1661</td>
<td>0.0970</td>
<td>1.0400e-003</td>
<td>0.0131</td>
<td>0.0131</td>
<td>0.0131</td>
<td>187.9784</td>
<td>187.9784</td>
<td>3.6000e-003</td>
<td>3.4500e-003</td>
<td>189.0955</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 5.3 Energy by Land Use - Electricity

#### Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Electricity Use</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/Townhouse High Rise</td>
<td>1.27938e+006</td>
<td>581.2267</td>
<td>0.0168</td>
<td>3.4800e-003</td>
<td>582.6851</td>
</tr>
<tr>
<td>Day-Care Center</td>
<td>26200</td>
<td>11.9028</td>
<td>3.4000e-004</td>
<td>7.0000e-004</td>
<td>11.9326</td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>285768</td>
<td>129.8257</td>
<td>3.7600e-003</td>
<td>7.8000e-004</td>
<td>130.1514</td>
</tr>
<tr>
<td>General Office Building</td>
<td>510720</td>
<td>232.0224</td>
<td>6.7000e-003</td>
<td>1.2900e-003</td>
<td>232.6046</td>
</tr>
<tr>
<td>Land Use</td>
<td>kWh/yr</td>
<td>Total CO2</td>
<td>GH4</td>
<td>N2O</td>
<td>CO2e</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Condo Townhouse High Rise</td>
<td>1.2739e+006</td>
<td>581.2267</td>
<td>0.0168</td>
<td>3.4800e-003</td>
<td>582.6851</td>
</tr>
<tr>
<td>Day-Care Center</td>
<td>26200</td>
<td>11.9028</td>
<td>3.4000e-004</td>
<td>7.0000e-005</td>
<td>11.9326</td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>285768</td>
<td>129.8257</td>
<td>3.7600e-003</td>
<td>7.8000e-004</td>
<td>130.1514</td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>938952</td>
<td>426.5701</td>
<td>0.0124</td>
<td>2.5600e-003</td>
<td>427.6404</td>
</tr>
<tr>
<td>General Office Building</td>
<td>510720</td>
<td>232.0224</td>
<td>6.7200e-003</td>
<td>1.3900e-003</td>
<td>232.6046</td>
</tr>
<tr>
<td>Health Club</td>
<td>41550</td>
<td>18.8764</td>
<td>5.5000e-004</td>
<td>1.1000e-004</td>
<td>18.9237</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>62160</td>
<td>22.2396</td>
<td>8.2000e-004</td>
<td>1.7000e-004</td>
<td>22.3104</td>
</tr>
<tr>
<td>Library</td>
<td>132960</td>
<td>60.4043</td>
<td>1.7500e-003</td>
<td>3.6000e-004</td>
<td>60.5559</td>
</tr>
<tr>
<td>Parking Lot</td>
<td>7840</td>
<td>3.5618</td>
<td>1.0000e-004</td>
<td>2.0000e-005</td>
<td>3.5707</td>
</tr>
<tr>
<td>Total</td>
<td>1,492.6297</td>
<td>0.0432</td>
<td>8.9400e-003</td>
<td>1,496.374</td>
<td></td>
</tr>
</tbody>
</table>

6.0 Area Detail
# 6.1 Mitigation Measures Area

No Hearths Installed

| Category     | ROG | NOx | CO  | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|--------------|-----|-----|-----|-----|---------------|--------------|------------|----------------|----------------|------------|----------|----------|----------|--------|-----|-----|-----|
| Mitigated    | 2.0920 | 0.0257 | 2.2315 | 1.2000e-004 | 0.0124 | 0.0124 | 0.0124 | 0.0124 | 0.0000 | 3.6506 | 3.6506 | 3.5200e-003 | 0.0000 | 3.7384 |
| Unmitigated  | 20.9158 | 0.3933 | 25.4675 | 0.0422 | 3.2703 | 3.2703 | 3.2703 | 3.2703 | 309.8873 | 133.6128 | 443.5001 | 0.2895 | 0.0244 | 458.0011 |

# 6.2 Area by SubCategory

**Unmitigated**

| SubCategory         | ROG | NOx | CO  | SO2 | Fugitive PM10 | Exhaust PM10 | PM10 Total | Fugitive PM2.5 | Exhaust PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|---------------------|-----|-----|-----|-----|---------------|--------------|------------|----------------|----------------|------------|----------|----------|----------|--------|-----|-----|-----|
| Architectural Coating | 0.5602 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| Consumer Products   | 1.4644 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| Hearth              | 18.8239 | 0.3676 | 23.2360 | 0.0421 | 3.2703 | 3.2703 | 3.2703 | 3.2703 | 309.8873 | 133.6128 | 443.5001 | 0.2895 | 0.0244 | 454.2626 |
| Landscaping         | 0.0674 | 0.0257 | 2.2315 | 1.2000e-004 | 0.0124 | 0.0124 | 0.0124 | 0.0124 | 0.0000 | 3.6506 | 3.6506 | 3.5200e-003 | 0.0000 | 3.7384 |
| Total               | 20.9158 | 0.3933 | 25.4675 | 0.0422 | 3.2703 | 3.2703 | 3.2703 | 3.2703 | 309.8873 | 133.6128 | 443.5001 | 0.2895 | 0.0244 | 458.0011 |
## Mitigated

<table>
<thead>
<tr>
<th>SubCategory</th>
<th>ROG</th>
<th>NOx</th>
<th>CO</th>
<th>SO2</th>
<th>Fugitive PM10</th>
<th>Exhaust PM10</th>
<th>PM10 Total</th>
<th>Fugitive PM2.5</th>
<th>Exhaust PM2.5</th>
<th>PM2.5 Total</th>
<th>Bio- CO2</th>
<th>NBio- CO2</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Coating</td>
<td>0.5602</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Consumer Products</td>
<td>1.4644</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Hearth</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Landscaping</td>
<td>0.0674</td>
<td>0.0257</td>
<td>2.2315</td>
<td>1.2000e-004</td>
<td>0.0124</td>
<td>0.0124</td>
<td>0.0124</td>
<td>0.0124</td>
<td>0.0000</td>
<td>3.6506</td>
<td>3.6506</td>
<td>3.5200e-003</td>
<td>0.0000</td>
<td>3.7384</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>2.0919</td>
<td>0.0257</td>
<td>2.2315</td>
<td>1.2000e-004</td>
<td>0.0124</td>
<td>0.0124</td>
<td>0.0124</td>
<td>0.0124</td>
<td>0.0000</td>
<td>3.6506</td>
<td>3.6506</td>
<td>3.5200e-003</td>
<td>0.0000</td>
<td>3.7384</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 7.0 Water Detail

#### 7.1 Mitigation Measures Water

<table>
<thead>
<tr>
<th>Category</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>186.0031</td>
<td>0.9062</td>
<td>0.0223</td>
<td>215.3162</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>186.0031</td>
<td>0.9062</td>
<td>0.0223</td>
<td>215.3162</td>
</tr>
</tbody>
</table>

### 7.2 Water by Land Use

**Unmitigated**
<table>
<thead>
<tr>
<th>Land Use</th>
<th>Indoor/Outdoor Use</th>
<th>Total CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/Townhouse</td>
<td></td>
<td>128.9335</td>
<td>0.6405</td>
<td>0.0158</td>
<td>149.6459</td>
</tr>
<tr>
<td>High Rise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day-Care Center</td>
<td>0.214448 / 0.551437</td>
<td>2.7960</td>
<td>7.0700e-003</td>
<td>1.8000e-004</td>
<td>3.0267</td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>0 / 0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>General Office Building</td>
<td>6.75388 / 4.13948</td>
<td>44.1580</td>
<td>0.2213</td>
<td>5.4500e-003</td>
<td>51.3138</td>
</tr>
<tr>
<td>Health Club</td>
<td>0.295716 / 0.181245</td>
<td>1.9334</td>
<td>9.6900e-003</td>
<td>2.4000e-004</td>
<td>2.2468</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>0.343343 / 0.537024</td>
<td>3.3287</td>
<td>0.0113</td>
<td>2.8000e-004</td>
<td>3.6952</td>
</tr>
<tr>
<td>Library</td>
<td>0.500623 / 0.783025</td>
<td>4.8535</td>
<td>0.0165</td>
<td>4.1000e-004</td>
<td>5.3879</td>
</tr>
<tr>
<td>Parking Lot</td>
<td>0 / 0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td>186.0031</td>
<td>0.9063</td>
<td>0.0223</td>
<td>215.3162</td>
</tr>
</tbody>
</table>

**Mitigated**

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Indoor/Outdoor Use</th>
<th>Total CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/Townhouse</td>
<td></td>
<td>128.9335</td>
<td>0.6405</td>
<td>0.0158</td>
<td>149.6459</td>
</tr>
<tr>
<td>High Rise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day-Care Center</td>
<td>0.214448 / 0.551437</td>
<td>2.7960</td>
<td>7.0700e-003</td>
<td>1.8000e-004</td>
<td>3.0267</td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>0 / 0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>General Office Building</td>
<td>6.75388 / 4.13948</td>
<td>44.1580</td>
<td>0.2213</td>
<td>5.4500e-003</td>
<td>51.3138</td>
</tr>
</tbody>
</table>
### 8.0 Waste Detail

#### 8.1 Mitigation Measures Waste

<table>
<thead>
<tr>
<th>Category/Year</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigated</td>
<td>47.1284</td>
<td>2.7852</td>
<td>0.0000</td>
<td>116.7587</td>
</tr>
<tr>
<td>Unmitigated</td>
<td>47.1284</td>
<td>2.7852</td>
<td>0.0000</td>
<td>116.7587</td>
</tr>
</tbody>
</table>

#### 8.2 Waste by Land Use

##### Unmitigated

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Waste Disposed</th>
<th>Total CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tons</td>
<td>M†/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use</td>
<td>Waste Disposed</td>
<td>Total CO₂</td>
<td>CH₄</td>
<td>N₂O</td>
<td>CO₂e</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Condo/Townhouse High Rise</td>
<td>138</td>
<td>28.0128</td>
<td>1.6555</td>
<td>0.0000</td>
<td>69.4004</td>
</tr>
<tr>
<td>Day-Care Center</td>
<td>6.5</td>
<td>1.3194</td>
<td>0.0780</td>
<td>0.0000</td>
<td>3.2689</td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>General Office Building</td>
<td>35.34</td>
<td>7.1737</td>
<td>0.4240</td>
<td>0.0000</td>
<td>17.7725</td>
</tr>
<tr>
<td>Health Club</td>
<td>28.5</td>
<td>5.7852</td>
<td>0.3419</td>
<td>0.0000</td>
<td>14.3327</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.1</td>
<td>1.8472</td>
<td>0.1092</td>
<td>0.0000</td>
<td>4.5764</td>
</tr>
<tr>
<td>Library</td>
<td>14.73</td>
<td>2.9901</td>
<td>0.1767</td>
<td>0.0000</td>
<td>7.4077</td>
</tr>
<tr>
<td>Parking Lot</td>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>47.1284</td>
<td>2.7852</td>
<td>0.0000</td>
<td>116.7586</td>
</tr>
</tbody>
</table>

**Mitigated**

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Waste Disposed</th>
<th>Total CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condo/Townhouse High Rise</td>
<td>138</td>
<td>28.0128</td>
<td>1.6555</td>
<td>0.0000</td>
<td>69.4004</td>
</tr>
<tr>
<td>Day-Care Center</td>
<td>6.5</td>
<td>1.3194</td>
<td>0.0780</td>
<td>0.0000</td>
<td>3.2689</td>
</tr>
<tr>
<td>Enclosed Parking Structure</td>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>General Office Building</td>
<td>35.34</td>
<td>7.1737</td>
<td>0.4240</td>
<td>0.0000</td>
<td>17.7725</td>
</tr>
<tr>
<td>Health Club</td>
<td>28.5</td>
<td>5.7852</td>
<td>0.3419</td>
<td>0.0000</td>
<td>14.3327</td>
</tr>
<tr>
<td>Junior College (2Yr)</td>
<td>9.1</td>
<td>1.8472</td>
<td>0.1092</td>
<td>0.0000</td>
<td>4.5764</td>
</tr>
<tr>
<td>Library</td>
<td>14.73</td>
<td>2.9901</td>
<td>0.1767</td>
<td>0.0000</td>
<td>7.4077</td>
</tr>
<tr>
<td>Parking Lot</td>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
9.0 Operational Offroad

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
<th>Hours/Day</th>
<th>Days/Year</th>
<th>Horse Power</th>
<th>Load Factor</th>
<th>Fuel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>47.1284</td>
<td>2.7852</td>
<td>0.0000</td>
<td>116.7586</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.0 Stationary Equipment

**Fire Pumps and Emergency Generators**

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
<th>Hours/Day</th>
<th>Hours/Year</th>
<th>Horse Power</th>
<th>Load Factor</th>
<th>Fuel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**User Defined Equipment**

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Number</th>
</tr>
</thead>
</table>

11.0 Vegetation
ACOUSTIC STUDY FOR THE KAHLULUI
CIVIC CENTER AND MIXED-USE COMPLEX
KAHLULUI, MAUI, HAWAII

Final Report Prepared for:

G70

Final Report Prepared by:

Y. EBISU & ASSOCIATES
1126 12th Avenue, Room 305
Honolulu, Hawaii 96816

May 2021
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>CHAPTER TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>List of Figures</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>iii</td>
</tr>
<tr>
<td>I</td>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>PURPOSE</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>NOISE DESCRIPTORS AND THEIR RELATIONSHIP TO LAND USE COMPATIBILITY</td>
<td>4</td>
</tr>
<tr>
<td>IV</td>
<td>GENERAL STUDY METHODOLOGY</td>
<td>8</td>
</tr>
<tr>
<td>V</td>
<td>BASE YEAR ACOUSTICAL ENVIRONMENT</td>
<td>15</td>
</tr>
<tr>
<td>VI</td>
<td>FUTURE NOISE ENVIRONMENT</td>
<td>19</td>
</tr>
<tr>
<td>VII</td>
<td>DISCUSSION OF PROJECT RELATED NOISE IMPACTS AND POSSIBLE MITIGATION MEASURES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traffic Noise</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>General Construction Noise</td>
<td>23</td>
</tr>
</tbody>
</table>

## APPENDICES

<p>| A       | REFERENCES                                                                    | 27       |
| B       | EXCERPTS FROM EPA’S ACOUSTICAL TERMINOLOGY GUIDE                              | 28       |
| C       | SUMMARY OF BASE YEAR (2017) AND YEAR 2026 TRAFFIC VOLUMES DURING AM AND PM PEAK HOURS | 31       |</p>
<table>
<thead>
<tr>
<th>NUMBER</th>
<th>FIGURE TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PROJECT LOCATION MAP AND NOISE MEASUREMENT LOCATIONS</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>LAND USE COMPATIBILITY WITH YEARLY AVERAGE DAY-NIGHT AVERAGE SOUND LEVEL (DNL) AT A SITE FOR BUILDINGS AS COMMONLY CONSTRUCTED</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>HOURLY TRAFFIC NOISE LEVELS VS. TIME OF DAY; STA. B74003200210, KAAHUMANU AVE. AT KAHULUI BEACH ROAD / KANE ST.; 12/5/19</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>HOURLY TRAFFIC NOISE LEVELS VS. TIME OF DAY; STA. B74003200210, KAAHUMANU AVE. AT KAHULUI BEACH ROAD / KANE ST.; 6/4/20</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>HOURLY TRAFFIC NOISE LEVELS VS. TIME OF DAY; STA. B74003200210, KAAHUMANU AVE. AT KAHULUI BEACH ROAD / KANE ST.; 6/5/20</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>ANTICIPATED RANGE OF CONSTRUCTION NOISE LEVELS VS. DISTANCE</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>AVAILABLE WORK HOURS UNDER DOH PERMIT PROCEDURES FOR CONSTRUCTION NOISE</td>
<td>26</td>
</tr>
</tbody>
</table>
# LIST OF TABLES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TABLE TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EXTERIOR NOISE EXPOSURE CLASSIFICATION (RESIDENTIAL LAND USE)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>COMPARISONS OF 2017, 2020, AND 2021 TRAFFIC VOLUMES</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>TRAFFIC AND BACKGROUND NOISE MEASUREMENT RESULTS</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>BASE YEAR (CY 2017) TRAFFIC VOLUMES AND NOISE LEVELS ALONG ROADWAYS IN PROJECT AREA (PM PEAK HOUR)</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>BASE YEAR AND CY 2026 DISTANCES TO 65, 70, AND 75 DNL CONTOURS</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>FUTURE (CY 2026) TRAFFIC VOLUMES AND NOISE LEVELS ALONG ROADWAYS IN PROJECT AREA (PM PEAK HOUR, BUILD)</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>CALCULATIONS OF PROJECT AND NON-PROJECT TRAFFIC NOISE CONTRIBUTIONS (CY 2026) (PEAK HOUR LEQ OR DNL)</td>
<td>21</td>
</tr>
</tbody>
</table>
CHAPTER I. SUMMARY

The Base Year and future traffic noise levels in the vicinity of the proposed Kahului Civic Center and Mixed-Use Complex project in Kahului, Maui were evaluated for their potential impacts and their relationship to current FHA/HUD noise standards. The traffic noise level increases along the roadways in the project environs (see Figure 1) were calculated. No significant increases in traffic noise are predicted to occur as a result of project traffic following project build-out by CY 2026. A relatively large increase in Base Year traffic noise levels are predicted to occur along Vevau Street primarily due to the increase in bus traffic associated with the relocation of the Transit Hub by others to a location beyond the southeast corner of the project. In addition, the increase in Base Year traffic noise levels along Vevau Street were exaggerated by the very low Base Year values.

Base Year and CY 2026 traffic noise levels in the project environs will continue to be dominated by traffic along Kahului Beach Road, Kaahumanu Avenue, and West Kamehameha Avenue. Both the Base Year and CY 2026 traffic noise levels along Kaahumanu Avenue exceed the FHA/HUD noise impact threshold at the planned location of the 300 unit multifamily building, and will probably require closure and air conditioning of the noise sensitive living units which front Kaahumanu Avenue if federal participation is involved in the multifamily building. Living units fronting Kane Street are also predicted to experience traffic noise levels above the FHA/HUD noise impact threshold in CY 2026, and require similar traffic noise mitigation measures.

Project traffic should not cause significant increases in traffic noise levels along all roadways in the project environs, and these increases will be difficult to measure or perceive. Because of the relatively small increases in future traffic noise resulting from project traffic, the project traffic should not cause adverse traffic noise impacts in the immediate vicinity of the project.

Unavoidable, but temporary, noise impacts may occur during construction of the proposed project, particularly during the excavation and site preparation activities on the project site. Because construction activities are predicted to be audible within the project site and at adjoining properties, the quality of the acoustic environment may be degraded to unacceptable levels during periods of construction. Mitigation measures to reduce construction noise to inaudible levels will not be practical in all cases, but the use of quiet equipment and compliance with the current State Department of Health noise permit and curfew procedures are recommended as a standard noise mitigation measure.
PROJECT LOCATION MAP AND
NOISE MEASUREMENT LOCATIONS

FIGURE 1
CHAPTER II. PURPOSE

The primary objective of this study was to describe the Base Year and future traffic noise environment in the environs of the proposed Kahului Civic Center and Mixed-Use Complex project in Kahului on the island of Maui. Traffic forecasts for 2026 were used. Traffic noise level increases and impacts associated with the proposed project were to be determined along the public roadways which are expected to service the project traffic. A specific objective was to determine future traffic noise level increases associated with both project and non-project traffic, and the potential noise impacts associated with these increases.

Impacts from short term construction noise at the project site were also included as noise study objectives. Recommendations for minimizing potential construction noise impacts were also to be provided as required.
CHAPTER III. NOISE DESCRIPTORS AND THEIR RELATIONSHIP TO LAND USE COMPATIBILITY

The noise descriptor currently used by federal agencies (such as FHA/HUD) to assess environmental noise is the Day-Night Average Sound Level (Ldn or DNL). This descriptor incorporates a 24-hour average of instantaneous A-Weighted Sound Levels as read on a standard Sound Level Meter. By definition, the minimum averaging period for the DNL descriptor is 24 hours. Additionally, sound levels which occur during the nighttime hours of 10:00 PM to 7:00 AM are increased by 10 decibels (dB) prior to computing the 24-hour average by the DNL descriptor. A more complete list of noise descriptors is provided in Appendix B to this report.

Table 1, derived from Reference 1, presents current federal noise standards and acceptability criteria for residential land uses. Land use compatibility guidelines for various levels of environmental noise as measured by the DNL descriptor system are shown in Figure 2. As a general rule, noise levels of 55 DNL or less occur in rural areas, or in areas which are removed from high volume roadways. In urbanized areas which are shielded from high volume streets, DNL levels generally range from 55 to 65 DNL, and are usually controlled by motor vehicle traffic noise. Residences which front major roadways are generally exposed to levels of 65 DNL, and as high as 75 DNL when the roadway is a high speed freeway. In the project area, traffic noise levels associated with Kaahumanu Avenue, Kahului Beach Road, and West Kamehameha Avenue are typically greater than 65 DNL along their Rights-of-Way due to the higher volumes of traffic on those roadways.

For purposes of determining noise acceptability for funding assistance from federal agencies (FHA/HUD and VA), an exterior noise level of 65 DNL or less is considered acceptable for residences or other noise sensitive land uses. This standard is applied nationally (Reference 2), including Hawaii. Because of our open-living conditions, the predominant use of naturally ventilated dwellings, and the relatively low exterior-to-interior sound attenuation afforded by these naturally ventilated structures, an exterior noise level of 65 DNL does not eliminate all risks of noise impacts. Because of these factors, and as recommended in Reference 3, a lower level of 55 DNL is considered as the "Unconditionally Acceptable" (or "Near-Zero Risk") level of exterior noise. However, after considering the cost and feasibility of applying the lower level of 55 DNL, government agencies such as FHA/HUD and VA have selected 65 DNL as a more appropriate regulatory standard.

For commercial, industrial, and other non-noise sensitive land uses, exterior noise levels as high as 75 DNL are generally considered acceptable. Exceptions to this occur when naturally ventilated office and other commercial establishments are exposed to exterior levels which exceed 65 DNL.

On the island of Maui, the State Department of Health (DOH) regulates noise from construction activities, through the issuance of permits for allowing excessive
### TABLE 1

**EXTERIOR NOISE EXPOSURE CLASSIFICATION**  
**RESIDENTIAL LAND USE**

<table>
<thead>
<tr>
<th>NOISE EXPOSURE CLASS</th>
<th>DAY–NIGHT SOUND LEVEL</th>
<th>EQUIVALENT SOUND LEVEL</th>
<th>FEDERAL (1) STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal Exposure</td>
<td>Not Exceeding 55 DNL</td>
<td>Not Exceeding 55 Leq</td>
<td>Unconditionally Acceptable</td>
</tr>
<tr>
<td>Moderate Exposure</td>
<td>Above 55 DNL But Not Above 65 DNL</td>
<td>Above 55 Leq But Not Above 65 Leq</td>
<td>Acceptable(2)</td>
</tr>
<tr>
<td>Significant Exposure</td>
<td>Above 65 DNL But Not Above 75 DNL</td>
<td>Above 65 Leq But Not Above 75 Leq</td>
<td>Normally Unacceptable</td>
</tr>
<tr>
<td>Severe Exposure</td>
<td>Above 75 DNL</td>
<td>Above 75 Leq</td>
<td>Unacceptable</td>
</tr>
</tbody>
</table>

**Notes:**  
(1) Federal Housing Administration, Veterans Administration, Department of Defense, and Department of Transportation.

(2) FHWA uses the Leq instead of the Ldn descriptor. For planning purposes, both are equivalent if: (a) heavy trucks do not exceed 10 percent of total traffic flow in vehicles per 24 hours, and (b) traffic between 10:00 PM and 7:00 AM does not exceed 15 percent of average daily traffic flow in vehicles per 24 hours. The noise mitigation threshold used by FHWA for residences is 67 Leq.
<table>
<thead>
<tr>
<th>LAND USE</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - Single Family, Extensive Outdoor Use</td>
<td></td>
<td></td>
<td>![Hatched]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential - Multiple Family, Moderate Outdoor Use</td>
<td></td>
<td></td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
</tr>
<tr>
<td>Hotels, Motels, Transient Lodging</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
</tr>
<tr>
<td>Hospitals, Clinics, Nursing Homes, Health Related Facilities</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
</tr>
<tr>
<td>Auditoriums, Concert Halls</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
</tr>
<tr>
<td>Music Shells</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
</tr>
<tr>
<td>Neighborhood Parks</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
</tr>
<tr>
<td>Commercial - Retail, Movie Theaters, Restaurants</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
</tr>
<tr>
<td>Livestock Farming, Animal Breeding</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
</tr>
<tr>
<td>Agriculture (Except Livestock)</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
<td>![Hatched]</td>
</tr>
</tbody>
</table>

- Compatible
- Marginally Compatible
- With Insulation per Section A.4
- Incompatible

LAND USE COMPATIBILITY WITH YEARLY AVERAGE DAY-NIGHT AVERAGE SOUND LEVEL (DNL) AT A SITE FOR BUILDINGS AS COMMONLY CONSTRUCTED.
(Source: American National Standards Institute S12.9 - 1988/Part 5)
noise during limited time periods. State DOH noise regulations are expressed in maximum allowable property line noise limits rather than DNL (see Reference 4). Although they are not directly comparable to noise criteria expressed in DNL, State DOH noise limits for residential, commercial, and industrial lands equate to approximately 55, 60, and 76 DNL, respectively.

It should be noted that the noise compatibility guidelines and relationships to the DNL noise descriptor may not be applicable to impulsive noise sources such as pile drivers. The use of penalty factors (such as adding 10 dB to measured sound levels or the use of C-Weighting filters) have been proposed. However, the relationships between levels of impulsive noise sources and land use compatibility have not been as firmly established as have the relationships for non-impulsive sources.
CHAPTER IV. GENERAL STUDY METHODOLOGY

For this project, CY 2017 was used as the study's Base Year instead of CY 2020 as used within the project's traffic study (Reference 5). CY 2017 was used as the Base Year for this noise study because actual traffic counts at multiple intersections were available within the study environs during that year, while no area wide traffic counts were available for other years prior to the COVID-19 crisis or during CY 2020.

Traffic noise measurements were obtained at 6 locations in March 2021 following the start of recovery from the COVID-19 crisis in early 2021. Spot counts of traffic volumes at these 6 noise measurement locations were also obtained to validate the traffic noise model used to calculate Base Year and future traffic noise levels. Hawaii State Department of Transportation, Highways Division (HDOT) traffic counts along Kaahumanu Avenue (References 7 to 9) during CY 2019 and 2020 were also examined to evaluate the differences among the 2017, 2019, 2020, and 2021 traffic counts which were available.

Table 2 presents the traffic data that were evaluated prior to selecting use of the CY 2017 counts from Reference 5 for the Base Year. Because the CY 2017 traffic counts are the only complete set of counts at the study intersections, and because the March 2021 spot traffic counts suggested that full recovery of traffic volumes to pre-COVID-19 values has not yet occurred, the CY 2017 traffic counts contained in Appendix A of Reference 5 were used to model traffic noise levels during the Base Year.

CY 2021 noise levels were measured at 6 locations (A through F) in the project environs to provide a basis for developing the traffic noise modeling parameters (average vehicle speed and mix, and propagation loss factor) along the roadways which will service the proposed project. The locations of the traffic noise measurement sites are shown in Figure 1. Traffic noise measurements were performed on March 8 and 9, 2021.

The results of the traffic noise measurements were compared with calculations of traffic noise levels based on observed traffic volumes and mixes using the Federal Highway Administration (FHWA) Traffic Noise Model (TNM), Version 2.5 (Reference 6). The traffic noise measurement results, and their comparisons with computer model predictions of the noise levels associated with those observed traffic conditions are summarized in Table 3. Traffic data entered into the noise prediction model were: roadway and receiver locations; hourly traffic volumes, average vehicle speeds; estimates of traffic mix; and "Loose Soil" propagation loss factor. The traffic data and forecasts for the project (Reference 5), plus the spot traffic counts obtained during the noise measurement periods were the primary sources of data inputs to the model. Appendix C summarizes the AM and PM peak hour traffic volumes for CY 2017 and 2026, which were obtained from Reference 5 and which were used to form the basis for modeling Base Year and future traffic noise along the streets in the project environs.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaahumanu Ave. Between Kane &amp; Lono (EB)</td>
<td>1,617</td>
<td>1,613</td>
<td>1,680</td>
<td>1,510</td>
<td>1,438</td>
</tr>
<tr>
<td>Kaahumanu Ave. Between Kane &amp; Lono (WB)</td>
<td>1,923</td>
<td>1,663</td>
<td>2,000</td>
<td>1,329</td>
<td>1,330</td>
</tr>
<tr>
<td>W. Kamehameha Ave. Between Kane &amp; Lono (EB)</td>
<td>214</td>
<td>440</td>
<td>250</td>
<td>316</td>
<td>327</td>
</tr>
<tr>
<td>W. Kamehameha Ave. Between Kane &amp; Lono (WB)</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-Way</td>
<td>337</td>
<td>690</td>
<td></td>
<td></td>
<td>643</td>
</tr>
<tr>
<td>Kahului Beach Rd. N. of Kaahumanu (NB)</td>
<td>975</td>
<td>1,030</td>
<td>1,230</td>
<td>867</td>
<td></td>
</tr>
<tr>
<td>Kahului Beach Rd. N. of Kaahumanu (SB)</td>
<td>1,169</td>
<td></td>
<td></td>
<td>1,141</td>
<td></td>
</tr>
<tr>
<td>Two-Way</td>
<td>2,144</td>
<td>2,260</td>
<td></td>
<td></td>
<td>2,008</td>
</tr>
<tr>
<td>Kane St. Between Kaahumanu &amp; Vevau (NB)</td>
<td>149</td>
<td>185</td>
<td>230</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Kane St. Between Kaahumanu &amp; Vevau (SB)</td>
<td>220</td>
<td></td>
<td></td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>Two-Way</td>
<td>368</td>
<td>415</td>
<td></td>
<td></td>
<td>289</td>
</tr>
<tr>
<td>Kane St. Between Vevau &amp; W. Kamehmeha (NB)</td>
<td>285</td>
<td>220</td>
<td>235</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>Kane St. Between Vevau &amp; W. Kamehmeha (SB)</td>
<td>216</td>
<td></td>
<td></td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>Two-Way</td>
<td>501</td>
<td>455</td>
<td></td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>Lono Ave. Between Vevau &amp; W. Kamehmeha (NB)</td>
<td>293</td>
<td>330</td>
<td>270</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Lono Ave. Between Vevau &amp; W. Kamehmeha (SB)</td>
<td>239</td>
<td></td>
<td></td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Two-Way</td>
<td>532</td>
<td>600</td>
<td></td>
<td></td>
<td>333</td>
</tr>
<tr>
<td>Lono Ave. Between Vevau &amp; W. Kamehmeha (NB)</td>
<td>231</td>
<td>PM PEAK</td>
<td>265</td>
<td></td>
<td>158</td>
</tr>
<tr>
<td>Lono Ave. Between Vevau &amp; W. Kamehmeha (SB)</td>
<td>346</td>
<td></td>
<td>380</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>Two-Way</td>
<td>577</td>
<td>645</td>
<td></td>
<td></td>
<td>342</td>
</tr>
</tbody>
</table>
**TABLE 3**

**TRAFFIC AND BACKGROUND NOISE MEASUREMENT RESULTS**

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>Time of Day (HRS)</th>
<th>Ave. Speed (MPH)</th>
<th>AUTO</th>
<th>M.TRUCK</th>
<th>H.TRUCK</th>
<th>Measured Leq (dB)</th>
<th>Predicted Leq (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 80 FT from the centerline of Kahului Beach Road (3/8/21)</td>
<td>0715 TO 0815</td>
<td>30 (SB) 45 (NB)</td>
<td>1,911</td>
<td>46</td>
<td>51</td>
<td>70.6</td>
<td>70.6</td>
</tr>
<tr>
<td>B. 50 FT from the centerline of Kane Street (3/8/21)</td>
<td>0835 TO 0935</td>
<td>30</td>
<td>273</td>
<td>9</td>
<td>7</td>
<td>63.1</td>
<td>61.4 *</td>
</tr>
<tr>
<td>C. 50 FT from the centerline of West Kamehameha Avenue (3/8/21)</td>
<td>1014 TO 1114</td>
<td>40</td>
<td>616</td>
<td>13</td>
<td>14</td>
<td>63.7</td>
<td>63.7</td>
</tr>
<tr>
<td>D. 75 FT from the centerline of Kaahumanu Avenue (3/9/21)</td>
<td>0700 TO 0800</td>
<td>40</td>
<td>2,678</td>
<td>37</td>
<td>53</td>
<td>71.0</td>
<td>71.0</td>
</tr>
<tr>
<td>E. 50 FT from the centerline of Kane Street (3/9/21)</td>
<td>0808 TO 0908</td>
<td>30</td>
<td>337</td>
<td>6</td>
<td>6</td>
<td>62.3</td>
<td>60.8 *</td>
</tr>
<tr>
<td>F. 50 FT from the centerline of Lono Avenue (3/9/21)</td>
<td>0920 TO 1020</td>
<td>30</td>
<td>327</td>
<td>2</td>
<td>4</td>
<td>60.0</td>
<td>57.2 *</td>
</tr>
</tbody>
</table>

**Notes:**
*Background noise levels of 55 to 58 dBA caused higher measured than predicted traffic noise levels at Locations B, E, and F.*
HDOT hourly traffic counts and vehicle classifications along Kaahumanu Avenue at the Kane Street/Kahului Beach Road intersection (References 7 to 9)) were used to develop the relationship between the 24-hour DNL and PM peak hour Leq(\textit{h}) traffic noise levels. Figures 3 through 5 depict the calculations of hourly traffic noise levels from the HDOT traffic counts from 2019 and 2020 assuming the HDOT traffic mix in 2019 (Reference 8) remained the same and that average vehicular speeds did not change. These figures are useful for determining the influence of total hourly traffic volumes during the pre-COVID and COVID periods on hourly traffic noise levels. It was concluded from these figures that midday through PM peak hour traffic noise levels were probably less affected during 2020 than were the traffic noise levels following the PM peak hour and through the AM peak hour. However because of storm conditions on Maui during the traffic noise measurements on March 8-9, 2021, traffic noise measurements during the afternoon period were not possible due to rain. For Base Year and future traffic, it was assumed that the average noise levels, or Leq(\textit{h}), during the PM peak traffic hour was the better estimator of the 24-hour DNL along the roadways in the project environs for the pre- and post-COVID periods. Using Figure 3, the PM peak hour Leq was assumed to be 0.3 dB less than the 24-hour DNL along all streets in the project environs. This assumption was based on computations of both the hourly Leq and the calculated 24-hour DNL of traffic noise along Kaahumanu Avenue (see Figure 3) for December 5, 2019.

The traffic noise measurements obtained in March 2021 were used to validate the traffic noise model for the observed traffic volumes, mixes, and speeds. The average vehicle speeds and traffic mixes shown in Table 3, as well as the Base Year and CY 2026 PM traffic volumes were used to model the Base Year and future traffic noise levels in the project environs. The average speed and traffic mix assumptions were derived from the morning traffic noise measurements were assumed to apply to the PM peak hour.

Traffic noise calculations for both the Base Year and future conditions in the project environs were developed for ground level receptors without the benefit of shielding from buildings. Traffic noise levels were also calculated for future conditions with and without the proposed project. The forecasted changes in traffic noise levels over Base Year levels were calculated with and without the project, and noise impact risks evaluated. The relative contributions of non-project and project traffic to the total noise levels were also calculated, and an evaluation of possible traffic noise impacts was made.

Calculations of average exterior and interior noise levels from construction activities were performed for typical naturally ventilated and air conditioned buildings. Predicted noise levels were compared with Base Year background ambient noise levels, and the potential for noise impacts was assessed.
FIGURE 4
HOURLY TRAFFIC NOISE LEVELS VS. TIME OF DAY
STA. B74003200210, KAAHUMANU AVE. AT KAHULUI BEACH RD./KANE ST.; 6/4/20

Hourly Average Sound Level (Leq) in dB

Time of Day (Hours)

- 75 FT from Roadway Centerline (68.8 DNL)
FIGURE 5
HOURLY TRAFFIC NOISE LEVELS VS. TIME OF DAY
STA. B74003200210, KAHAHUMANU AVE. AT KAHULUI BEACH RD./KANE ST.; 6/5/20

Hourly Average Sound Level (Leq) in dB

Time of Day (Hours)

75 FT from Roadway Centerline (69.1DNL)
V. BASE YEAR ACOUSTICAL ENVIRONMENT

The Base Year background ambient noise levels within the project area were controlled by traffic along Kaahumanu Avenue, Kahului Beach Road, Kane Street, and West Kamehameha Avenue. Existing traffic noise level measurements in the immediate vicinity of the project site were obtained at Location A along Kahului Beach Road, Locations B and E along Kane Street, Location C along West Kamehameha Avenue, Location D along Kaahumanu Avenue, and Location F along Lono Avenue. These measurement locations are shown in Figure 1.

The results of the traffic and background ambient noise measurements are summarized in Table 3. Measured traffic noise levels were higher than TNM predictions along Kaahumanu Avenue and Kahului Beach Road, so the "Predicted Leq (dB)" values shown in Table 3 were scaled upward to equal the "Measured Leq (dB)" values. These scale factors were used during calculations of Base Year and future traffic noise levels. Along other streets such as Kane Street and Lono Avenue, other background noise raised the measured total noise levels above the predicted traffic noise components. The FHWA Traffic Noise Model's "Loose Soil" propagation loss factor was used.

Appendix C contains the Base Year traffic volumes on the roadways in the project environs during CY 2017, which were obtained from Appendix A of Reference 5. These CY 2017 traffic counts were the only counts available for use as Base Year data, due to the distortions created by the COVID-19 crisis between March 2020 and March 2021. Calculations of Base Year traffic noise levels during the PM peak traffic hour using the traffic volumes contained in Appendix C are presented in Table 4. The hourly Leq (or Equivalent Sound Level) contribution from each roadway section in the project environs was calculated for later comparison with forecasted traffic noise levels with and without the project. The Base Year setback distances from the roadways' centerlines to their associated 65, 70, and 75 DNL contours were also calculated as shown in Table 5. The contour line setback distances do not take into account noise shielding effects from existing buildings or the additive contributions of traffic noise from intersecting street sections. Based on the results of Table 5, it was concluded that the Base Year 65 DNL traffic noise contours over the project site were located at approximately 170 feet from the centerline of Kaahumanu Avenue, 40 feet from the centerline of Kane Street, and 16 feet from the centerline of Vevau Street. Traffic noise from Kaahumanu Street was the dominant noise source at the project site during the Base Year.

Within the project environs, the 65 DNL traffic noise contour extended into west wing of the Maui Beach Hotel fronting Kahului Beach Road, and the south end of the east wing of Maui Seaside Hotel fronting Kaahumanu Avenue. Churches and residences along Kane Street on both sides of West Kamehameha Avenue were not enclosed by the Base Year 65 DNL contour. Churches, residences, a church pre-school, and the Kahului Library located along West Kamehameha Avenue were not
# TABLE 4

**BASE YEAR (CY 2017) TRAFFIC VOLUMES AND NOISE LEVELS ALONG ROADWAYS IN PROJECT AREA (PM PEAK HOUR)**

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SPEED (MPH)</th>
<th>TOTAL VPH</th>
<th>AUTOS</th>
<th>M TRUCKS</th>
<th>H TRUCKS</th>
<th>50' Leg</th>
<th>75' Leg</th>
<th>100' Leg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaahumanu Ave. W. of Kane</td>
<td>50</td>
<td>1,919</td>
<td>1,858</td>
<td>25</td>
<td>36</td>
<td>75.4</td>
<td>72.0</td>
<td>69.3</td>
</tr>
<tr>
<td>Kaahumanu Ave. Between Kane &amp; Lono</td>
<td>40</td>
<td>3,656</td>
<td>3,539</td>
<td>48</td>
<td>69</td>
<td>75.5</td>
<td>72.1</td>
<td>69.5</td>
</tr>
<tr>
<td>Kaahumanu Ave. E. of Lono</td>
<td>40</td>
<td>3,587</td>
<td>3,472</td>
<td>47</td>
<td>68</td>
<td>75.4</td>
<td>72.0</td>
<td>69.4</td>
</tr>
<tr>
<td>Vevau St. Between Kane &amp; Lono</td>
<td>25</td>
<td>260</td>
<td>258</td>
<td>1</td>
<td>1</td>
<td>55.3</td>
<td>51.9</td>
<td>50.1</td>
</tr>
<tr>
<td>W. Kamehameha Ave. S. of Kane</td>
<td>40</td>
<td>988</td>
<td>946</td>
<td>20</td>
<td>22</td>
<td>65.7</td>
<td>62.3</td>
<td>59.6</td>
</tr>
<tr>
<td>W. Kamehameha Ave. Between Kane &amp; Lono</td>
<td>40</td>
<td>866</td>
<td>830</td>
<td>17</td>
<td>19</td>
<td>65.0</td>
<td>61.7</td>
<td>59.6</td>
</tr>
<tr>
<td>W. Kamehameha Ave. E. of Lono</td>
<td>40</td>
<td>579</td>
<td>554</td>
<td>12</td>
<td>13</td>
<td>63.8</td>
<td>60.4</td>
<td>57.7</td>
</tr>
<tr>
<td>Kahului Beach Rd. (East Side) N. of Kaahumanu</td>
<td>30S / 45N</td>
<td>2,234</td>
<td>2,127</td>
<td>51</td>
<td>56</td>
<td>75.1</td>
<td>72.0</td>
<td>69.2</td>
</tr>
<tr>
<td>Kahului Beach Rd. (West Side) N. of Kaahumanu</td>
<td>30S / 45N</td>
<td>2,234</td>
<td>2,127</td>
<td>51</td>
<td>56</td>
<td>73.0</td>
<td>70.0</td>
<td>67.7</td>
</tr>
<tr>
<td>Kane St. (West Side) Between Kaahumanu &amp; Vevau</td>
<td>30</td>
<td>500</td>
<td>478</td>
<td>12</td>
<td>10</td>
<td>63.6</td>
<td>60.1</td>
<td>57.9</td>
</tr>
<tr>
<td>Kane St. (East Side) Between Kaahumanu &amp; Vevau</td>
<td>30</td>
<td>500</td>
<td>478</td>
<td>12</td>
<td>10</td>
<td>62.9</td>
<td>59.6</td>
<td>57.3</td>
</tr>
<tr>
<td>Kane St. (West Side) Between Vevau &amp; W. Kamehameha</td>
<td>30</td>
<td>579</td>
<td>553</td>
<td>14</td>
<td>12</td>
<td>65.0</td>
<td>61.6</td>
<td>59.4</td>
</tr>
<tr>
<td>Kane St. (East Side) Between Vevau &amp; W. Kamehameha</td>
<td>30</td>
<td>579</td>
<td>553</td>
<td>14</td>
<td>12</td>
<td>64.4</td>
<td>61.1</td>
<td>58.8</td>
</tr>
<tr>
<td>Kane St. E. of W. Kamehameha</td>
<td>30</td>
<td>76</td>
<td>72</td>
<td>2</td>
<td>2</td>
<td>56.4</td>
<td>53.1</td>
<td>51.3</td>
</tr>
<tr>
<td>Lono Ave. Between Kaahumanu &amp; Vevau</td>
<td>30</td>
<td>442</td>
<td>434</td>
<td>3</td>
<td>5</td>
<td>58.8</td>
<td>55.3</td>
<td>52.8</td>
</tr>
<tr>
<td>Lono Ave. Between Vevau &amp; W. Kamehameha</td>
<td>30</td>
<td>577</td>
<td>567</td>
<td>3</td>
<td>7</td>
<td>59.9</td>
<td>56.4</td>
<td>54.0</td>
</tr>
<tr>
<td>Lono Ave. S. of W. Kamehameha</td>
<td>40</td>
<td>379</td>
<td>372</td>
<td>2</td>
<td>5</td>
<td>61.7</td>
<td>57.8</td>
<td>55.2</td>
</tr>
<tr>
<td>STREET SECTION</td>
<td>BASE YR.</td>
<td>CY 2026</td>
<td>BASE YR.</td>
<td>CY 2026</td>
<td>BASE YR.</td>
<td>CY 2026</td>
<td>BASE YR.</td>
<td>CY 2026</td>
</tr>
<tr>
<td>---------------------------------------------------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Kaahumanu Ave. W. of Kane</td>
<td>163</td>
<td>180</td>
<td>96</td>
<td>105</td>
<td>54</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaahumanu Ave. Between Kane &amp; Lono</td>
<td>170</td>
<td>178</td>
<td>98</td>
<td>104</td>
<td>55</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaahumanu Ave. E. of Lono</td>
<td>168</td>
<td>174</td>
<td>97</td>
<td>102</td>
<td>54</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vevau St. Between Kane &amp; Lono</td>
<td>16</td>
<td>31</td>
<td>&lt; 12</td>
<td>16</td>
<td>&lt; 12</td>
<td>&lt; 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Kamehameha Ave. S. of Kane</td>
<td>56</td>
<td>65</td>
<td>31</td>
<td>36</td>
<td>17</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Kamehameha Ave. Between Kane &amp; Lono</td>
<td>52</td>
<td>59</td>
<td>28</td>
<td>33</td>
<td>15</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Kamehameha Ave. E. of Lono</td>
<td>45</td>
<td>70</td>
<td>25</td>
<td>38</td>
<td>14</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kahului Beach Rd. (East Side) N. of Kaahumanu</td>
<td>159</td>
<td>174</td>
<td>95</td>
<td>104</td>
<td>53</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kahului Beach Rd. (West Side) N. of Kaahumanu</td>
<td>146</td>
<td>163</td>
<td>78</td>
<td>87</td>
<td>40</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane St. (West Side) Between Kaahumanu &amp; Vevau</td>
<td>44</td>
<td>56</td>
<td>25</td>
<td>31</td>
<td>14</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane St. (East Side) Between Kaahumanu &amp; Vevau</td>
<td>40</td>
<td>51</td>
<td>22</td>
<td>28</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane St. (West Side) Between Vevau &amp; W. Kamehameha</td>
<td>52</td>
<td>62</td>
<td>29</td>
<td>34</td>
<td>16</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane St. (East Side) Between Vevau &amp; W. Kamehameha</td>
<td>48</td>
<td>58</td>
<td>26</td>
<td>31</td>
<td>14</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane St. E. of W. Kamehameha</td>
<td>18</td>
<td>25</td>
<td>10</td>
<td>14</td>
<td>&lt; 12</td>
<td>&lt; 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lono Ave. Between Kaahumanu &amp; Vevau</td>
<td>25</td>
<td>30</td>
<td>14</td>
<td>17</td>
<td>&lt; 12</td>
<td>&lt; 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lono Ave. Between Vevau &amp; W. Kamehameha</td>
<td>29</td>
<td>33</td>
<td>16</td>
<td>19</td>
<td>&lt; 12</td>
<td>&lt; 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lono Ave. S. of W. Kamehameha</td>
<td>37</td>
<td>40</td>
<td>22</td>
<td>24</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**

(1) All setback distances are from the roadways' centerlines.
(2) See Tables 4 and 6 for traffic volume, speed, and mix assumptions.
(3) Setback distances are for ground level receptors.
(4) "Loose Soil" conditions assumed along all roadways.
enclosed by the Base Year 65 DNL contour. The new multifamily apartment complex on Vevau Street was not enclosed by the Base Year 65 DNL contour along Vevau Street.
CHAPTER VI. FUTURE NOISE ENVIRONMENT

Predictions of future traffic noise levels were made using the traffic volume assignments of Reference 5 for CY 2026 with and without the proposed project. The future projections of project plus non-project traffic noise levels on the roadways which would service the project are shown in Table 6 for the PM peak hour of traffic, under the Build Alternative. The changes in setback distances to the 65, 70, and 75 DNL contours along the streets in the project environs are shown in Table 5. Table 7 presents the predicted changes in traffic noise levels along the various roadway sections resulting from non-project and project traffic. The largest increase (approximately 6.1 DNL) in future traffic noise levels are expected to occur along Vevau Street, and primarily due to Maui Bus traffic to and from the relocated Transit Hub beyond the southeast corner of the project site. The next largest increase (approximately 3.7 DNL) is expected to occur along West Kamehameha Avenue east of Lono Avenue, and primarily due to non-project traffic. The increases in future traffic noise along the other street sections are expected to range between 0.6 to 2.5 DNL units.

The dominant traffic noise sources in the project area will continue to be traffic noise from Kahului Beach Road, Kaahumanu Avenue, and West Kamehameha Avenue. but the changes in traffic noise levels along Kahului Beach Road and Kaahumanu Avenue following project build-out are not expected to exceed 1 DNL unit. Increases in traffic noise levels resulting from project traffic are not expected to exceed 0.4 DNL along the roadways in the project area, which will be difficult to measure or perceive (see Table 7). Increases in traffic noise levels resulting from non-project traffic are predicted to range from 0.5 to 5.8 DNL, with the larger increases occurring on Vevau Street due to Maui Bus traffic, along West Kamehameha Avenue east of Lono Avenue, and on Kane Street east of West Kamehameha Avenue.

By CY 2026, on the project site, the unobstructed 65 DNL contour is predicted to extend 178 feet from the centerline of Kaahumanu Avenue, 51 feet from the centerline of Kane Street and 31 feet from the centerline of Vevau Street. Within the project environs, the 65 DNL traffic noise contour will continue to extend into the west wing of the Maui Beach Hotel fronting Kahului Beach Road, and into the south end of the east wing of Maui Seaside Hotel fronting Kaahumanu Avenue. Along Kane Street north of West Kamehameha Avenue, the 65 DNL contour is predicted to reach the Family of Life and Church of the Nazarene buildings. East of West Kamehameha Avenue, the 65 DNL contour along Kane Street is not predicted to extend to existing residences along Kane Street. Noise sensitive churches, residences, and the Kahului Library along West Kamehameha Avenue between Kane Street and Lono Avenue should be clear of the 65 DNL contour. The 65 DNL contour along West Kamehameha Avenue east of Lono Avenue is predicted to reach the north ends of the Kahului Union Church Preschool's buildings. The new multifamily apartment complex on Vevau Street should remain outside the DNL contour along Vevau Street.
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SPEED (MPH)</th>
<th>TOTAL VPH</th>
<th>********** VOLUMES (VPH) **********</th>
<th></th>
<th></th>
<th></th>
<th>50' Leg</th>
<th>75' Leg</th>
<th>100' Leg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaahumanu Ave. W. of Kane</td>
<td>50</td>
<td>2,365</td>
<td>2,289 31</td>
<td>45</td>
<td>76.4</td>
<td>72.9</td>
<td>70.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaahumanu Ave. Between Kane &amp; Lono</td>
<td>40</td>
<td>4,283</td>
<td>4,146 56</td>
<td>81</td>
<td>76.2</td>
<td>72.8</td>
<td>70.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaahumanu Ave. E. of Lono</td>
<td>40</td>
<td>4,070</td>
<td>3,940 53</td>
<td>77</td>
<td>76.0</td>
<td>72.6</td>
<td>69.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vevau St. Between Kane &amp; Lono</td>
<td>25</td>
<td>450</td>
<td>430 2</td>
<td>18</td>
<td>61.1</td>
<td>58.0</td>
<td>56.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Kamehameha Ave. S. of Kane</td>
<td>40</td>
<td>1,318</td>
<td>1,263 26</td>
<td>29</td>
<td>66.9</td>
<td>63.5</td>
<td>60.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Kamehameha Ave. Between Kane &amp; Lono</td>
<td>40</td>
<td>1,102</td>
<td>1,056 22</td>
<td>24</td>
<td>66.1</td>
<td>62.7</td>
<td>60.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. Kamehameha Ave. E. of Lono</td>
<td>40</td>
<td>1,378</td>
<td>1,320 28</td>
<td>30</td>
<td>67.5</td>
<td>64.1</td>
<td>61.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kahului Beach Rd. (East Side) N. of Kaahumanu</td>
<td>30S / 45N</td>
<td>2,761</td>
<td>2,628 64</td>
<td>69</td>
<td>76.0</td>
<td>72.9</td>
<td>70.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kahului Beach Rd. (South Side) N. of Kaahumanu</td>
<td>30S / 45N</td>
<td>2,761</td>
<td>2,628 64</td>
<td>69</td>
<td>73.9</td>
<td>70.9</td>
<td>68.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane St. (West Side) Between Kaahumanu &amp; Vevau</td>
<td>30</td>
<td>803</td>
<td>768 19</td>
<td>16</td>
<td>65.6</td>
<td>62.2</td>
<td>59.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane St. (East Side) Between Kaahumanu &amp; Vevau</td>
<td>30</td>
<td>803</td>
<td>768 19</td>
<td>16</td>
<td>64.9</td>
<td>61.6</td>
<td>59.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane St. (West Side) Between Vevau &amp; W. Kamehameha</td>
<td>30</td>
<td>817</td>
<td>780 20</td>
<td>17</td>
<td>66.5</td>
<td>63.1</td>
<td>60.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane St. (East Side) Between Vevau &amp; W. Kamehameha</td>
<td>30</td>
<td>817</td>
<td>780 20</td>
<td>17</td>
<td>65.9</td>
<td>62.6</td>
<td>60.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kane St. E. of W. Kamehameha</td>
<td>30</td>
<td>176</td>
<td>168 4</td>
<td>4</td>
<td>59.0</td>
<td>55.6</td>
<td>53.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lono Ave. Between Kaahumanu &amp; Vevau</td>
<td>30</td>
<td>617</td>
<td>606 4</td>
<td>7</td>
<td>60.2</td>
<td>56.7</td>
<td>54.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lono Ave. Between Vevau &amp; W. Kamehameha</td>
<td>30</td>
<td>782</td>
<td>768 5</td>
<td>9</td>
<td>61.2</td>
<td>57.7</td>
<td>55.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lono Ave. S. of W. Kamehameha</td>
<td>40</td>
<td>534</td>
<td>525 3</td>
<td>6</td>
<td>62.7</td>
<td>58.9</td>
<td>56.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## TABLE 7

**CALCULATIONS OF PROJECT AND NON-PROJECT TRAFFIC NOISE CONTRIBUTIONS (CY 2026)**

**PEAK HOUR LEQ OR DNL**

<table>
<thead>
<tr>
<th>STREET SECTION</th>
<th>NON-PROJECT TRAFFIC</th>
<th>PROJECT TRAFFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaahumanu Ave. W. of Kane</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>Kaahumanu Ave. Between Kane &amp; Lono</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>Kaahumanu Ave. E. of Lono</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Vevau St. Between Kane &amp; Lono</td>
<td>5.8</td>
<td>0.3</td>
</tr>
<tr>
<td>W. Kamehameha Ave. S. of Kane</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>W. Kamehameha Ave. Between Kane &amp; Lono</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>W. Kamehameha Ave. E. of Lono</td>
<td>3.6</td>
<td>0.1</td>
</tr>
<tr>
<td>Kahului Beach Rd. (East Side) N. of Kaahumanu</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Kahului Beach Rd. (West Side) N. of Kaahumanu</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Kane St. (West Side) Between Kaahumanu &amp; Vevau</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Kane St. (East Side) Between Kaahumanu &amp; Vevau</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Kane St. (West Side) Between Vevau &amp; W. Kamehameha</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Kane St. (East Side) Between Vevau &amp; W. Kamehameha</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Kane St. E. of W. Kamehameha</td>
<td>2.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Lono Ave. Between Kaahumanu &amp; Vevau</td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Lono Ave. Between Vevau &amp; W. Kamehameha</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Lono Ave. S. of W. Kamehameha</td>
<td>1.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
The project's 300 dwelling unit building will be within the 65 DNL contours of Kaahumanu Avenue and Kane Street in CY 2026. Along the north face of the proposed 6-story building fronting Kaahumanu Avenue, future traffic noise levels are predicted to range from 71 DNL on the ground floor to 72 DNL on the sixth floor. Along the west face of the proposed 6-story building fronting Kane Street, future traffic noise levels are predicted to range from 68 DNL on the ground floor to 69 DNL on the sixth floor. On the east face of the 300 dwelling unit building, living units which are beyond 125 feet from the centerline of Kaahumanu Avenue should be clear of the 65 DNL traffic noise contour. All of the building's dwelling units whose exterior walls are blocked from Kaahumanu Avenue and Kane Street should not be exposed to traffic noise levels of 65 DNL or higher.
CHAPTER VII. DISCUSSION OF PROJECT RELATED NOISE IMPACTS AND POSSIBLE MITIGATION MEASURES

Traffic Noise. Traffic noise mitigation measures will be required to meet the FHA/HUD 65 DNL standard if noise sensitive uses are located within 178 feet and 51 feet of the centerlines of Kaahumanu Avenue or Kane Street, respectively. The planned 300 dwelling unit building does not appear to have adequate setback from Kaahumanu Avenue, and the use of closure and air conditioning may be required, particularly at the upper floor units facing Kaahumanu Avenue and Kane Street where the use of sound attenuation walls would not be feasible. The interior units of the 300 dwelling unit building should not require noise mitigation measures due to traffic noise.

The majority of the traffic noise impacts along the roadways which are expected to service the project are the result of non-project traffic due to the relatively small increases of 0.1 to 0.4 DNL in future traffic noise associated with project traffic. Increases in traffic noise levels resulting from non-project traffic (ranging from 0.5 to 5.8 DNL) will be much larger than those resulting from project traffic. For this reason, off-site traffic noise mitigation measures are typically not required of project sponsors prior to project inception or after project construction. However, when federal participation occurs on a project, traffic noise mitigation measures may be required prior to construction, and where FHA/HUD participation is involved, the 65 DNL threshold is used within the project site irrespective of the sources or causes of the noise over the project site.

General Construction Noise. Audible construction noise will probably be unavoidable during the entire project construction period. The total time period for construction is unknown, but it is anticipated that the actual work will be moving from one location on the project site to another during that period. Actual length of exposure to construction noise at any receptor location will probably be less than the total construction period for the entire project. Typical levels of exterior noise from construction activity (excluding pile driving activity) at various distances from the job site are shown in Figure 6. The impulsive noise levels of impact pile drivers are approximately 15 dB higher than the levels shown in Figure 6, while the intermittent noise levels of vibratory pile drivers are at the upper end of the noise level ranges depicted in the figure.

Figure 6 is useful for predicting exterior noise levels at short distances (within 100 FT) from the work when visual line of sight exists between the construction equipment and the receptor. Direct line-of-sight distances from the construction equipment to the closest existing buildings will range from 50 FT to 200 FT, with corresponding average noise levels of 86 to 74 dBA (plus or minus 5 dBA). For receptors along a cross-street, the construction noise level vs. distance curve of Figure 6 should be reduced by approximately 8 dBA when the work is occurring at the intersection with the cross street, and should be reduced by 15 dBA when work is occurring at least 100 FT from the intersection (and the visual line-of-sight is blocked
Anticipated range of construction noise levels vs. distance

Figure 6
by intervening buildings). Typical levels of construction noise inside naturally ventilated and air conditioned structures are approximately 10 and 20 dB less, respectively, than the levels shown in Figure 6.

The existing Waterfront Apartment At Kahului, a 4-story multifamily building, is predicted to experience the highest noise levels during construction activities due to its close proximity to the project construction site. The highest noise levels are expected to occur during the earthwork and site preparation phase of construction. Adverse impacts from construction noise are not expected to be in the "public health and welfare" category due to the temporary nature of the work, and due to the administrative controls available for regulation of construction noise.

Mitigation of construction noise to inaudible levels will not be practical in all cases due to the intensity of construction noise sources (80 to 90+ dB at 50 FT distance), and due to the exterior nature of the work (sheet pile driving, grading and earth moving, trenching, concrete pouring, hammering, etc.). The use of properly muffled construction equipment should be required on the job site.

Peak airborne noise levels from pile diving may be as much as 15 dBA greater than the noise levels shown in Figure 6 for non-impulsive (steady) construction noise sources. Although the pile driving can produce more intense noise levels, each pulse is of short individual duration (less than one second). Therefore, its impact on speech communication is not as severe as that of steady source of the same noise level.

Severe noise impacts are not expected to occur inside air conditioned structures which are within 70 to 200 FT of the project construction site. Inside naturally ventilated structures, interior noise levels (with windows or doors opened) are estimated to range between 64 to 73 dBA at 70 FT to 200 FT distances from the construction site. Closure of all doors and windows facing the construction site would generally reduce interior noise levels by an additional 5 to 10 dBA.

The incorporation of State Department of Health construction noise permit procedures is another noise mitigation measure which is normally applied to construction activities. Figure 7 depicts the normally permitted hours of construction. Noisy construction activities are not allowed on Sundays and holidays, during the early morning, and during the late evening and nighttime periods under the DOH permit procedures.
AVAILABLE WORK HOURS UNDER DOH PERMIT PROCEDURES FOR CONSTRUCTION NOISE
APPENDIX A. REFERENCES

(1) "Guidelines for Considering Noise in Land Use Planning and Control;" Federal Interagency Committee on Urban Noise; June 1980.


(3) "Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety;" Environmental Protection Agency (EPA 550/9-74-004); March 1974.

(4) "Title 11, Administrative Rules, Chapter 46, Community Noise Control;" Hawaii State Department of Health; September 23, 1996.

(5) "Mobility Analysis Report (MAR) for the proposed Kahului Civic Center and Mixed-Use Complex (with revised Appendix A); Fehr & Peers; January 21, 2020.


(7) 24-Hour Traffic Counts, Station B74003200210, Kaahumanu Avenue At Kahului Beach Road and Kane Street; State Department of Transportation; December 5, 2019.

(8) Vehicle Classification Data Summary; Station B74003200210, Kaahumanu Avenue At Kahului Beach Road and Kane Street; State Department of Transportation; December 5, 2019.

(9) 24-Hour Traffic Counts, Station B74003200210, Kaahumanu Avenue At Kahului Beach Road and Kane Street; State Department of Transportation; June 5, 2020.
APPENDIX B

EXCERPTS FROM EPA'S ACOUSTIC TERMINOLOGY GUIDE

Descriptor Symbol Usage

The recommended symbols for the commonly used acoustic descriptors based on A-weighting are contained in Table I. As most acoustic criteria and standards used by EPA are derived from the A-weighted sound level, almost all descriptor symbol usage guidance is contained in Table I.

Since acoustic nomenclature includes weighting networks other than "A" and measurements other than pressure, an expansion of Table I was developed (Table II). The group adopted the ANSI descriptor-symbol scheme which is structured into three stages. The first stage indicates that the descriptor is a level (i.e., based upon the logarithm of a ratio), the second stage indicates the type of quantity (power, pressure, or sound exposure), and the third stage indicates the weighting network (A, B, C, D, E,....). If no weighting network is specified, "A" weighting is understood. Exceptions are the A-weighted sound level and the A-weighted peak sound level which require that the "A" be specified. For convenience in those situations in which an A-weighted descriptor is being compared to that of another weighting, the alternative column in Table II permits the inclusion of the "A". For example, a report on blast noise might wish to contrast the L\text{Cdn} with the L\text{Adn}.

Although not included in the tables, it is also recommended that "L\text{pn}" and "L\text{epN}" be used as symbols for perceived noise levels and effective perceived noise levels, respectively.

It is recommended that in their initial use within a report, such terms be written in full, rather than abbreviated. An example of preferred usage is as follows:

The A-weighted sound level (LA) was measured before and after the installation of acoustical treatment. The measured LA values were 85 and 75 dB respectively.

Descriptor Nomenclature

With regard to energy averaging over time, the term "average" should be discouraged in favor of the term "equivalent". Hence, L\text{eq} is designated the "equivalent sound level". For Ld, Ln, and Ldn, "equivalent" need not be stated since the concept of day, night, or day-night averaging is by definition understood. Therefore, the designations are "day sound level", "night sound level", and "day-night sound level", respectively.

The peak sound level is the logarithmic ratio of peak sound pressure to a reference pressure and not the maximum root mean square pressure. While the latter is the maximum sound pressure level, it is often incorrectly labelled peak. In that sound level meters have "peak" settings, this distinction is most important.

"Background ambient" should be used in lieu of "background", "ambient", "residual", or "indigenous" to describe the level characteristics of the general background noise due to the contribution of many unidentifiable noise sources near and far.

With regard to units, it is recommended that the unit decibel (abbreviated dB) be used without modification. Hence, D\text{BA}, P\text{Ndb}, and E\text{PndB} are not to be used. Examples of this preferred usage are: the Perceived Noise Level (L\text{Pn} was found to be 75 dB. L\text{Pn} = 75 dB). This decision was based upon the recommendation of the National Bureau of Standards, and the policies of ANSI and the Acoustical Society of America, all of which disallow any modification of bel except for prefixes indicating its multiples or submultiples (e.g., deci).

Noise Impact

In discussing noise impact, it is recommended that "Level Weighted Population" (LWP) replace "Equivalent Noise Impact" (ENI). The term "Relative Change of Impact" (RCI) shall be used for comparing the relative differences in LWP between two alternatives.

Further, when appropriate, "Noise Impact Index" (NII) and "Population Weighed Loss of Hearing" (PHL) shall be used consistent with CHABA Working Group 69 Report Guidelines for Preparing Environmental Impact Statements (1977).
APPENDIX B (CONTINUED)

TABLE I
A-WEIGHTED RECOMMENDED DESCRIPTOR LIST

<table>
<thead>
<tr>
<th>TERM</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A-Weighted Sound Level</td>
<td>$L_A$</td>
</tr>
<tr>
<td>2. A-Weighted Sound Power Level</td>
<td>$L_{WA}$</td>
</tr>
<tr>
<td>3. Maximum A-Weighted Sound Level</td>
<td>$L_{\text{max}}$</td>
</tr>
<tr>
<td>4. Peak A-Weighted Sound Level</td>
<td>$L_{A\text{pk}}$</td>
</tr>
<tr>
<td>5. Level Exceeded $x%$ of the Time</td>
<td>$L_x$</td>
</tr>
<tr>
<td>6. Equivalent Sound Level</td>
<td>$L_{\text{eq}}$</td>
</tr>
<tr>
<td>7. Equivalent Sound Level Over Time (T)</td>
<td>$L_{\text{eq}}(T)$</td>
</tr>
<tr>
<td>8. Day Sound Level</td>
<td>$L_d$</td>
</tr>
<tr>
<td>9. Night Sound Level</td>
<td>$L_n$</td>
</tr>
<tr>
<td>10. Day-Night Sound Level</td>
<td>$L_{\text{dn}}$</td>
</tr>
<tr>
<td>11. Yearly Day-Night Sound Level</td>
<td>$L_{\text{dn}(Y)}$</td>
</tr>
<tr>
<td>12. Sound Exposure Level</td>
<td>$L_{\text{SE}}$</td>
</tr>
</tbody>
</table>

(1) Unless otherwise specified, time is in hours (e.g., the hourly equivalent level is $L_{\text{eq}(1)}$). Time may be specified in non-quantitative terms (e.g., could be specified as $L_{\text{eq(WASH)}}$ to mean the washing cycle noise for a washing machine).

SOURCE: EPA ACCOUSTIC TERMINOLOGY GUIDE, BNA 8-14-78,
### APPENDIX B (CONTINUED)

#### TABLE II

**RECOMMENDED DESCRIPTOR LIST**

<table>
<thead>
<tr>
<th>TERM</th>
<th>A-WEIGHTING</th>
<th>ALTERNATIVE $^{(1)}$</th>
<th>OTHER $^{(2)}$</th>
<th>UNWEIGHTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sound (Pressure)$^{(3)}$ Level</td>
<td>$L_A$</td>
<td>$L_{pA}$</td>
<td>$L_{B}$, $L_{pB}$</td>
<td>$L_p$</td>
</tr>
<tr>
<td>2. Sound Power Level</td>
<td>$L_{WA}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Max. Sound Level</td>
<td>$L_{max}$</td>
<td>$L_{Amax}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Peak Sound (Pressure) Level</td>
<td>$L_{Apk}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Level Exceeded x% of the Time</td>
<td>$L_x$</td>
<td>$L_{Ax}$</td>
<td>$L_{Bx}$</td>
<td>$L_{px}$</td>
</tr>
<tr>
<td>6. Equivalent Sound Level</td>
<td>$L_{eq}$</td>
<td>$L_{Aeq}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Equivalent Sound Level $^{(4)}$ Over Time(T)</td>
<td>$L_{eq(T)}$</td>
<td>$L_{Aeq(T)}$</td>
<td></td>
<td>$L_{peq}$</td>
</tr>
<tr>
<td>8. Day Sound Level</td>
<td>$L_d$</td>
<td>$L_{Ad}$</td>
<td>$L_{Bd}$</td>
<td>$L_{pd}$</td>
</tr>
<tr>
<td>9. Night Sound Level</td>
<td>$L_n$</td>
<td>$L_{An}$</td>
<td>$L_{Bn}$</td>
<td>$L_{pn}$</td>
</tr>
<tr>
<td>10. Day-Night Sound Level</td>
<td>$L_{dn}$</td>
<td>$L_{Adn}$</td>
<td>$L_{Bdn}$</td>
<td>$L_{pdn}$</td>
</tr>
<tr>
<td>11. Yearly Day-Night Sound Level</td>
<td>$L_{dn(Y)}$</td>
<td>$L_{Adn(Y)}$</td>
<td></td>
<td>$L_{pdn(Y)}$</td>
</tr>
<tr>
<td>12. Sound Exposure Level</td>
<td>$L_S$</td>
<td>$L_{SA}$</td>
<td>$L_{SB}$</td>
<td>$L_{Sp}$</td>
</tr>
<tr>
<td>13. Energy Average Value Over (Non-Time Domain) Set of Observations</td>
<td>$L_{eq(e)}$</td>
<td>$L_{Aeq(e)}$</td>
<td>$L_{Beq(e)}$</td>
<td>$L_{peq(e)}$</td>
</tr>
<tr>
<td>14. Level Exceeded x% of the Total Set of (Non-Time Domain) Observations</td>
<td>$L_{x(e)}$</td>
<td>$L_{Ax(e)}$</td>
<td>$L_{Bx(e)}$</td>
<td>$L_{px(e)}$</td>
</tr>
<tr>
<td>15. Average $L_X$ Value</td>
<td>$L_X$</td>
<td>$L_{Ax}$</td>
<td>$L_{Bx}$</td>
<td>$L_{px}$</td>
</tr>
</tbody>
</table>

$^{(1)}$ "Alternative" symbols may be used to assure clarity or consistency.

$^{(2)}$ Only B-weighting shown. Applies also to C,D,E,.....weighting.

$^{(3)}$ The term "pressure" is used only for the unweighted level.

$^{(4)}$ Unless otherwise specified, time is in hours (e.g., the hourly equivalent level is $Leq(1)$). Time may be specified in non-quantitative terms (e.g., could be specified as $Leq(WASH)$ to mean the washing cycle noise for a washing machine.
# APPENDIX C

## SUMMARY OF BASE YEAR (2017) AND YEAR 2026 TRAFFIC VOLUMES

**DURING AM AND PM PEAK HOURS**

<table>
<thead>
<tr>
<th>ROADWAY LANES</th>
<th>****** CY 2017***</th>
<th>****** CY 2026 (NO BUILD)***</th>
<th>****** CY 2026 (BUILD)***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
</tr>
<tr>
<td>Kaahumanu Ave. W. of Kane (EB)</td>
<td>746</td>
<td>1,015</td>
<td>850</td>
</tr>
<tr>
<td>Kaahumanu Ave. W. of Kane (WB)</td>
<td>1,177</td>
<td>904</td>
<td>1,320</td>
</tr>
<tr>
<td>Two-Way</td>
<td>1,923</td>
<td>1,919</td>
<td>2,170</td>
</tr>
<tr>
<td>Kaahumanu Ave. Between Kane &amp; Lono (EB)</td>
<td>1,617</td>
<td>1,817</td>
<td>1,805</td>
</tr>
<tr>
<td>Kaahumanu Ave. Between Kane &amp; Lono (WB)</td>
<td>1,923</td>
<td>1,839</td>
<td>2,150</td>
</tr>
<tr>
<td>Two-Way</td>
<td>3,540</td>
<td>3,656</td>
<td>3,955</td>
</tr>
<tr>
<td>Kaahumanu Ave. E. of Lono (EB)</td>
<td>1,510</td>
<td>1,721</td>
<td>1,690</td>
</tr>
<tr>
<td>Kaahumanu Ave. E. of Lono (WB)</td>
<td>1,758</td>
<td>1,866</td>
<td>1,960</td>
</tr>
<tr>
<td>Two-Way</td>
<td>3,268</td>
<td>3,587</td>
<td>3,650</td>
</tr>
<tr>
<td>Vevau St. Between Kane &amp; Lono (EB)</td>
<td>64</td>
<td>166</td>
<td>110</td>
</tr>
<tr>
<td>Vevau St. Between Kane &amp; Lono (WB)</td>
<td>56</td>
<td>94</td>
<td>105</td>
</tr>
<tr>
<td>Two-Way</td>
<td>120</td>
<td>260</td>
<td>215</td>
</tr>
<tr>
<td>W. Kamehameha Ave. S. of Kane (NB)</td>
<td>488</td>
<td>410</td>
<td>650</td>
</tr>
<tr>
<td>W. Kamehameha Ave. S. of Kane (SB)</td>
<td>312</td>
<td>578</td>
<td>400</td>
</tr>
<tr>
<td>Two-Way</td>
<td>800</td>
<td>988</td>
<td>1,050</td>
</tr>
<tr>
<td>W. Kamehameha Ave. Between Kane &amp; Lono (EB)</td>
<td>402</td>
<td>406</td>
<td>510</td>
</tr>
<tr>
<td>W. Kamehameha Ave. Between Kane &amp; Lono (WB)</td>
<td>218</td>
<td>460</td>
<td>300</td>
</tr>
<tr>
<td>Two-Way</td>
<td>620</td>
<td>866</td>
<td>810</td>
</tr>
<tr>
<td>W. Kamehameha Ave. E. of Lono (EB)</td>
<td>514</td>
<td>238</td>
<td>630</td>
</tr>
<tr>
<td>W. Kamehameha Ave. E. of Lono (WB)</td>
<td>250</td>
<td>341</td>
<td>310</td>
</tr>
<tr>
<td>Two-Way</td>
<td>764</td>
<td>579</td>
<td>940</td>
</tr>
<tr>
<td>Kahului Beach Rd. N. of Kaahumanu (NB)</td>
<td>975</td>
<td>1,048</td>
<td>1,120</td>
</tr>
<tr>
<td>Kahului Beach Rd. N. of Kaahumanu (SB)</td>
<td>1,169</td>
<td>1,186</td>
<td>1,320</td>
</tr>
<tr>
<td>Two-Way</td>
<td>2,144</td>
<td>2,234</td>
<td>2,440</td>
</tr>
<tr>
<td>Kane St. Between Kaahumanu &amp; Vevau (NB)</td>
<td>149</td>
<td>191</td>
<td>230</td>
</tr>
<tr>
<td>Kane St. Between Kaahumanu &amp; Vevau (SB)</td>
<td>220</td>
<td>309</td>
<td>270</td>
</tr>
<tr>
<td>Two-Way</td>
<td>368</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Kane St. Between Vevau &amp; W. Kamehameha (NB)</td>
<td>182</td>
<td>238</td>
<td>275</td>
</tr>
<tr>
<td>Kane St. Between Vevau &amp; W. Kamehameha (SB)</td>
<td>218</td>
<td>341</td>
<td>275</td>
</tr>
<tr>
<td>Two-Way</td>
<td>400</td>
<td>579</td>
<td>550</td>
</tr>
</tbody>
</table>
### APPENDIX C (CONTINUED)

#### SUMMARY OF BASE YEAR (2017) AND YEAR 2026 TRAFFIC VOLUMES
**DURING AM AND PM PEAK HOURS**

<table>
<thead>
<tr>
<th>ROADWAY LANES</th>
<th>***** CY 2017***</th>
<th>*** CY 2026 (NO BUILD) ***</th>
<th>*** CY 2026 (BUILD) ***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
</tr>
<tr>
<td>Kane St. E. of W. Kamehameha (EB)</td>
<td>30</td>
<td>22</td>
<td>80</td>
</tr>
<tr>
<td>Kane St. E. of W. Kamehameha (WB)</td>
<td>24</td>
<td>54</td>
<td>70</td>
</tr>
<tr>
<td>Two-Way</td>
<td>54</td>
<td>76</td>
<td>150</td>
</tr>
<tr>
<td>Lono Ave. Between Kaahumanu &amp; Vevau (NB)</td>
<td>235</td>
<td>205</td>
<td>335</td>
</tr>
<tr>
<td>Lono Ave. Between Kaahumanu &amp; Vevau (SB)</td>
<td>195</td>
<td>237</td>
<td>270</td>
</tr>
<tr>
<td>Two-Way</td>
<td>430</td>
<td>442</td>
<td>605</td>
</tr>
<tr>
<td>Lono Ave. Between Vevau &amp; W. Kamehameha (NB)</td>
<td>293</td>
<td>231</td>
<td>395</td>
</tr>
<tr>
<td>Lono Ave. Between Vevau &amp; W. Kamehameha (SB)</td>
<td>239</td>
<td>346</td>
<td>330</td>
</tr>
<tr>
<td>Two-Way</td>
<td>532</td>
<td>577</td>
<td>725</td>
</tr>
<tr>
<td>Lono Ave. S. of W. Kamehameha (NB)</td>
<td>299</td>
<td>174</td>
<td>410</td>
</tr>
<tr>
<td>Lono Ave. S. of W. Kamehameha (SB)</td>
<td>148</td>
<td>205</td>
<td>220</td>
</tr>
<tr>
<td>Two-Way</td>
<td>447</td>
<td>379</td>
<td>630</td>
</tr>
</tbody>
</table>
Appendix E

Preliminary Engineering Report
TABLE OF CONTENTS

1. INTRODUCTION ................................................................................................................................. 3
   1.1 OVERVIEW .................................................................................................................................. 3
   1.2 PURPOSE OF REPORT ................................................................................................................... 3
   1.3 EXISTING USES ........................................................................................................................... 3
   1.4 FLOOD HAZARD .......................................................................................................................... 4

2. EXISTING INFRASTRUCTURE ............................................................................................................... 4
   2.1 EXISTING ROADWAYS .................................................................................................................. 4
   2.2 EXISTING PEDESTRIAN ACCESS ................................................................................................. 4
   2.3 EXISTING PARKING ....................................................................................................................... 5
   2.4 EXISTING WASTEWATER INFRASTRUCTURE .............................................................................. 5
   2.5 EXISTING WATER INFRASTRUCTURE ......................................................................................... 5
   2.6 EXISTING DRAINAGE INFRASTRUCTURE ..................................................................................... 5
   2.7 EXISTING ELECTRICAL, TELEPHONE AND INTERNET SERVICES ............................................. 6

3. PROPOSED INFRASTRUCTURE .......................................................................................................... 6
   3.1 PROPOSED ROADWAY .................................................................................................................. 6
   3.2 PROPOSED PEDESTRIAN ACCESS ............................................................................................... 7
   3.3 PROPOSED VEHICULAR ACCESS AND PARKING ....................................................................... 7
   3.4 EROSION CONTROL ..................................................................................................................... 8
   3.5 PROPOSED SITE GRADING AND DRAINAGE/STORMWATER QUALITY ....................................... 8
   3.6 PROPOSED SEWER INFRASTRUCTURE ...................................................................................... 9
   3.7 PROPOSED WATER AND FIRE INFRASTRUCTURE ..................................................................... 10
   3.8 PROPOSED ELECTRICAL, TELEPHONE AND INTERNET SERVICES .......................................... 14

4. CONCLUSION ....................................................................................................................................... 15

FIGURES .................................................................................................................................................... 16
   FIGURE 1: LOCATION MAP ................................................................................................................. 17
   FIGURE 2: SOILS MAP ......................................................................................................................... 18
   FIGURE 3: FLOOD ZONE MAP .......................................................................................................... 19
   FIGURE 4: STRIPING AND ROADWAY IMPROVEMENTS ................................................................. 20
   FIGURE 5: MULTIMODAL CIRCULATION ......................................................................................... 21
   FIGURE 6: EXISTING CONDITIONS SITE AND UTILITY ................................................................ 21
   FIGURE 7: PROPOSED CONDITIONS SITE AND UTILITY ............................................................... 22
   FIGURE 8: EXISTING DRAINAGE CONDITIONS ............................................................................. 23
   FIGURE 9: PROPOSED DRAINAGE CONDITIONS ............................................................................ 24

APPENDIX A: DETENTION BASIN CALCULATIONS .............................................................................. 25
APPENDIX B: PRELIMINARY ENGINEERING REPORT (ELECTRICAL) .................................................. 32
1. INTRODUCTION

1.1 OVERVIEW

The State of Hawai‘i (State), Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC) is proposing to undertake the “Kahului Civic Center Mixed-Use Complex Project” (Project). The Project is a collaborative effort between the HHFDC and State Department of Accounting and General Services. The Project primarily involves the construction of affordable and market-rate multi-family housing (multi-family housing) and a State Kahului Civic Center (Civic Center). The multi-family housing buildings and Civic Center will provide a total of approximately 381,000 SF of floor area and approximately 596 parking spaces. Approximately 300 multi-family dwelling units (mixture of 1-, 2- and 3-bedroom units) will be provided in two buildings (both roughly six stories); and approximately 414 parking spaces will be provided in two three-level parking podiums for the multi-family housing. The preliminary program for the Civic Center (roughly four stories) includes space for State offices, the State Department of Education's (DOE) McKinley Community School for Adults, and the Kahului Public Library. A parking deck built over a surface parking lot will provide approximately 182 parking spaces for the Civic Center. Community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center. The Civic Center program spaces may be adjusted due to the needs and priorities of State agencies and availability of funding. The Project site is owned by the State, and is currently utilized by the DOE’s McKinley Community School for Adults. The Project site is adjacent to the new Central Maui Transit Hub, being developed by the County of Maui, which is not a part of this Project.

1.2 PURPOSE OF REPORT

The intent of this Preliminary Engineering Report (PER) is to evaluate the feasibility of the existing infrastructure and utilities to support the proposed project. The PER will also identify and recommend infrastructure and utility improvements necessary for the proposed development.

1.3 EXISTING USES

The project site consists of one (1) Tax Map Key (TMK): (2) 3-7-004:003 (por.) with an approximate project area of 4.72 acres. The existing project site is located within the “Urban” State Land Use District (SLUD) and the “B-2 – Business-Community” zoning district and is designated for “B – Business/Commercial” use per the County’s Wailuku-Kahului Community Plan (2002). The project site has elevations that range from approximately 12’ above MSL to 6’ MSL, where the site is mostly flat. Several buildings, at-grade parking spaces, fences, rock wall, and grass/weeded areas constitute the existing use of the project site.

(See Figure 1: Location Map)

According to the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS), soils consist of Puuone Sand (7% to 30% slopes) and Fill
Land on the mauka and makai portions of the project site, respectively. (See Figure 2: Soils Map)

1.4 FLOOD HAZARD

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM), the project area is located within Zone “X”, an area determined to be outside the 500-year floodplain and not subjected to any flood regulations. The project site is not located within a FEMA Special Flood Hazard Area (SFHA). (See Figure 3: Flood Zone Map)

2. EXISTING INFRASTRUCTURE

2.1 EXISTING ROADWAYS

The project site is bounded by Kaahumanu Avenue, Kane Street and Vevau Street on the northern, western, and southern portions of the site, respectively. Kaahumanu Avenue is a three lane in each direction, two-way asphalt concrete (AC) paved roadway with bicycle lanes separated by a median under the jurisdiction of the State of Hawaii Department of Transportation (DOT). Kane Street is a two-way AC paved roadway with two (2) lanes mauka and one (1) lane in the makai direction of traffic under the jurisdiction of the County of Maui (See Figure 1: Location Map). Kane Street also serves as the ingress and egress point for vehicles using the existing twenty-one (21) stall at-grade AC parking lot and vehicles accessing the maintenance parking lot on the project site. Vevau Street is a single lane in each direction, two-way AC paved roadway, that is being improved and dedicated to the County of Maui.

2.2 EXISTING PEDESTRIAN ACCESS

Pedestrian access is provided by sidewalks surrounding the project site adjacent to Kaahumanu Avenue and a small portion on the makai portion of Kane Street. Sidewalk access is unavailable for the majority of Kane Street and Vevau Street. Currently, a separate project is in progress to improve the sidewalk along Vevau Street fronting the project site. Once complete, pedestrians will have access to the project site via Vevau Street (See Figure 6 Existing Conditions Site and Utility).

Four (4) crosswalks provide pedestrian access to the project site. The crosswalk on the corner of Kaahumanu Avenue and Kane Street provides access for pedestrians approaching the project site from the west along Kaahumanu Avenue, while a crosswalk in the north-east direction bordering the project site and the adjacent Shell gas station provides access for pedestrians approaching from the north-east. Two (2) crosswalks on the corner of Vevau Street and Kane Street provide access for pedestrians approaching from the south and the Sears parking lot mauka of the project site (See Figure 6 Existing Conditions Site and Utility).
2.3 EXISTING PARKING

A portion of the project site is currently used as an at-grade AC parking lot for DOE Adult School students, DOE lawn mower operations and their authorized personnel, and DOE bus drivers. Street parking is unavailable along the roadways surrounding the project site.

2.4 EXISTING WASTEWATER INFRASTRUCTURE

Wastewater service is provided by existing 15-inch and 8-inch sewer lines within Vevau Street and Kane Street, respectively. Correspondence with the Department of Environmental Management Wastewater Reclamation Division (WRD) officials indicate the 15-inch sewer line is encased with reinforced concrete along the project frontage along Vevau Street and new sewer lateral connections are consequently not permitted. WRD officials indicated records show two (2) lateral connections are associated with the project site Tax Map Key (TMK) when only one (1) is permitted per parcel under County of Maui code. The two (2) sewer laterals associated with the project site include an existing 4-inch sewer lateral connecting to the existing DOE School for Adults building along Vevau Street and an 8-inch sewer lateral stub provided by the adjacent Transit Hub project, intended to serve this project.

2.5 EXISTING WATER INFRASTRUCTURE

Potable water service to the property is provided by an existing 12-inch Department of Water Supply (DWS) waterline within Kaahumanu Avenue. Correspondence with DWS officials indicate the existence of a 2-inch water meter along Kaahumanu Avenue with a capacity of 160 gallons per minute (GPM). The State of Hawaii has jurisdiction over Kaahumanu Avenue and any proposed work will require the State’s review and approval in conjunction to DWS review.

Three (3) fire hydrants, denoted as FH#002, FH#118 and FH#119, are located within the vicinity of the project site. Fire hydrant #002 is located along Kaahumanu Avenue, while fire hydrants #118 and #119 are located on corner of Kane Street and Vevau Street and the corner of Kaahumanu Avenue and Kane Street fronting the Sears parking lot, respectively. Fire hydrant #002 connects to a 12-inch water line main within Kaahumanu Avenue with a static pressure of 94 psi. Fire hydrant #118 and fire hydrant #119 both connect to an 8-inch water line main within Kane Street with static pressure values of 92 psi and 94 psi, respectively based on modeled pressures provided by County of Maui.

2.6 EXISTING DRAINAGE INFRASTRUCTURE

Stormwater runoff generated within the project site sheet flows towards Kane Street and three (3) openings in the rock wall along Kaahumanu Avenue with portions of the runoff retained in low spots within the center of the parcel boundary. Runoff conveyed off the parcel boundary towards Kane Street travels via surface flow to a catch basin near the intersection of Kaahumanu Avenue and Kane Street, while runoff conveyed towards the openings in the rock wall travels via surface and gutter flow into two (2) catch basins along Kaahumanu Avenue (Catch Basins CB-2 and CB-3). Drainage basin
E-4 was determined to retain approximately 15,349 cubic feet of volume based on the size of the sump and discharges 1.94 cfs during a 50-year recurrence interval one hour duration storm. The 1.94 cfs discharge travels through the opening in the rockwall and towards to a catch basin denoted CB-3. All three (3) catch basins discharge 3.09 cfs of runoff into the State’s 36-inch drain line within Kane Street and Kaahumanu Avenue for a 50-year recurrence interval one hour duration storm. The project site does not appear to contain any stormwater structures or other special mitigation measures and runoff overland flows and outflows to four (4) discharge points (See **Figure 8 Existing Drainage Conditions**).

**Table 2.6.1 Existing Drainage Condition**

<table>
<thead>
<tr>
<th>Drainage Basin</th>
<th>Runoff Coefficient, C</th>
<th>Corrected Rainfall, i_{50}</th>
<th>Area(acres)</th>
<th>Runoff, Q_{50}(cfs)</th>
<th>Discharge Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>0.35</td>
<td>4.83</td>
<td>0.21</td>
<td>0.36</td>
<td>Catch Basin CB-2</td>
</tr>
<tr>
<td>E2</td>
<td>0.35</td>
<td>6.77</td>
<td>0.16</td>
<td>0.38</td>
<td>Catch Basin CB-1</td>
</tr>
<tr>
<td>E3</td>
<td>0.35</td>
<td>4.83</td>
<td>0.24</td>
<td>0.41</td>
<td>Catch Basin CB-2</td>
</tr>
<tr>
<td>E4</td>
<td>0.60</td>
<td>3.71</td>
<td>4.11</td>
<td>1.94</td>
<td>E-4 Pond (15,349 CF retained)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td><strong>4.72</strong></td>
<td><strong>3.09</strong></td>
<td></td>
</tr>
</tbody>
</table>

**2.7 EXISTING ELECTRICAL, TELEPHONE AND INTERNET SERVICES**

Existing utilities exist within the vicinity of the project along Kaahumanu Avenue, Kane Street and Vevau Street. Appended “**Preliminary Engineering Report (Electrical)**” provides further information on the existing utilities and their locations.

**3. PROPOSED INFRASTRUCTURE**

**3.1 PROPOSED ROADWAY**

Roadway improvement recommendations in consideration as the project progresses include:

- Multi-way stop warrant or AWSC (All-Way Stop Control) at the intersection of Kane Street/Vevau Street to provide traffic gaps
- Re-striping section of Kane Street between Vevau Street and Kaahumanu Avenue to allow partial access via driveway on east side of Vevau Street
- Restripe southbound Kane Street approach to Vevau Street to be a southbound right-return lane, a southbound through lane, and a southbound left-turn lane
- Prohibit left turns out of Kane Street driveway

**Figure 4 Striping and Roadway Improvements** illustrates the recommended improvements categorized above.
Potential improvements will most likely involve discussion with the County of Maui and their respective departments for direction and approval. No new connections, entrances or exits are proposed on Kaahumanu Avenue (State).

3.2 PROPOSED PEDESTRIAN ACCESS

Pedestrian access to the project site will be provided by the existing surrounding public sidewalks along Kaahumanu Avenue and walkways within the project boundary. The Vevau Street Improvement project will provide new public sidewalks along Vevau Street and pedestrian access to the adjacent transit hub. As part of the infrastructure improvements, the project will also provide a new 10 feet wide public sidewalk along the frontage along Kane Street. Proposed and modified walkways will be installed to conform to Americans with Disabilities Act (ADA) requirements as technically feasible. Walkways within the project site are to be designed in such ways to enable pedestrians’ efficient access to and between the three (3) separate buildings and the parking structure (See Figure 7 Proposed Conditions Site and Utility).

Pedestrian access improvement recommendation in consideration as the project progresses include:
- Curb extension on southwest corner of Kane Street/Vevau Street to shorten pedestrian crossing distance
- Project is expected to contribute 30.1% of AWSC design and installation. If AWSC is not implemented by County of Maui, project will fund fully to design and install either AWSC or Rectangular Rapid Flashing Beacon (RRFB)

Figure 4 Striping and Roadway Improvements and Figure 5 Multimodal Circulation illustrates the recommended improvements categorized above and conceptual multimodal circulation.

Potential improvements will most likely involve discussion with the County of Maui and their respective departments for coordination and approval.

3.3 PROPOSED VEHICULAR ACCESS AND PARKING

An existing driveway adjacent to Kane Street will be replaced with a new driveway to serve as the ingress and egress point for vehicles using the surface parking, parking garages in the residential high rises, and a parking deck adjacent to the four-story office building. The project will incorporate a total of 596 parking stalls to accommodate the project’s parking requirements. A new driveway along Vevau Street adjacent to the Transit Hub’s existing driveway will provide ingress and egress access for vehicles using the parking structure directly, but also connect to the onsite parking and adjacent residential building.
3.4 EROSION CONTROL
The site will implement temporary Best Management Practices (BMP) techniques for erosion control throughout the construction phase of the project. BMPs will conform to all applicable standards to fulfill proper erosion control management to prevent water pollution and soil loss.

3.5 PROPOSED SITE GRADING AND DRAINAGE/STORMWATER QUALITY
The elevations across the existing project site are relatively flat and the proposed site improvements and grading will match the existing elevations to the maximum extent possible; however, portions of the project site will likely require fill to match the elevation of the surrounding streets. Walkways and site improvements will comply with Americans with Disabilities Act (ADA) guidelines and regulations. Grading throughout the site will consider drainage designs to convey stormwater away from the buildings to site landscaping, Low Impact Development (LID) Best Management Practices (BMP), storm drain improvements and to the State’s drainage system.

Low Impact Development (LID)
Low Impact Development (LID) features are intended to manage stormwater runoff and mimic the predevelopment conditions of a site by minimizing impacts to surrounding environment. Potential LID techniques for the project site include bioretention planters and planter boxes for the numerous trees within the project site. Stormwater runoff enters bioretention planters where organic mulch layer and sandy soils appropriate for plants filter, store, and infiltrate runoff into a gravel layer. Similarly, stormwater runoff enters planter boxes; however, infiltration is not performed. Planter boxes retain stormwater runoff within a closed system and are ideal in locations that do not permit infiltration.

Underground Detention Basin
The project site will implement an underground chamber detention basin to detain the increase in stormwater runoff generated by the site improvements. The underground detention basin will be placed between the residential high rises or where space is available with stormwater runoff contributed via residential high rises, parking structure and drain inlets surrounding the project site. The underground detention basin was conservatively sized to detain the entire project site’s 50-year stormwater runoff of 19,855 cubic feet. The detention basin is also designed to discharge into the existing catch basin CB-2 that fronts the project site along Kaahumanu Avenue. The discharge during a 50-year 1-hour storm is 1.86 cfs which does not exceed the existing 50-year, 1-hour discharge peak flow of 3.09 cfs, to the State’s drainage system.
### Table 3.5.1 Proposed Drainage Condition

<table>
<thead>
<tr>
<th>Drainage Basin</th>
<th>Runoff Coefficient, C</th>
<th>Corrected Rainfall, $i_{50}$</th>
<th>Area (acres)</th>
<th>Runoff, $Q_{50}$ (cfs)</th>
<th>Discharge Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.85</td>
<td>5.42</td>
<td>4.72</td>
<td>1.86</td>
<td>Subsurface Retention Basin (19,855 CF)</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td><strong>4.72</strong></td>
<td><strong>1.86</strong></td>
<td></td>
</tr>
</tbody>
</table>

The implementation of LID features, landscaping, site drainage improvements and an underground detention basin, the proposed stormwater runoff quantities will not exceed the existing 50-year, 1-hour storm runoff of 3.09 cfs contributed to the State’s drainage system and no adverse impacts are anticipated downstream.

### 3.6 PROPOSED SEWER INFRASTRUCTURE

The proposed development of two (2) residential low rises comprising of a total of 300 units with retail, DAGS office, school, library and multi-level parking is expected to increase the sewer demands on the County’s wastewater system. Correspondence with the Department of Environmental Management Wastewater Reclamation Division (WRD) officials indicate that the project site would most likely use an existing 8-inch sewer lateral stub connection provided by the adjacent Transit Hub project. With the anticipated use of the project site, the following wastewater values were determined based on the projected demands:

### Table 3.6 Daily Wastewater Demand

<table>
<thead>
<tr>
<th>Building</th>
<th>Area/Unit</th>
<th>Conversion</th>
<th>Capita</th>
<th>Wastewater Flow Contribution</th>
<th>Avg. Wastewater Flow (gal/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>300 units</td>
<td></td>
<td></td>
<td>255 gal/unit/day</td>
<td>76,500</td>
</tr>
<tr>
<td>Retail</td>
<td>5,000 sf</td>
<td>1 employee/350 sf</td>
<td>15 employees</td>
<td>15 gal/employee/day</td>
<td>225</td>
</tr>
<tr>
<td>DAGS Office/School</td>
<td>45,000 sf</td>
<td>1 employee/200 sf</td>
<td>225 employees</td>
<td>20 gal/employee/day</td>
<td>4,500</td>
</tr>
<tr>
<td>Library</td>
<td>16,000 sf</td>
<td>1 employee/500 sf</td>
<td>32 employees</td>
<td>15 gal/employee/day</td>
<td>480</td>
</tr>
<tr>
<td><strong>Total:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>81,705</strong></td>
</tr>
<tr>
<td>Wastewater Demand</td>
<td>Wastewater Flow (gal/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Wastewater Flow</td>
<td>81,705</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Weather Infiltration/Inflow</td>
<td>35,770</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Wastewater Flow</td>
<td>408,525</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Weather Infiltration/Inflow</td>
<td>15,318</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Average Flow</td>
<td>117,475</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Maximum Flow</td>
<td>444,295</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Peak Flow</td>
<td>459,613</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using the average wastewater flow of 81,705 gallons per day, a design peak flow of 459,613 gallons per day was determined. The 8-inch sewer lateral has sufficient capacity to satisfy the project’s anticipated wastewater discharge.

The 8-inch sewer lateral connects to a property manhole and subsequently to a public sewer manhole (SMH #KA01000800) which discharges into an 18-inch sewer main within Vevau Street. Wastewater Reclamation Division (WRD) officials stated the peak flow observed in the 18-inch sewer main was one-third full despite numerous facilities and businesses upstream and capacity for the project site should not be an issue. Preliminary analysis based on the average wastewater flow of 81,705 gallons per day performed by WRD has confirmed capacity exists at the Wailuku/Kahului Wastewater Reclamation Facility and the Kahului Wastewater Pump Station to currently serve the proposed project. Final capacity of both systems; however, can only be determined at the time of building permit issuance, and future availability could be impacted based on factors such as other developments and regulatory changes.

### 3.7 PROPOSED WATER AND FIRE INFRASTRUCTURE

The water demand is expected to increase with the proposed development. The project will require potable water and fire sprinkler service as part of the proposed development.

The County of Maui’s ordinance (Chapter 20.30 Use of Reclaimed Water) requires commercial properties to use recycled water for irrigation in areas where reclaimed water service is available. Reclaimed water service is unavailable within the vicinity of the project site, and the project will not connect to a non-potable, reclaimed water system.

Three (3) fire hydrants (FH#002, FH#118 and FH#119) are available within the vicinity of the project site and fire access is available surrounding the project site. The
The project site will include a new Detector Check (DC) meter and a water lateral from Kaahumanu Avenue to provide fire sprinkler protection for the three (3) proposed buildings and parking structures. The lateral and meter size are to be determined using the Board of Water Supply Water System Standards Detail M31 Single Detector. Based on classification from Table 100-19 Fire Flow Requirements for Schools, Retail and High-Rise Apartments on Maui, the project site will require fire flow of 2,000 gpm for a duration of two (2) hours.

A new 4” compound meter based on a preliminary fixture unit count of 2,200 or 350 gallons per minute, and a 6” lateral for potable water service is projected for the project site. Final meter and pipe sizes will be based on the total fixture units of the proposed buildings and available pressures. Fixture unit counts will be determined as the project progresses and will be incorporated in the final water meter and lateral designs. DWS officials conveyed that the State of Hawaii has jurisdiction over Kaahumanu Avenue and any proposed work including meter installations and lateral connections will require the appropriate State agency’s review and approval in conjunction to DWS review. In addition, water meter upgrades require a water meter reservation, where the water meter reservation offer is valid for 60 days and must be installed within 5 years.

DWS officials have stated that the County is under strict conservation measures regarding water usage and projects may request up 3,000 gallons per day of new or additional water service for a parcel. DWS performs updates yearly to their three-year forecast and percentage of maximum reliable capacity and it is advised to contact the Department for updated information. DWS officials have indicated; however, projects designated as State Public Facilities, as defined in Section 19.04.040, Maui County Code, are exempt from the Administrative Rules, if adequate capacity is available to meet the project’s water demands. DWS officials, however, have indicated facilities and property owned by the State are not automatically exempt from the Administrative Rules limiting new or additional upgrades to sites to 3,000 GPD per parcel, but rather the use of the facility is the determining factor. Facilities and properties leased for commercial use are not exempt under the Administrative Rules and are thus subject to the 3,000 gallons per day or an equivalent of 21,428 square feet of non-public use.

Water availability was inquired to DWS to which the department has responded that water availability could potentially be an issue in the future should current water service requests continue the trajectory of the past two (2) years and if DWS does not obtain new water use permit approval from the Commission on Water Resource Management (CWRM) in the next one (1) to two (2) years for additional withdrawal from Wailuku River. DWS has reaffirmed adequate water infrastructure for projects cannot be determined until a building permit application is submitted. In addition, a building permit application is required to be submitted for a formal request for water
service which includes meter upgrades, new water meters, additional water meters and/or water meter reservation. The water meter sizing worksheets and/or the water demand calculations (domestic and irrigation) will be approved during the building permit application process. Prior to submittal of the building permit application, DWS suggests a review to determine water system improvements which would be required on the building permit plans. Once the water system improvements are determined, a water meter reservation is a potential option to acquire commitment by DWS for water service.

With the uncertain future water availability within Maui County, it is recommended that a water meter reservation process is initiated early in the project design to obtain a written commitment by DWS indicating that the proposed project will be provided the water requirements.

The affordable housing units, DAGS Office, library and school are exempt from the Administrative Rules (Title 16, Chapter 201) as a public facility project as defined in Section 19.04.040. The retail space is likely not exempt from the rules as it serves as a commercial space.

DWS officials have suggested to clarify and confirm the intended use of spaces constituting “gray” areas. A letter to the Planning Department is suggested to clarify whether facilities in “gray” areas can receive an exemption from the Administrative Rules. If the Planning Department agrees that the facilities are intended for public use, the corroborating letter should be forwarded to DWS for review to determine exemptions from the Administrative Rules.

Proposed water demands based on proposed site usage were determined as follows:

**Kahului Retail:**

<table>
<thead>
<tr>
<th>Total Area (sq. ft.)</th>
<th>Land Use</th>
<th>Average Daily Consumption Rates (gal/sq. ft)</th>
<th>Average Daily Demand (gal/day)</th>
<th>Max Daily Demand (gal/day)</th>
<th>Peak Hour (gal/day)</th>
<th>Exemption from Administrative Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000</td>
<td>Retail</td>
<td>140/1000</td>
<td>700</td>
<td>1,050</td>
<td>2,100</td>
<td>Not Exempt</td>
</tr>
</tbody>
</table>
### Kahului DAGS Office, School and Library:

<table>
<thead>
<tr>
<th>Total Area (acres)</th>
<th>Land Use</th>
<th>Average Daily Consumption Rates (gal/day)</th>
<th>Average Daily Demand (gal/day)</th>
<th>Max Daily Demand (gal/day)</th>
<th>Peak Hour (gal/day)</th>
<th>Exemption from Administrative Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40</td>
<td>School, DAGS Office Library (Public Use)</td>
<td>1,700</td>
<td>2,380</td>
<td>3,570</td>
<td>7,140</td>
<td>Exempt</td>
</tr>
</tbody>
</table>

### Kahului Residential:

<table>
<thead>
<tr>
<th>Total Units</th>
<th>Land Use</th>
<th>Average Daily Consumption Rates (gal/unit)</th>
<th>Average Daily Demand (gal/day)</th>
<th>Max Daily Demand (gal/day)</th>
<th>Peak Hour (gal/day)</th>
<th>Exemption from Administrative Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Residential (Affordable Housing)</td>
<td>560</td>
<td>168,000</td>
<td>252,000</td>
<td>504,000</td>
<td>Exempt</td>
</tr>
</tbody>
</table>

The project site will adhere to all requirements including:

- The fire department connections (FDCs) for the new building should be located on the address side of the building and visible to the street or on the fire access road, or proper signage installed directing the fire department to the FDC.

- Additional on-site fire hydrants may be required as part of the County fire department review.

Fire access and water supply system requirements for the project will be designed based upon the County Fire Code, which references the State Fire Code and the National Fire Protection Agency (NFPA) 1, Uniform Fire Code, 2012 and all additional amendments as part of the Hawai‘i Administrative Rules (HAR) Title 12, Subtitle 7, Chapter 45.2. Additional requirements are noted in the Water System Standards dated 2002. At this time, based upon the above referenced standards, the following criteria will be met in terms of adequate fire access and water supplies:

- Provide an adequate fire apparatus roadway for every facility or portion of a facility where any portion of said structure is located more than 150-feet.
from fire apparatus access as measured by an approved route around the exterior of the facility.

- Road Width = Unobstructed 20-feet.
- Road Vertical Clearance = Unobstructed 13-feet and 6-inches.
- Surface = Capable supporting 73,000 lbs and constructed with an all-weather material.
- Turning Radius = 42-foot minimum on outside front wheel. 28.4-foot minimum on inside rear wheel.
- Dead Ends = Provide appropriate turnaround (cul-de-sac or hammerhead)
- Maximum Grade = 19%
- Key Boxes = If fire access roadway is gated or locked at any time.
- Signage = Required for entire length of roadway
- Provide an adequate fire water supply, capable of supplying the required fire flow as determined by the Water System Standards. On-site, private hydrants may be required for facilities where any portion of the structure is located more than 150-feet from a water supply on a fire apparatus access road.
- Provide 2,000 gpm for 2 hours with a residual pressure of 20 psi for on-site hydrants.
- Hydrant spacing at 250-feet (on public roadways).
- Fire Department Connections (FDCs) for sprinkler systems should be placed on the address side of the building and within 50 feet of an adequate water supply/fire hydrant.

3.8 PROPOSED ELECTRICAL, TELEPHONE AND INTERNET SERVICES

Appended "Preliminary Engineering Report (Electrical)" provides options for the project to use the existing infrastructure in conjunction with improvements.
4. CONCLUSION
The proposed development will comply with all State, Federal and County guidelines, and regulations. The existing utilities and surrounding infrastructure are sufficient to support the proposed site development with the indicated improvements and no adverse impacts are expected from the project’s development.
FIGURES
FIGURE 1: LOCATION MAP
FIGURE 2: SOILS MAP
FIGURE 3: FLOOD ZONE MAP
FIGURE 4: STRIPING AND ROADWAY IMPROVEMENTS
FIGURE 5: MULTIMODAL CIRCULATION
Hyd. No. 1

EXISTING BASIN 1

Hydrograph type = Rational  Peak discharge = 0.361 cfs
Storm frequency = 50 yrs  Time to peak = 0.33 hrs
Time interval = 1 min  Hyd. volume = 434 cuft
Drainage area = 0.214 ac  Runoff coeff. = 0.35
Intensity = 4.826 in/hr  Tc by User = 20.00 min
IDF Curve = 218071-01 Kahului.IDF  Asc/Rec limb fact = 1/1
Hyd. No. 2

EXISTING BASIN 2

Hydrograph type = Rational
Storm frequency = 50 yrs
Time interval = 1 min
Drainage area = 0.162 ac
Intensity = 6.768 in/hr
IDF Curve = 218071-01 Kahului.IDF

Peak discharge = 0.383 cfs
Time to peak = 0.17 hrs
Hyd. volume = 230 cuft
Runoff coeff. = 0.35
Tc by User = 10.00 min
Asc/Rec limb fact = 1/1

Hyd No. 2
Hyd. No. 3

EXISTING BASIN 3

Hydrograph type = Rational
Storm frequency = 50 yrs
Time interval = 1 min
Drainage area = 0.244 ac
Intensity = 4.826 in/hr
IDF Curve = 218071-01 Kahului.IDF

Peak discharge = 0.412 cfs
Time to peak = 0.33 hrs
Hyd. volume = 495 cuft
Runoff coeff. = 0.35
Tc by User = 20.00 min
Asc/Rec limb fact = 1/1

EXISTING BASIN 3

Hyd. No. 3 -- 50 Year

Q (cfs) vs. Time (hrs)
Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Thursday, 03 / 18 / 2021

Hyd. No. 4

EXISTING BASIN 4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrograph type</td>
<td>Rational</td>
</tr>
<tr>
<td>Storm frequency</td>
<td>50 yrs</td>
</tr>
<tr>
<td>Time interval</td>
<td>1 min</td>
</tr>
<tr>
<td>Drainage area</td>
<td>4.110 ac</td>
</tr>
<tr>
<td>Intensity</td>
<td>3.708 in/hr</td>
</tr>
<tr>
<td>IDF Curve</td>
<td>218071-01 Kahului.IDF</td>
</tr>
<tr>
<td>Peak discharge</td>
<td>9.145 cfs</td>
</tr>
<tr>
<td>Time to peak</td>
<td>0.53 hrs</td>
</tr>
<tr>
<td>Hyd. volume</td>
<td>17,558 cuft</td>
</tr>
<tr>
<td>Runoff coeff.</td>
<td>0.6</td>
</tr>
<tr>
<td>Tc by User</td>
<td>32.00 min</td>
</tr>
<tr>
<td>Asc/Rec limb fact</td>
<td>1/1</td>
</tr>
</tbody>
</table>

EXISTING BASIN 4

Hyd. No. 4 -- 50 Year

Q (cfs)

0.00 0.20 0.40 0.60 0.80 1.00 1.20
0.00 2.00 4.00 6.00 8.00 10.00

Time (hrs)

0.0 0.2 0.3 0.5 0.7 0.8 1.0 1.2
Hyd. No. 5
EX BASIN 4 TO EX POND

Hydrograph type = Reservoir
Storm frequency = 50 yrs
Time interval = 1 min
Inflow hyd. No. = 4 - EXISTING BASIN 4
Reservoir name = EXISTING POND

Peak discharge = 1.942 cfs
Time to peak = 0.95 hrs
Hyd. volume = 9,042 cuft
Max. Elevation = 7.44 ft
Max. Storage = 15,349 cuft
Hyd. No. 6

PROPOSED BASIN 1

- Hydrograph type: Rational
- Peak discharge: 21.75 cfs
- Storm frequency: 50 yrs
- Time to peak: 0.27 hrs
- Time interval: 1 min
- Hyd. volume: 20,878 cuft
- Drainage area: 4.720 ac
- Runoff coeff.: 0.85
- Intensity: 5.421 in/hr
- Tc by User: 16.00 min
- IDF Curve: 218071-01 Kahului.IDF
- Asc/Rec limb fact: 1/1

![Graph showing Hydrograph for Hyd. No. 6 - 50 Year](image-url)
Hydrograph Report

Hyd. No. 7

PROPBASIN4TOPROPPOND

Hydrograph type = Reservoir
Storm frequency = 50 yrs
Time interval = 1 min
Inflow hyd. No. = 6 - PROPOSED BASIN 1
Reservoir name = HHFDC

Peak discharge = 1.855 cfs
Time to peak = 0.52 hrs
Hyd. volume = 8,408 cuft
Max. Elevation = 4.31 ft
Max. Storage = 19,855 cuft

Storage Indication method used.
KAHULUI CIVIC CENTER MIXED USE COMPLEX
PRELIMINARY ENGINEERING REPORT

PROJECT DESCRIPTION

The project proposes a new mixed-use development in Kahului, between West Kaahumanu Avenue, Kane Street, and Vevau Street for the Hawaii Housing Finance & Development Corporation (HHFDC). The project is intended to include two multifamily complexes and a multipurpose commercial building that includes DAGS offices, Library, Adult school, and Retail on the ground floor.

EXISTING CONDITIONS

The existing power utility company infrastructure includes both overhead transmission and distribution lines on West Kaahumanu Avenue and overhead distribution lines on Kane and Vevau Streets. There are overhead electrical service drops that provide electric utility service to existing loads on site; primarily the adult education center currently serviced by electrical utility overhead lines from Vevau street. The existing remaining electrical service equipment that had previously provided service to buildings that have since been removed or condemned are not currently in use can be demolished.

The communications utility infrastructure includes existing overhead pole-mounted communication lines for telephone and CATV service located on all three streets around the property. The existing communication service on site is provided by overhead telephone and CATV service drops from Kane Street and Vevau Street to the adult education center.
PROJECT DESIGN

Hawaiian Electric Company (HECO)

For electrical service to the project, there are various options for connecting to the utility system via the overhead electrical lines from Kaahumanu Avenue, Kane Street, or Vevau Street. The recommendation would be to request three-phase service from the utility to service the loads on site. Given the size of the project, it would be recommended to provide an overhead to underground riser for each building for a primary voltage underground feeder to a pad-mount transformer and switchgear, along with any associated handholes based on the distance to the service equipment.

Easements will be required to cover handholes, ducts, switchgear, transformer pads, and any underground facilities located on private property.

When major work is performed on a private site, Maui County requires that owners pay to underground the existing overhead utility lines in front of the property. There are options to apply for an exemption or deferment of the improvement, which are outside the scope of this report. We suggest hiring a permit specialist who can work with the County to determine the best course of action moving forward.

In order to get a Cost Proposal and Estimate from HECO, a formal application will have to be filed with detailed design drawings and load demand information.

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Number</th>
<th>MECO Estimate</th>
<th>NEC Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unit kW</td>
<td>Total kW</td>
</tr>
<tr>
<td>Multi-Family Units</td>
<td>300</td>
<td>5</td>
<td>1,500</td>
</tr>
<tr>
<td>Commercial Building - DAGS Offices, Library, Adult School, Retail</td>
<td>1</td>
<td>600</td>
<td>1,200</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1,550</td>
<td>2,280</td>
</tr>
</tbody>
</table>
**Hawaiian Telcom**

The telephone service would be provided by Hawaiian Telcom. The existing telephone lines on the poles located on the pole lines surrounding the property should be sufficient for the telephone service to the site.

The telephone service should be also on an underground service conduit to each building, similar to the power electrical utility feeders.

Easements for any service lines will have to be worked out with Hawaiian Tel once the site requirements are developed and as the owner moves further into the design phase of the project.

**Spectrum**

Spectrum is the cable television provider on Maui, and can also provide telephone and internet services as well. The cable service from the existing overhead lines should be sufficient to provide any requirements on site.

The CATV service should be provided to each building via underground conduit.

When the project requirements are detailed out in the design phase, any easements required for the project located on private property, along with vehicular access.
SITE

The project will likely require underground distribution into the site for power, telephone, and cable television service. The developer will be responsible for installing infrastructure (handholes, conduit, concrete pads for the transformer, switchgear, and communication equipment), after which the utility companies will install their cable and equipment. The infrastructure for any street lighting including conduit, handholes, and concrete light bases will be installed by the developer. Light fixtures for the private roads will be the responsibility of the contractor, whereas fixtures for the public roads will be provided by HECO to operate and maintain for the County.

All exterior lighting will have to comply with the Maui County Outdoor Lighting Ordinance, and possibly any environmental impacts including compliance with seabird requirements and other similar issues. In order to comply with the Maui County Outdoor Lighting Ordinance, all fixtures should be full-cutoff. Any road lighting will have to be coordinated with the requirements of HECO standards and the County of Maui.
Appendix F

Phase I Environmental Site Assessment Report
Phase I
Environmental Site Assessment
Project No. 1902-00081-PH1
153 West Kaahumanu Avenue
Kahului, Hawaii 96732

prepared for

G70
111 South King Street
Suite 170
Honolulu, Hawaii 96817

May 8, 2019
Phase I Environmental Site Assessment

153 West Kaahumanu Avenue
Kahului, Hawaii

Prepared by:
ENPRO Environmental
151 Hekili Street, Suite 210
Kailua, Hawaii 96734
808.262.0909
808.262.4449 (fax)
www.enproenvironmental.com

ENPRO Environmental Contact:
Mckenzie Brown
Environmental Technician
808.748.2116
mbrown@enproenvironmental.com

ENPRO Project Number: 1902-00081-PH1
Date of Report: May 8, 2019
On-Site Investigation: April 17, 2019

© Copyright ENPRO Environmental 2019
### PROJECT AT A GLANCE™

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Not Requested</th>
<th>Acceptable (†)</th>
<th>Routine Solution</th>
<th>Phase II ESA</th>
<th>Estimated Cost (‡)</th>
<th>Report Reference Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical Review</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory Review</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous Materials</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground Storage Tanks</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aboveground Storage Tanks</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Waste</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Areas</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wells</td>
<td>(N/A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCBs</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asbestos</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Based Paint</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead in Drinking Water</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radon</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mold</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Data Gaps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.2</td>
</tr>
</tbody>
</table>

(†) = Based on this preliminary study, it appears that further investigation in this area is not a priority concern for this site at the present time.

(‡) = Costs depicted are for investigation/program development activities. Remediation costs, if required, will be identified as a result of investigation/program development activities.

Conditions noted in the Project at a Glance™ table represent the overall conditions of the property. More specific details on assessment components may be included in the text of this report; therefore the Project at a Glance™ should not be used as a stand-alone document.
ACTION ITEMS

Based on our investigations, ENPRO has concluded that the risk of contamination at the site is so minimal that no further investigation is required.
# Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1.0 Executive Summary</strong></td>
<td>1</td>
</tr>
<tr>
<td>1.1 Findings and Conclusions</td>
<td></td>
</tr>
<tr>
<td>1.2 Continued Viability Statement</td>
<td>3</td>
</tr>
<tr>
<td><strong>2.0 Introduction</strong></td>
<td>4</td>
</tr>
<tr>
<td>2.1 Location and Legal Description</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Site and Vicinity General Characteristics</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Purpose</td>
<td>5</td>
</tr>
<tr>
<td>2.4 Detailed Scope of Services</td>
<td>6</td>
</tr>
<tr>
<td>2.5 Significant Assumptions</td>
<td>8</td>
</tr>
<tr>
<td>2.6 Limitations and Exceptions</td>
<td>8</td>
</tr>
<tr>
<td>2.7 Special Terms and Conditions</td>
<td>8</td>
</tr>
<tr>
<td><strong>3.0 User Provided Information</strong></td>
<td>9</td>
</tr>
<tr>
<td>3.1 Environmental Cleanup Liens and Activity and Use Limitations (AIL) Review</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Specialized Knowledge</td>
<td>9</td>
</tr>
<tr>
<td>3.3 Commonly Known or Reasonably Ascertainable Information</td>
<td>9</td>
</tr>
<tr>
<td>3.4 Valuation Reduction for Environmental Impairment</td>
<td>9</td>
</tr>
<tr>
<td>3.5 Obvious Indicators of Presence or Likely Presence of Contamination at the Property</td>
<td>10</td>
</tr>
<tr>
<td>3.6 Reasons for Performing Phase I Environmental Site Assessment</td>
<td>10</td>
</tr>
<tr>
<td><strong>4.0 Records Review</strong></td>
<td>11</td>
</tr>
<tr>
<td>4.1 Physical Setting Sources</td>
<td>11</td>
</tr>
<tr>
<td>4.1.1 Topography</td>
<td>11</td>
</tr>
<tr>
<td>4.1.2 Soils</td>
<td>11</td>
</tr>
<tr>
<td>4.1.3 Geology/Hydrogeology</td>
<td>12</td>
</tr>
<tr>
<td><strong>5.0 Historical Records Review</strong></td>
<td>13</td>
</tr>
<tr>
<td>5.1 Title Records</td>
<td>13</td>
</tr>
<tr>
<td>5.2 Historical Use Information on the Property</td>
<td>14</td>
</tr>
<tr>
<td>5.2.1 Historical Sanborn Maps</td>
<td>14</td>
</tr>
<tr>
<td>5.2.2 Historical Topographic Maps</td>
<td>14</td>
</tr>
<tr>
<td>5.2.3 Historical Aerial Photographs</td>
<td>15</td>
</tr>
<tr>
<td>5.3 Historical Use Information on Adjoining Properties</td>
<td>15</td>
</tr>
<tr>
<td>5.3.1 Historical Sanborn Maps</td>
<td>15</td>
</tr>
<tr>
<td>5.3.2 Historical Topographic Maps</td>
<td>16</td>
</tr>
<tr>
<td>5.3.3 Historical Aerial Photographs</td>
<td>17</td>
</tr>
<tr>
<td>5.4 Previous Environmental Reports</td>
<td>17</td>
</tr>
<tr>
<td><strong>6.0 Regulatory Database Review</strong></td>
<td>18</td>
</tr>
<tr>
<td>6.1 Standard Environmental Record Resources: Federal, State and Local Database Search</td>
<td>18</td>
</tr>
</tbody>
</table>
6.2 ADDITIONAL ENVIRONMENTAL RECORD RESOURCES: STATE AND LOCAL AGENCY ENVIRONMENTAL RECORD SOURCES .............................................. 19
  6.2.1 DEPARTMENT OF HEALTH, SOLID AND HAZARDOUS WASTE BRANCH ........ 19
  6.2.2 BUILDING, PLANNING, AND/OR ZONING DEPARTMENTS ..................... 25
  6.2.3 FIRE DEPARTMENT ........................................................................ 25
  6.3 VAPOR ENCROACHMENT SCREENING IN PROPERTY INVOLVED IN REAL ESTATE TRANSACTIONS ......................................................... 25

7.0 SITE RECONNAISSANCE ........................................................................ 27
  7.1 CURRENT USE OF THE PROPERTY ................................................... 28
  7.2 DESCRIPTIONS OF STRUCTURES, ROADS & OTHER IMPROVEMENTS ........ 29
  7.3 CURRENT USES OF ADJACENT AND NEARBY PROPERTIES ................. 29
  7.4 HAZARDOUS SUBSTANCES AND PETROLEUM PRODUCTS .................. 30
    Project Site ...................................................................................... 30
    Adjoining or Nearby Sites .................................................................. 31
  7.5 STORAGE TANKS ............................................................................... 31
    7.5.1 UNDERGROUND STORAGE TANKS ........................................... 31
      Project Site .................................................................................. 31
      Adjoining or Nearby Sites ................................................................ 31
    7.5.2 ABOVEGROUND STORAGE TANKS .......................................... 31
      Project Site .................................................................................. 31
      Adjoining or Nearby Sites ................................................................ 31
  7.6 SOLID WASTE .................................................................................. 32
    Project Site ...................................................................................... 32
    Adjoining or Nearby Sites .................................................................. 32
  7.7 POLYCHLORINATED BIPHENYLS (PCBs) ............................................ 32
    7.7.1 ELECTRICAL TRANSFORMERS/CAPACITORS .............................. 32
    7.7.2 HYDRAULIC LIFT EQUIPMENT ............................................... 33
    7.7.3 FLUORESCENT LIGHT BALLASTS ............................................ 33
  7.8 WELLS .................................................................................................. 33
  7.9 OTHER OBSERVATIONS ...................................................................... 33

8.0 INTERVIEWS ......................................................................................... 35
  8.1 KEY SITE MANAGER .......................................................................... 35
      Project Site ..................................................................................... 35
      Adjoining and Adjacent Properties ................................................ 35
  8.2 OWNER/USER .................................................................................... 36
      Project Site ..................................................................................... 36
      Adjoining and Adjacent Properties ................................................ 36

9.0 EVALUATION ......................................................................................... 36
  9.1 FINDINGS AND CONCLUSIONS ..................................................... 36
  9.2 DATA GAPS ..................................................................................... 37
  9.3 LIMITATIONS .................................................................................. 37
  9.4 CERTIFICATIONS ............................................................................... 38

10.0 NON-SCOPE SERVICES ...................................................................... 40
  10.1 RECOMMENDATIONS ...................................................................... 40
  10.2 ADDITIONAL ENVIRONMENTAL CONcernS, NON-ASTM .............. 40
11.0 REFERENCES

12.0 APPENDICES
1.0 EXECUTIVE SUMMARY

Group 70 International, Inc. (G70) retained ENPRO Environmental (ENPRO) to conduct a Phase I Environmental Site Assessment of the commercial property located at 153 West Ka’ahumanu Avenue, Kahului (the “project site”). The objective of this assessment was to provide an independent, professional opinion regarding recognized environmental conditions (RECs), as defined by the American Society for Testing and Materials (ASTM), associated with the project site.

This assessment was performed under the conditions of, and in accordance with ENPRO’s Proposal Number 18E-0254-OGG dated May 10, 2018, the ASTM E 1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, and All Appropriate Inquiries (AAI) which includes 40 CFR Part 312, §312.21 and §312.31. Any exceptions, additions to, or deletions from the ASTM or AAI practice, details of the work performed, sources of information, and findings are presented in the report. Limitations of the assessment are described in Sections 2.5 and 2.6.

The project site, currently owned by the State of Hawaii, is 5.572 acres.

The historical research presented in this report has established the use of the property since 1927, when the property was depicted as a public school that contained five individual structures. According to the available historical sources of information, the project site continued to be used as a school until the present date. Several structures had been constructed and demolished, except for two structures that currently remain on site.

The project site is currently occupied by McKinley Community School for Adults (MCSA) and utilized as a lawn mower baseyard. The planned short-term use of the property is to be redeveloped as part of a mixed-use project that includes affordable housing and a school facility.

1.1 FINDINGS AND CONCLUSIONS

ASTM E-1527-13 defines three categories of recognized environmental conditions (RECs) which may impact the project site.

- A REC is defined as the presence or likely presence of any hazardous substance or petroleum product in, on, or at the property: 1) due to any release to the environment, 2) under conditions indicative of a release to the environment, or 3) under conditions that pose a material threat of a future release to the environment
• Historical RECs (H-RECs) are defined as a past release of any hazardous substance or petroleum product that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authorities or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls

• Controlled RECs (C-RECs) are defined as a REC resulting from a past release that has been addressed to the satisfaction of the applicable regulatory authority, with hazardous substances or petroleum products allowed to remain in place, subject to the implementation of required controls, such as property use restrictions, activity and use limitations (AULs), institutional controls, or engineering controls

Additionally, ASTM E-1527-13 allows for the identification of de minimis conditions. A de minimis condition is defined as a condition that generally does not represent a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate government agencies.

We have performed a Phase I Environmental Site Assessment in conformance with the scope and limitations of ASTM Practice E 1527-13 of 153 West Kaahumanu Avenue, Kahului, Hawaii, the property. Any exceptions to, or deletions from, this practice are described in Section 2.6 of this report.

This assessment has revealed no evidence of recognized environmental conditions (RECs) in connection with the property.

The following de minimis conditions were identified at the project site:

• De minimis petroleum staining on the pavement in the lawnmower baseyard beneath and adjacent to the lawnmowers.

Recommendations for additional actions regarding the above de minimis conditions are listed in Section 9.1.

The following environmental conditions, which are not considered recognized environmental conditions, as defined by ASTM, were observed during the assessment:

• Suspect asbestos containing building materials
• Suspect lead containing paint
• Termiticide application
1.2 CONTINUED VIABILITY STATEMENT

An Environmental Site Assessment meeting or exceeding the requirements of ASTM E 1527-13 and completed less than 180 days prior to the date of acquisition of the property, or (for transactions not involving an acquisition) the date of the intended transaction, is presumed to be valid. The period of validity may be extended to one year from the date of the investigation, provided that the following components of the inquiries are conducted or updated within 180 days of the date of purchase or the date of the intended transaction:

(i) Interviews with owners, operators, and occupants;
(ii) Searches for recorded environmental cleanup liens;
(iii) Reviews of federal, tribal, state, and local government records;
(iv) Visual inspections of the property and of adjoining properties; and
(v) The declaration by the environmental professional responsible for the assessment or update.
2.0 INTRODUCTION

G70 (the Client) retained ENPRO to conduct a Phase I Environmental Site Assessment of the commercial property at 153 West Ka‘ahumanu Avenue, Kahului, Hawaii, (the “project site”).

2.1 LOCATION AND LEGAL DESCRIPTION

The project site, located at 153 West Ka‘ahumanu Avenue, Kahului, Hawaii, is in a mixed-use commercial/residential setting (Figures 1 and 2). The longitude and latitude for the project site address are in Table 1.

The project site is further described by the County of Maui. Real Property Tax Office as Tax Map Key (2) 3-7-004: 003. It is located in an area zoned “B-2”.

Table 1

<table>
<thead>
<tr>
<th>Location Description</th>
<th>Project Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>153 West Ka‘ahumanu Avenue, Kahului, Hawaii</td>
</tr>
<tr>
<td>TMK</td>
<td>(2) 3-7-004: 003</td>
</tr>
<tr>
<td>Latitude (North)</td>
<td>20° 53’ 19.3”</td>
</tr>
<tr>
<td>Longitude (West)</td>
<td>-156° 28’ 18.6”</td>
</tr>
<tr>
<td>Elevation</td>
<td>Less than 10 feet above sea level</td>
</tr>
<tr>
<td>Distance and Direction to Surface Waters</td>
<td>Pacific Ocean, approximately 620 feet to the north of the property</td>
</tr>
</tbody>
</table>
2.2 SITE AND VICINITY GENERAL CHARACTERISTICS

The project site is located near the north shore of the island of Maui. The project site included one rectangular parcel totaling approximately 5.6 acres. On-site structures were constructed over approximately 10 percent of the project site. Primary access to the site was from Kane Street, to the east of the project site.

2.3 PURPOSE

The objective of this environmental site assessment is to provide an independent, professional opinion regarding recognized environmental conditions, as defined by the American Society for Testing and Materials (ASTM, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, Designation: E 1527-13), associated with the project site. The term recognized environmental condition is defined as the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property; 1) due to any release to the environment, 2) under conditions indicative of a release to the environment, or 3) under conditions that pose a material threat of a future release. The term includes hazardous substances or petroleum products even under conditions in compliance with laws. The term is not intended to include de minimis conditions that generally do not present a material risk of harm to public health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. A condition determined to be de minimis is not a recognized environmental condition.

Recognized environmental conditions (RECs) which have been subject to previous investigation to delineate the extent of contamination and/or have been subject to remediation may be further classified as historical RECs (H-RECs) or controlled RECs (C-RECs), in accordance with ASTM, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, Designation: E 1527-13, if they meet the following requirements:

- **H-RECs** are defined as a past release of any hazardous substance or petroleum product that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authorities or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls

- **C-RECs** are defined as a REC resulting from a past release that has been addressed to the satisfaction of the applicable regulatory authority, with hazardous substances or petroleum products allowed to remain in place, subject to the implementation of required controls, such as property use
restrictions, activity and use limitations (AULs), institutional controls, or engineering controls

2.4 DETAILED SCOPE OF SERVICES

This assessment was performed under the conditions of, and in accordance with ENPRO’s Proposal Number 18E-0254-OGG dated May 10, 2018, and in accordance with the ASTM E 1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, and All Appropriate Inquiries (AAI) which includes 40 CFR Part 312, §312.21 and §312.31. The scope of services in conducting this assessment included:

Records Review

- A review of environmental records, including regulatory agency reports, permits, registrations, and consultant’s reports for evidence of recognized environmental conditions available from the property owner or site contact.

- An investigation of historical use of the project site by examining locally available aerial photographs, fire insurance maps, property tax files, recorded land title records, USGS topographical maps, building department records, zoning/land use records and/or other readily available historical information for evidence of prior land use that could have led to recognized environmental conditions.

- A review of an environmental database search report of federal and state regulatory agency records pertinent to the project site and offsite facilities located within ASTM-specified search distances from the project site.

- A review of regulatory agency files and records if the property, or any of the adjoining properties, is identified on one or more of the standard environmental record sources in the database search, to determine if a REC, H-REC, C-REC, or de minimis condition exists at the property in connection with the listing.

- A review of readily available information describing the general geology and topography of the project site, local groundwater characteristics, sources of water, power and sewer, and proximity to ecologically sensitive receptors that may be impacted by recognized environmental conditions.

- A review of title and judicial records for environmental liens and activity and use limitations (AULs) on behalf of the user, to meet the requirements of 40 CFR 312.20 and 312.25.
Site Reconnaissance

- A site walkthrough inspection of the property for visible evidence of *recognized environmental conditions* including existing or potential soil and groundwater contamination, as evidenced by staining or discoloration; stressed vegetation; indications of waste dumping or burial; pits, ponds or lagoons; containers of hazardous substances or petroleum products; electrical and hydraulic equipment that may contain polychlorinated biphenyls (PCBs), such as transformers or lifts; and underground and aboveground storage tanks.

- A site property line visual assessment of adjacent properties for evidence of potential offsite *recognized environmental conditions* that may affect the project site.

Interviews

- Interviews with available key site personnel regarding current and previous site activities on the property, especially those involving the use of hazardous substances and petroleum products. Required interviews shall include the following persons:
  - The User, defined as the party seeking to use Practice E 1527-13 to complete an environmental assessment of the property. A User has specific obligations for completing a successful application of this practice.
  - The property owner
  - A key site manager, who shall be identified by the owner, *prior to the site visit*, as a person with good knowledge of the uses and physical characteristics of the property (for example, a property manager, chief physical plant supervisor, or head maintenance person).
  - Occupants
  - Past users, when available
  - Neighbors, where the property is abandoned and the *environmental professional* determines there is evidence of potential unauthorized uses of the property.

Interviews are summarized in Section 8 of this report. Completed property questionnaires are presented in the Appendix.
2.5 SIGNIFICANT ASSUMPTIONS

ENPRO, in part, has relied on information supplied by the Client or the Client’s agent(s), listed in Section 8.0, and assumes such information to be factual.

The commercial regulatory database search report, summarizing federal and state regulatory agency records, is provided by a contracted data research firm. The information provided is assumed to be correct unless otherwise noted.

Unless otherwise discovered during review, all other sources of information, whether verbal or written, are assumed to be factual.

2.6 LIMITATIONS AND EXCEPTIONS

Most areas of the property were available for inspection with the following exceptions:

- Roof of main building occupied by MCSA and lawnmower baseyard
- The interior of the condemned building to the northeast of the main building
- Most of southeast portion of the parcel due to dense vegetation

No opinion regarding environmental conditions in areas that were not inspected can be formed.

As a matter of necessity, ENPRO relies largely on readily available sources of information such as the Client, public records, interviews, and contracted research firms for recognizing potential environmental liabilities at a project site/facility. Requests for information resources are made to collect relevant data on current and past practices conducted at the project site/facility. ENPRO may not receive all information requested or be able to confirm received information during the course of the environmental site assessment. Therefore, ENPRO shall not be held responsible for errors, omissions, or misrepresentations resulting from missing documentation or from inaccurate information provided by such sources.

2.7 SPECIAL TERMS AND CONDITIONS

This Phase 1 Environmental Site Assessment did not include any special terms or conditions.
3.0 **USER PROVIDED INFORMATION**

Per ASTM, the “User” is the party seeking to use Practice ASTM E 1527-13 to perform an environmental site assessment of the property. A user may include a purchaser, a potential tenant, an owner, a lender or a property manager, all associated with the property. According to ASTM, “the user has specific obligations for completing a successful application of this practice.” A Property Questionnaire was completed by Mr. Jeffery Overton, Project Consultant, on behalf of the User (G70). A copy of the completed Property Questionnaire is included in the appendix section of this report. Additional User provided information is detailed in Section 6.3.

3.1 **ENVIRONMENTAL CLEANUP LIENS AND ACTIVITY AND USE LIMITATIONS (AUL) REVIEW**

On behalf of the User, ENPRO reviewed the State of Hawaii, Bureau of Conveyances official land records database for any environmental liens or AULs associated with the Property. No records related to environmental liens or AULs were identified in the database.

3.2 **SPECIALIZED KNOWLEDGE**

Mr. Overton, did not report any specialized knowledge of any recognized environmental conditions in connection with the property.

3.3 **COMMONLY KNOWN OR REASONABLY ASCERTAINABLE INFORMATION**

No commonly known areas of environmental concern were noted in the vicinity of the project site, except for a Shell gas station adjacent to the east of the property.

3.4 **VALUATION REDUCTION FOR ENVIRONMENTAL IMPAIRMENT**

Mr. Overton did not provide information on any reduction of valuation due to environmental impairment.
3.5 OBVIOUS INDICATORS OF PRESENCE OR LIKELY PRESENCE OF CONTAMINATION AT THE PROPERTY

The client Mr. Overton stated that there were no obvious indicators that point to the presence or likely presence of contamination at the property.

3.6 REASONS FOR PERFORMING PHASE I ENVIRONMENTAL SITE ASSESSMENT

The client did not make known to ENPRO the reason for conducting a Phase I Environmental Site Assessment.
4.0 RECORDS REVIEW

This section presents a review of physical setting sources, standard and additional environmental records sources, and historical use information on the property and surrounding area.

4.1 PHYSICAL SETTING SOURCES

4.1.1 TOPOGRAPHY

Review of the topographic map published by the U.S. Geological Survey (2017) indicated the following:

The project site was located south of Kahului Bay, on the northern central area of the island of Maui. The project site elevation was less than ten feet above the mean sea level.

The project site region was coded in white omission tint indicating high-density urban classification.

The project site region was topographically flat. The nearest body of water was Kahului Bay, which was approximately 620 feet to the north boundary of the project site. The project site is not within 150 meters of a surface water body.

4.1.2 SOILS

A review of the soil type of the area was performed. The soil survey of the island of Maui is published by the USDA Natural Resources Conservation Service in cooperation with the United States Department of Agriculture (USDA) Soil Conservation Service and University of Hawaii Agricultural Experiment Station. USDA soil survey data is available at http://websoilsurvey.nrcs.usda.gov/app/ and was accessed on March 6, 2019. The following information is pertinent to the project site:

The project site was situated on soil classified as Fill Land (Fd) and Puuone Sand (PZUE).

Fill Land consists of areas filled with material dredged from the ocean or hauled from nearby areas, garbage and general material from other sources. This land type occurs adjacent to the ocean.
Due to the heterogeneous nature of this material, physical parameters such as permeability, porosity and corrosivity cannot be accurately estimated.

Fill Land soils are used for urban development including airports, housing areas, and industrial facilities.

Puuone Sand are derived from coral and seashells, and are used from pasture and homesites. The natural vegetation consists of bermudagrass, Kiawe, and lantana.

Permeability for Puuone Sand is described as high (between 6.3 and 20.0 inches per hour). The soil is described as having a low corrosivity for uncoated steel and concrete.

4.1.3 GEOLOGY/HYDROGEOLOGY

Groundwater beneath the project site occurs in two distinct aquifers within the Kahului Aquifer System of the Maui Aquifer Sector. The shallow aquifer is classified as a basal, unconfined, sedimentary aquifer, occurring in non-volcanic lithology. The groundwater status is reported as currently used, but not for drinking water, and it is considered to be ecologically important. The salinity of the groundwater within this aquifer is described as low (250-1000 milligrams per liter Cl\(^-\)). The groundwater is further described as irrereplaceable, with a high vulnerability to contamination (Mink and Lau, 1990).

The deeper aquifer is classified as a basal, confined, flank aquifer, occurring in horizontally extensive lavas. The groundwater status is reported as currently used, but not for drinking water, and it is considered to be ecologically important. The salinity of the groundwater within this aquifer is described as low (250-1000 milligrams per liter Cl\(^-\)). The groundwater is further described as irrereplaceable, with a moderate vulnerability to contamination (Mink and Lau, 1990).

The hydrogeologic gradient in the vicinity of the project site is anticipated to be slight, with a general trend to the north. Groundwater levels may be influenced by leaking infrastructure and tidal fluctuation.
5.0 HISTORICAL RECORDS REVIEW

According to ASTM E 1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, the historical search of the property must cover a period of time back to the property’s first developed use, or back to 1940, whichever is earlier.

As part of this assessment, ENPRO reviewed several historical sources of information, including aerial photographs, fire insurance maps, USGS topographic maps, building department records, chain of title documents, property tax records and zoning/land use records. On the earliest reference depicting the project site, the 1927 Sanborn map, the property was depicted as a public school that contained five individual structures. According to the available historical sources of information, the project site continued to be used as a school until the present date. Several structures had been constructed and demolished, except for two structures that currently remain on site.

5.1 TITLE RECORDS

Readily available records at the County of Maui Tax Assessor’s Office were reviewed to assess past ownership of the project site. Significant ownership transactions are summarized below:

Table 2
Summary of Title Information

<table>
<thead>
<tr>
<th>Tax Map Key</th>
<th>Date</th>
<th>Property Transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) 3-7-004: 003</td>
<td>1955</td>
<td>Owned by Territory of Hawaii (Kahului School)</td>
</tr>
<tr>
<td>(2) 3-7-004: 003</td>
<td>1963</td>
<td>Owned by State of Hawaii (Kahului School)</td>
</tr>
<tr>
<td>(2) 3-7-004: 003</td>
<td>1973</td>
<td>Reversionary permit to Maui Economic Opportunity Inc. Rented to operate a farmer’s booth</td>
</tr>
<tr>
<td>(2) 3-7-004: 003</td>
<td>04/07/94</td>
<td>Release of Reversionary Interest from A&amp;B Hawaii Inc. to the State of Hawaii</td>
</tr>
</tbody>
</table>

No readily apparent evidence of recognized environmental conditions that are expected to impact the project site was noted in the ownership records reviewed.

Copies of the title records reviewed for this project are provided in the appendix.
5.2 HISTORICAL USE INFORMATION ON THE PROPERTY

5.2.1 HISTORICAL SANBORN MAPS

Sanborn fire insurance map coverage of Maui included the project site and several historical maps were reviewed.

The earliest edition Sanborn map available for this project was for the year 1914. The map did not include the project site.

The 1927 Sanborn map appeared to depict the project site as a public school containing five individual structures.

The 1945 Sanborn map depicted “Kakului Public School” on the northeast portion and “Maui Vocational School” on the southwest portion. There were at least fourteen structures associated with the schools including a carpenter shop, a storage and welding facility, two restrooms or water closets, an office building, and other structures with illegible labels.

The 1975 Sanborn map still depicted the project site as a school with several associated structures, however, it was then labeled as used by Lihikai School. Most of the structures had illegible designations.

The 1980 Sanborn map was similar to the 1975 map.

The 1990 Sanborn map was similar to the previous maps, except that the property was depicted as used by Maui Economic Opportunity Inc., and the main school building was vacant.

No evidence of recognized environmental conditions at the project site were identified in the historic fire insurance maps reviewed. Copies of the Sanborn maps reviewed for this project are provided in the appendix section of this report.

5.2.2 HISTORICAL TOPOGRAPHIC MAPS

The following topographic maps were reviewed as part of this assessment:

- A 1955 topographic map. The scale of this map was one-inch equals 2,000 feet. On this map the project site was depicted just south of Kahului Harbor. Eleven structures, including a school building, were depicted at the project site.
5.2.3 HISTORICAL AERIAL PHOTOGRAPHS

The following aerial photographs were reviewed as part of this assessment:

- Envirosite, dated 1950. The scale of this photograph was approximately one-inch equals 500 feet. The project site appeared to be developed with several buildings, similar to what was depicted in the Sanborn and topographic maps of similar vintage. Details of the project site were obscured by poor photographic resolution.

- Envirosite, dated 1974, 1976, and 1992. The scale of these photographs was approximately one-inch equals 1,000 feet. There appeared to be a reduced number of buildings on the property. Details of the project site were obscured by poor photographic.

- Envirosite, dated 2000. The scale of this photograph was approximately one-inch equals 500 feet. There appeared to be several objects on property. Details of the project site were obscured by poor photographic.

5.3 HISTORICAL USE INFORMATION ON ADJOINING PROPERTIES

5.3.1 HISTORICAL SANBORN MAPS

The following Sanborn maps were reviewed as part of this assessment:

The 1914 Sanborn map included the properties to the east of the project site, which were mostly undeveloped, except for a few dwellings.

The 1927 Sanborn maps included the properties to the east and to the southwest of the project site. The properties to the east were depicted as dwellings, except for a structure
on School Avenue, which label was illegible. The property to the southwest consisted of a pineapple cannery/can factory operated by California Packing Corporation and “American Can Co’s Can Factory”. Railroads were depicted along the north and east boundaries of the pineapple cannery/can factory.

The 1945 Sanborn maps were similar to the 1927 maps, including the properties to the east and to the southwest of the project site. The properties to the east were depicted as dwellings. The property to the southwest consisted of a pineapple cannery/can factory operated by Maui Pineapple Company Limited and “American Can Co’s Can Factory”. Railroads were depicted along the north and east boundaries of the pineapple cannery/can factory.

The 1975 Sanborn maps included the properties to the east, west and southwest of the project site. The dwellings on the parcels to the east were replaced with a structure labeled as “gas & oil”. The property to the southwest continued labeled as pineapple cannery/can factory. Railroads were no longer depicted along the north and east boundaries of the pineapple cannery/can factory. Kaahumanu Mall was depicted to the west.

The 1980 and 1990 Sanborn maps were similar to the 1975 map.

5.3.2 HISTORICAL TOPOGRAPHIC MAPS

The following topographic maps were reviewed as part of this assessment:

- A 1955 topographic map. The scale of this map was one-inch equals 2,000 feet. The area around the project site was shaded in pink omission tint indicating high-density urban development. To the north of the project site was a railroad in Ka’ahumanu Avenue. The region to the west of the project site was shaded in green omission tint indicating vegetated area, except for a large structure to the southwest, which was similar to the structure depicted on the Sanborn maps of similar vintage.

- The 1983 topographic map was similar to the 1955 topographic map, except that the area region to the west of the project site was no longer shaded in green omission tint, and a new structure was added to the west side of the property.

- A 1997 topographic map. The scale of this map was one-inch equals 2,000 feet. On this map the area surrounding the project site is shaded in gray omission tint, indicating high-density urban development.

- A 2013 and 2017 topographic maps. The scale of these maps was one-inch equal 2,000 feet. On these maps, the area surrounding the project site was shaded in white, indicating no vegetated area.
Copies of the historic topographic maps reviewed for this project are provided in the appendix section of this report.

5.3.3 HISTORICAL AERIAL PHOTOGRAPHS

The following aerial photographs were reviewed as part of this assessment:

- **Envirosite**, dated 1950. The scale of this photograph was approximately one-inch equals 500 feet. The surrounding area had larger trees and depicted structures within the tree line. To the southwest of the project site there was a structure, similar to the structure depicted on the Sanborn and topographic maps of similar vintage. Details of the project site region were obscured by poor photographic resolution.

- **Envirosite**, dated 1974, 1976, and 1992. The scale of this photograph was approximately one-inch equals 1,000 feet. There appeared to be more structures being developed around the property. Details of the project site region were obscured by poor photographic.

- **Envirosite**, dated 2000. The scale of this photograph was approximately one-inch equals 500 feet. There appeared to be no vegetation around the property, for all of it appeared to be developed. Details of the project site region were obscured by poor photographic.

5.4 PREVIOUS ENVIRONMENTAL REPORTS

No previous environmental reports were available for review.
6.0 REGULATORY DATABASE REVIEW

6.1 STANDARD ENVIRONMENTAL RECORD RESOURCES: FEDERAL, STATE AND LOCAL DATABASE SEARCH

The regulatory database search report prepared by Envirosite Corporation (Envirosite) was reviewed to evaluate the project site and listed properties within ASTM-recommended search distances. Federal, state and local databases reviewed are included in the Appendix section of this report.

Project site

The project site was not listed in the Envirosite regulatory database search report.

Adjacent and Nearby Properties

The Envirosite regulatory database search report identified a total of sixty-six sites within the ASTM minimum search distances from the project site.

Most of the listed sites are not expected to present an environmental concern to the project site because, based upon ENPRO’s review:

1. They only hold an operating permit (which does not imply a problem) or,
2. They were identified for past regulatory requirements that require no future action or,
3. They are too distant and/or hydrogeologically down gradient or cross gradient relative to the project site.

The Envirosite regulatory database search report identified twenty-two “orphan” sites within the ASTM minimum search distances from the project site. Based on our review of the orphan sites listed, it is ENPRO’s opinion that none of the orphan sites are close enough to the project site to constitute a recognized environmental condition expected to impact the property.
6.2 ADDITIONAL ENVIRONMENTAL RECORD RESOURCES: STATE AND LOCAL AGENCY ENVIRONMENTAL RECORD SOURCES

Based on ENPRO’s review of the Envirosite regulatory database search report, regulatory files from the State of Hawaii Department of Health (DOH) were requested and reviewed. Our review considers both proximity to the project site and local hydrogeologic conditions to identify which sites and which environmental violations may be interpreted to have a potential impact to the project site’s environmental conditions.

ENPRO additionally requested information on the project site from the County of Maui Fire Department and reviewed documents from the Maui Department of Planning and Permitting.

6.2.1 DEPARTMENT OF HEALTH, SOLID AND HAZARDOUS WASTE BRANCH

Based on our review of the Envirosite regulatory database search report, we requested the following regulatory files from the State of Hawaii Department of Health (DOH), Solid and Hazardous Waste Branch (SHWB):

- 153 W. Kaahumanu Street (the project site)
- Former Pesticide Disposal Project, 28-10 Beach Road
- Ilima Shell, 137 Kaahumanu Avenue, Facility ID 9-501005
- Maui Palms Hotel, 150 Kaahumanu Avenue
- JR Doran Inc, DBA Ceramic Tiles Plus, 25 South Kahului Beach Road
- Port Town Chevron, 109 Kaahumanu Avenue, Facility ID 9-501888
- Maui Pineapple Co., 106 South Kane Street

The Underground Storage Tank (UST) Section provided the following:

1) Maui Pineapple Company, 120 Kane Street, Facility ID 9-501832

Several documents were available for this facility in the regulatory records. Seven USTs were listed for the facility as follows:

- Two, 7,000-gallon diesel USTs, installed in 1946, removed in 1990
- One, 50,000-gallon fuel oil #6 UST, installed in 1926, removed in 2010
- One, 500/1,000-gallon gasoline UST, installed in 1956, removed in 1995
- One, 2000-gallon used oil UST, installed in 1971, removed in 1994
• Two, 500-gallon kerosene UST, installed in 1971, removed in 1991

According to the documents, a release from the two 7,000-gallon diesel USTs was discovered in December 1989. The USTs were located on the northeast side of the facility, approximately 50 feet west of Kane Street. In 1990, the USTs were removed and approximately 400 cubic yards of diesel impacted soil were excavated. During removal of the USTs, free product was observed on the groundwater surface within the excavation. Additional soil and groundwater investigations and free product recovery were conducted until 2007, when the facility received a no further action (NFA) designation from the DOH SHWB (October 16, 2007), although free product was still being detected in two groundwater monitoring wells within the facility.

Records from the HEER Office indicated further evaluation of this facility, which received an NFA designation with institutional controls from the HEER Office on June 12, 2013 for the 50,000-gallon fuel oil #6 UST, and the two 7,000-gallon diesel USTs.

It is ENPRO’s opinion that this site does not represent a recognized environmental condition that is expected to affect the project site because it is sufficiently distant from the project site.

2) Ilima Shell, 137 Kaahumanu Avenue

Several documents were available for this facility in the regulatory records. Ten USTs were listed for the facility as follows:

• Two, 7,000-gallon diesel USTs, installed in 1946, removed in 1990
• One, 550-gallon used oil UST, installed in 1958, removed in 1998
• Three, 4,000-gallon gasoline UST, installed in 1963, removed in 1998
• One, 4,000-gallon gasoline UST, installed in 1974, removed in 1998
• One, 6,000-gallon gasoline UST, installed in 1978, removed in 1998
• One, 15,000-gallon gasoline UST, installed in 1998, currently in use
• One, 12,000-gallon gasoline UST, installed in 1998, currently in use

According to the documents, a release was discovered in February 1998 during a limited subsurface investigation conducted in preparation for the replacement of USTs. This limited investigation indicated the presence of ethylbenzene in one discrete soil sample collected at the facility. In April 1998,
during the removal of six USTs, petroleum impacted soil and groundwater were identified. Visually impacted soil was removed and confirmation soil samples were collected. One discrete soil sample collected from the gasoline UST excavation was determined to contain benzene, toluene, ethylbenzene, and xylenes (BTEX) at concentrations greater than the DOH Environmental Action Levels (EALs).

Subsequent soil samples collected around the former USTs locations did not identify the presence of contaminants at concentrations equal to or greater than the applicable DOH EALs. However, toluene and ethylbenzene were reported in the groundwater at concentrations greater than the applicable DOH EALs. Several quarterly release response reports were prepared between 2001 and 2003 until no petroleum-related contaminants were detected in the groundwater at concentrations equal to or greater than the applicable DOH EALs. The DOH issued a NFA letter for the release on September 15, 2003.

It is ENPRO’s opinion that the former USTs and identified release at this facility do not represent a recognized environmental condition that is expected to have affected the project site because the leaking USTs were removed, and the identified release has been addressed to the satisfaction of the regulatory authority. However, the facility continues to operate fuel USTs which could negatively impact the project site in the event of a future release.

3) **Chevron Facility, 109 Kaahumanu Avenue, Facility ID: 9-501888**

Several documents were available for this facility in the regulatory records. Ten USTs were listed for the facility as follows:

- One, 5,000-gallon gasoline USTs, installed in 1955, removed in 1987
- Two, 2,000-gallon gasoline USTs, installed in 1955, removed in 1987
- One, 1,000-gallon used oil UST, installed in 1955, removed in 1987
- One, 2,000-gallon empty UST, installed in 1955, removed in 1987
- One, 6,000-gallon gasoline UST, installed in 1979, removed in 1987
- One, 1,000-gallon used oil UST, installed in 1987, removed in 1993
- Three, 10,000-gallon gasoline USTs, installed in 1987, currently in use

A release was discovered in 1987 during the installation of the three, 10,000-gallon gasoline USTs. The release impacted soil and groundwater beneath the facility. Various assessments and remedial activities occurred following the release discovery. The DOH issued a conditional NFA designation for the release on January 30, 2015.
It is ENPRO’s opinion that this facility does not represent a recognized environmental condition that is expected to affect the project site because it is our interpretation that it is located hydrogeologically cross-gradient and sufficiently distant from the project site.

4) Maui Palms Hotel, Facility ID: 9-503292

Two 1,000-gallon USTs, installed in 1954, used to store diesel fuel for heating purposes were identified in the regulatory records. The tanks were removed in 1997. A site assessment was completed and a release was identified. Since these USTs are not regulated by the DOH SHWB, this case was transferred to the HEER Office. See further details below, under HEER office records.

It is ENPRO’s opinion that this facility does not represent a recognized environmental condition that is expected to affect the project site because it is our interpretation that it is located hydrogeologically down-gradient and sufficiently distant from the project site.

The SHWB Hazardous Waste Section provided the following:

1) Ilima Shell, 137 Kaahumanu Avenue

One hazardous waste management site visit form, dated January 17, 1996 was available for this facility, which was listed as a Conditionally Exempt Small Quantity Generator (CESQG). No violations were discovered noted in the form.

Based on the hazardous waste files available for our review, no evidence of a recognized environmental condition that is expected to affect the project site was discovered because no records of violations were identified. However, based on UST files (summarized above) the facility continues to operate fuel USTs which could negatively impact the project site in the event of a future release.

The SHWB Solid Waste Section:

The Solid Waste Section of the DOH SHWB did not have any files for any of the locations requested.
The HEER Office provided the following:

1) Chevron Facility, 190 Kaahumanu Avenue

State of Hawaii Chemical Inventory Forms (Tier II), dated 1994, 1996, 1997 and 1999, listed the presence of unleaded, premium, and supreme gasoline at the facility. No records of spills and/or releases on this facility were documented.

It is ENPRO’s opinion that this facility does not represent a recognized environmental condition that is expected to affect the project site because it is our interpretation that it is located hydrogeologically cross-gradient and sufficiently distant from the project site.

2) Ilima Shell, 137 Kaahumanu Avenue

State of Hawaii Chemical Inventory Forms (Tier II), dated 1988 to 1998, listed the presence of gasoline USTs at the facility. No records of spills and/or releases on this facility were documented.

Based on the HEER Office files available for review, no evidence recognized environmental condition that is expected to affect the project site was discovered because no records of spills and/or releases were identified. However, based on UST files (summarized above) the facility continues to operate fuel USTs which could negatively impact the project site in the event of a future release.

2) Maui Palms Hotel

Two 1,000-gallon USTs, installed in 1954, used to store diesel fuel for heating purposes were identified in the regulatory records. The tanks were removed in 1997. A site assessment was completed and a release was identified. Nine discrete confirmation soils samples were collected from the excavation and analyzed for total petroleum hydrocarbons (TPH) as diesel and polycyclic aromatic hydrocarbons (PAHs). TPH as diesel was detected in five samples at concentrations up to 3,732 ppm, which was reported to be below a DOH EAL of 5,000 ppm (note that the current applicable DOH EAL for TPH as diesel is 500 ppm). The HEER Office issued an NFA letter for the USTs on December 10, 1999.

It is ENPRO’s opinion that this facility does not represent a recognized environmental condition that is expected to affect the project site because it is our interpretation that it is located hydrogeologically down-gradient and sufficiently distant from the project site.
3) Maui Pineapple Co. Ltd., Kane Street

Several documents were available for this facility in the regulatory records. The documents indicated the former presence of numerous fuel USTs. Releases were identified and addressed to the satisfaction of the applicable regulatory authorities. A conditional NFA was issued by the HEER Office, dated June 12, 2013. Conditions of the NFA included engineering and institutional controls, to address certain contaminants that were allowed to remain in place. The NFA letter included the following:

- “This NFA letter addresses only the areas of the former underground storage tanks. Based on a review of the site documents, the HEER Office has determined that with the implementation of conditions described below and in the EHMP (i.e. the specified engineering and institutional controls), No Furth Action is required at this portion of Lot F-2 for soil or groundwater contamination concerns.”

- “The former UST sites addressed were part of the former pineapple cannery owned by Maui Land and Pineapple, which operated as a pineapple canning and distribution facility for more than 80 years. Over time, the soils and groundwater in the vicinity of the USTs were impacted by contaminates that had leaked from the USTs, including petroleum hydrocarbons and TCE in soils near the former 50,000-gallon UST, petroleum hydrocarbons in soil near the former (two) 7,000-gallon USTs, and petroleum hydrocarbons in groundwater about 15-17 feet below both former UST areas. As part of the site response actions, the USTs were removed, contaminated soils were excavated to the extent practical and disposed in an off-site landfill, and free product removal from groundwater was conducted. However, contamination remains on site where it was not be completely removed from soil or groundwater. Remaining contaminated soils are more than 5-10 feet below clean fill soils where excavation occurred or under existing cement or asphalt.”

Contaminated groundwater remaining on site occurs at about 15-17 feet below the ground surface. The site is currently zoned for industrial use.

It is ENPRO’s opinion that this site does not represent a recognized environmental condition that is expected to affect the project site because it is sufficiently distant from the project site.
6.2.2 BUILDING, PLANNING, AND/OR ZONING DEPARTMENTS

The County of Maui Property Assessment Division database was reviewed on April 25, 2019 to obtain historical use information for the project site. Based on our review of the planning and permitting database, evidence of recognized environmental conditions associated with the project site was not discovered.

A copy of the records for the project site can be found in the appendix section of this report.

6.2.3 FIRE DEPARTMENT

The County of Maui Department of Fire and Public Safety, Fire Prevention Bureau was contacted on February 21, 2019 to obtain information regarding any fires, complaints, permits, violations involving hazardous materials use, USTs or ASTs on record for the project site and/or adjoining properties.

On February 22, 2019 ENPRO received a response from the Fire Prevention Bureau indicating that a fire incident associated with an electrical meter on site occurred on February 17, 2013. Electrical meters do not contain PCBs, therefore, we do not suspect PCBs would have been released during the fire in 2013.

It is our opinion that the response from the County of Maui Department of Fire and Public Safety, Fire Prevention Bureau did not present evidence of recognized environmental conditions associated with the project site.

6.3 VAPOR ENCROACHMENT SCREENING IN PROPERTY INVOLVED IN REAL ESTATE TRANSACTIONS

The Envirosite Regulatory Search Report provided an initial search of all standard government record databases and Envirosite proprietary historical records within the ASTM E 1527-13 recommended radii. ENPRO reviewed those sites related to former dry cleaners, gas stations and manufactured gas plants which met the ASTM E 2600 criteria for vapor encroachment screening (VES).

ENPRO reviewed the regulatory database search of those sites for recorded releases of chemicals of concern (COC) within the 1/3 mile and 1/10-mile approximate minimum distances defined in ASTM E 2600-10 for vapor encroachment from COC-contaminated sites. This measurement is based upon the distance from the known or suspect contaminated property to the target property boundary. ENPRO’s review of Envirosite database search for potential vapor encroachment conditions (VECs) takes into account the following factors:
- The land use of the target property
- Type of COC
- Location of known or suspect contaminated property is in the area of concern (AOC) having COC
- Characteristics of the soil
- Depth to groundwater
- Vapor conduits that may result in significant preferential pathways
- Cleanup status of contaminated property

Potential VECs evaluated included all recognized environmental conditions, including H-RECs and C-RECs with identified releases of petroleum products or other potentially volatile contaminants of concern. As is provided by ASTM E 2600-10, ENPRO also considered the predicted hydrogeological gradient around the project site when determining the potential for VECs to impact the site.

ENPRO did not identify any potential VECs within the recommended radii provided in ASTM E 2600-10 with the potential to impact the project site, except for the release of petroleum products in connection with the USTs located on nearby properties, specifically:

- 137 Kaahumanu Avenue
- 109 Kaahumanu Avenue
- 120 Kane Street

These releases have been addressed to the satisfaction of the applicable regulatory authority. However, most of the addressed releases do not meet unrestricted residential cleanup criteria; therefore, a VEC cannot be ruled out for the target property.
7.0 SITE RECONNAISSANCE

Site reconnaissance was performed by Ms. Roberta Bitzer and Ms. Daisy Finch on April 17, 2019. The site reconnaissance was conducted on foot. Most areas of the property were available for inspection with the following exceptions:

- Roof of main building occupied by MCSA and lawnmower baseyard
- The interior of the condemned building to the northeast of the main building
- Most of southeast portion of the parcel due to dense vegetation

No opinion is provided regarding environmental conditions in areas that were not inspected.

Table 3 summarizes the site inspection and findings. All features that were observed during the site reconnaissance, or that were discovered to have been historically present at the project site, are noted in the table. Also indicated in the table are items that may present concerns to the project site. Additional information about items noted in the table can be found in the referenced section of this report.

Table 3

<table>
<thead>
<tr>
<th>Project Site Environmental Features</th>
<th>Currently / Historically Present</th>
<th>Possible Environmental Concern</th>
<th>Report Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous substances or Petroleum Products</td>
<td>Yes</td>
<td>No</td>
<td>7.4</td>
</tr>
<tr>
<td>Underground Storage Tank, UST</td>
<td>Yes*</td>
<td>Yes*</td>
<td>7.5.1</td>
</tr>
<tr>
<td>Aboveground Storage Tank, AST</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Odors</td>
<td>Yes</td>
<td>No</td>
<td>7.9</td>
</tr>
<tr>
<td>Air Emissions (stacks, hoods, other point sources)</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

* Environmental feature(s) observed on adjoining or nearby property
Table 3 (Continued)

Site Inspection Findings

<table>
<thead>
<tr>
<th>Project Site Environmental Features</th>
<th>Currently / Historically Present</th>
<th>Possible Environmental Concern</th>
<th>Report Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pools of Liquid</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Drums</td>
<td>Yes</td>
<td>No</td>
<td>7.9</td>
</tr>
<tr>
<td>Unidentified Substance Containers</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Electrical Equipment/Possible PCBs</td>
<td>Yes</td>
<td>No</td>
<td>7.7.1</td>
</tr>
<tr>
<td>Hydraulic Equipment/Possible PCBs</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Stains or Corrosion</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Drains</td>
<td>Yes</td>
<td>No</td>
<td>7.9</td>
</tr>
<tr>
<td>Sumps</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Pits, Ponds, or Lagoons</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Stained Soil or Pavement</td>
<td>Yes</td>
<td>Yes</td>
<td>7.9</td>
</tr>
<tr>
<td>Stressed Vegetation</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Evidence of Spills or Releases</td>
<td>Yes</td>
<td>No</td>
<td>7.9</td>
</tr>
<tr>
<td>Artificially Filled Areas <em>(Solid Waste Disposal)</em></td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Waste Water</td>
<td>Yes</td>
<td>No</td>
<td>7.9</td>
</tr>
<tr>
<td>Wells</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Septic Systems <em>(cisterns, cess pools, dry wells)</em></td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Dry Cleaning Operations</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Agricultural Use <em>(pesticides/herbicides/fungicides)</em></td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Oil/Gas Production or Exploration</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
<tr>
<td>Remedial Activities</td>
<td>No</td>
<td>No</td>
<td>-</td>
</tr>
</tbody>
</table>

7.1 CURRENT USE OF THE PROPERTY

The project site is currently occupied by a school (MCSA) and also utilized as a lawnmower baseyard.
7.2 DESCRIPTIONS OF STRUCTURES, ROADS & OTHER IMPROVEMENTS

Two buildings were observed at the project site as described below:

- A vacant/condemned, one-story building constructed in 1920
- A single-story building constructed in 1920, currently occupied by MCSA

There is a reasonable potential that pesticides may have been applied for termite control beneath this slab foundation. This is not considered to be a recognized environmental condition, but it may be a concern at the time the building slab is removed.

Mr. Kurt Ginoza, Vice Principle of MCSA, reported that the following companies/agencies provide project site utilities and service:

- **Electricity**: Maui Electric Company (MECO)
- **Water**: County of Maui Department of Water Supply
- **Sewer**: County of Maui
- **Refuse**: Aloha Waste

Storm water runoff from the project site flows to the north and west via sheet flow to storm drains on the adjacent streets, and eventually discharges to Pacific Ocean.

Wastewater from the project site originates from sinks, toilets, and kitchens and discharges to the sanitary sewer system.

Evidence of additional wastewater discharge sources was not observed at the project site.

7.3 CURRENT USES OF ADJACENT AND NEARBY PROPERTIES

The area surrounding the project site consisted of residential and commercial properties. Adjoining properties were observed from the project site and from public access lands for signs of recognized environmental conditions and their potential to pose an environmental concern to the project site. These properties are listed in the following table:
Table 4
Summary of Adjacent and Nearby Property Use

<table>
<thead>
<tr>
<th>Direction</th>
<th>Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>Kaahumanu Avenue</td>
<td>Traffic Thoroughfare</td>
</tr>
<tr>
<td></td>
<td>Maui Beach Hotel</td>
<td>Transient Accommodation</td>
</tr>
<tr>
<td>South</td>
<td>Vevau Street</td>
<td>Traffic Thoroughfare</td>
</tr>
<tr>
<td></td>
<td>Vacant Land</td>
<td>Under Development</td>
</tr>
<tr>
<td>East</td>
<td>School Street</td>
<td>Traffic Thoroughfare</td>
</tr>
<tr>
<td></td>
<td>Shell Gas Station</td>
<td>Fuel Station</td>
</tr>
<tr>
<td></td>
<td>The Waterfront Apartments at Kahului</td>
<td>Residential</td>
</tr>
<tr>
<td>West</td>
<td>Kane Street</td>
<td>Traffic Thoroughfare</td>
</tr>
<tr>
<td></td>
<td>Kaahumanu Shopping Center</td>
<td>Retail</td>
</tr>
</tbody>
</table>

7.4 HAZARDOUS SUBSTANCES AND PETROLEUM PRODUCTS

Project Site

Visual observation for the use and/or storage of hazardous substances and petroleum products was performed.

The following hazardous substances and/or petroleum products were observed on site.

- MCSA
  - Small quantities of household cleaning products

- Lawnmower Baseyard
  - One, 55-gallon drum of waste oil
  - One, 55-gallon drum of 15w-40 motor oil
  - Approximately 10 gallons of anti-freeze
  - Approximately 5 gallons of lubricants
  - Approximately 10 gallons of hydraulic oil
  - Approximately 5 gallons of motor oil
  - Approximately 5 gallons of gasoline
None of the hazardous substances and/or petroleum products observed on the project site during the site reconnaissance appeared to be causing or contributing to any site contamination.

**Adjoining or Nearby Sites**

The following activities related to hazardous substances and/or petroleum products on adjoining or nearby sites were observed at the time of the project site reconnaissance.

- Shell Gas Station to the east of the property

### 7.5 STORAGE TANKS

#### 7.5.1 UNDERGROUND STORAGE TANKS

**Project Site**

Visual observations for manways, vent pipes, fill connections, concrete pressure dispersion pads, and dispenser pumps were conducted throughout the project site. Evidence indicating historical or current existence of USTs was not observed.

**Adjoining or Nearby Sites**

Visual observations for manways, vent pipes, fill connections, concrete pressure dispersion pads, and dispenser pumps were conducted throughout the accessible areas of adjacent properties. A Shell gas station was identified on the property to the east. See Section 6.2.1 for information regarding the gas station.

#### 7.5.2 ABOVEGROUND STORAGE TANKS

**Project Site**

Visual observations for vent pipes, secondary containment walls, or other evidence of aboveground storage tanks were conducted throughout the project site. Evidence indicating historical or current existence of ASTs was not observed.
Adjoining or Nearby Sites

Visual observations for vent pipes, secondary containment walls, or other evidence of aboveground storage tanks were conducted throughout the accessible areas of adjacent properties. No evidence of the presence of ASTs was noted.

7.6 SOLID WASTE

Project Site

At the time of our investigation, non-hazardous solid waste was generated onsite. Waste was in the form of general municipal refuse. General municipal refuse was placed into dumpsters located on the project site. The waste was accumulated and transported to an offsite facility for recycling and/or disposal by Aloha Waste on a regular interval basis.

Adjoining or Nearby Sites

At the time of our investigation, non-hazardous solid waste was observed to be generated on adjoining or nearby site. Waste was in the form of general municipal refuse. General municipal refuse was placed into dumpsters located on the project site. The waste was accumulated and transported to an offsite facility for recycling and/or disposal on a regular interval basis.

7.7 POLYCHLORINATED BIPHENYLS (PCBs)

Visual observation for electrical equipment or electrical components that use dielectric fluid, hydraulic lift equipment and fluorescent light ballasts that potentially include PCB-containing fluids was conducted. PCBs (polychlorinated biphenyl) are heavily regulated under the Toxic Substances Control Act (TSCA), which obligates a property owner to clean up any spills occurring on their property.

7.7.1 ELECTRICAL TRANSFORMERS/CAPACITORS

One vaulted transformer, belonging to MECO, was observed adjacent to the project site, at the intersection of Vevau and School Street. No evidence of leakage or corrosion on the outside of the vaulted transformer was noted during the project site reconnaissance.
An inquiry was sent to MECO regarding the PCB content of the vaulted transformer. MECO responded to the inquiry and indicated the transformer was “non-PCB” or “PCB-free.

Since the transformer is owned and operated by MECO, MECO is responsible for remediating any environmental impacts they might cause. Details regarding correspondence with MECO can be found in the appendix section of this report.

No privately-owned transformer equipment was observed within the facility.

### 7.7.2 HYDRAULIC LIFT EQUIPMENT

Visual observation for hydraulic lift equipment or components containing hydraulic fluid that potentially contains PCBs was conducted.

No in-ground hydraulic lift equipment was observed on site at the time of our reconnaissance.

### 7.7.3 FLUORESCENT LIGHT BALLASTS

Fluorescent light fixtures are present at the project site. Many fluorescent light fixtures manufactured prior to 1980 may have contained ballasts with PCBs. Since the project site was constructed before 1980, the potential that the ballasts of these fluorescent lights contain PCBs may be a concern.

### 7.8 WELLS

Evidence of wells (supply, monitoring or dry wells) was not observed during the assessment.

### 7.9 OTHER OBSERVATIONS

The following describes additional observations of the project site:

- **Odors:** Petroleum odor in the lawn mower baseyard
- **Pools of liquid:** Not observed
- **Drums:** Two, 55-gallon drums in the lawn mower baseyard
- **Drains and Sumps:** Drains in the restrooms.
Pits, ponds, lagoons: Not observed

Stained soil or pavement:
*De minimis* petroleum staining on the pavement in the lawnmower baseyard beneath and adjacent to the lawnmowers

Stressed vegetation: Not observed

Waste water features: Not observed

Septic systems: Not observed
8.0 INTERVIEWS

Interviews with individuals having past or present knowledge of the project site, such as owners, key site managers, occupants, and neighbors are routinely conducted to obtain information indicating recognized environmental conditions in connection with the property. The following individuals were available to interview:

Table 5
Key Site Interviews

<table>
<thead>
<tr>
<th>Interviewee Name</th>
<th>Relationship to Property</th>
<th>Length of Time Familiar with Property</th>
<th>Date of Interview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Kurt Ginoza</td>
<td>Vice Principal of MCSA</td>
<td>6 Years</td>
<td>April 17, 2019</td>
</tr>
<tr>
<td>Mr. Jeffrey H. Overton</td>
<td>Project Consultant</td>
<td>N/A</td>
<td>May 7, 2019</td>
</tr>
</tbody>
</table>

8.1 KEY SITE MANAGER

Mr. Kurt Ginoza, Vice-Principal of MCSA, was interviewed in person at the time of the site visit on April 17, 2019.

Project Site

Mr. Ginoza has been familiar with the project site since 2013. According to Mr. Ginoza the property has been used as a school since the 1950s. Maui Economic Opportunities (MEO) used a portion of the property for buses and containers storage until approximately 2017. Previous structures that may have included a hospital and a school building have been demolished.

The planned short-term use of the property is to be redeveloped as part of a mixed-use project that includes affordable housing and a school facility. Mr. Ginoza reported no information regarding past or present contamination and/or activities on the property that may have resulted in contamination of the project site.

Adjoining and Adjacent Properties

Mr. Ginoza reported no information regarding past or present contamination and/or activities on adjacent properties that may have resulted in contamination of the project site, except for the presence of a gas station to the east.
8.2 OWNER/USER

Mr. Jeffery H. Overton, Project Consultant, completed a Property Questionnaire supplied by ENPRO Environmental regarding the project site. A copy of the completed Property Questionnaire is included in the appendix section of this report.

Project Site

Mr. Jeffery H. Overton did not provide the length of time that he has been familiar with the project site and reported no information regarding past or present contamination and/or activities on the property that may have resulted in contamination of the project site.

Adjoining and Adjacent Properties

Mr. Jeffery H. Overton did not provide the length of time that he has been familiar with the project site and reported no information regarding past or present contamination and/or activities on adjacent properties that may have resulted in contamination of the project site.

9.0 EVALUATION

This section documents the findings, opinions, and conclusions of the Phase I Environmental Site Assessment. ASTM E 1527-13 does not require the environmental professional to provide recommendations regarding identified environmental conditions at the project site. As a service to its clients, ENPRO provides recommendations to further evaluate and/or address environmental concerns in Section 10.0 of this report.

9.1 FINDINGS AND CONCLUSIONS

We have performed a Phase I Environmental Site Assessment in conformance with the scope and limitations of ASTM Practice E 1527-13 of 153 West Kaahumanu Avenue, Kahului, Hawaii, the property. Any exceptions to, or deletions from, this practice are described in Section 2.6 of this report. This assessment has revealed no evidence of recognized environmental conditions (RECs) in connection with the property.

The following de minimis conditions were identified at the project site:
- *De minimis* petroleum staining on the pavement in the lawnmower baseyard beneath and adjacent to the lawnmowers.

The following environmental conditions, which are not considered *recognized environmental conditions*, as defined by ASTM, were observed during the assessment:

- Suspect asbestos containing building materials
- Suspect lead containing paint
- Termiticide application

### 9.2 DATA GAPS

Data gaps are not uncommon in environmental site assessments. A data gap by itself is not inherently significant. The significance is determined by other information and professional experience as to whether the data gap raises reasonable concerns about activities that may present a *recognized environmental condition*. According to *ASTM E 1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, and All Appropriate Inquiries (AAI)* which includes 40 CFR Part 312, §312.21 and §312.31, the Phase I Environmental Site Assessment report shall identify and comment on significant data gaps that affect the ability of the environmental professional to identify *recognized environmental conditions* and identify the sources of information that were consulted to address the data gap.

ENPRO did not encounter any significant data gaps during the performance of this Phase I Environmental Site Assessment.

### 9.3 LIMITATIONS

ENPRO has completed a Phase I Environmental Site Assessment (ESA) in conformance with the scope and limitations of ASTM Practice E 1527-13 of 153 West Kaahumanu Avenue, Kahului, Hawaii (the “project site”). This assessment was performed at the request of G70 (the “Client”) using the methods and procedures consistent with good commercial and customary practices designed to conform to acceptable industry standards.

The information and opinions rendered in this report are intended for the Client for the purposes stated herein (see Section 2.3). This report is not for the use or benefit of, nor may it be relied upon by any other person or entity, for any purpose except as described below without the advance written consent of ENPRO. ENPRO shall not distribute nor publish this report without the consent of the Client except as required by law or court order.
The information and opinions expressed in this report are given in response to a limited assignment and should be considered and implemented in light of that assignment.

The Client may rely upon this report in evaluating a request for one or more extensions of credit to be secured directly or indirectly by the subject property (including mortgage and mezzanine loans) and the acquisition of the direct or indirect interest in the subject property as applicable.

This report is not for the use or benefit of, nor may it be relied upon by any other person or entity, for any purpose without the advance written consent of ENPRO. In expressing the opinions stated in this report, ENPRO has exercised a degree of skill and care ordinarily exercised by a reasonable prudent environmental professional in the same community and in the same time frame given the same or similar facts and circumstances. Documentation and data provided by the Client, designated representatives of the Client or other interested third parties, or from the public domain, and referred to in the preparation of this assessment, have been used and referenced with the understanding that ENPRO assumes no responsibility or liability for their accuracy.

The independent conclusions represent our professional judgment based on information and data available to us during the course of this assignment. Factual information regarding operations, conditions, and test data provided by the Client or their representatives has been assumed to be correct and complete. The conclusions presented are based on the data provided, observations, and conditions that existed on the date of the site visit.

9.4 CERTIFICATIONS

Researched by: Mckenzie Brown, Environmental Technician
Surveyed by: Daisy Finch, Environmental Professional

Roberta Bitzer, Senior Environmental Professional

Written by: Roberta Bitzer, Senior Environmental Professional

Mckenzie Brown, Environmental Technician

Supervised by: Roberta Bitzer, Senior Environmental Professional

I declare that to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in §312.10 of 40 CFR Part 312.
I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property (project site). I have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Reviewed by:  

[Signature]

Kenton Beal  
Vice President, ENPRO Environmental
10.0 NON-SCOPE SERVICES

ASTM E 1527-13 does not require recommendations. A User should consider whether recommendations for additional inquiries or other services are desired. Recommendations are an additional service that may be useful in the User’s analysis of the property. Unless otherwise directed by the Client, it is ENPRO’s standard practice to include recommendations for addressing all identified RECs at the subject property.

ENPRO may also make recommendations regarding conditions identified at the project site which are not considered RECs, such as the proper storage of hazardous materials, the potential presence of asbestos containing materials, and the presence of ecological or cultural resources. Except where otherwise specified, there are no legal or regulatory requirements for the Client or the property owner to follow the recommendations presented in this report.

10.1 RECOMMENDATIONS

Based on the de minimis conditions identified in this investigation, ENPRO recommends the following additional actions and/or investigations:

- De minimis petroleum staining on the pavement in the lawnmower baseyard beneath and adjacent to the lawnmowers.

Adhere to best management practices (BMP) to prevent spills from machinery and storage containers.

10.2 ADDITIONAL ENVIRONMENTAL CONCERNS, NON-ASTM

The following environmental conditions were evaluated for the potential to impact the property though they are not considered recognized environmental conditions as defined by ASTM.

Asbestos-Containing Materials

In July 1989, under the Toxic Substances Control Act (TSCA), the United States Environmental Protection Agency (USEPA) promulgated an Asbestos Ban Phaseout Rule. Beginning in 1990 and taking effect in three stages, the rule prohibits the importation, manufacture, and processing of ninety-four percent of all remaining asbestos products in the United States over a period of seven years. Presently, asbestos has not been prohibited from
all construction building materials. However, in 1991, this rule was vacated and remanded by the Fifth Circuit Court of Appeals. As a result, most of the original ban on the manufacture, importation, processing, or distribution in commerce for the majority of the asbestos-containing products originally covered in the 1989 final rule was overturned.

No sampling for asbestos containing materials was conducted as part of this investigation.

Suspect asbestos containing materials should be sampled and analyzed for possible asbestos content prior to activities (e.g., renovation, demolition,) that may damage or disturb the material. If the materials are asbestos-containing, the building owner must comply with applicable USEPA National Emissions Standards for Hazardous Air Pollutants (NESHAPS), OSHA, state and local regulations.

Radon

Radon is a naturally occurring radioactive gas formed by the decay of uranium in bedrock and soil. The potential adverse health effects associated with radon gas depend on several factors including concentration of the gas and duration of exposure. The concentration of radon gas in a building depends on subsurface soil conditions, the integrity of the building’s foundation, and the building’s ventilation system.

Due to the geologic composition of basalt bedrock and the soils that derive from them, as well as the composition of marine-related sediments found in Hawaii, the State of Hawaii has been determined to have a low radon potential (G.M. Reimer, U.S. Geological Survey). Therefore, investigation of radon is not recommended for this property.

Lead-Based Paint

There is no commercial property definition of what is a lead-based paint. Regulations specifically addressing lead-based paint include Housing and Urban Development (HUD) (1995) guidelines and the Consumer Product Safety Act (1977). These regulations are for housing and consumer products.

OSHA regulations apply to worker protection during renovation and demolition activities.

Sensitive Ecological Areas

According to the Envirosite report, no areas were depicted as sensitive ecological areas or federal wetlands.
**Potential Termiticide Use**

Based on the age of the on-site structures, there is a reasonable potential that pesticides may have been applied for termite control beneath the slab foundation. This is not considered to be a REC, but it may be a concern at the time the building slab is removed. Assume/presume the presence of pesticides in soil beneath structures due to pesticide application to the soil prior to construction to control termites and other insects. Pesticide- and herbicide-contaminated soil should be managed in accordance with applicable federal, state, and local environmental laws and regulations in the event that any onsite building structure (and its foundation) is demolished.
## 11.0 REFERENCES

### Publications:

<table>
<thead>
<tr>
<th>Names of Publication</th>
<th>Author of Publication</th>
<th>Published by</th>
<th>Date of Publication</th>
<th>Information Obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquifer Identification and Classification for Maui: Groundwater Protection Strategy For Hawaii</td>
<td>Mink, J.F. and L.S. Lau</td>
<td>Water Resources Research Center, University of Hawaii at Manoa, Honolulu, Hawaii</td>
<td>1990</td>
<td>Groundwater data</td>
</tr>
<tr>
<td>Groundwater Well Index</td>
<td>State of Hawaii, Department of Natural Resources, Commission on Water Management</td>
<td></td>
<td>January 2001</td>
<td>Groundwater wells</td>
</tr>
<tr>
<td>Ownership records and Tax Map Key maps</td>
<td>County of Maui</td>
<td></td>
<td></td>
<td>Ownership records</td>
</tr>
<tr>
<td>Aerial Photograph</td>
<td>U.S.G.S</td>
<td>Envirosite</td>
<td>2019</td>
<td>Historical use</td>
</tr>
<tr>
<td>Code of Federal Regulations, Title 40, Part 761, Rules for Controlling PCBs under the Toxic Substance Control Act, U.S. Environmental Protection Agency</td>
<td></td>
<td></td>
<td>December 14, 1990</td>
<td>PCB regulations</td>
</tr>
<tr>
<td>Soil Survey for the Islands of Maui, State of Hawaii</td>
<td>Foote, Donald E. et al.</td>
<td>U.S. Department of Agriculture, Soil Conservation Service, in cooperation with the University of Hawaii Agricultural Experiment Station. Also available at</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date of Publication: 1972
Information Obtained: Soil classification

Names of Publication: The EDR Radius Map Report
Author of Publication: Environmental Data Resources, Inc.
Date of Publication: 2019
Information Obtained: Regulatory database records

Names of Publication: Topographic Maps, Maui, Hawaii
Author of Publication: United States Geological Survey (USGS)
Date of Publication: 2019
Information Obtained: Historical use

Contacts:

Agency or Business: G70
Name/Title of Representative: Mr. Jeffery H. Overton
Telephone Number: 808-351-4200
Date Information was Received: May 7, 2019

Agency or Business: Vice Principal of MCSA
Name/Title of Representative: Mr. Kurt Ginoza
Location of Agency or Business: 153 West Kaahumanu Avenue, Kahului
Date Information was Received: April 17, 2019

Agency or Business: Solid and Hazardous Waste Branch (SHWB)
Location of Agency or Business: 2725 Waimano Home Road, Pearl City, Hawaii
Telephone Number: 808-586-4226
Date Information was Received: March 15, 2015
Information Obtained: Regulatory records

Agency or Business: Hazard Evaluation and Emergency Response (HEER)
Location of Agency or Business: 2725 Waimano Home Road, Pearl City, Hawaii
Telephone Number: 808-586-4249
Date Information was Received: February 21, 2019
Information Obtained: Regulatory records
12.0 APPENDICES

Site Figures
Site Photographs
Historical Research
Regulatory Records Documentation
Records of Communication/Interview
Qualifications of Environmental Professionals
SITE FIGURES
Project Number 1902-00081-PH1
153 West Ka‘ahumanu Avenue

Figure 1
TOPOGRAPHIC MAP

Scale: 1 inch = 2,000 feet

Project Number 1902-00081-PH1
153 West Ka’ahumanu Avenue

Figure 2
Parcel Map: (2) 3-7-004: 003

Scale: 1 inch = Approximately 200 feet

Source: qPublic.net 2010
Figure 3
SANBORN FIRE INSURANCE MAP, 1990

Scale: 1 inch = Approximately 90 feet
Figure 4
AERIAL PHOTOGRAPH/SITE MAP

Scale: 1 inch = Approximately 200 Feet

Source: Google Maps 2019
SITE PHOTOGRAPHS
Photo 2
The Project Site, Facing North Northeast

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 3
Project Site, Facing South

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 4
Panoramic View of Vacant Portion of the Project Site

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 5

Northeast Portion of the Project Site, Facing Northeast

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 6

Project Site, Southeast Portion and Adjacent Properties

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 7

Project Site, Southeast Portion and Adjacent Properties

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 8
Condemned Building on Property, Facing East
Photo 9
South Portion of Condemned Building on Property

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 10

Project Site, Main Building, Facing Southwest

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 11
MCSA Class Room

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 12
MCSA Custodian Supply Room, Cleaning Supplies

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 13
MCSA Kitchen, Cleaning Supplies

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 14

Electrical Shed on Property, Between Main Building and Condemned Building

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 15

Lawnmower Baseyard at Main Building, Facing South

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 16
Project Site, Lawnmower Baseyard, 55-Gallon Drum of Motor Oil

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 17

Project Site Lawnmower Baseyard, Flammable Cabinet Use to Store Gasoline

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Project Site, Lawnmower Baseyard, Note 55-Gallon Drum of Waste Oil

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 19

Project Site, Lawnmower Baseyard, Note *De minimis* Staining Beneath Lawnmower

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 20

Project Site, Lawnmower Baseyard, Note *De minimis* Staining on Pavement

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 21
Project Site, Lawnmower, Baseyard

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 22

MECO Transformer Vault Near Southeast Boundary of the Project Site

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 23
Shell Gas Station, Adjacent Property to the East, Facing North

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
Photo 24
Waterfront Apartments, Adjacent Property to the East

Project Number: 1902-00081-PH1
153 West Kaahumanu
Kahului, Hawaii
Date of Photos: April 17, 2019
HISTORICAL RESEARCH
This Research Summary identifies the products and services provided by Historical Information Gatherers, Inc. (HIG) for the above referenced site location. All products are provided as PDFs unless otherwise noted.

**FIM+ Maps**

The HIG Historical Map Collection and the United States Library of Congress Map Collection were searched for fire insurance maps (FIMs), real estate atlases and similar maps for the site location and adjoining properties. These maps were used to create a multi-page file named FIM+Maps. The maps have title blocks that include the map publisher, year the map was created and, if applicable, the year the map was last updated. The years provided are: 1914, 1927, 1945, 1975, 1980, 1990.

**Disclaimer & Limitation of Liability**

This Research Summary and the related documents and images provided by Historical Information Gatherers (hereafter referred to as the “Site Specific HIG Data”) contain information obtained from a variety of public and private sources. Additional information for the site and surrounding properties may exist. Accordingly, there can be no guaranty or warranty that the information provided is complete for its particular intended purpose. No warranty expressed or implied, is made whatsoever in connection with the Site Specific HIG Data. Historical Information Gatherers specifically disclaims the making of any such warranties, including without limitation, merchantability or fitness for a particular purpose. Historical Information Gatherers, its officers, employees and independent contractors cannot be held liable to anyone for any loss or damage, whether arising out of errors or omissions, negligence, accident or any other cause, resulting directly or indirectly from any information provided or any information not provided in the Site Specific HIG Data. Any liability on the part of Historical Information Gatherers is strictly limited to a refund equal to the amount paid for the Site Specific HIG Data.

**HIG Copyright Notice**

This Research Summary and the selection, arrangement and compilation of Site Specific HIG Data are the property of Historical Information Gatherers. © Copyright 2019 by Historical Information Gatherers, Inc. All rights reserved. The person or entity that ordered and paid for the Site Specific HIG Data is granted a personal, non-assignable, limited license to reproduce the Site Specific HIG Data solely for purposes of providing supporting documentation for reports produced for the site location which is noted on page one of this Research Summary. Any other reproduction or other use of the Site Specific HIG Data in any media or format, in whole or in part, is expressly prohibited without prior written permission from Historical Information Gatherers, and the person or entity that ordered and paid for the Site Specific HIG Data assumes all liability for the making of any such reproductions.

**Licensing Agreement**

The licensing agreement between Historical Information Gatherers and infoGroup provides that Historical Information Gatherers may create photocopies or reproductions of portions of Polk City Directories, Hill-Donnelley Criss-Cross Directories and other directories under infoGroup copyright. The licensing agreement also permits the person or entity that ordered and paid for the Site Specific HIG Data to include photocopies or reproductions of portions of Polk City Directories, Hill-Donnelley Criss-Cross Directories and other directories under infoGroup copyright as supporting documents for reports produced for the site which is the subject of the Site Specific HIG Data.
Envirosite’s Historical Topographic Map Report is designed to assist in evaluating a subject property resulting from past activities. Envirosite’s Historical Topographic Map Report includes a search of USGS historical topographic maps, dating back to the early 1900s.

TOPOGRAPHIC MAPS FOUND:

<table>
<thead>
<tr>
<th>Map Name</th>
<th>Year</th>
<th>Revision Year</th>
<th>Scale</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wailuku</td>
<td>1955</td>
<td>N/R</td>
<td>1 : 24000</td>
<td>7.5</td>
</tr>
<tr>
<td>Wailuku</td>
<td>1977</td>
<td>N/R</td>
<td>1 : 24000</td>
<td>7.5</td>
</tr>
<tr>
<td>Wailuku</td>
<td>1983</td>
<td>N/R</td>
<td>1 : 24000</td>
<td>7.5</td>
</tr>
<tr>
<td>Wailuku</td>
<td>1997</td>
<td>N/R</td>
<td>1 : 24000</td>
<td>7.5</td>
</tr>
<tr>
<td>Wailuku</td>
<td>2013</td>
<td>N/R</td>
<td>1 : 24000</td>
<td>7.5</td>
</tr>
<tr>
<td>Wailuku</td>
<td>2017</td>
<td>N/R</td>
<td>1 : 24000</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Disclaimer - Copyright and Trademark Notice

All information contained in this report are based on data available from various public, government and other sources and are based upon the best data available from those sources. The information available in this report may be available from other sources and is not exclusive or the exclusive property of Envirosite Corporation.

NO WARRANTY EXPRESSED OR IMPLIED, IS MADE IN CONNECTION WITH THIS REPORT, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ALL RISK IS ASSUMED BY USER AND Envirosite assumes no liability for faulty or inaccurate information. The Reports may utilize a variety of public and other sources reasonably available to Envirosite. Envirosite cannot, and does not assure, warrant, guarantee or assume any liability for the correctness, comprehensiveness, timeliness or completeness of any of such information, nor is the information in any Report to be construed as legal advice with respect to environmental risks associated with any property. Envirosite shall not be liable to anyone for any claims, causes of action, suits, damages, losses, costs and expenses (including, without limitation, attorneys’ fees and costs) arising out of or caused by this report regardless of the acts, errors or omissions, or negligence of Envirosite. Any damages shall be limited to the purchase price of the report.

Purchaser of the report accepts the report “As Is”. The report is intended only to provide information only and should not be considered as providing any legal advice, prediction, forecast, or fact as to the environmental risk for any specific property. Reports are proprietary to Envirosite, and contain copyrighted material and trademarks of Envirosite. All other trademarks used herein are the property of their respective owners. All rights of Envirosite as to the Reports are reserved.
SUBJECT QUAD:

<table>
<thead>
<tr>
<th>MAP NAME:</th>
<th>Wailuku</th>
<th>MAP YEAR:</th>
<th>1977</th>
<th>REVISION YEAR:</th>
<th>N/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIES:</td>
<td>7.5</td>
<td>SCALE:</td>
<td>1 : 24000</td>
<td>Part</td>
<td>1</td>
</tr>
</tbody>
</table>
SUBJECT NAME: Kahului Site
ADDRESS: 153 West Kaahumanu Avenue, Kahului, Hawaii
LAT/LONG: 20.888683 / -156.471823

PREPARED FOR: ENPRO Environmental
ORDER #: 27336
REPORT DATE: 02/20/2019

SUBJECT QUAD:
MAP NAME: Wailuku
MAP YEAR: 1983
REVISION YEAR: N/R
SERIES: 7.5
SCALE: 1 : 24000

Page 4 of 7
Envirosite’s Historical Aerial Photo Report is designed to assist in evaluating a subject property resulting from past activities. Envirosite’s Historical Aerial Photo Report includes a search of available historical aerial photographs, dating back to the 1930s, or earliest available photographs.

**ENVIROSITE SEARCHED SOURCES**

**SUBJECT PROPERTY:**
Kahului Site  
153 West Kaahumanu Avenue  
Kahului, Hawaii

<table>
<thead>
<tr>
<th>YEAR</th>
<th>SCALE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>1&quot; = 500’</td>
<td>U.S.G.S</td>
</tr>
<tr>
<td>1974</td>
<td>1&quot; = 1,000’</td>
<td>U.S.G.S</td>
</tr>
<tr>
<td>1976</td>
<td>1&quot; = 1,000’</td>
<td>U.S.G.S</td>
</tr>
<tr>
<td>1992</td>
<td>1&quot; = 1,000’</td>
<td>U.S.G.S</td>
</tr>
<tr>
<td>2000</td>
<td>1&quot; = 500’</td>
<td>DOQ</td>
</tr>
</tbody>
</table>

*Disclaimer - Copyright and Trademark Notice*

All information contained in this report are based on data available from various public, government and other sources and are based upon the best data available from those sources. The information available in this report may be available from other sources and is not exclusive or the exclusive property of Envirosite Corporation.

NO WARRANTY EXPRESSED OR IMPLIED, IS MADE IN CONNECTION WITH THIS REPORT, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ALL RISK IS ASSUMED BY USER AND Envirosite assumes no liability for faulty or inaccurate information. The Reports may utilize a variety of public and other sources reasonably available to Envirosite. Envirosite cannot, and does not assure, warrant, guarantee or assume any liability for the correctness, comprehensiveness, timeliness or completeness of any of such information, nor is the information in any Report to be construed as legal advice with respect to environmental risks associated with any property. Envirosite shall not be liable to anyone for any claims, causes of action, suits, damages, losses, costs and expenses (including, without limitation, attorneys’ fees and costs) arising out of or caused by this report regardless of the acts, errors or omissions, or negligence of Envirosite. Any damages shall be limited to the purchase price of the report.

Purchaser of the report accepts the report “As Is”. The report is intended only to provide information only and should not be considered as providing any legal advice, prediction, forecast, or fact as to the environmental risk for any specific property. Reports are proprietary to Envirosite, and contain copyrighted material and trademarks of Envirosite. All other trademarks used herein are the property of their respective owners. All rights of Envirosite as to the Reports are reserved.
FLIGHT YEAR:
2000

Scale:
1" = 500'
MAUI COUNTY PARCEL HISTORY (TT102) FOR:

03/15/1996
INSTR-DESC: EXEC ORD 3586
AREA: 5.5720 ACRES
FROM: 3704-13 18,050 SF OR 0.414 AC
5.572 AC SET ASIDE FOR "KAHULUI CIVIC CENTER" UNDER DARGS-STATE OF HAWAII
PER EO 3586 DTD 5/20/93.
F/D: AREA, BDRY; STATUS

GROUP# NAME
2 0011 STATE OF HAWAII

TRANS NO: 60154
INSTR-DATE: 03/15/1996
ACK/EFF DATE: 03/15/1996

04/07/1994
INSTR-DESC: DLNR L/M REL REV PMT NO. S-27959
AREA: 5.1580 ACRES
FROM: A&B-HAWAII INC TO: STATE OF HAWAII
PURPOSES: RELEASE OF REVERSIONARY INTEREST & FOR KAHULUI CIVIC CENTER
CONSIDERATION: $1,693,000.00
DATE OF DOCUMENT: 2/17/93
PARCEL A PROPOSED KAHULUI CIVIC CENTER
KAHULUI WAILUKU MAUI 56,441 SF
TMK 3-7-04:3
F/D: KEYED ONLY-SUBJECT REVERSIONARY INT

GROUP# NAME
2 0011 STATE OF HAWAII

TRANS NO: 60152
INSTR-DATE: 04/07/1994
ACK/EFF DATE: 04/07/1994

04/30/1991
INSTR-DESC: DLNR L/M (RP S-6732)
AREA: 5.1580 ACRES
(18050 SF) DROPPED INTO 3704-13(NEW)
F/D: AREA, BDRY

GROUP# NAME
2 0011 STATE OF HAWAII

TRANS NO: 60153
INSTR-DATE: 04/25/1991
ACK/EFF DATE: 04/30/1991

10/07/1987
GROUP# NAME
2 0011 STATE OF HAWAII

------------------SEE HISTORY SHEET FOR MORE INFORMATION------------------
H/Day 1/30/56

1. As shown on the map

2. Area Est. 20 3/35
   3/31 Est. 20 3/35
   2/31 Penal. 20 3/35 excl. (0.345 Ac) Ex
   For 20 2ND FENCE (H) to be used for road
   widening.
   7/31 Est. 20 3/35 excl. For of 3265

Carry the following subareas

   0.541 Ac
   0.713 Ac

1/10
4/15

Map in 370. folder
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Acres</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>As shown on the map</td>
<td>1.07</td>
<td>Territory of Hawaii, Kamehameha High School</td>
</tr>
<tr>
<td>2.</td>
<td>1.05 acres</td>
<td>1/20/64</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>0.20 acres</td>
<td>1/20/64</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>0.57 acres</td>
<td>1/20/64</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>0.14 acres</td>
<td>1/20/64</td>
<td></td>
</tr>
</tbody>
</table>

Note: Last entry dated 11/21/72.
Kahului, Maui
Por Gr 3343, F.P. 22

HN/ely 1/20/56

ROUTE-SLIP

1. As shown on tax maps
   5.97 Ac
   Territory of Hawaii
   KAHULUI SCHOOL
   37 04 3

2. TMB M-76 '55 HN/ely 1/20/56
   37/35
   R/S: Parcel 3704-3 subd (0.251 Ac) Rd
   F/D: 3704-5; Subd; Por Gr 3343
   5.97 Ac
do
   Par 30 PAP F032 (2) to be used for road
   widening.

   Carry the following subareas:
   (0.251 Ac)
   (5.719 Ac)

   MR
   3701
   KO
   3701

   Map in 3701 folder
<table>
<thead>
<tr>
<th>NO.</th>
<th>GRANTOR, ETC.</th>
<th>AREA OF PARCEL</th>
<th>GRANTEE, ETC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>As shown on tax maps</td>
<td>5.97 Ac</td>
<td>Territory of Hawaii</td>
</tr>
<tr>
<td></td>
<td>TMB M-76 '55</td>
<td>5.97 Ac</td>
<td>KAHULUI SCHOOL</td>
</tr>
<tr>
<td></td>
<td>HN/ely 1/20/56</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td>2</td>
<td>R/S: Parcel 3704-3 subd (0.251 Ac) Rd</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>Par 50 FAP F032 (2) to be used for road widening.</td>
<td>Territory of Hawaii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F/D: 3704-3; Subd; Per Gr 3343</td>
<td>KAHULUI SCHOOL</td>
<td>KAHULUI SCHOOL</td>
</tr>
<tr>
<td>3</td>
<td>TMB 611 '63(3703-1 etc)JT/sys 8/21/63</td>
<td>5.719 Ac</td>
<td>State of Hawaii</td>
</tr>
<tr>
<td></td>
<td>Q/D: Rd par 30 (0.251 Ac) dropped into Road</td>
<td>State of Hawaii</td>
<td>State of Hawaii</td>
</tr>
<tr>
<td></td>
<td>Alexander &amp; Baldwin, Inc To: State of Hawaii</td>
<td>KAHULUI SCHOOL</td>
<td>KAHULUI SCHOOL</td>
</tr>
<tr>
<td></td>
<td>Bk 4543 p 140 Cons-31</td>
<td>4/5/63</td>
<td>7/1/63</td>
</tr>
<tr>
<td></td>
<td>F/D: 3704-3; Area, bdry</td>
<td>4.572 Ac &amp;</td>
<td>do</td>
</tr>
<tr>
<td>4</td>
<td>TMB M-10 '71-72</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>GS/en 7/8/71</td>
<td>do</td>
<td>do</td>
</tr>
<tr>
<td></td>
<td>R/S: 3704-3, subd into Lots A(5.572 Ac) &amp; B(0.141 Ac)</td>
<td>Territory of Hawaii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>per CSF 15041 &amp; 15042 dated 9/27/66</td>
<td>Territory of Hawaii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lot B(0.141 Ac) dropped into Rd (KANE ST.)</td>
<td>Territory of Hawaii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F/D: 3704-3; Area, des &amp; bdry</td>
<td>Territory of Hawaii</td>
<td></td>
</tr>
</tbody>
</table>

**NOTE:** LAST AREA & GRANTEE FINAL DATA AS SHOWN ON TAX MAPS.
### Official Land Records
Search and purchase land documents recorded by the Bureau of Conveyances

<table>
<thead>
<tr>
<th>Document Number*</th>
<th>Grantor</th>
<th>Grantee</th>
<th>Instrument Code**</th>
<th>Recording Date</th>
<th>TMK</th>
</tr>
</thead>
<tbody>
<tr>
<td>T10546056</td>
<td>KAPDON LLC</td>
<td>SANOM LLC</td>
<td>D-DEED</td>
<td>2018-11-16</td>
<td>1-2-7-004-008</td>
</tr>
<tr>
<td>T10546057</td>
<td>SANOM LLC</td>
<td>CENTRAL PACIFIC BANK</td>
<td>MFS-MORTGAGE &amp; FINANCING STATEMENT</td>
<td>2018-11-16</td>
<td>1-2-7-004-008</td>
</tr>
<tr>
<td>T3753295</td>
<td>SATO KENNETH K TR</td>
<td>TSUMOTO GORDON S TR</td>
<td>D-DEED</td>
<td>2008-05-29</td>
<td>1-2-7-004-008</td>
</tr>
<tr>
<td>T3753295</td>
<td>SATO KENNETH K TR</td>
<td>TSUMOTO GORDON S TR</td>
<td>D-DEED</td>
<td>2008-05-29</td>
<td>1-2-7-004-008</td>
</tr>
<tr>
<td>T9653218</td>
<td>TSUMOTO GORDON S TRUSTEE</td>
<td>KAPDON LLC</td>
<td>D-DEED</td>
<td>2016-06-06</td>
<td>1-2-7-004-008</td>
</tr>
</tbody>
</table>

* Read about document number formats.

** Read the list of instrument codes.

Showing 1 to 5 of 5 entries
<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fd</td>
<td>Fill land</td>
<td>5.7</td>
<td>45.3%</td>
</tr>
<tr>
<td>PZUE</td>
<td>Puuone sand, 7 to 30 percent slopes</td>
<td>6.9</td>
<td>54.7%</td>
</tr>
<tr>
<td><strong>Totals for Area of Interest</strong></td>
<td></td>
<td><strong>12.6</strong></td>
<td><strong>100.0%</strong></td>
</tr>
</tbody>
</table>
REGULATORY RECORDS
DOCUMENTATION
Government Records
Report | 2019

Order Number: 27336
Report Generated: 02/20/2019

Project Name: Kahului Center
Project Number: 1902-00081-PH1

Kahului Site
153 West Kaahumanu Avenue
Kahului, Hawaii

2 Corporate Drive
Suite 450
Shelton, CT 06484
Toll Free: 866-211-2028
www.envirositecorp.com
**Table of Contents**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Executive Summary by Distance</td>
<td>2</td>
</tr>
<tr>
<td>Executive Summary by Database</td>
<td>4</td>
</tr>
<tr>
<td>Property Proximity Map</td>
<td>17</td>
</tr>
<tr>
<td>Area Map</td>
<td>18</td>
</tr>
<tr>
<td>Map Findings Summary</td>
<td>19</td>
</tr>
<tr>
<td>Map Findings</td>
<td>24</td>
</tr>
<tr>
<td>Unmappable Summary</td>
<td>175</td>
</tr>
<tr>
<td>Environmental Records Searched</td>
<td>176</td>
</tr>
<tr>
<td>Geological Landscape Section</td>
<td>192</td>
</tr>
<tr>
<td>Geological Landscape Section Soil Map</td>
<td>195</td>
</tr>
<tr>
<td>Geological Landscape Section Summary</td>
<td>196</td>
</tr>
<tr>
<td>Geological Findings Map</td>
<td>201</td>
</tr>
<tr>
<td>Geological Landscape Section Map Findings</td>
<td>202</td>
</tr>
<tr>
<td>Geological Landscape Section Map Findings Radon</td>
<td>325</td>
</tr>
<tr>
<td>Geological Landscape Records Searched</td>
<td>326</td>
</tr>
</tbody>
</table>

---

**Disclaimer - Copyright and Trademark Notice**

All information contained in this report are based on data available from various public, government and other sources and are based upon the best data available from those sources. The information available in this report may be available from other sources and is not exclusive or the exclusive property of Envirosite Corporation.

NO WARRANTY EXPRESSED OR IMPLIED, IS MADE IN CONNECTION WITH THIS REPORT, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ALL RISK IS ASSUMED BY USER AND Envirosite assumes no liability for faulty or inaccurate information. The Reports may utilize a variety of public and other sources reasonably available to Envirosite. Envirosite cannot, and does not assure, warrant, guarantee or assume any liability for the correctness, comprehensiveness, timeliness or completeness of any of such information, nor is the information in any Report to be construed as legal advice with respect to environmental risks associated with any property. Envirosite shall not be liable to anyone for any claims, causes of action, suits, damages, losses, costs and expenses (including, without limitation, attorneys’ fees and costs) arising out of or caused by this report regardless of the acts, errors or omissions, or negligence of Envirosite. Any damages shall be limited to the purchase price of the report.

Purchaser of the report accepts the report “As Is”. The report is intended only to provide information only and should not be considered as providing any legal advice, prediction, forecast, or fact as to the environmental risk for any specific property. Reports are proprietary to Envirosite, and contain copyrighted material and trademarks of Envirosite. All other trademarks used herein are the property of their respective owners. All rights of Envirosite as to the Reports are reserved.
Envirosite Corporation has conducted a search of all reasonably ascertainable records in accordance with EPA’s AAI (40 CFR Part 312) requirements and the ASTM E-1527-13 Environmental Site Assessments standard.

**SUBJECT PROPERTY INFORMATION:**

**ADDRESS:**
Kahului Site
153 West Kaahumanu Avenue
Kahului, Hawaii

**COORDINATES:**
- Latitude (North): 20.888683 - 20°53'19.3"
- Longitude (West): -156.471823 - -156°28'18.6"
- Universal Transverse Mercator: Zone 4N
- UTM X (Meters): 763008.79
- UTM Y (Meters): 2311897.79

**ELEVATION:**
- Elevation: 8.130 ft. above sea level

**USGS TOPOGRAPHIC MAP ASSOCIATED WITH SUBJECT PROPERTY:**
Subject Property Map: 20156-G4 Wailuku, HI
Most Recent Revision: 2017
<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>ADDRESS</th>
<th>DATABASE(S)</th>
<th>RELATIVE ELEVATION</th>
<th>DIRECTION / DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>FARMER PESTICIDE DISPOSAL PROJECT</td>
<td>28-10 BEECH RD</td>
<td>ECHO, FRS, RCRA_NONGEN</td>
<td>Lower</td>
<td>NW / 0.017 mi.</td>
</tr>
<tr>
<td>A2</td>
<td>OFFICE ENVIRONMENTAL QUAL CONT</td>
<td>28 10 BEACH RD</td>
<td>ECHO, FRS, RCRA_NONGEN</td>
<td>Lower</td>
<td>NW / 0.017 mi.</td>
</tr>
<tr>
<td>B3</td>
<td>ILIMA SHELL</td>
<td>137 KAAHUMANU AVE</td>
<td>ECHO, FRS, RCRA_CESQG</td>
<td>Lower</td>
<td>NNE / 0.019 mi.</td>
</tr>
<tr>
<td>B4</td>
<td>SHELL OIL COMPANY</td>
<td>137 KAAHUMANU AVE</td>
<td>RCRA_NONGEN</td>
<td>Lower</td>
<td>NNE / 0.019 mi.</td>
</tr>
<tr>
<td>B5</td>
<td>MAUI PALMS HOTEL UST</td>
<td>150 KAAHUMANU AVE</td>
<td>SHWS - HI</td>
<td>Lower</td>
<td>NNE / 0.019 mi.</td>
</tr>
<tr>
<td>B6</td>
<td>ILIMA SHELL</td>
<td>137 W. KAAHUMANU AVENUE</td>
<td>LUST - HI, UST - HI</td>
<td>Lower</td>
<td>NW / 0.024 mi.</td>
</tr>
<tr>
<td>A7</td>
<td>JR DORAN INC. DBA CERAMIC TILE PLUS</td>
<td>25 S. KAHULUI BEACH ROAD</td>
<td>ECHO, FRS, RCRA_LQG</td>
<td>Lower</td>
<td>NW / 0.037 mi.</td>
</tr>
<tr>
<td>B8</td>
<td>PORT TOWN CHEVRON</td>
<td>109 KAAHUMANU AVE</td>
<td>LUST - HI, UST - HI</td>
<td>Lower</td>
<td>NE / 0.057 mi.</td>
</tr>
<tr>
<td>B9</td>
<td>PORT TOWN CHEVRON</td>
<td>109 W. KAAHUMANU AVE.</td>
<td>RCRA_CESQG</td>
<td>Lower</td>
<td>NE / 0.078 mi.</td>
</tr>
<tr>
<td>C10</td>
<td>MAUI PINAPPLE CO LTD, KANE STREET</td>
<td>106 S KANE ST</td>
<td>I C - HI, SHWS - HI</td>
<td>Higher</td>
<td>S / 0.090 mi.</td>
</tr>
<tr>
<td>C11</td>
<td>MAUI PINAPPLE CO LTD, KANE STREET</td>
<td>106 S KANE ST</td>
<td>I C - HI, SHWS - HI</td>
<td>Higher</td>
<td>S / 0.090 mi.</td>
</tr>
<tr>
<td>D12</td>
<td>THE WASH HOUSE</td>
<td>74 LONO AVE</td>
<td>HIST LUST - HI, UST - HI</td>
<td>Lower</td>
<td>ESE / 0.095 mi.</td>
</tr>
<tr>
<td>B13</td>
<td>32 LONO AVENUE</td>
<td>32 LONO AVE</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Lower</td>
<td>ENE / 0.096 mi.</td>
</tr>
<tr>
<td>B14</td>
<td>KAAHUMANU AVE &amp; LONO AVE</td>
<td>KAAHUMANU AVE &amp; LONO AVE</td>
<td>SPILLS - HI</td>
<td>Lower</td>
<td>NE / 0.102 mi.</td>
</tr>
<tr>
<td>D15</td>
<td>LLOYD'S KAHULUI CHEVRON</td>
<td>130 W KAMEHAMEHA AVE</td>
<td>LUST - HI, UST - HI</td>
<td>Lower</td>
<td>ESE / 0.102 mi.</td>
</tr>
<tr>
<td>D16</td>
<td>KAHULUI SERVICE, INC DBA LLOYD'S ...</td>
<td>130 W KAMEHAMEHA AVE</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Lower</td>
<td>ESE / 0.102 mi.</td>
</tr>
<tr>
<td>D17</td>
<td>CHEVRON 92619</td>
<td>130 W KAMEHAMEHA AVE</td>
<td>ECHO, FRS, RCRA_NONGEN</td>
<td>Lower</td>
<td>ESE / 0.102 mi.</td>
</tr>
<tr>
<td>C18</td>
<td>MAUI PINAPPLE CO., LTD - CARP S</td>
<td>120 KANE ST</td>
<td>LUST - HI, UST - HI</td>
<td>Higher</td>
<td>S / 0.103 mi.</td>
</tr>
<tr>
<td>C19</td>
<td>MAUI PINAPPLE COMPANY, LTD. - P</td>
<td>120 KANE ST</td>
<td>LUST - HI, UST - HI</td>
<td>Higher</td>
<td>S / 0.103 mi.</td>
</tr>
<tr>
<td>C20</td>
<td>MAUI PINAPPLE CO. LTD -- KAHULUI ...</td>
<td>120 KANE ST</td>
<td>LUST - HI, UST - HI</td>
<td>Higher</td>
<td>S / 0.103 mi.</td>
</tr>
<tr>
<td>C21</td>
<td>MAUI PINAPPLE CO LTD, KANE STREET</td>
<td>120 KANE ST</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Higher</td>
<td>S / 0.103 mi.</td>
</tr>
<tr>
<td>C22</td>
<td>KAHULUI CANNERY MAUI PINAPPLE</td>
<td>120 KANE STREET</td>
<td>RCRA_NONGEN</td>
<td>Higher</td>
<td>S / 0.103 mi.</td>
</tr>
<tr>
<td>C23</td>
<td>CAMERON CHEMICAL CORP</td>
<td>120 KANE STREET, BUILDING...</td>
<td>ECHO, FRS, RCRA_NONGEN</td>
<td>Higher</td>
<td>S / 0.103 mi.</td>
</tr>
<tr>
<td>D24</td>
<td>MECO TRANSFORMER 5317</td>
<td>95 LONO AVE</td>
<td>SPILLS - HI</td>
<td>Lower</td>
<td>ESE / 0.105 mi.</td>
</tr>
<tr>
<td>Z5</td>
<td>BREWER ENVIRONMENTAL INDUSTRIE...</td>
<td>65 KAHULUI BEACH RD</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Lower</td>
<td>NW / 0.110 mi.</td>
</tr>
<tr>
<td>26</td>
<td>MAUI PINAPPLE CO LTD, KANE STREET</td>
<td>716 UMI</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Higher</td>
<td>SW / 0.172 mi.</td>
</tr>
<tr>
<td>E27</td>
<td>VIP CAR RENTAL</td>
<td>80 KAAHUMANU AVE</td>
<td>HIST LUST - HI, UST - HI</td>
<td>Lower</td>
<td>NE / 0.173 mi.</td>
</tr>
<tr>
<td>F28</td>
<td>LONGS DRUG STORE #10848</td>
<td>275 W KAAHUMANU AVE 1C01</td>
<td>BR5, ECHO, FRS, RCRA_LQG</td>
<td>Higher</td>
<td>W / 0.203 mi.</td>
</tr>
<tr>
<td>G29</td>
<td>MECO VEHICLE 411</td>
<td>210 KAMEHAMEHA AVE</td>
<td>I C - HI, SHWS - HI</td>
<td>Lower</td>
<td>SSE / 0.204 mi.</td>
</tr>
<tr>
<td>G30</td>
<td>PAD-MOUNT TRANSFORMER MECO</td>
<td>210 W KAMEHAMEHA AVE</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Lower</td>
<td>SSE / 0.204 mi.</td>
</tr>
<tr>
<td>G31</td>
<td>MAUI ELECTRIC COMPANY, LTD. KAHU...</td>
<td>210 WEST KAMEHAMEHA AVE</td>
<td>LUST - HI, UST - HI</td>
<td>Lower</td>
<td>SSE / 0.204 mi.</td>
</tr>
<tr>
<td>G32</td>
<td>MECO KAHULUI T &amp; D BASE YARD</td>
<td>210 WEST KAMEHAMEHA AVE</td>
<td>LUST - HI, UST - HI</td>
<td>Lower</td>
<td>SSE / 0.204 mi.</td>
</tr>
<tr>
<td>G33</td>
<td>KAHULUI BASEYARD</td>
<td>210 W KAMEHAMEHA AVENUE</td>
<td>RCRA_SQG</td>
<td>Lower</td>
<td>SSE / 0.204 mi.</td>
</tr>
<tr>
<td>E34</td>
<td>KAHULUI SHOPPING CENTER</td>
<td>47 WEST KAAHUMANU AVENUE</td>
<td>ECHO, RCRA_SQG</td>
<td>Lower</td>
<td>ENE / 0.219 mi.</td>
</tr>
<tr>
<td>F35</td>
<td>SEARS ROEBUCK &amp; CO</td>
<td>275 KAAHUMANU AVE</td>
<td>LUST - HI, UST - HI</td>
<td>Higher</td>
<td>W / 0.222 mi.</td>
</tr>
<tr>
<td>F36</td>
<td>SEARS AUTO CENTER</td>
<td>275 KAAHUMANU AVE</td>
<td>SHWS - HI</td>
<td>Higher</td>
<td>W / 0.222 mi.</td>
</tr>
<tr>
<td>F37</td>
<td>SEARS ROEBUCK AND COMPANY</td>
<td>275 KAAHUMANU AVE STE 100...</td>
<td>RCRA_CESQG</td>
<td>Higher</td>
<td>W / 0.222 mi.</td>
</tr>
<tr>
<td>F38</td>
<td>MACYS WEST KAAHUMANU</td>
<td>275 KAAHUMANU AVE STE 110...</td>
<td>FRS, RCRA_CESQG</td>
<td>Higher</td>
<td>W / 0.222 mi.</td>
</tr>
<tr>
<td>MAP ID</td>
<td>SITE NAME</td>
<td>ADDRESS</td>
<td>DATABASE(S)</td>
<td>RELATIVE ELEVATION</td>
<td>DIRECTION / DISTANCE</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>--------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>E39</td>
<td>O'REILLY AUTO PARTS STORE 3494</td>
<td>24 KAAHUMANU AVENUE STE...</td>
<td>ECHO, FRS, RCRA_CESQG</td>
<td>Lower</td>
<td>NE / 0.223 mi.</td>
</tr>
<tr>
<td>H40</td>
<td>MAUI MEAT COMPANY FACILITY (FORM...</td>
<td>601 2ND ST</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Lower</td>
<td>NE / 0.290 mi.</td>
</tr>
<tr>
<td>41</td>
<td>SUGAR MILL AUTO CARE CENTER</td>
<td>1130 PUUNENE AVE</td>
<td>HIST LUST - HI, UST - HI</td>
<td>Lower</td>
<td>ENE / 0.290 mi.</td>
</tr>
<tr>
<td>H42</td>
<td>CHEVRON STATION 94682</td>
<td>101 PUUNENE AVE</td>
<td>LUST - HI, UST - HI</td>
<td>Lower</td>
<td>NE / 0.296 mi.</td>
</tr>
<tr>
<td>H43</td>
<td>TESORO #61071</td>
<td>243 PUUNENE AVE</td>
<td>LUST - HI, UST - HI</td>
<td>Lower</td>
<td>NE / 0.299 mi.</td>
</tr>
<tr>
<td>I44</td>
<td>ALOHA SHELL</td>
<td>110 S PUUNENE ST</td>
<td>LUST - HI, UST - HI</td>
<td>Lower</td>
<td>E / 0.310 mi.</td>
</tr>
<tr>
<td>J45</td>
<td>MCC-AUTOMOTIVE TECHNOLOGY BUI...</td>
<td>310 KAAHUMANU AVE</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Higher</td>
<td>W / 0.330 mi.</td>
</tr>
<tr>
<td>J46</td>
<td>MAUI COMMUNITY COLLEGE</td>
<td>310 KAAHUMANU AVE</td>
<td>ECHO, FRS, HAZNET - CA, LUST - HI, RCRA_CE...</td>
<td>Higher</td>
<td>W / 0.330 mi.</td>
</tr>
<tr>
<td>47</td>
<td>LOT F3 SOUTH WAKEA AVENUE</td>
<td>231 S WAKEA AVE</td>
<td>I C - HI, SHWS - HI</td>
<td>Higher</td>
<td>SW / 0.332 mi.</td>
</tr>
<tr>
<td>I48</td>
<td>J'S SHELL STATION</td>
<td>147 S PUUNENE AVE</td>
<td>LUST - HI, UST - HI</td>
<td>Higher</td>
<td>E / 0.336 mi.</td>
</tr>
<tr>
<td>K49</td>
<td>WAKEA PAPA JOHN'S 76 (#301)</td>
<td>9 S WAKEA AVE</td>
<td>LUST - HI, UST - HI</td>
<td>Higher</td>
<td>W / 0.382 mi.</td>
</tr>
<tr>
<td>K50</td>
<td>MID PAC PETROLEUM 254653 (PREV: ...</td>
<td>9 S WAKEA AVE</td>
<td>LUST - HI, UST - HI</td>
<td>Higher</td>
<td>W / 0.382 mi.</td>
</tr>
<tr>
<td>51</td>
<td>W &amp; F WASHERETTE, INC.</td>
<td>125 S WAKEA AVE</td>
<td>HIST LUST - HI, UST - HI</td>
<td>Higher</td>
<td>WSW / 0.385 mi.</td>
</tr>
<tr>
<td>52</td>
<td>YOUNG BROTHERS LTD</td>
<td>PIER 2</td>
<td>LUST - HI, UST - HI</td>
<td>Higher</td>
<td>NE / 0.388 mi.</td>
</tr>
<tr>
<td>53</td>
<td>HALEAKALA DAIRY</td>
<td>55 S WAKEA</td>
<td>HIST LUST - HI, UST - HI</td>
<td>Higher</td>
<td>WSW / 0.399 mi.</td>
</tr>
<tr>
<td>54</td>
<td>MINIT STOP WAKEA</td>
<td>85 S WAKEA AVE</td>
<td>ECHO, LUST - HI, UST - HI</td>
<td>Higher</td>
<td>WSW / 0.401 mi.</td>
</tr>
<tr>
<td>55</td>
<td>YOUNG BROTHERS KAHULUI</td>
<td>65 WHARF ST</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Lower</td>
<td>NE / 0.408 mi.</td>
</tr>
<tr>
<td>56</td>
<td>FUDS NAVY MILITARY RESERVATION ...</td>
<td>N/R</td>
<td>SHWS - HI</td>
<td>Lower</td>
<td>NNE / 0.520 mi.</td>
</tr>
<tr>
<td>L57</td>
<td>VIP WAREHOUSE</td>
<td>74 HOBRON AVE</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Lower</td>
<td>ENE / 0.658 mi.</td>
</tr>
<tr>
<td>L58</td>
<td>KAHULUI FUEL DISTRIBUTION TERMINAL</td>
<td>60 HOBRON AVE</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Lower</td>
<td>ENE / 0.661 mi.</td>
</tr>
<tr>
<td>L59</td>
<td>TOSCO BULK PLANT NUMBER 0323</td>
<td>76 HOBRON AVE</td>
<td>SHWS - HI</td>
<td>Lower</td>
<td>ENE / 0.662 mi.</td>
</tr>
<tr>
<td>M60</td>
<td>KAHULUI TERMINAL</td>
<td>100 HOBRON AVE</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Lower</td>
<td>ENE / 0.668 mi.</td>
</tr>
<tr>
<td>M61</td>
<td>KAHULUI HARBOR PARCEL B</td>
<td>140 HOBRON AVE</td>
<td>SHWS - HI</td>
<td>Lower</td>
<td>ENE / 0.671 mi.</td>
</tr>
<tr>
<td>62</td>
<td>HOBRON AVE AREA (KAHULUI)</td>
<td>HOBRON AVE</td>
<td>SHWS - HI</td>
<td>Lower</td>
<td>ENE / 0.740 mi.</td>
</tr>
<tr>
<td>63</td>
<td>ALII LINEN SERVICE (FKA SNOW WHIT...</td>
<td>312 ALAMAH PL</td>
<td>I C - HI, SHWS - HI, SPILLS - HI</td>
<td>Higher</td>
<td>E / 0.866 mi.</td>
</tr>
<tr>
<td>64</td>
<td>MAUI DISPOSAL COMPANY</td>
<td>221 LALO PL</td>
<td>SHWS - HI, SPILLS - HI</td>
<td>Higher</td>
<td>ESE / 0.875 mi.</td>
</tr>
<tr>
<td>N65</td>
<td>HAWAII WOOD PRESERVING CO.</td>
<td>356 HANAKAI ST</td>
<td>SHWS - HI</td>
<td>Higher</td>
<td>E / 0.919 mi.</td>
</tr>
<tr>
<td>N66</td>
<td>MAUI TOYOTA FKA HI WOOD PRESERV...</td>
<td>356 HANAKAI STREET</td>
<td>BRs, HIST CORRACTS 2, RCRA_NONGEN</td>
<td>Higher</td>
<td>E / 0.919 mi.</td>
</tr>
</tbody>
</table>
SUBJECT PROPERTY SEARCH RESULTS:

The subject property was not listed in any of the databases searched by Envirosite Corporation.

SEARCH RESULTS:

FEDERAL RCRA CORRAC TS FACILITIES LIST

HIST CORRAC TS 2: List of facilities where Resource Conservation and Recovery Act Corrective Action Program used to investigate and remediate hazardous releases that are no longer in current agency list. 1 SITE FOUND WITHIN 1 MILE

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N66</td>
<td>MAUI TOYOTA FKA HI WOOD PRESERVING CO</td>
<td>356 HANAKAI STREET</td>
<td>E / 0.919 mi.</td>
<td>165</td>
</tr>
</tbody>
</table>

FEDERAL RCRA GENERATORS LIST

RCRA_CESQG: Resource Conservation and Recovery Act listing of licensed conditionally exempt small quantity generators 5 SITES FOUND WITHIN .25 MILE

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F37</td>
<td>SEARS ROEBUCK AND COMPANY</td>
<td>275 KAAHUMANU AVE STE 1000</td>
<td>W / 0.222 mi.</td>
<td>103</td>
</tr>
<tr>
<td>- ID: H1D981637994</td>
<td>Status: No Violation/Inspections</td>
<td>Date: N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F38</td>
<td>MACYS WEST KAAHUMANU</td>
<td>275 KAAHUMANU AVE STE 1100</td>
<td>W / 0.222 mi.</td>
<td>105</td>
</tr>
<tr>
<td>- ID: HIR000113506</td>
<td>Status: No Violation/Inspections</td>
<td>Date: N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOWER ELEVATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>ILIMA SHELL</td>
<td>137 KAAHUMANU AVE</td>
<td>NNE / 0.019 mi.</td>
<td>30</td>
</tr>
<tr>
<td>- ID: H1D982436628</td>
<td>Status: No Violation/Inspections</td>
<td>Date: N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>PORT TOWN CHEVRON</td>
<td>109 W. KAAHUMANU AVE.</td>
<td>NE / 0.078 mi.</td>
<td>47</td>
</tr>
<tr>
<td>- ID: HIR000142497</td>
<td>Status: No Violation/Inspections</td>
<td>Date: N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E39</td>
<td>O'REILLY AUTO PARTS STORE 3494</td>
<td>24 KAAHUMANU AVENUE STE 1</td>
<td>NE / 0.223 mi.</td>
<td>107</td>
</tr>
<tr>
<td>- ID: HIR000141986</td>
<td>Status: No Violation/Inspections</td>
<td>Date: N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RCRA_LQG: Resource Conservation and Recovery Act listing of licensed large quantity generators 2 SITES FOUND WITHIN .25 MILE

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F28</td>
<td>LONGS DRUG STORE #10848</td>
<td>275 W KAAHUMANU AVE 1C01</td>
<td>W / 0.203 mi.</td>
<td>79</td>
</tr>
<tr>
<td>- ID: HIR000143487</td>
<td>Status: No Violation/Inspections</td>
<td>Date: N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOWER ELEVATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7</td>
<td>JR DORAN INC. DBA CERAMIC TILE PLUS</td>
<td>25 S. KAHULUI BEACH ROAD</td>
<td>NW / 0.037 mi.</td>
<td>39</td>
</tr>
<tr>
<td>- ID: HIR000144394</td>
<td>Status: No Violation/Inspections</td>
<td>Date: N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Equal/Higer Elevation

#### RCRA_NONGEN: Resource Conservation and Recovery Act listing of licensed non-generators

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C22</td>
<td>KAHULUI CANNERY MAUI PINEAPPLE</td>
<td>120 KANE STREET</td>
<td>S / 0.103 mi.</td>
<td>68</td>
</tr>
<tr>
<td>C23</td>
<td>CAMERON CHEMICAL CORP</td>
<td>120 KANE STREET, BUILDING 1</td>
<td>S / 0.103 mi.</td>
<td>70</td>
</tr>
</tbody>
</table>

#### Lower Elevation

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>FARMER PESTICIDE DISPOSAL PROJECT</td>
<td>28-10 BEECH RD</td>
<td>NW / 0.017 mi.</td>
<td>24</td>
</tr>
<tr>
<td>A2</td>
<td>OFFICE ENVIRONMENTAL QUAL CONT</td>
<td>28 10 BEACH RD</td>
<td>NW / 0.017 mi.</td>
<td>27</td>
</tr>
<tr>
<td>B4</td>
<td>SHELL OIL COMPANY</td>
<td>137 KAAHUMANU AVE</td>
<td>NNE / 0.019 mi.</td>
<td>35</td>
</tr>
<tr>
<td>D17</td>
<td>CHEVRON 92619</td>
<td>130 W KAMEHAMEHA AVE</td>
<td>ESE / 0.102 mi.</td>
<td>59</td>
</tr>
</tbody>
</table>

#### RCRA_SQG: Resource Conservation and Recovery Act listing of licensed small quantity generators

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>G33</td>
<td>KAHULUI BASEYARD</td>
<td>210 W KAMEHAMEHA AVENUE</td>
<td>SSE / 0.204 mi.</td>
<td>96</td>
</tr>
<tr>
<td>E34</td>
<td>KAHULUI SHOPPING CENTER</td>
<td>47 WEST KAHAHUMANU AVENUE</td>
<td>ENE / 0.219 mi.</td>
<td>98</td>
</tr>
</tbody>
</table>

### State and Tribal Registered Storage Tank Lists

#### UST - HI: Underground storage tank listing

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C18</td>
<td>MAUI PINEAPPLE CO., LTD - CARP S</td>
<td>120 KANE ST</td>
<td>S / 0.103 mi.</td>
<td>62</td>
</tr>
<tr>
<td>C19</td>
<td>MAUI PINEAPPLE COMPANY, LTD. - P</td>
<td>120 KANE ST</td>
<td>S / 0.103 mi.</td>
<td>64</td>
</tr>
</tbody>
</table>
### Equal/Higher Elevation (cont.)

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20</td>
<td>MAUI PINEAPPLE CO. LTD -- KAHLULUI CANNERY</td>
<td>120 KANE ST</td>
<td>S / 0.103 mi.</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501832</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-2</td>
<td>Status: Permanently Out of Use</td>
<td>Date: Date Closed 11/01/1990</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-3</td>
<td>Status: Permanently Out of Use</td>
<td>Date: Date Closed 11/01/1990</td>
<td></td>
</tr>
<tr>
<td>F35</td>
<td>SEARS ROEBUCK &amp; CO</td>
<td>275 KAHAUMANU AVE</td>
<td>W / 0.222 mi.</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501848</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-1</td>
<td>Status: Permanently Out of Use</td>
<td>Date: Date Closed 11/01/1993</td>
<td></td>
</tr>
</tbody>
</table>

There are an additional 4 status records, see site details.

### Lower Elevation

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6</td>
<td>ILIMA SHELL</td>
<td>137 W. KAHAUMANU AVENUE</td>
<td>NNE / 0.024 mi.</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501005</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-1</td>
<td>Status: Permanently Out of Use</td>
<td>Date: Date Closed 04/23/1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-2</td>
<td>Status: Permanently Out of Use</td>
<td>Date: Date Closed 04/23/1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-3</td>
<td>Status: Permanently Out of Use</td>
<td>Date: Date Closed 04/23/1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-4</td>
<td>Status: Permanently Out of Use</td>
<td>Date: Date Closed 04/23/1998</td>
<td></td>
</tr>
</tbody>
</table>

There are an additional 4 status records, see site details.

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D12</td>
<td>THE WASH HOUSE</td>
<td>74 LONO AVE</td>
<td>ESE / 0.095 mi.</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501576</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-1</td>
<td>Status: Permanently Out of Use</td>
<td>Date: Date Closed 11/12/1991</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>LLOYD'S KAHLULUI CHEVRON</td>
<td>130 W KAMEHAMEHA AVE</td>
<td>ESE / 0.102 mi.</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501245</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID r-4</td>
<td>Status: Permanently Out of Use</td>
<td>Date: Date Closed 08/20/2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID 1</td>
<td>Status: Currently in Use</td>
<td>Date: Date Closed N/R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID 2</td>
<td>Status: Currently in Use</td>
<td>Date: Date Closed N/R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID 3</td>
<td>Status: Currently in Use</td>
<td>Date: Date Closed N/R</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E27</td>
<td>VIP CAR RENTAL</td>
<td>80 KAHAUMANU AVE</td>
<td>NE / 0.173 mi.</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501882</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-1</td>
<td>Status: Permanently Out of Use</td>
<td>Date: Date Closed 01/23/1997</td>
<td></td>
</tr>
</tbody>
</table>
**Executive Summary by Database 2019**

### STATE AND TRIBAL REGISTERED STORAGE TANK LISTS (cont.)

**UST - HI:** Underground storage tank listing **11 SITES FOUND WITHIN .25 MILE**

#### LOWER ELEVATION (cont.)

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>G31</td>
<td>MAUI ELECTRIC COMPANY, LTD. KAHLULUI BASE YARD</td>
<td>210 WEST KAMEHAMEHA AVE</td>
<td>SSE / 0.204 mi.</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-500956</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-1</td>
<td>Status: Permanently Out of Use</td>
<td>Date: 11/14/1989</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-2</td>
<td>Status: Permanently Out of Use</td>
<td>Date: 11/14/1989</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID 1</td>
<td>Status: Currently in Use</td>
<td>Date: Date Closed N/R</td>
<td></td>
</tr>
<tr>
<td>G32</td>
<td>MECO KAHLULUI T &amp; D BASE YARD</td>
<td>210 WEST KAMEHAMEHA AVE</td>
<td>SSE / 0.204 mi.</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-500956</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Tank ID R-2</td>
<td>Status: Permanently Out of Use</td>
<td>Date: 11/14/1989</td>
<td></td>
</tr>
</tbody>
</table>

### STATE AND TRIBAL LEAKING STORAGE TANK LISTS

**HIST LUST - HI:** List of leaking underground storage tank sites that are no longer in current agency list. **5 SITES FOUND WITHIN .5 MILE**

#### EQUAL/HIGHER ELEVATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>W &amp; F WASHERETTE, INC.</td>
<td>125 S WAKEA AVE</td>
<td>WSW / 0.385 mi.</td>
<td>136</td>
</tr>
<tr>
<td>53</td>
<td>HALEAKALA DAIRY</td>
<td>55 S WAKEA</td>
<td>WSW / 0.399 mi.</td>
<td>138</td>
</tr>
</tbody>
</table>

#### LOWER ELEVATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D12</td>
<td>THE WASH HOUSE</td>
<td>74 LONO AVE</td>
<td>ESE / 0.095 mi.</td>
<td>52</td>
</tr>
<tr>
<td>E27</td>
<td>VIP CAR RENTAL</td>
<td>80 KAAHUMANU AVE</td>
<td>NE / 0.173 mi.</td>
<td>79</td>
</tr>
<tr>
<td>41</td>
<td>SUGAR MILL AUTO CARE CENTER</td>
<td>1130 PUUENENE AVE</td>
<td>ENE / 0.290 mi.</td>
<td>113</td>
</tr>
</tbody>
</table>

**LUST - HI:** Leaking underground storage tank sites listing **18 SITES FOUND WITHIN .5 MILE**

#### EQUAL/HIGHER ELEVATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C18</td>
<td>MAUI PINEAPPLE CO., LTD. - CARP S</td>
<td>120 KANE ST</td>
<td>S / 0.103 mi.</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-502695</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 950086</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 10/28/1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 940179</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 04/28/1995</td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>MAUI PINEAPPLE COMPANY, LTD. - P</td>
<td>120 KANE ST</td>
<td>S / 0.103 mi.</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-502696</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 090006</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 02/11/2009</td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>MAUI PINEAPPLE CO. LTD -- KAHLULUI CANNERY</td>
<td>120 KANE ST</td>
<td>S / 0.103 mi.</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501832</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 900052</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 10/16/2007</td>
<td></td>
</tr>
</tbody>
</table>
**STATE AND TRIBAL LEAKING STORAGE TANK LISTS (cont.)**

LUST - Hi: Leaking underground storage tank sites listing 18 SITES FOUND WITHIN .5 MILE

**EQUAL/HIGHER ELEVATION (cont.)**

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F35</td>
<td>SEARS ROEBUCK &amp; CO</td>
<td>275 KAHAHUMANU AVE</td>
<td>W / 0.222 mi.</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501848</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 940042</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 06/16/1998</td>
<td></td>
</tr>
<tr>
<td>J46</td>
<td>MAUI COMMUNITY COLLEGE</td>
<td>310 KAHAHUMANU AVE</td>
<td>W / 0.330 mi.</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-502687</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 990071</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 05/06/2005</td>
<td></td>
</tr>
<tr>
<td>K49</td>
<td>WAKEA PAPA JOHN'S 76 (301)</td>
<td>9 S WAKEA AVE</td>
<td>W / 0.382 mi.</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-500007</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 950017</td>
<td>Status: Suspected release</td>
<td>Date: 08/10/2018</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID suspected</td>
<td>Status: Site Cleanup Completed with EHE/EHMP</td>
<td>Date: 08/18/2011</td>
<td></td>
</tr>
<tr>
<td>K50</td>
<td>MID PAC PETROLEUM 254653</td>
<td>9 S WAKEA AVE</td>
<td>W / 0.382 mi.</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>(PREV: CENTRAL 76 L-4653)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-500007</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 950017</td>
<td>Status: Site Cleanup Completed with EHE/EHMP</td>
<td>Date: 08/18/2011</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>MINIT STOP WAKEA</td>
<td>85 S WAKEA AVE</td>
<td>WSW / 0.401 mi.</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-500423</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 990066</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 04/01/1999</td>
<td></td>
</tr>
</tbody>
</table>

**LOWER ELEVATION**

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6</td>
<td>ILIMA SHELL</td>
<td>137 W. KAHAHUMANU AVENUE</td>
<td>NNE / 0.024 mi.</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501005</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 980104</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 09/15/2003</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>PORT TOWN CHEVRON</td>
<td>109 KAHAHUMANU AVE</td>
<td>NE / 0.057 mi.</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501888</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 870002</td>
<td>Status: Site Cleanup Completed with EHE/EHMP</td>
<td>Date: 01/30/2015</td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>LLOYD'S KAHLULI CHEVRON</td>
<td>130 W KAMEHAMEHA AVE</td>
<td>ESE / 0.102 mi.</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501245</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 040011</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 06/06/2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 040068</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 06/06/2009</td>
<td></td>
</tr>
<tr>
<td>G31</td>
<td>MAUI ELECTRIC COMPANY, LTD. KAHLULI BASE YARD</td>
<td>210 WEST KAMEHAMEHA AVE</td>
<td>SSE / 0.204 mi.</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-500956</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 900017</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 08/26/1999</td>
<td></td>
</tr>
<tr>
<td>G32</td>
<td>MECO KAHLULI T &amp; D BASE YARD</td>
<td>210 WEST KAMEHAMEHA AVE</td>
<td>SSE / 0.204 mi.</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-500956</td>
<td>Status: N/A</td>
<td>Date: N/A</td>
<td></td>
</tr>
</tbody>
</table>
STATE AND TRIBAL LEAKING STORAGE TANK LISTS (cont.)

LUST - HI: Leaking underground storage tank sites listing **18 SITES FOUND WITHIN .5 MILE**

### LOWER ELEVATION (cont.)

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H42</td>
<td>CHEVRON STATION 94682</td>
<td>101 PUUNENE AVE</td>
<td>NE / 0.296 mi.</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501126 Status: N/A</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: N/A</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 970125</td>
<td>Date: 06/10/2004</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>H43</td>
<td>TESORO #61071</td>
<td>243 PUUNENE AVE</td>
<td>NE / 0.299 mi.</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-502743 Status: N/A</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: N/A</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 180009</td>
<td>Status: Confirmed Release</td>
<td>Date: 01/05/2018</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 120005</td>
<td>Status: Site Cleanup Completed with EHE/EHMP</td>
<td>Date: 02/03/2015</td>
<td>117</td>
</tr>
<tr>
<td>I44</td>
<td>ALOHA SHELL</td>
<td>110 S PUUNENE ST</td>
<td>E / 0.310 mi.</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-501006 Status: N/A</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: N/A</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 080014</td>
<td>Date: 11/30/2012</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>I48</td>
<td>J'S SHELL STATION</td>
<td>147 S PUUNENE AVE</td>
<td>E / 0.336 mi.</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-500422 Status: N/A</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 02/11/2011</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 060024</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: 02/11/2011</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 920014</td>
<td>Date: 02/11/2011</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>YOUNG BROTHERS LTD</td>
<td>PIER 2</td>
<td>NE / 0.388 mi.</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility ID 9-500667 Status: N/A</td>
<td>Status: Site Cleanup Completed (NFA)</td>
<td>Date: N/A</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>- ID: Event ID 000099</td>
<td>Date: 05/16/2003</td>
<td>137</td>
<td></td>
</tr>
</tbody>
</table>

STATE INSTITUTIONAL CONTROLS / ENGINEERING CONTROLS REGISTRIES

I C - HI: Remediation sites with institutional controls **4 SITES FOUND WITHIN .5 MILE**

### EQUAL/HIGHER ELEVATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>MAUI PINEAPPLE CO LTD, KANE STREET LOT 2 TANK AREA PORTION</td>
<td>106 S KANE ST</td>
<td>S / 0.090 mi.</td>
<td>48</td>
</tr>
<tr>
<td>C11</td>
<td>MAUI PINEAPPLE CO LTD, KANE STREET LOT 2 CANNERY BUILDING PORTION LOT F3 SOUTH WAKEA AVENUE</td>
<td>106 S KANE ST</td>
<td>S / 0.090 mi.</td>
<td>50</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>231 S WAKEA AVE</td>
<td>SW / 0.332 mi.</td>
<td>129</td>
</tr>
</tbody>
</table>

### LOWER ELEVATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>G29</td>
<td>MECO VEHICLE 411</td>
<td>210 KAMEHAMEHA AVE</td>
<td>SSE / 0.204 mi.</td>
<td>91</td>
</tr>
</tbody>
</table>
## STATE- AND TRIBAL - EQUIVALENT CERCLIS

SHWS - HI: Listing of state hazardous waste sites 25 SITES FOUND WITHIN 1 MILE

### EQUAL/HIGHER ELEVATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>MAUI PINEAPPLE CO LTD, KANE STREET LOT 2 TANK AREA PORTION</td>
<td>106 S KANE ST</td>
<td>S / 0.090 mi.</td>
<td>48</td>
</tr>
<tr>
<td>C11</td>
<td>MAUI PINEAPPLE CO LTD, KANE STREET LOT 2 CANNERY BUILDING PORTION</td>
<td>106 S KANE ST</td>
<td>S / 0.090 mi.</td>
<td>50</td>
</tr>
<tr>
<td>C21</td>
<td>MAUI PINEAPPLE CO LTD, KANE STREET</td>
<td>120 KANE ST</td>
<td>S / 0.103 mi.</td>
<td>66</td>
</tr>
<tr>
<td>26</td>
<td>MAUI PINEAPPLE CO LTD, KANE STREET</td>
<td>716 UMI</td>
<td>SW / 0.172 mi.</td>
<td>77</td>
</tr>
<tr>
<td>F36</td>
<td>SEARS AUTO CENTER</td>
<td>275 KAAHUMANU AVE</td>
<td>W / 0.222 mi.</td>
<td>102</td>
</tr>
<tr>
<td>J45</td>
<td>MCC-AUTOMOTIVE TECHNOLOGY BUILDING CONTAMINATION</td>
<td>310 KAAHUMANU AVE</td>
<td>W / 0.330 mi.</td>
<td>120</td>
</tr>
<tr>
<td>47</td>
<td>LOT F3 SOUTH WAKEA AVENUE</td>
<td>231 S WAKEA AVE</td>
<td>SW / 0.332 mi.</td>
<td>129</td>
</tr>
<tr>
<td>63</td>
<td>ALII LINEN SERVICE (FKA SNOW WHITE LINEN)</td>
<td>312 ALAMAHA PL</td>
<td>E / 0.866 mi.</td>
<td>159</td>
</tr>
<tr>
<td>64</td>
<td>MAUI DISPOSAL COMPANY</td>
<td>221 LALO PL</td>
<td>ESE / 0.875 mi.</td>
<td>161</td>
</tr>
<tr>
<td>N65</td>
<td>HAWAII WOOD PRESERVING CO.</td>
<td>356 HANAKAI ST</td>
<td>E / 0.919 mi.</td>
<td>164</td>
</tr>
</tbody>
</table>

### LOWER ELEVATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5</td>
<td>MAUI PALMS HOTEL UST</td>
<td>150 KAAHUMANU AVE</td>
<td>NNE / 0.019 mi.</td>
<td>36</td>
</tr>
</tbody>
</table>
### STATE- AND TRIBAL - EQUIVALENT CERCLIS (cont.)

SHWS - HI: Listing of state hazardous waste sites

25 SITES FOUND WITHIN 1 MILE

#### LOWER ELEVATION (cont.)

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B13</td>
<td>32 LONO AVENUE</td>
<td>32 LONO AVE</td>
<td>ENE / 0.096 mi.</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier N/R</td>
<td>Status: Response Complete</td>
<td>Date: 12/10/2004</td>
<td></td>
</tr>
<tr>
<td>D16</td>
<td>KAHULUI SERVICE, INC DBA LLOYD'S KAHULUI CHEVRON</td>
<td>130 W KAMEHAMEHA AVE</td>
<td>ESE / 0.102 mi.</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier 110013788829</td>
<td>Status: N/R</td>
<td>Date: 08/24/2005</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>BREWER ENVIRONMENTAL INDUSTRIES-KAHLULUI BEACH ROAD</td>
<td>65 KAHULULI BEACH RD</td>
<td>NW / 0.110 mi.</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier 110013779884</td>
<td>Status: Response Complete</td>
<td>Date: 06/25/1998</td>
<td></td>
</tr>
<tr>
<td>G29</td>
<td>MECO VEHICLE 411</td>
<td>210 KAMEHAMEHA AVE</td>
<td>SSE / 0.204 mi.</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier 110013766576</td>
<td>Status: Response Complete</td>
<td>Date: 01/11/2013</td>
<td></td>
</tr>
<tr>
<td>G30</td>
<td>PAD-MOUNT TRANSFORMER MECO</td>
<td>210 W KAMEHAMEHA AVE</td>
<td>SSE / 0.204 mi.</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier N/R</td>
<td>Status: Response Complete</td>
<td>Date: 04/23/2012</td>
<td></td>
</tr>
<tr>
<td>H40</td>
<td>MAUI MEAT COMPANY FACILITY (FORMER), UST CLOSURE</td>
<td>601 2ND ST</td>
<td>NE / 0.290 mi.</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier 1100137774576</td>
<td>Status: N/R</td>
<td>Date: 12/25/1998</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>YOUNG BROTHERS KAHULUI</td>
<td>65 WHARF ST</td>
<td>NE / 0.408 mi.</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier 1100137774576</td>
<td>Status: Response Complete</td>
<td>Date: 07/01/2004</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>FUDS NAVY MILITARY RESERVATION (KAHULUI)</td>
<td></td>
<td>NNE / 0.520 mi.</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier N/R</td>
<td>Status: N/R</td>
<td>Date: N/R</td>
<td></td>
</tr>
<tr>
<td>L57</td>
<td>VIP WAREHOUSE</td>
<td>74 HOBRON AVE</td>
<td>ENE / 0.658 mi.</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier 110013773265</td>
<td>Status: N/R</td>
<td>Date: N/R</td>
<td></td>
</tr>
<tr>
<td>L58</td>
<td>KAHULUI FUEL DISTRIBUTION TERMINAL</td>
<td>60 HOBRON AVE</td>
<td>ENE / 0.661 mi.</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier 110013788856</td>
<td>Status: Response Ongoing</td>
<td>Date: N/R</td>
<td></td>
</tr>
<tr>
<td>L59</td>
<td>TOSCO BULK PLANT NUMBER 0323</td>
<td>76 HOBRON AVE</td>
<td>ENE / 0.662 mi.</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier 110007501881</td>
<td>Status: Response Complete</td>
<td>Date: 03/10/2004</td>
<td></td>
</tr>
<tr>
<td>M60</td>
<td>KAHULUI TERMINAL</td>
<td>100 HOBRON AVE</td>
<td>ENE / 0.668 mi.</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier 110001764083</td>
<td>Status: Response Ongoing</td>
<td>Date: N/R</td>
<td></td>
</tr>
<tr>
<td>M61</td>
<td>KAHULUI HARBOR PARCEL B</td>
<td>140 HOBRON AVE</td>
<td>ENE / 0.671 mi.</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier N/R</td>
<td>Status: N/R</td>
<td>Date: N/R</td>
<td></td>
</tr>
</tbody>
</table>
STATE- AND TRIBAL - EQUIVALENT CERCLIS (cont.)

SHWS - HI: Listing of state hazardous waste sites 25 SITES FOUND WITHIN 1 MILE

LOWER ELEVATION (cont.)

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>HOBRON AVE AREA (KAHULUI)</td>
<td>HOBRON AVE</td>
<td>ENE / 0.740 mi.</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>- ID: Facility Registry Identifier 110013785662</td>
<td>Status: Response Ongoing</td>
<td>Date: N/R</td>
<td></td>
</tr>
</tbody>
</table>

RECORDS OF EMERGENCY RELEASE REPORTS

SPILLS - HI: Oil and hazardous material spills report sites 6 SITES FOUND WITHIN .125 MILE

EQUAL/HIGHER ELEVATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C21</td>
<td>MAUI PINEAPPLE CO LTD, KANE STREET</td>
<td>120 KANE ST</td>
<td>S / 0.103 mi.</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>- ID: Case Number 19891108-1</td>
<td>Status: Response</td>
<td>Date: N/R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ID: Case Number 19960802-0915</td>
<td>Status: Response</td>
<td>Date: N/R</td>
<td></td>
</tr>
</tbody>
</table>

LOWER ELEVATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>SITE NAME</th>
<th>SITE ADDRESS</th>
<th>DIRECTION/DISTANCE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B13</td>
<td>32 LONO AVENUE</td>
<td>32 LONO AVE</td>
<td>ENE / 0.096 mi.</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>- ID: Case Number 20030822-1400</td>
<td>Status: Response</td>
<td>Date: N/R</td>
<td></td>
</tr>
<tr>
<td>B14</td>
<td>KAAHUMANU AVE &amp; LONO AVE</td>
<td>KAAHUMANU AVE &amp; LONO AVE</td>
<td>NE / 0.102 mi.</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>- ID: Case Number 19950204-2</td>
<td>Status: Response</td>
<td>Date: N/R</td>
<td></td>
</tr>
<tr>
<td>D16</td>
<td>KAHULUI SERVICE, INC DBA LLOYD'S KAHULUI CHEVRON</td>
<td>130 W KAMEHAMEHA AVE</td>
<td>ESE / 0.102 mi.</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>- ID: Case Number 20040721-1514</td>
<td>Status: Response</td>
<td>Date: 08/24/2005</td>
<td></td>
</tr>
<tr>
<td>D24</td>
<td>MECO TRANSFORMER 5317</td>
<td>95 LONO AVE</td>
<td>ESE / 0.105 mi.</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>- ID: Case Number 20040622-1628</td>
<td>Status: Response</td>
<td>Date: 07/29/2004</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>BREWER ENVIRONMENTAL INDUSTRIES-KAHULUI BEACH ROAD</td>
<td>65 KAHULUI BEACH RD</td>
<td>NW / 0.110 mi.</td>
<td>75</td>
</tr>
</tbody>
</table>

Following sites were unable to be mapped.

<table>
<thead>
<tr>
<th>SITE NAME:</th>
<th>ADDRESS, CITY, ZIP:</th>
<th>DATABASE(S):</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&amp;B PROPERTIES, INC., AGRICULTURAL D...</td>
<td>HALEAKALA ST, KAHULUI</td>
<td>SHWS - HI</td>
</tr>
<tr>
<td>A&amp;B PROPERTIES, INC., SUSPECTED FORM...</td>
<td>HALEAKALA ST, KAHULUI 96732</td>
<td>SHWS - HI</td>
</tr>
<tr>
<td>A&amp;B PROPERTY, 55-GALLON DRUMS BY H...</td>
<td>HALEAKALA HWY, KAHULUI 96732</td>
<td>SPILLS - HI</td>
</tr>
<tr>
<td>ALEXANDER &amp; BALDWIN DUMP SITE</td>
<td>WEST PAPA AVENUE, KAHULUI 96732</td>
<td>CERCLIS NFRAP, SEMS_BR_ARCHIVED SITES</td>
</tr>
<tr>
<td>AVIS RENT-A-CAR SYSTEM INC (PMID OGG...</td>
<td>KAHULUI AIRPORT, KAHULUI 96732</td>
<td>HIST LUST - HI, UST - HI</td>
</tr>
<tr>
<td>DOTA EMERGENCY GENERATOR BLDG TE...</td>
<td>KAHULUI AIRPORT, KAHULUI 96732</td>
<td>HIST LUST - HI</td>
</tr>
<tr>
<td>E &amp; E BLACK CONTRACTORS</td>
<td>AMALA PLACE, KAHULUI 96732</td>
<td>CERCLIS NFRAP, SEMS_BR_ARCHIVED SITES</td>
</tr>
<tr>
<td>F &amp; M CONTRACTORS, INC.</td>
<td>AMALA PLACE, KAHULUI 96732</td>
<td>CERCLIS-HIST, FRS, SEMS_BR_ACTIVE SITES</td>
</tr>
<tr>
<td>HAWAIIAN HOMES SPS (PAUKAKALO)</td>
<td>WAIEHU BEACH RD/KUKONA ..., KAHULUI ...</td>
<td>HIST LUST - HI, UST - HI</td>
</tr>
<tr>
<td>HI DOT HIGHWAYS DIVISION</td>
<td>HANSEN RD - OLD BASEYAR..., KAHULUI 96732</td>
<td>HIST LUST - HI, UST - HI</td>
</tr>
<tr>
<td>KANABA POND EAST</td>
<td>AMALA PLACE, KAHULUI 96732</td>
<td>CERCLIS NFRAP, SEMS_BR_ARCHIVED SITES</td>
</tr>
<tr>
<td>KING’S TOWING</td>
<td>AMALA PLACE, KAHULUI 96732</td>
<td>CERCLIS NFRAP, SEMS_BR_ARCHIVED SITES</td>
</tr>
<tr>
<td>KUAU SPS 2</td>
<td>HANA HWY / AOLANI PL, KAHULUI 96732</td>
<td>FRS, HIST LUST - HI, UST - HI</td>
</tr>
</tbody>
</table>
Following sites were unable to be mapped. (cont.)

<table>
<thead>
<tr>
<th>SITE NAME</th>
<th>ADDRESS, CITY, ZIP</th>
<th>DATABASE(S):</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAUI PINEAPPLE CO LTD, SEED TREATME...</td>
<td>HALEAKALA HWY, KAHULUI 96732</td>
<td>SHWS - HI</td>
</tr>
<tr>
<td>MAUI SVC LTD</td>
<td>TMK 3 7 11 17, KAHULUI 96732</td>
<td>RCRA_NONGEN</td>
</tr>
<tr>
<td>MECO POLE-MOUNT TRANSFORMER NO. 4...</td>
<td>KAAHUMANU AVE, WAILUKU 96732</td>
<td>SPILLS - HI</td>
</tr>
<tr>
<td>MECO POLE-MOUNT TRANSFORMER NO. 6492</td>
<td>CORNER OF PUUNENE &amp; KAA.... KAHULUI ...</td>
<td>SPILLS - HI</td>
</tr>
<tr>
<td>MECO VEHICLE HYDRAULIC OIL RELEASE</td>
<td>HANA HWY E7, KAHULUI 96732</td>
<td>SPILLS - HI</td>
</tr>
<tr>
<td>RAINBOW HAULING</td>
<td>AMALA PLACE, KAHULUI 96732</td>
<td>CERCLIS_NFRAP, SEMS_BR_ARCHIVED SITES</td>
</tr>
<tr>
<td>SAFEWAY FUEL CENTER</td>
<td>SWC HOOKELE ST AND HANA..., KAHULUI ...</td>
<td>UST - HI</td>
</tr>
<tr>
<td>SMILE'S JUNK YARD</td>
<td>AMALA PLACE, KAHULUI 96732</td>
<td>CERCLIS_NFRAP, SEMS_BR_ARCHIVED SITES</td>
</tr>
<tr>
<td>WAIKAPU DUMP-MAUI COUNTY DUMP</td>
<td>CENTRAL MAUI, KAHULUI 96732</td>
<td>CERCLIS_NFRAP, SEMS_BR_ARCHIVED SITES</td>
</tr>
</tbody>
</table>

**DATABASE(S) WITH NO MAPPED SITES:**

- **FEDERAL RCRA NON-CORRACTS TSD FACILITIES LIST**
  - RCRA_TSDF: Resource Conservation and Recovery Act: Treatment Storage and Disposal Facilities

- **FEDERAL CERCLIS LIST**
  - CERCLIS NFRAP: Comprehensive Environmental Response Compensation and Liability Act No Further Remedial Action Planned
  - CERCLIS-HIST: Comprehensive Environmental Response Compensation and Liability Act Federal Facility sites
  - FEDERAL FACILITY: Sites on SEMS Active Site Inventory
  - SEMS_8R_ACTIVE SITES: Sites on SEMS Active Site Inventory
  - SEMS_8R_ARCHIVED SITES: Sites on SEMS Archived Site Inventory

- **FEDERAL RCRA CORRACTS FACILITIES LIST**
  - CORRACTS: Hazardous Waste Corrective Action

- **FEDERAL DELISTED NPL SITE LIST**
  - DELISTED NPL: Delisted National Priority List
  - DELISTED PROPOSED NPL: Delisted proposed National Priority List
  - SEMS_DELETED NPL: Sites Deleted from National Priorities List

- **FEDERAL LANDFILL AND/OR SOLID WASTE DISPOSAL SITE LISTS**
  - EPA LF MOP: EPA Landfill Methane Outreach Project Database

- **FEDERAL ERNS LIST**
  - ERNS: Emergency Response Notification System

- **FEDERAL RCRA GENERATORS LIST**
  - HIST RCRA_CESQG: Historical Resource Conservation and Recovery Act Conditionally Exempt Small Quantity Generators
  - HIST RCRA_LQG: Historical Resource Conservation and Recovery Act Large Quantity Generators
  - HIST RCRA_NONGEN: Historical Resource Conservation and Recovery Act Non Generators
  - HIST RCRA_SQG: Historical Resource Conservation and Recovery Act Small Quantity Generators

- **FEDERAL NPL SITE LIST**
  - NPL: National Priority List
  - NPL EPA R1 GIS: GIS for EPA Region 1 NPL
  - NPL EPA R3 GIS: GIS for EPA Region 3 NPL
  - NPL EPA R6 GIS: GIS for EPA Region 6 NPL
  - NPL EPA R8 GIS: GIS for EPA Region 8 NPL
  - NPL EPA R9 GIS: GIS for EPA Region 9 NPL

---

Executive Summary by Database 2019

Page 13 of 327
### Federal NPL Site List (cont.)

<table>
<thead>
<tr>
<th>Database Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART NPL</td>
<td>Part National Priority List</td>
</tr>
<tr>
<td>PROPOSED NPL</td>
<td>Proposed National Priority List</td>
</tr>
<tr>
<td>SEMS_FINAL NPL</td>
<td>Sites included on the Final National Priorities List</td>
</tr>
<tr>
<td>SEMS_PROPOSED NPL</td>
<td>Sites Proposed to be Added to the National Priorities List</td>
</tr>
</tbody>
</table>

### Federal Institutional Controls / Engineering Controls Registries

- **RCRA IC EC**: RCRA sites with Institutional and Engineering Controls
- **FED E C**: Engineering Controls
- **FED I C**: Institutional Controls

### State and Tribal Registered Storage Tank Lists

- **FEMA UST**: FEMA Underground Storage Tanks
- **INDIAN UST R1**: Underground Storage Tanks on Indian Land in EPA Region 1
- **INDIAN UST R10**: Underground Storage Tanks on Indian Land in EPA Region 10
- **INDIAN UST R2**: Underground Storage Tanks on Indian Land in EPA Region 2
- **INDIAN UST R4**: Underground Storage Tanks on Indian Land in EPA Region 4
- **INDIAN UST R5**: Underground Storage Tanks on Indian Land in EPA Region 5
- **INDIAN UST R6**: Underground Storage Tanks on Indian Land in EPA Region 6
- **INDIAN UST R7**: Underground Storage Tanks on Indian Land in EPA Region 7
- **INDIAN UST R8**: Underground Storage Tanks on Indian Land in EPA Region 8
- **INDIAN UST R9**: Underground Storage Tanks on Indian Land in EPA Region 9
- **AST - HI**: Aboveground Storage Tanks
- **HIST AST - HI**: Historical Aboveground Storage Tanks

### State and Tribal Leaking Storage Tank Lists

- **INDIAN LUST R1**: Leaking Underground Storage Tanks on Indian Land in EPA Region 1
- **INDIAN LUST R10**: Leaking Underground Storage Tanks on Indian Land in EPA Region 10
- **INDIAN LUST R2**: Leaking Underground Storage Tanks on Indian Land in EPA Region 2
- **INDIAN LUST R4**: Leaking Underground Storage Tanks on Indian Land in EPA Region 4
- **INDIAN LUST R5**: Leaking Underground Storage Tanks on Indian Land in EPA Region 5
- **INDIAN LUST R6**: Leaking Underground Storage Tanks on Indian Land in EPA Region 6
- **INDIAN LUST R7**: Leaking Underground Storage Tanks on Indian Land in EPA Region 7
- **INDIAN LUST R8**: Leaking Underground Storage Tanks on Indian Land in EPA Region 8
- **INDIAN LUST R9**: Leaking Underground Storage Tanks on Indian Land in EPA Region 9

### State and Tribal Brownfield Sites

- **TRIBAL BROWNFIELDS**: Tribal Brownfields
- **BROWNFIELDS - HI**: Brownfields

### State and Tribal Landfill and/or Solid Waste Disposal Site Lists

- **SWF LF CLOSED - HI**: Closed Solid Waste Facilities and Landfills
- **SWF/LF - HI**: Solid Waste Facilities and Landfills

### State and Tribal Voluntary Cleanup Sites

- **VCP - HI**: Voluntary Cleanup Program

### Local Brownfield Lists

- **BROWNFIELDS-ACRES**: EPA ACRES Brownfields
- **FED BROWNFIELDS**: Federal Brownfields

### Local Lists of Hazardous Waste / Contaminated Sites

- **FED CDL**: DOJ Clandestine Drug Labs
- **US HIST CDL**: Historical Clandestine Drug Labs

### Local Lists of Landfill / Solid Waste Disposal Sites

- **HIST INDIAN ODI R8**: Historical Open Dump Inventory
- **INDIAN ODI R8**: Open Dump Inventory
- **ODI**: Open Dump Inventory
- **TRIBAL ODI**: Indian Open Dump Inventory Sites
**EXECUTIVE SUMMARY**

**RECORDS OF EMERGENCY RELEASE REPORTS**
- HMIRS (DOT): Hazardous Materials Information Reporting Systems
- HIST SPILLS - HI: Historical Spills

**LOCAL LAND RECORDS**
- LIENS 2: CERCLA Lien Information

**OTHER ASCERTAINABLE RECORDS**
- AFS: Air Facility Systems
- BRS: Biennial Reporting Systems
- CDC HAZDAT: Hazardous Substance Release and Health Effects Information
- COAL ASH DOE: Coal Ash: Department of Energy
- COAL ASH EPA: Coal Ash: Environmental Protection Agency
- COAL GAS: Coal Gas Plants
- CONSENT (DECREES): Superfund Consent Decree
- DEBRIS R5 LF: Disaster Debris Landfill Data
- DEBRIS R5 SWRCY: Disaster Debris Recovery Data
- DOD: Department of Defense
- DOT OPS: Department of Transportation Office of Pipeline Safety
- ECHO: EPA Enforcement and Compliance History Online
- ENOI: Electronic Notice of Intent
- EPA FUELS: EPA Fuels Registration, Reporting, and Compliance List
- EPA OSC: EPA On-Site Coordinator
- EPA WATCH: EPA Watch List
- FA HWF: Financial Assurance for Hazardous Waste Facilities
- FEDLAND: Federal Lands
- FRS: Facility Index Systems
- FTTS: FIFRA/TSCA Tracking System
- FTTS INSP: FIFRA/TSCA Tracking System: Inspections
- FUDS: Formerly Used Defense Sites
- HIST AFS: Historical Air Facility Systems
- HIST AFS 2: Historical Air Facility Systems
- HIST DOD: Department of Defense historical sites
- HIST LEAD_SMELTER: Historical Lead Smelter Sites
- HIST MLTS: Historical Material Licensing Tracking Systems
- HIST PCB TRANS: Historical Polychlorinated Biphenyl (PCB) Facilities
- HIST PCS ENF: Historical Enforced Permit Compliance Facilities
- HIST PCS FACILITY: Historical Permit Compliance Facilities
- HIST SSTS: Historical Section 7 Tracking Systems
- HWC DOCKET: Hazardous Waste Compliance Docket
- ICIS: Integrated Compliance Information System
- INACTIVE PCS: Inactive Permit Compliance Facilities
- INACTIVE RESERVATION: Indian Reservations
- LEAD_SMELTER: Lead Smelter Sites
- LUCIS: Land Use Control Information Systems
- LUCIS 2: Land Use Control Information Systems 2
- MINES: Mines
- MLTS: Material Licensing Tracking Systems
- NPL AOC: Areas related to NPL remediation sites
- NPL LIENS: National Priority List Liens
- OSHA: Occupational Safety & Health Administration
- PADS: PCB Activity Database Systems
- PCB TRANSFORMER: Polychlorinated Biphenyl (PCB) Facilities
- PCS ENF: Enforced Permit Compliance Facilities
- PCS FACILITY: Permit Compliance Facilities
- RAATS: RCRA Administrative Action Tracking Systems
- RADINFO: Radiation Information Systems
- RMP: Risk Management Plans
- ROD: Record of Decision
OTHER ASCERTAINABLE RECORDS (cont.)
SCRD DRYCLEANERS
SEMS_SMELTER
SSTS
STORMWATER
TOSCA-PLANT
TRIS
UMTRA
CORRECTIVE ACTIONS_2020
AIRS - HI
DRYCLEANERS - HI

SCRD Drycleaners
Sites on SEMS Potential Smelter Activity
Section 7 Tracking Systems
Storm Water Permits
Toxic Substance Control Act: Plants
Toxic Release Inventory Systems
Uranium Mill Tailing Sites
Wastes - Hazardous Waste - Corrective Action
Air permits
Drycleaners
<table>
<thead>
<tr>
<th>DATABASE</th>
<th>SUBJECT PROPERTY</th>
<th>SEARCH DISTANCE (MILES)</th>
<th>&lt;1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>&gt;1</th>
<th>TOTAL MAPPED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEDERAL RCRA NON-CORRACTS TSD FACILITIES LIST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCHIVED RCRA TSDF</td>
<td></td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>RCRA_TSDF</td>
<td></td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>FEDERAL CERCLIS LIST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERCLIS NFRAP</td>
<td></td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CERCLIS-HIST</td>
<td></td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>FEDERAL FACILITY</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>SEMS_BR_ACTIVE SITES</td>
<td></td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SEMS_BR_ARCHIVED SITES</td>
<td></td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>FEDERAL RCRA CORRACTS FACILITIES LIST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORRACTS</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>HIST CORRACTS 2</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>FEDERAL DELISTED NPL SITE LIST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DELISTED NPL</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>DELISTED PROPOSED NPL</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>SEMS_DELETED NPL</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>FEDERAL LANDFILL AND/OR SOLID WASTE DISPOSAL SITE LISTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA LF MOP</td>
<td></td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>FEDERAL ERNS LIST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERNS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEDERAL RCRA GENERATORS LIST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST RCRA_CESQG</td>
<td></td>
<td></td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>HIST RCRA_LQG</td>
<td></td>
<td></td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>HIST RCRA_NONGEN</td>
<td></td>
<td></td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>HIST RCRA_SQG</td>
<td></td>
<td></td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>RCRA_CESQG</td>
<td></td>
<td></td>
<td>0.250</td>
<td>2</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>RCRA_LQG</td>
<td></td>
<td></td>
<td>0.250</td>
<td>1</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>RCRA_NONGEN</td>
<td></td>
<td></td>
<td>0.250</td>
<td>6</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>RCRA_SQG</td>
<td></td>
<td></td>
<td>0.250</td>
<td>0</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>FEDERAL NPL SITE LIST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPL</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>NPL EPA R1 GIS</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>NPL EPA R3 GIS</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>NPL EPA R6 GIS</td>
<td></td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
</tr>
</tbody>
</table>
## DATABASE

<table>
<thead>
<tr>
<th>SUBJECT PROPERTY</th>
<th>DISTANCE (MILES)</th>
<th>&lt;1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>&gt;1</th>
<th>TOTAL MAPPED</th>
</tr>
</thead>
</table>

### FEDERAL NPL SITE LIST (cont.)

- **NPL EPA R8 GIS**: 1.000 0 0 0 0 -- 0
- **NPL EPA R9 GIS**: 1.000 0 0 0 0 -- 0
- **PART NPL**: 1.000 0 0 0 0 -- 0
- **PROPOSED NPL**: 1.000 0 0 0 0 -- 0
- **SEMS_FINAL NPL**: 1.000 0 0 0 0 -- 0
- **SEMS_PROPOSED NPL**: 1.000 0 0 0 0 -- 0

### FEDERAL INSTITUTIONAL CONTROLS / ENGINEERING CONTROLS REGISTRIES

- **RCRA IC_EC**: 0.250 0 0 -- -- -- 0
- **FED E C**: 0.500 0 0 0 -- -- 0
- **FED I C**: 0.500 0 0 0 -- -- 0

### STATE AND TRIBAL REGISTERED STORAGE TANK LISTS

- **FEMA UST**: 0.250 0 0 -- -- -- 0
- **INDIAN UST R1**: 0.250 0 0 -- -- -- 0
- **INDIAN UST R10**: 0.250 0 0 -- -- -- 0
- **INDIAN UST R2**: 0.250 0 0 -- -- -- 0
- **INDIAN UST R4**: 0.250 0 0 -- -- -- 0
- **INDIAN UST R5**: 0.250 0 0 -- -- -- 0
- **INDIAN UST R6**: 0.250 0 0 -- -- -- 0
- **INDIAN UST R7**: 0.250 0 0 -- -- -- 0
- **INDIAN UST R8**: 0.250 0 0 -- -- -- 0
- **INDIAN UST R9**: 0.250 0 0 -- -- -- 0
- **AST - HI**: 0.250 0 0 -- -- -- 0
- **HIST AST - HI**: 0.250 0 0 -- -- -- 0
- **UST - HI**: 0.250 7 4 -- -- -- 11

### STATE AND TRIBAL LEAKING STORAGE TANK LISTS

- **INDIAN UST R1**: 0.500 0 0 0 -- -- 0
- **INDIAN UST R10**: 0.500 0 0 0 -- -- 0
- **INDIAN UST R2**: 0.500 0 0 0 -- -- 0
- **INDIAN UST R4**: 0.500 0 0 0 -- -- 0
- **INDIAN UST R5**: 0.500 0 0 0 -- -- 0
- **INDIAN UST R6**: 0.500 0 0 0 -- -- 0
- **INDIAN UST R7**: 0.500 0 0 0 -- -- 0
- **INDIAN UST R8**: 0.500 0 0 0 -- -- 0
- **INDIAN UST R9**: 0.500 0 0 0 -- -- 0
- **HIST UST - HI**: 0.500 1 1 3 -- -- 5
<table>
<thead>
<tr>
<th>DATABASE</th>
<th>SUBJECT PROPERTY</th>
<th>SEARCH DISTANCE (MILES)</th>
<th>&lt;1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>&gt;1</th>
<th>TOTAL MAPPED</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE AND TRIBAL LEAKING STORAGE TANK LISTS (cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUST - HI</td>
<td></td>
<td>0.500</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td>--</td>
<td>--</td>
<td>18</td>
</tr>
<tr>
<td>STATE AND TRIBAL BROWNFIELD SITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIBAL BROWNFIELDS</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>BROWNFIELDS - HI</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>STATE INSTITUTIONAL CONTROLS / ENGINEERING CONTROLS REGISTRIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I C - HI</td>
<td></td>
<td>0.500</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>STATE- AND TRIBAL - EQUIVALENT CERCLIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHWS - HI</td>
<td></td>
<td>1.000</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>--</td>
<td>25</td>
</tr>
<tr>
<td>STATE AND TRIBAL LANDFILL AND/OR SOLID WASTE DISPOSAL SITE LISTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWF LF CLOSED - HI</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>SWF/LF - HI</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>STATE AND TRIBAL VOLUNTARY CLEANUP SITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCP - HI</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL BROWNFIELD LISTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROWNFIELDS-ACRES</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>FED BROWNFIELDS</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL LISTS OF HAZARDOUS WASTE / CONTAMINATED SITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FED CDL</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>US HIST CDL</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>LOCAL LISTS OF LANDFILL / SOLID WASTE DISPOSAL SITES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST INDIAN ODI R8</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>INDIAN ODI R8</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>ODI</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>TRIBAL ODI</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>RECORDS OF EMERGENCY RELEASE REPORTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMIRS (DOT)</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>HIST SPILLS - HI</td>
<td>SP</td>
<td>0.125</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>SPILLS - HI</td>
<td>SP</td>
<td>0.125</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td>LOCAL LAND RECORDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIENS 2</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>DATABASE</td>
<td>SUBJECT PROPERTY</td>
<td>DISTANCE (MILES)</td>
<td>&lt;1/8</td>
<td>1/8 - 1/4</td>
<td>1/4 - 1/2</td>
<td>1/2 - 1</td>
<td>&gt;1</td>
<td>TOTAL MAPPED</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>AFS</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>BR5</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>CDC HAZDAT</td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>COAL ASH DOE</td>
<td>SP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>COAL ASH EPA</td>
<td>SP</td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>COAL GAS</td>
<td>SP</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>CONSENT (DEED)</td>
<td>SP</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>DEBRIS R5 LF</td>
<td>SP</td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>DEBRIS R5 SWRCY</td>
<td>SP</td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>DOD</td>
<td>SP</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>DOT OPS</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>ECHO</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>ENOI</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>EPA FUELS</td>
<td>SP</td>
<td>0.125</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>EPA OSC</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>EPA WATCH</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>FA HWF</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>FEDLAND</td>
<td>SP</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>FRS</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>FTTS</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>FTTS INSP</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>FUDS</td>
<td>SP</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>HIST AFS</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>HIST AFS 2</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>HIST DOD</td>
<td>SP</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>HIST LEAD_SMELTER</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>HIST MLTS</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>HIST PCB TRANS</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>HIST PCS ENF</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>HIST PCS FACILITY</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>HIST SSTS</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>HWC DOCKET</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>ICIS</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>INACTIVE PCS</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>INDIAN RESERVATION</td>
<td>SP</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>LEAD_SMELTER</td>
<td>SP</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
</tbody>
</table>
# Map Findings Summary

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>SUBJECT PROPERTY</th>
<th>DISTANCE (MILES)</th>
<th>&lt;1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>&gt;1</th>
<th>TOTAL MAPPED</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUCIS</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>LUCIS 2</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>MINES</td>
<td></td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>MLTS</td>
<td>SP</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>NPL AOC</td>
<td>SP</td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>NPL LIENS</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>OSHA</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>PADS</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>PCB TRANSFORMER</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>PCS ENF</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>PCS FACILITY</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>RAATS</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>RADINFO</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>RMP</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>ROD</td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>SCRD DRYCLEANERS</td>
<td></td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>SEMS_SMELTER</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>SSTS</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>STORMWATER</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>TOSCA-PLANT</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>TRIS</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>UMTRA</td>
<td></td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>CORRECTIVE ACTIONS_2020</td>
<td></td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>AIRS - HI</td>
<td>SP</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>DRYCLEANERS - HI</td>
<td></td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0</td>
</tr>
</tbody>
</table>
**Site Name:** FARMER PESTICIDE DISPOSAL PROJECT  
28-10 BEECH RD  
KAHULUI, HI 96732

**Database(s):** [ECHO, FRS, RCRA_NONGEN]

---

**Map Findings 2019**

- **Map Id:** A1
- **Direction:** NW
- **Distance:** 0.017 mi.
- **Actual:** 89.352 ft.
- **Elevation:** 0.001 mi. / 6.562 ft.
- **Relative:** Lower

---

**Facility Name:** FARMER PESTICIDE DISPOSAL PROJECT  
**Facility Address:** 28-10 BEECH RD, KAHULUI, HI 96732  
**County:** MAUI

---

### Site Details

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Inspection Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Registry ID</td>
<td>1100005726143</td>
</tr>
<tr>
<td>FIPS Code</td>
<td>N/R</td>
</tr>
<tr>
<td>EPA Region</td>
<td>09</td>
</tr>
<tr>
<td>Inspection Count</td>
<td>0</td>
</tr>
<tr>
<td>Last Inspection Days</td>
<td>N/R</td>
</tr>
<tr>
<td>Informal Count</td>
<td>0</td>
</tr>
<tr>
<td>Last Informal Action Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Formal Action Count</td>
<td>0</td>
</tr>
<tr>
<td>Last Formal Action Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Total Penalties</td>
<td>0</td>
</tr>
<tr>
<td>Penalty Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Last Penalty Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Last Penalty Amount</td>
<td>N/R</td>
</tr>
<tr>
<td>QTRs IN NC</td>
<td>0</td>
</tr>
<tr>
<td>Programs IN SNC</td>
<td>0</td>
</tr>
<tr>
<td>Current Compliance Status</td>
<td>No Violation</td>
</tr>
<tr>
<td>Three-Year Compliance Status</td>
<td></td>
</tr>
<tr>
<td>Collection Method</td>
<td>Zip Code Centroid</td>
</tr>
<tr>
<td>Reference Point</td>
<td>N/R</td>
</tr>
<tr>
<td>Accuracy Meters</td>
<td>10000</td>
</tr>
<tr>
<td>Derived Tribes</td>
<td>N/R</td>
</tr>
<tr>
<td>Derived HUC</td>
<td>N/R</td>
</tr>
<tr>
<td>Derived WBD</td>
<td>N/R</td>
</tr>
<tr>
<td>Derived STCTY FIPS</td>
<td>N/R</td>
</tr>
<tr>
<td>Derived Zip</td>
<td>N/R</td>
</tr>
<tr>
<td>Derived CD113</td>
<td>N/R</td>
</tr>
<tr>
<td>Derived CB2010</td>
<td>N/R</td>
</tr>
<tr>
<td>MYRTK Universe</td>
<td>NNN</td>
</tr>
<tr>
<td>NPDES IDs</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Permit Types</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Compliance Tracking</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA NAICS</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA SICS</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Inspection Count</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Inspection Days</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Informal Count</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Formal Action Count</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Formal Action Date</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Penalties</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Penalty Date</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Penalty Amount</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Quarters IN NC</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Current Compliance Status</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Current SNC Flag</td>
<td>N</td>
</tr>
<tr>
<td>CWA 13 Quarters Compliance Status</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA 13 Quarters Effluent Exceedances:</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Three-Year QNCR Codes</td>
<td>N/R</td>
</tr>
<tr>
<td>DFR URL</td>
<td><a href="#">Click here for hyperlink provided by the agency.</a></td>
</tr>
<tr>
<td>Facility SIC Codes</td>
<td>N/R</td>
</tr>
</tbody>
</table>
Site Name: FARMER PESTICIDE DISPOSAL PROJECT
28-10 BEECH RD
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN] (cont.)

ECHO (cont.)

Facility NAICS Codes: N/R
Facility Last Inspection EPA Date : N/R
Facility Last Inspection State Date : N/R
Facility Last Formal Act EPA Date : N/R
Facility Last Formal Act State Date : N/R
Facility Last Informal Act EPA Date : N/R
Facility Last Informal Act State Date: N/R
Facility Federal Agency : N/R
TRI Reporter : N/R
Facility Imp Water Flag : N/R
Current SNC Flag : N
Indian County Flag : N
Federal Flag : N/R
US Mexico Border Flag : N/R
Chesapeake Bay Flag : N/R
AIR Flag : N
NPDES Flag : N
SDWIS Flag : N
RCRA Flag : Y
TRI Flag : N
GHG Flag : N
Major Flag : N/R
Active Flag : N/R
NAA Flag : N/R
Latitude : 20.55241
Longitude : -156.612422
Last Date in Agency List : 12/17/2018

FRS

Facility Name : FARMER PESTICIDE DISPOSAL PROJECT
Facility Address : 28-10 BEECH RD, KAHULUI, HI 96732
County : MAUI

Registry ID : 110005726143
FRS Facility URL : Click here for hyperlink provided by the agency.
Last Date in Agency List : 11/22/2018

Source Description:

RCRAInfo is EPA's comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984 through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA. RCRAInfo also supports generation of the National Hazardous Waste Biennial Report. All generators and treatment, storage, and disposal facilities who handle hazardous waste are required to report to the EPA Administrator at least once every two years to support creation of the Biennial Report.

FRS Environmental Interest
Source and System ID : RCRAINFO - HID982025934
Map Id: A1  
Direction: NW  
Distance: 0.017 mi.  
Actual: 89.352 ft.  
Elevation: 0.001 mi. / 6.562 ft.  
Relative: Lower

Site Name: FARMER PESTICIDE DISPOSAL PROJECT  
28-10 BEECH RD  
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN] (cont.)

RCRA_NONGEN

Facility Name: FARMER PESTICIDE DISPOSAL PROJECT  
Facility Address: 28-10 BEECH RD, KAHULUI, HI 96732  
County: MAUI

Date Form Received by Agency: 19931234  
EPA ID: HID982025934  
Mailing Address: 465 S KING ST, HONOLULU, HI 96813  
Contact: ENVIRONMENTAL MANAGER  
Contact Address: 28-10 BEECH RD, KAHULUI, HI 96732  
Contact Country: US  
Contact Telephone: 808-548-6915  
Contact Email: N/R  
EPA Region: 09  
Land Type: Other land type  
Source Type: Notification  
Classification: Not a generator, verified  
Description: Not a generator, verified

Owner/Operator Summary

Owner/Operator Name: NOT REQUIRED  
Owner/Operator Address: NOT REQUIRED, NOT REQUIRED, ME 99999  
Owner/Operator Country: N/R  
Owner/Operator Telephone: 415-555-1212  
Owner/Operator Email: N/R  
Owner/Operator Fax: N/R  
Legal Status: State  
Owner/Operator Type: Operator  
Owner/Operator Start Date: N/R  
Owner/Operator End Date: N/R

Owner/Operator Name: STATE OF HAWAII  
Owner/Operator Address: NOT REQUIRED, NOT REQUIRED, ME 99999  
Owner/Operator Country: N/R  
Owner/Operator Telephone: 415-555-1212  
Owner/Operator Email: N/R  
Owner/Operator Fax: N/R  
Legal Status: State  
Owner/Operator Type: Owner  
Owner/Operator Start Date: N/R  
Owner/Operator End Date: N/R

Handler Activities Summary

U.S. Importer of Hazardous Waste: N  
Mixed Waste (Haz. and Radioactive): N  
Recycler of Hazardous Waste: N  
Transporter of Hazardous Waste: N  
Treater, Storer or Disposer of HW: N  
Underground Injection Activity: N  
On-site Burner Exemption: N  
Furnace Exemption: N  
Used Oil Fuel Burner: N
Site Name: FARMER PESTICIDE DISPOSAL PROJECT
          28-10 BEECH RD
          KAULULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN]

RCRA_NONGEN (cont.)

Used Oil Processor: N
Used Oil Refiner: N
Used Oil Fuel Marketer to Burner: N
Used Oil Specification Marketer: N
Used Oil Transfer Facility: N
Used Oil Transporter: N

Notices of Violations Summary
Regulation Violated: N

Site Name: OFFICE ENVIRONMENTAL QUAL CONT
          28 10 BEACH RD
          KAULULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN]

ECHO

Facility Name: OFFICE ENVIRONMENTAL QUAL CONT
Facility Address: 28 10 BEACH RD, KAHULUI, HI 96732
County: MAUI

Site Details
Last Inspection Date: N/R
Registry ID: 110005726278
FIPS Code: N/R
EPA Region: 09
Inspection Count: 0
Last Inspection Days: N/R
Informal Count: 0
Last Informal Action Date: N/R
Formal Action Count: 0
Last Formal Action Date: N/R
Total Penalties: 0
Penalty Count: N/R
Last Penalty Date: N/R
Last Penalty Amount: N/R
QTRS IN NC: 0
Programs IN SNC: 0
Current Compliance Status: No Violation
Three-Year Compliance Status:
Collection Method: Zip Code Centroid
Reference Point: N/R
Accuracy Meters: 10000
Derived Tribes: N/R
Derived HUC: N/R
Derived WBD: N/R
Map Findings 2019

Map Id: A2
Direction: NW
Distance: 0.017 mi.
Actual: 89.352 ft.
Elevation: 0.001 mi. / 6.562 ft.
Relative: Lower

Site Name : OFFICE ENVIRONMENTAL QUAL CONT
28 10 BEACH RD
KAHULUI, HI 96732

Database(s) : [ECHO, FRS, RCRA_NONGEN] (cont.)

ECHO (cont.)

Derived STCTY FIPS : N/R
Derived Zip : N/R
Derived CD113 : N/R
Derived CB2010 : N/R
MYRTK Universe : NNN
NPDES IDs : N/R
CWA Permit Types : N/R
CWA Compliance Tracking : N/R
CWA NAICS : N/R
CWA SICS : N/R
CWA Inspection Count : N/R
CWA Last Inspection Days : N/R
CWA Informal Count : N/R
CWA Last Formal Action Date : N/R
CWA Penalties : N/R
CWA Last Penalty Date : N/R
CWA Last Penalty Amount : N/R
CWA Quarters IN NC : N/R
CWA Current Compliance Status : N/R
CWA Current SNC Flag : N
CWA 13 Quarters Compliance Status : N/R
CWA 13 Quarters Effluent Exceedances: N/R
CWA Three-Year QNCR Codes : N/R
DFR URL : Click here for hyperlink provided by the agency.
Facility SIC Codes : N/R
Facility NAICS Codes : N/R
Facility Last Inspection EPA Date : N/R
Facility Last Inspection State Date : N/R
Facility Last Formal Act EPA Date : N/R
Facility Last Formal Act State Date : N/R
Facility Last Informal Act EPA Date : N/R
Facility Last Informal Act State Date : N/R
Facility Federal Agency : N/R
TRI Reporter : N/R
Facility Imp Water Flag : N/R
Current SNC Flag : N
Indian County Flag : N
Federal Flag : N/R
US Mexico Border Flag : N/R
Chesapeake Bay Flag : N/R
AIR Flag : N
NPDES Flag : N
SDWIS Flag : N
RCRA Flag : Y
TRI Flag : N
GHG Flag : N
Major Flag : N/R
Active Flag : N/R
NAA Flag : N/R
Latitude : 20.55241
Longitude : -156.612422
Last Date in Agency List : 12/17/2018

FRS

Facility Name : OFFICE ENVIRONMENTAL QUAL CONT
Envirosite ID: 414582923
EPA ID: HID982339186
**Site Name:** OFFICE ENVIRONMENTAL QUAL CONT  
28 10 BEACH RD  
KAHULUI, HI 96732  

**Database(s):** [ECHO, FRS, RCRA_NONGEN]  

**Map Findings 2019**  
Map Id: A2  
Direction: NW  
Distance: 0.017 mi.  
Actual: 89.352 ft.  
Elevation: 0.001 mi. / 6.562 ft.  
Relative: Lower  

**Envirosite ID:** 414582923  
**EPA ID:** HID982339186  

---  

**FRS (cont.)**  
Facility Address: 28 10 BEACH RD, KAHULUI, HI 96732  
County: MAUI  
Registry ID: 110005726278  
FRS Facility URL: Click here for hyperlink provided by the agency.  
Last Date in Agency List: 11/22/2018  

**Source Description:**  
RCRAInfo is EPA’s comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984 through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste.  
RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA. RCRAInfo also supports generation of the National Hazardous Waste Biennial Report. All generators and treatment, storage, and disposal facilities who handle hazardous waste are required to report to the EPA Administrator at least once every two years to support creation of the Biennial Report.  

**FRS Environmental Interest**  
Source and System ID: RCRAINFO - HID982339186  

**RCRA_NONGEN**  
Facility Name: OFFICE ENVIRONMENTAL QUAL CONT  
Facility Address: 28 10 BEACH RD, KAHULUI, HI 96732  
County: MAUI  
Date Form Received by Agency: 19931234  
EPA ID: HID982339186  
Mailing Address: 465 S KING ST RM FIRST HUNDRED, HONOLULU, HI 96732  
Contact: ENVIRONMENTAL MANAGER  
Contact Address: 28 10 BEACH RD, KAHULUI, HI 96732  
Contact Country: US  
Contact Telephone: 808-548-6915  
Contact Email: N/R  
EPA Region: 09  
Land Type: Other land type  
Source Type: Notification  
Classification: Not a generator, verified  
Description: Not a generator, verified  

**Owner/Operator Summary**  
Owner/Operator Name: NOT REQUIRED  
Owner/Operator Address: NOT REQUIRED, NOT REQUIRED, ME 99999  
Owner/Operator Country: N/R  
Owner/Operator Telephone: 415-555-1212  
Owner/Operator Email: N/R  
Owner/Operator Fax: N/R  
Legal Status: State  
Owner/Operator Type: Operator
Map Id: A2  
Direction: NW  
Distance: 0.017 mi.  
Actual: 89.352 ft.  
Elevation: 0.001 mi. / 6.562 ft.  
Relative: Lower

Site Name: OFFICE ENVIRONMENTAL QUAL CONT  
28 10 BEACH RD  
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN] (cont.)

RCRA_NONGEN (cont.)

Owner/Operator Start Date: N/R  
Owner/Operator End Date: N/R

Owner/Operator Name: STATE OF HAWAII  
Owner/Operator Address: NOT REQUIRED, NOT REQUIRED, ME 99999

Owner/Operator Country: N/R

Owner/Operator Telephone: 415-555-1212

Owner/Owner Operator Email: N/R

Owner/Owner Operator Fax: N/R

Legal Status: State

Owner/Operator Type: Owner

Owner/Operator Start Date: N/R  
Owner/Operator End Date: N/R

Handler Activities Summary

U.S. Importer of Hazardous Waste: N  
Mixed Waste (Haz. and Radioactive): N  
Recycler of Hazardous Waste: N  
Transporter of Hazardous Waste: N  
Treater, Storer or Disposer of HW: N  
Underground Injection Activity: N  
On-site Burner Exemption: N  
Furnace Exemption: N  
Used Oil Fuel Burner: N  
Used Oil Processor: N  
Used Oil Refiner: N  
Used Oil Fuel Marketer to Burner: N  
Used Oil Specification Marketer: N  
Used Oil Transfer Facility: N  
Used Oil Transporter: N

Notices of Violations Summary

Regulation Violated: N

Map Id: B3  
Direction: NNE  
Distance: 0.019 mi.  
Actual: 100.275 ft.  
Elevation: 0.001 mi. / 3.281 ft.  
Relative: Lower

Site Name: ILIMA SHELL  
137 KAAHUMANU AVE  
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_CESQG]  

Facility Name: ILIMA SHELL  
Facility Address: 137 KAAHUMANU AVE, KAHULUI, HI 96732  
County: MAUI
Map Findings 2019

Site Name: ILIMA SHELL
137 KAHAUMANU AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_CESQG] (cont.)

ECHO (cont.)

Site Details
- Last Inspection Date: 01/17/1996
- Registry ID: 110045412077
- FIPS Code: 15009
- EPA Region: 09
- Inspection Count: 0
- Last Inspection Days: 8362
- Informal Count: 0
- Last Informal Action Date: N/R
- Formal Action Count: 0
- Last Formal Action Date: N/R
- Total Penalties: 0
- Penalty Count: N/R
- Last Penalty Date: N/R
- Last Penalty Amount: N/R
- QTRS IN NC: 0
- Programs IN SNC: 0
- Current Compliance Status: No Violation
- Three-Year Compliance Status: ____________
- Collection Method: ADDRESS MATCHING-HOUSE NUMBER
- Reference Point: CENTER OF A FACILITY OR STATION
- Accuracy Meters: 30
- Derived Tribes: N/R
- Derived HUC: 20020000
- Derived STCTY FIPS: 15009
- Derived Zip: 96732
- Derived CD113: 02
- Derived CB2010: 150090319002015
- MYRTK Universe: NNN
- NPDES IDs: N/R
- CWA Permit Types: N/R
- CWA Compliance Tracking: N/R
- CWA NAICS: N/R
- CWA SICS: N/R
- CWA Inspection Count: N/R
- CWA Last Inspection Days: N/R
- CWA Informal Count: N/R
- CWA Formal Action Count: N/R
- CWA Last Formal Action Date: N/R
- CWA Penalties: N/R
- CWA Last Penalty Date: N/R
- CWA Last Penalty Amount: N/R
- CWA Quarters IN NC: N/R
- CWA Current Compliance Status: N/R
- CWA Current SNC Flag: N
- CWA 13 Quarters Compliance Status: N/R
- CWA 13 Quarters Effluent Exceedances: N/R
- CWA Three-Year QNCR Codes: N/R
- DFR URL: Click here for hyperlink provided by the agency.
- Facility SIC Codes: N/R
- Facility NAICS Codes: 44711
- Facility Last Inspection EPA Date: N/R
- Facility Last Inspection State Date: 01/17/1996
- Facility Last Formal Act EPA Date: N/R
- Facility Last Formal Act State Date: N/R
- Facility Last Informal Act EPA Date: N/R
Map Findings 2019

Map Id: B3
Direction: NNE
Distance: 0.019 mi.
Actual: 100.275 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name : ILIMA SHELL
137 KAAHUMANU AVE
KAHULUI, HI 96732

Database(s) : [ECHO, FRS, RCRA_CESQG] (cont.)

Envirosite ID: 414266825
EPA ID: HID982436628

ECHO (cont.)

Facility Last Informal Act State Date: N/R
Facility Federal Agency : N/R
TRI Reporter : N/R
Facility Imp Water Flag : N/R
Current SNC Flag : N
Indian County Flag : N
Federal Flag : N/R
US Mexico Border Flag : N/R
Chesapeake Bay Flag : N/R
AIR Flag : N
NPDES Flag : N
SDWIS Flag : N
RCRA Flag : Y
TRI Flag : N
GHG Flag : N
Major Flag : N/R
Active Flag : Y
NAA Flag : N/R
Latitude : 20.88983
Longitude : -156.47118
Last Date in Agency List : 12/17/2018

FRS

Facility Name : ILIMA SHELL
Facility Address : 137 KAAHUMANU AVE, KAHULUI, HI 96732
County : MAUI

Registry ID : 110045412077
FRS Facility URL : Click here for hyperlink provided by the agency.
Last Date in Agency List : 11/22/2018

Source Description :

RCRAInfo is EPA’s comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984 through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA. RCRAInfo also supports generation of the National Hazardous Waste Biennial Report. All generators and treatment, storage, and disposal facilities who handle hazardous waste are required to report to the EPA Administrator at least once every two years to support creation of the Biennial Report.

Source Description :

The Environmental Health Warehouse (EHW) contains the Hawaii Department of Health - Environmental Health Administration’s (HDOH-EHA) environmental data. The web-based application allows EHA to inquire about sites in Hawaii that are regulated by the administration due to activities that affect the environment, regardless of the regulation or program that directly monitors those activities. The system allows users a consolidated view of sites without disrupting the underlying source systems or the staff involved as they process their day-to-day workload. The EHW offers geo-spatial and tabular inquiry, mapping, reconciliation/data consolidation, and GIS services.
**Site Name:** ILIMA SHELL  
137 KAAHUMANU AVE  
KAHULUI, HI 96732

**Database(s):** [ECHO, FRS, RCRA_CESQG] (cont.)

---

**FRS (cont.)**

**FRS Environmental Interest**
**Source and System ID:**  
HI-EHW - 4915  
RCRAININFO - HID982436628

**RCRA_CESQG**

**Facility Name:** ILIMA SHELL  
**Facility Address:** 137 KAAHUMANU AVE, KAHULUI, HI 96732  
**County:** MAUI

**Date Form Received by Agency:** 06/16/2018  
**EPA ID:** HID982436628  
**Mailing Address:** 137 KAAHUMANU AVE, KAHULUI, HI 96732  
**Contact:** GREGORY MCCARTNEY  
**Contact Address:** 1132 BISHOP ST, SUITE 1700, HONOLULU, HI 96813  
**Contact Country:** US  
**Contact Telephone:** 808-522-9704  
**Contact Email:** GMCCARTNEY@ALOHAGAS.COM  
**EPA Region:** 09  
**Land Type:** Private  
**Source Type:** Implementer  
**Classification:** Conditionally Exempt Small Quantity Generator

**Description:**
Handlers that generate 100 kilograms or less of hazardous waste per calendar month, and accumulate 1000 kg or less of hazardous waste at any time; or generate one kilogram or less of acutely hazardous waste per calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste; or generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste.

---

**Owner/Operator Summary**

**Owner/Operator Name:** ALOHA PETROLEUM LTD  
**Owner/Operator Address:** 1132 BISHOP ST, SUITE 1700, HONOLULU, HI 96813  
**Owner/Operator Country:** US  
**Owner/Operator Telephone:** 808-522-9700  
**Owner/Operator Email:** N/R  
**Owner/Operator Fax:** N/R  
**Legal Status:** Private  
**Owner/Operator Type:** Operator  
**Owner/Operator Start Date:** 19990360  
**Owner/Operator End Date:** N/R

**Owner/Operator Name:** ALOHA PETROLEUM LTD  
**Owner/Operator Address:** 1132 BISHOP ST, SUITE 1700, HONOLULU, HI 96813  
**Owner/Operator Country:** US  
**Owner/Operator Telephone:** 808-522-9700  
**Owner/Operator Email:** N/R  
**Owner/Operator Fax:** N/R
Site Name: ILIMA SHELL  
137 KAAHUMANU AVE  
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_CESQG] (cont.)

RCRA_CESQG (cont.)

Legal Status: Private
Owner/Operator Type: Owner
Owner/Operator Start Date: 19990360
Owner/Operator End Date: N/R

Handler Activities Summary
U.S. Importer of Hazardous Waste: N
Mixed Waste (Haz. and Radioactive): N
Recycler of Hazardous Waste: N
Transporter of Hazardous Waste: N
Treater, Storer or Disposer of HW: N
Underground Injection Activity: N
On-site Burner Exemption: N
Furnace Exemption: N
Used Oil Fuel Burner: N
Used Oil Processor: N
Used Oil Refiner: N
Used Oil Fuel Marker to Burner: N
Used Oil Specification Marker: N
Used Oil Transfer Facility: N
Used Oil Transporter: N

Historical Generators
Date Form Received by Agency: 19901131
Facility Name: KAHULUI SHELL SERVICE
Classification: Not a generator, verified

Date Form Received by Agency: 20120361
Facility Name: ILIMA SHELL
Classification: Conditionally Exempt Small Quantity Generator

Hazardous Waste Summary
Waste Code / Name: D001 - IGNITABLE WASTE  
D018 - BENZENE

Notices of Violations Summary
Regulation Violated: N

Evaluation Action Summary
Evaluation Date: 01/17/1996
Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE
Area of Violation: N/R
Date Achieved Compliance: N/R
Evaluation Lead Agency: State
Site Name: SHELL OIL COMPANY  
137 KAAHUMANU AVE  
KAHULUI, HI 96732  

Database(s): [RCRA_NONGEN]

Map Findings 2019  
Map Id: B4  
Direction: NNE  
Distance: 0.019 mi.  
Actual: 100.275 ft.  
Elevation: 0.001 mi. / 3.281 ft.  
Relative: Lower

RCRA_NONGEN

Facility Name: SHELL OIL COMPANY  
Facility Address: 137 KAAHUMANU AVE, KAHULUI, HI 96732  
County: MAUI

Date Form Received by Agency: 06/17/2015  
EPA ID: HID982435885  
Mailing Address: P O BOX 4848, ANAHEIM, CA 92803  
Contact: SONDRA BIENVENU  
Contact Address: 137 KAAHUMANU AVE, KAHULUI, HI 96732  
Contact Country: US  
Contact Telephone: 713-241-2258  
Contact Email: N/R  
Land Type: Other land type  
Source Type: Implementer  
Classification: Not a generator, verified  
Description: Not a generator, verified

Owner/Operator Summary

Owner/Operator Name: NOT REQUIRED  
Owner/Operator Address: NOT REQUIRED, NOT REQUIRED, ME 99999  
Owner/Operator Country: N/R  
Owner/Operator Telephone: 415-555-1212  
Owner/Operator Email: N/R  
Owner/Operator Fax: N/R  
Legal Status: Private  
Owner/Operator Type: Operator  
Owner/Operator Start Date: N/R  
Owner/Operator End Date: N/R

Owner/Operator Name: SHELL OIL COMPANY  
Owner/Operator Address: NOT REQUIRED, NOT REQUIRED, ME 99999  
Owner/Operator Country: N/R  
Owner/Operator Telephone: 415-555-1212  
Owner/Operator Email: N/R  
Owner/Operator Fax: N/R  
Legal Status: Private  
Owner/Operator Type: Owner  
Owner/Operator Start Date: N/R  
Owner/Operator End Date: N/R

Handler Activities Summary

U.S. Importer of Hazardous Waste: N  
Mixed Waste (Haz. and Radioactive): N  
Recycler of Hazardous Waste: N  
Transporter of Hazardous Waste: N  
Treater, Storer or Disposer of HW: N  
Underground Injection Activity: N  
On-site Burner Exemption: N  
Furnace Exemption: N  
Used Oil Fuel Burner: N

Envirosite ID: 414581840  
EPA ID: HID982435885
Map Findings 2019

Map Id: B4
Direction: NNE
Distance: 0.019 mi.
Actual: 100.275 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: SHELL OIL COMPANY
137 KAAHUMANU AVE
KAHULUI, HI 96732

Database(s): [RCRA_NONGEN] (cont.)

Envirosite ID: 414581840
EPA ID: HID982435885

RCRA_NONGEN (cont.)

- Used Oil Processor: N
- Used Oil Refiner: N
- Used Oil Fuel Marketer to Burner: N
- Used Oil Specification Marketer: N
- Used Oil Transfer Facility: N
- Used Oil Transporter: N

Historical Generators

- Date Form Received by Agency: 08/22/1993
- Facility Name: SHELL OIL COMPANY
- Classification: Conditionally Exempt Small Quantity Generator

Notices of Violations Summary

- Regulation Violated: N

Map Id: B5
Direction: NNE
Distance: 0.019 mi.
Actual: 100.962 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: MAUI PALMS HOTEL UST
150 KAAHUMANU AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI]

Envirosite ID: 319997362
EPA ID: N/R

SHWS - HI

- Facility Name: Maui Palms Hotel UST
- Facility Address: 150 Kaahumanu Ave, Kahului, HI 96732
- County: Maui

Site Details

- SDAR Environmental Interest Name: Maui Palms Hotel UST
- Supplemental Location Text: N/R
- HID Number: N/R
- Facility Registry Identifier: 110013766754
- Program Full Name: State
- Potential Hazard and Controls: Hazard Undetermined
- Assessment: Assessment Ongoing
- Priority: NFA
- Nature of Contamination: N/R
- Nature of Residual Contamination: N/R
- Response: N/R
- Response Action Completed: 11/22/1999
- Lead Agency: HEER
- Use Restrictions: Undetermined
- Description of Restrictions: N/R
- Engineering Control: N/R
- Institutional Control: N/R
Map Findings 2019

Map Id: B5
Direction: NNE
Distance: 0.019 mi.
Actual: 100.962 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: MAUI PALMS HOTEL UST
150 KAHAHUMANU AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI] (cont.)

Envirosite ID: 319997362
EPA ID: N/R

SHWS - HI (cont.)

Date Issued: N/R
Within Designated Areawide Contamination: N/R
Document Date: 11/22/1999
Document Number: N/R
Document Subject: N/R
Site Closure Document: No Further Action - Type Undetermined
Project Manager: Janice Fujimoto
Contact Information: (808) 586-4249, Waimano Home Rd, Pearl City, HI 96782
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: 237003007
Description of Portion: N/R

Map Id: B6
Direction: NNE
Distance: 0.024 mi.
Actual: 129.350 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: ILIMA SHELL
137 W. KAHAHUMANU AVENUE
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI]

Envirosite ID: 340339080
EPA ID: N/R

LUST - HI

Facility Name: ILIMA SHELL
Facility Address: 137 W. Kaahumanu Avenue, Kahului, HI 96732

Site Details
LUST Latest Status Date: 09/15/2003
LUST Latest Status: Site Cleanup Completed (NFA)
Facility ID: 9-501005
Event ID: 980104
Project Officer: Richard Takaba
Last Date in Agency List: 01/10/2018

UST - HI

Facility Name: ILIMA SHELL
Facility Address: 137 W. Kaahumanu Avenue, Kahului, HI 96732

Site Details
Facility ID: 9-501005
Formal Name: ALOHA PETROLEUM, LTD.
Address: 1132 BISHOP STREET, SUITE 1700, Kahului, HI 96732
Latitude Measure: 20.88954
Longitude Measure: -156.47122
### UST - HI

<table>
<thead>
<tr>
<th>Tank Details</th>
<th>Installed Date</th>
<th>Date Closed</th>
<th>Tank ID</th>
<th>Tank Status</th>
<th>Tank Capacity</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>06/01/1998</td>
<td>N/R</td>
<td>1</td>
<td>Currently In Use</td>
<td>15000</td>
<td>Gasohol</td>
</tr>
<tr>
<td></td>
<td>06/01/1998</td>
<td>N/R</td>
<td>2</td>
<td>Currently In Use</td>
<td>12000</td>
<td>Gasohol</td>
</tr>
<tr>
<td></td>
<td>04/18/1978</td>
<td>04/23/1998</td>
<td>R-5</td>
<td>Permanently Out of Use</td>
<td>6000</td>
<td>Gasoline</td>
</tr>
<tr>
<td></td>
<td>04/19/1963</td>
<td>04/23/1998</td>
<td>R-2</td>
<td>Permanently Out of Use</td>
<td>4000</td>
<td>Gasoline</td>
</tr>
<tr>
<td></td>
<td>04/19/1963</td>
<td>04/23/1998</td>
<td>R-3</td>
<td>Permanently Out of Use</td>
<td>4000</td>
<td>Gasoline</td>
</tr>
</tbody>
</table>
Site Name: ILIMA SHELL
137 W. KAAHUMANU AVENUE
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI] (cont.)

UST - HI (cont.)

Tank ID: R-4
Tank Status: Permanently Out of Use
Tank Capacity: 4000
Product: Gasoline

Installed Date: 04/19/1963
Date Closed: 04/23/1998

Tank ID: R-6
Tank Status: Permanently Out of Use
Tank Capacity: 550
Product: Used Oil

Site Name: JR DORAN INC. DBA CERAMIC TILE PLUS
25 S. KAHULUI BEACH ROAD
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_LQG]

ECHO

Facility Name: JR DORAN INC. DBA CERAMIC TILE PLUS
Facility Address: 25 S. KAHULUI BEACH ROAD, KAHULUI, HI 96732
County: MAUI

Site Details
Last Inspection Date: 06/26/2018
Registry ID: 110070124976
FIPS Code: 15009
EPA Region: 09
Inspection Count: 1
Last Inspection Days: 166
Informal Count: 0
Last Informal Action Date: N/R
Formal Action Count: 0
Last Formal Action Date: N/R
Total Penalties: 0
Penalty Count: N/R
Last Penalty Date: N/R
Last Penalty Amount: N/R
QTRS IN NC: 0
Programs IN SNC: 0
Current Compliance Status: No Violation
Three-Year Compliance Status: N/R
Collection Method: ADDRESS MATCHING-HOUSE NUMBER
Reference Point: CENTER OF A FACILITY OR STATION
Accuracy Meters: 30
Derived Tribes: N/R
Derived HUC: 20020000
Site Name: JR DORAN INC. DBA CERAMIC TILE PLUS
25 S. KAHULUI BEACH ROAD
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_LQG] (cont.)

Envirosite ID: 414451100
EPA ID: HIR000144394

ECHO (cont.)

Derived WBD: 200200000103
Derived STCTY FIPS: 15009
Derived Zip: 96732
Derived CD113: 02
Derived CB2010: 15090311011003
MYRTK Universe: NNY
NPDES IDs: N/R
CWA Permit Types: N/R
CWA Compliance Tracking: N/R
CWA NAICS: N/R
CWA SICs: N/R
CWA Inspections Count: N/R
CWA Last Inspection Days: N/R
CWA Informal Count: N/R
CWA Formal Action Count: N/R
CWA Last Formal Action Date: N/R
CWA Penalties: N/R
CWA Last Penalty Date: N/R
CWA Last Penalty Amount: N/R
CWA Quarters IN NC: N/R
CWA Current Compliance Status: N/R
CWA Current SNC Flag: N
CWA 13 Quarters Compliance Status: N/R
CWA 13 Quarters Effluent Exceedances: N/R
CWA Three-Year QNCR Codes: N/R
DFR URL: Click here for hyperlink provided by the agency.

Facility SIC Codes: N/R
Facility NAICS Codes: 23834
Facility Last Inspection EPA Date: N/R
Facility Last Inspection State Date: 06/26/2018
Facility Last Formal Act EPA Date: N/R
Facility Last Formal Act State Date: N/R
Facility Last Informal Act EPA Date: N/R
Facility Last Informal Act State Date: N/R
Facility Federal Agency: N/R
TRI Reporter: N/R
Facility Imp Water Flag: N/R
Current SNC Flag: N
Indian County Flag: N
Federal Flag: N/R
US Mexico Border Flag: N/R
Chesapeake Bay Flag: N/R
AIR Flag: N
NPDES Flag: N
SDWIS Flag: N
RCRA Flag: Y
TRI Flag: N
GHG Flag: N
Major Flag: N/R
Active Flag: Y
NAA Flag: N/R
Latitude: 20.88976
Longitude: -156.47308
Last Date in Agency List: 12/17/2018
Site Name: JR DORAN INC. DBA CERAMIC TILE PLUS
25 S. KAHULUI BEACH ROAD
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_LQG] (cont.)

ECHO (cont.)

Last Inspection Date: N/R
Registry ID: N/R
FIPS Code: N/R
EPA Region: 09
Inspection Count: 0
Last Inspection Days: N/R
Informal Count: 0
Last Informal Action Date: N/R
 Formal Action Count: 0
Last Formal Action Date: N/R
Total Penalties: 0
Penalty Count: 0
Last Penalty Date: N/R
Last Penalty Amount: N/R
QTRS IN NC: 0
Programs IN SNC: 0
Current Compliance Status: No Violation
Three-Year Compliance Status: N/R
Collection Method: Zip Code Centroid
Reference Point: N/R
Accuracy Meters: 10000
Derived Tribes: N/R
Derived HUC: N/R
Derived WBD: N/R
Derived STCTY FIPS: N/R
Derived Zip: N/R
Derived CD113: N/R
Derived CB2010: N/R
MYRTK Universe: NNY
NPDES IDs: N/R
CWA Permit Types: N/R
CWA Compliance Tracking: N/R
CWA NAICS: N/R
CWA SICS: N/R
CWA Inspection Count: N/R
CWA Last Inspection Days: N/R
CWA Informal Count: N/R
CWA Formal Action Count: N/R
CWA Last Formal Action Date: N/R
CWA Penalties: N/R
CWA Last Penalty Date: N/R
CWA Last Penalty Amount: N/R
CWA Quarters IN NC: N/R
CWA Current Compliance Status: N/R
CWA Current SNC Flag: N
CWA 13 Quarters Compliance Status: N/R
CWA 13 Quarters Effluent Exceedances: N/R
CWA Three-Year QMCR Codes: N/R
DFR URL: Click here for hyperlink provided by the agency.
Facility SIC Codes: N/R
Facility NAICS Codes: 23834
Facility Last Inspection EPA Date: N/R
Facility Last Inspection State Date: N/R
Facility Last Formal Act EPA Date: N/R
Facility Last Formal Act State Date: N/R
Facility Last Informal Act EPA Date: N/R
Facility Last Informal Act State Date: N/R
Site Name: JR DORAN INC. DBA CERAMIC TILE PLUS
25 S. KAHULUI BEACH ROAD
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_LQG] (cont.)

ECHO (cont.)

Facility Federal Agency: N/R
TRI Reporter: N/R
Facility Imp Water Flag: N/R
Current SNC Flag: N
Indian County Flag: N
Federal Flag: N/R
US Mexico Border Flag: N/R
Chesapeake Bay Flag: N/R
AIR Flag: N
NPDES Flag: N
SDWIS Flag: N
RCRA Flag: Y
TRI Flag: N
GHG Flag: N
Major Flag: N/R
Active Flag: Y
NAA Flag: N/R
Latitude: 20.55241
Longitude: -156.612422
Last Date in Agency List: 10/23/2017

FRS

Facility Name: JR DORAN INC. DBA CERAMIC TILE PLUS
Facility Address: 25 S. KAHULUI BEACH ROAD, KAHULUI, HI 96732
County: MAUI
Registry ID: 110070124976
FRS Facility URL: Click here for hyperlink provided by the agency.
Last Date in Agency List: 11/22/2018

Source Description:

RCRAInfo is EPA’s comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984 through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA. RCRAInfo also supports generation of the National Hazardous Waste Biennial Report. All generators and treatment, storage, and disposal facilities who handle hazardous waste are required to report to the EPA Administrator at least once every two years to support creation of the Biennial Report.

FRS Environmental Interest
Source and System ID: RCRAINFO - HIR000144394

RCRA_LQG

Facility Name: JR DORAN INC. DBA CERAMIC TILE PLUS
Facility Address: 25 S. KAHULUI BEACH ROAD, KAHULUI, HI 96732
County: MAUI
Site Name : JR DORAN INC. DBA CERAMIC TILE PLUS
25 S. KAHULUI BEACH ROAD
KAHULUI, HI 96732

Database(s) : [ECHO, FRS, RCRA_LQG] (cont.)

Map Findings 2019
Map Id: A7
Direction: NW
Distance: 0.037 mi.
Actual: 196.362 ft.
Elevation: 0.001 mi. / 6.562 ft.
Relative: Lower

RCRA_LQG (cont.)

Date Form Received by Agency : 20170246
EPA ID : HIR000144394
Mailing Address : 25 S. KAHULUI BEACH ROAD, KAHULUI, HI 96732
Contact : JAMIE FERGE
Contact Address : 25 S. KAHULUI BEACH ROAD, KAHULUI, HI 96732
Contact Country : US
Contact Telephone : 808-871-8674
Contact Email : JAMIE@CERAMICTILEPLUS.COM
EPA Region : 09
Land Type : Private
Source Type : Notification
Classification : Large Quantity Generator

Description :
Handlers that generate 1,000 kg or more of hazardous waste during any calendar month; or generate more than 1 kg of acutely hazardous waste during any calendar month; or generate more than 100 kg of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month; or generate 1 kg or less of acutely hazardous waste during any calendar month, and accumulate more than 1 kg of acutely hazardous waste at any time; or generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulated more than 100 kg of that material at any time.

Last Date in Agency List : 12/21/2018

Owner/Operator Summary
Owner/Operator Name : CERAMIC TILE PLUS
Owner/Operator Address : 25 S. KAHULUI BEACH DRIVE, KAHULUI, HI 96732
Owner/Operator Country : US
Owner/Operator Telephone : 808-871-8674
Owner/Operator Email : N/R
Owner/Operator Fax : N/R
Legal Status : Private
Owner/Operator Type : Operator
Owner/Operator Start Date : 05/12/2008
Owner/Operator End Date : N/R

Owner/Operator Name : JR DORAN INC.
Owner/Operator Address : 25 S. KAHULUI BEACH DRIVE, KAHULUI, HI 96732
Owner/Operator Country : US
Owner/Operator Telephone : 808-871-8674
Owner/Operator Email : N/R
Owner/Operator Fax : N/R
Legal Status : Private
Owner/Operator Type : Owner
Owner/Operator Start Date : 05/12/2008
Owner/Operator End Date : N/R

Handler Activities Summary
U.S. Importer of Hazardous Waste : N
Mixed Waste (Haz. and Radioactive) : N

Envirosite ID: 414451100
EPA ID: HIR000144394
### Evaluation Action Summary

- **Evaluation Date:** 06/17/2018
- **Evaluation:** COMPLIANCE EVALUATION INSPECTION ON-SITE
- **Area of Violation:** N/R
- **Date Achieved Compliance:** N/R
- **Evaluation Lead Agency:** State

### Site Details

- **LUST Latest Status Date:** 01/30/2015
- **LUST Latest Status:** Site Cleanup Completed with EHE/EHMP
- **Facility ID:** 9-501888
- **Event ID:** 870002

---

### Database(s)

- [LUST - HI, UST - HI]
Map Findings 2019

Site Name: PORT TOWN CHEVRON
109 KAAHUMANU AVE
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI] (cont.)

LUST - HI (cont.)

Project Officer: Shaobin Li
Last Date in Agency List: 01/10/2018

UST - HI

Facility Name: PORT TOWN CHEVRON
Facility Address: 109 KAAHUMANU AVE, Kahului, HI 96732

Site Details

Facility ID: 9-501888
Formal Name: Lahiana Petroleum, LLC
Address: P.O. Box 1096, Kahului, HI 96732
Latitude Measure: 20.88793
Longitude Measure: -156.470121
Horizontal Collection Method Name: GPS
Horizontal Reference Datum Name: NAD83
Last Date in Agency List: 01/10/2019

Tank Details

Installed Date: 02/19/1987
Date Closed: N/R
Tank ID: 001A
Tank Status: Currently in Use
Tank Capacity: 10000
Product: Gasoline

Installed Date: 02/19/1987
Date Closed: N/R
Tank ID: 002A
Tank Status: Currently in Use
Tank Capacity: 10000
Product: Gasoline

Installed Date: 02/19/1987
Date Closed: N/R
Tank ID: 003A
Tank Status: Currently In Use
Tank Capacity: 10000
Product: Gasoline

Installed Date: 01/19/1987
Date Closed: 10/18/1993
Tank ID: R-4
Tank Status: Permanently Out of Use
Tank Capacity: 1000
Product: Used Oil

Installed Date: 06/30/1979
Date Closed: 02/01/1987

Envirosite ID: 11178817
EPA ID: N/R
Site Name: PORT TOWN CHEVRON  
109 KAAHUMANU AVE  
KAHULUI, HI 96732  

Database(s): [LUST - HI, UST - HI] (cont.)

<table>
<thead>
<tr>
<th>Tank ID</th>
<th>Tank Status</th>
<th>Tank Capacity</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-004</td>
<td>Permanently Out of Use</td>
<td>6000</td>
<td>Gasoline</td>
</tr>
<tr>
<td>R-001</td>
<td>Permanently Out of Use</td>
<td>5000</td>
<td>Gasoline</td>
</tr>
<tr>
<td>R-002</td>
<td>Permanently Out of Use</td>
<td>2000</td>
<td>Gasoline</td>
</tr>
<tr>
<td>R-003</td>
<td>Permanently Out of Use</td>
<td>2000</td>
<td>Gasoline</td>
</tr>
<tr>
<td>R-005</td>
<td>Permanently Out of Use</td>
<td>1000</td>
<td>Used Oil</td>
</tr>
<tr>
<td>R-006</td>
<td>Permanently Out of Use</td>
<td>2000</td>
<td>Gasoline</td>
</tr>
</tbody>
</table>

Envirosite ID: 11178817  
EPA ID: N/R
Facility Name: PORT TOWN CHEVRON
Facility Address: 109 W. KAHAHUMANU AVE., KAHULUI, HI 96732
County: MAUI
Date Form Received by Agency: 20140390
EPA ID: HIR000142497
Mailing Address: P.O. BOX 1096, CARMICHAEL, CA 95609
Contact: DESCOE CHENTNIK
Contact Address: 68 HANA HWY, PAIA, HI 96779
Contact Country: US
Contact Telephone: 808-446-6949
Contact Email: TDESCOE@HOTMAIL.COM
EPA Region: 09
Land Type: Private
Source Type: Notification
Classification: Conditionally Exempt Small Quantity Generator

Description:

Handlers that generate 100 kilograms or less of hazardous waste per calendar month, and accumulate 1000 kg or less of hazardous waste at any time; or generate one kilogram or less of acutely hazardous waste per calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste; or generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste.
**Map Findings**

Map Id: B9  
Direction: NE  
Distance: 0.078 mi.  
Actual: 411.842 ft.  
Elevation: 0.001 mi. / 3.281 ft.  
Relative: Lower

**Site Name:** PORT TOWN CHEVRON  
109 W. KA AHUMANU AVE.  
KAHULUI, HI 96732

**Database(s):** [RCRA_CESQG] (cont.)

**Envirosite ID:** 414267347  
**EPA ID:** HIR000142497

**RCRA_CESQG (cont.)**

**Handler Activities Summary**
- U.S. Importer of Hazardous Waste : N  
- Mixed Waste (Haz. and Radioactive) : N  
- Recycler of Hazardous Waste : N  
- Transporter of Hazardous Waste : N  
- Treater, Storer or Disposer of HW : N  
- Underground Injection Activity : N  
- On-site Burner Exemption : N  
- Furnace Exemption : N  
- Used Oil Fuel Burner : N  
- Used Oil Processor : N  
- Used Oil Refiner : N  
- Used Oil Fuel Marketer to Burner : N  
- Used Oil Specification Marketer : N  
- Used Oil Transfer Facility : N  
- Used Oil Transporter : N

**Hazardous Waste Summary**
- Waste Code / Name : D001 - IGNITABLE WASTE  
  D018 - BENZENE

**Notices of Violations Summary**
- Regulation Violated : N

---

Map Id: C10  
Direction: S  
Distance: 0.090 mi.  
Actual: 474.978 ft.  
Elevation: 0.003 mi. / 16.427 ft.  
Relative: Higher

**Site Name:** MAUI PINEAPPLE CO LTD, KANE STREET  
LOT 2 TANK AREA PORTION  
106 S KANE ST  
KAHULUI, HI 96732

**Database(s):** [I C - HI, SHWS - HI]

**Envirosite ID:** 325000280  
**EPA ID:** N/R

**I C - HI**

**Facility Name:** Maui Pineapple Co Ltd, Kane Street Lot 2 Tank Area Portion  
**Facility Address:** 106 S Kane St, Formerly 120 Kane St, Kahului, HI 96732  
**County:** Maui

**SDAR Environmental Interest Name:** Maui Pineapple Co Ltd, Kane Street Lot 2 Tank Area Portion  
**Supplemental Location Text:** N/R  
**HID Number:** N/R  
**Facility Registry Identifier:** 110000486402  
**Program Full Name:** State  
**Potential Hazard and Controls:** Hazard Managed With Controls  
**Assessment:** Response Necessary  
**Priority:** NFA  
**Nature of Contamination:** Found: Limited amounts of petroleum after extensive removal.
Site Name: MAUI PINEAPPLE CO LTD, KANE STREET LOT 2 TANK AREA PORTION 106 S KANE ST KAHULUI, HI 96732

I C - HI (cont.)

Nature of Residual Contamination: Petroleum hydrocarbons and TCE in soil and groundwater.
Response: Response Complete
Response Action Completed: 06/10/2013
Lead Agency: HEER
Use Restrictions: Controls Required to Manage Contamination
Description of Restrictions: N/R
Engineering Control: Engineering Control Required
Institutional Control: Government - Hawaii Dept. of Health Letter Issued
Date Issued: 06/10/2013
Within Designated Areawide Contamination: N/R
Document Date: 06/10/2013
Document Subject: No Further Action with Engineering and Institutional Controls
Site Closure Document: No Further Action Letter - Restricted Use
Project Manager: John Peard
Contact Information: (808) 933-9921, Environmental Health Bldg, 1582 Kamehameha Ave, Hilo, HI 96720
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: 237002028
Description of Portion: N/R

SHWS - HI

Facility Name: Maui Pineapple Co Ltd, Kane Street Lot 2 Tank Area Portion
Facility Address: 106 S Kane St, Formerly 120 Kane St, Kahului, HI 96732
County: Maui

Site Details
SDAR Environmental Interest Name: Maui Pineapple Co Ltd, Kane Street Lot 2 Tank Area Portion
Supplemental Location Text: N/R
HID Number: N/R
Facility Registry Identifier: 110000486402
Program Full Name: State
Potential Hazard and Controls: Hazard Managed With Controls
Assessment: Response Necessary
Priority: NFA
Nature of Contamination: Found: Limited amounts of petroleum after extensive removal.
Nature of Residual Contamination: Petroleum hydrocarbons and TCE in soil and groundwater.
Response: Response Complete
Response Action Completed: 06/10/2013
Lead Agency: HEER
Use Restrictions: Controls Required to Manage Contamination
Description of Restrictions: N/R
Map Findings 2019

Site Name: MAUI PINEAPPLE CO LTD, KANE STREET LOT 2 TANK AREA PORTION
106 S KANE ST
KAHULUI, HI 96732

Database(s): [I C - HI, SHWS - HI] (cont.)

Envirosite ID: 325000280
EPA ID: N/R

SHWS - HI (cont.)

Engineering Control: Engineering Control Required
Institutional Control: Government - Hawaii Dept. of Health Letter Issued
Date Issued: 06/10/2013
Within Designated Areawide Contamination: N/R
Document Date: 2013-315-JP
Document Subject: No Further Action with Engineering and Institutional Controls Determination for a Portion of Lot F-2, 106 S Kane St, Kahului, Maui, TMK 2-3-7-002-028
Site Closure Document: No Further Action Letter - Restricted Use
Project Manager: John Peard
Contact Information: (808) 933-9921, Environmental Health Bldg, 1582 Kamehameha Ave, Hilo, HI 96720
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: 237002028
Description of Portion: N/R

Map Id: C11
Direction: S
Distance: 0.090 mi.
Actual: 474.978 ft.
Elevation: 0.003 mi. / 16.427 ft.
Relative: Higher

Site Name: MAUI PINEAPPLE CO LTD, KANE STREET LOT 2 CANNERY BUILDING PORTION
106 S KANE ST
KAHULUI, HI 96732

Database(s): [I C - HI, SHWS - HI]

Envirosite ID: 330757649
EPA ID: N/R

I C - HI

Facility Name: Maui Pineapple Co Ltd, Kane Street Lot 2 Cannery Building Portion
Facility Address: 106 S Kane St, Formerly 120 Kane St, Kahului, HI 96732
County: Maui

SDAR Environmental Interest Name: Maui Pineapple Co Ltd, Kane Street Lot 2 Cannery Building Portion
Supplemental Location Text: N/R
HID Number: N/R
Facility Registry Identifier: 110000486402
Program Full Name: State
Potential Hazard and Controls: Hazard Managed With Controls
Assessment: Response Necessary
Priority: NFA
Nature of Contamination: Presumed: The Cannery Building shares Lot F-2 with the tank that was investigated.

Nature of Residual Contamination: N/R
Response: Response Complete
Response Action Completed: 06/10/2013
Lead Agency: HEER
Use Restrictions: Controls Required to Manage Contamination
Description of Restrictions: N/R
Engineering Control: Engineering Control Required
Institutional Control: N/R
Date Issued: N/R
Within Designated Areawide Contamination: N/R
Document Date: 06/10/2013
Document Subject: No Further Action with Engineering and Institutional Controls

Site Closure Document: No Further Action Letter - Restricted Use
Project Manager: John Peard
Contact Information: (808) 933-9921, Environmental Health Bldg, 1582 Kamehameha Ave, Hilo, HI 96720
Last Date in Agency List: 11/29/2018

Facility Name: Maui Pineapple Co Ltd, Kane Street Lot 2 Cannery Building Portion
Facility Address: 106 S Kane St, Formerly 120 Kane St, Kahului, HI 96732
County: Maui

Site Details
SDAR Environmental Interest Name: Maui Pineapple Co Ltd, Kane Street Lot 2 Cannery Building Portion
Supplemental Location Text: N/R
HID Number: N/R
Facility Registry Identifier: 110000486402
Program Full Name: State
Potential Hazard and Controls: Hazard Managed With Controls
Assessment: Response Necessary
Priority: NFA
Nature of Contamination: Presumed: The Cannery Building shares Lot F-2 with the tank that was investigated.
Site Name: MAUI PINEAPPLE CO LTD, KANE STREET
LOT 2 CANNERY BUILDING PORTION
106 S KANE ST
KAHULUI, HI 96732

Database(s): [I C - HI, SHWS - HI] (cont.)

SHWS - HI (cont.)

Nature of Residual Contamination:
Response:
Response Action Completed:
Lead Agency:
Use Restrictions:
Description of Restrictions:
Engineering Control:
Institutional Control:
Date Issued:
Within Designated Areawide Contamination:
Document Date:
Document Number:
Document Subject:
Site Closure Document:
Project Manager:
Contact Information:
Last Date in Agency List:

Tax Map Key Information
Tax Map Key:
Description of Portion:

Site Name: THE WASH HOUSE
74 LONO AVE
KAHULUI, HI 96732

Database(s): [HIST LUST - HI, UST - HI]

HIST LUST - HI

Facility Name:
Facility Address:
Installed Date:
Facility ID:
Tank ID:
Tank Status Description:
Tank Capacity:
Substance Description:
Site Name: THE WASH HOUSE
74 LONO AVE
KAHULUI, HI 96732

Database(s): [HIST LUST - HI, UST - HI] (cont.)

Date Closed: 11/12/1991
Organization Name: SPALDING/WATAMULL HI PARTNERSHIP
Organization Address: 74 LONO AVE, Kahului, HI 96732
Last Date in Agency list: 03/04/2014

Site Details
Facility ID: 9-501576
Formal Name: SPALDING/WATAMULL HI PARTNERSHIP
Address: 75 B CHURCH ST, Kahului, HI 96732
Latitude Measure: N/R
Longitude Measure: N/R
Horizontal Collection Method Name: N/R
Horizontal Reference Datum Name: N/R
Last Date in Agency List: 01/10/2019

Tank Details
Installed Date: 04/15/1974
Date Closed: 11/12/1991
Tank ID: R-1
Tank Status: Permanently Out of Use
Tank Capacity: 4000
Product: Diesel

Site Name: 32 LONO AVENUE
32 LONO AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI]

Facility Name: 32 Lono Avenue
Facility Address: 32 Lono Ave, Kahului, HI 96732
County: Maui

SDAR Environmental Interest Name: 32 Lono Avenue
Supplemental Location Text: N/R
HID Number: N/R
Facility Registry Identifier: N/R
Site Name: 32 LONO AVENUE
            32 LONO AVE
            KAULULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI] (cont.)

SHWS - HI (cont.)

    Program Full Name : State
    Potential Hazard and Controls : No Hazard
    Assessment : Response Necessary
    Priority : NFA
    Nature of Contamination : N/R
    Nature of Residual Contamination : Petroleum in soil
    Response : Response Complete
    Response Action Completed : 12/10/2004
    Lead Agency : HEER
    Use Restrictions : No Hazard Present For Unrestricted Residential Use
    Description of Restrictions : N/R
    Engineering Control : N/R
    Institutional Control : N/R
    Date Issued : N/R
    Within Designated Areawide Contamination: N/R
    Document Date : 12/10/2004
    Document Number : 2004-518-UW
    Document Subject : NFA letter for the off-site petroleum release from three 55-gallon drums
    Site Closure Document : No Further Action Letter - Unrestricted Residential Use
    Project Manager : Utkris Wongse-Ont
    Contact Information : (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782
    Last Date in Agency List : 11/29/2018

Tax Map Key Information
    Tax Map Key : 237004006

SPILLS - HI

    Facility Name : 32 Lono Avenue
    Facility Address : 32 Lono Ave, Kahului, 96732

    Case Number : 20030822-1400
    Activity End Date : N/R
    HID Number : N/R
    Facility Registry Identifier : N/R
    Activity Type : Response
    Activity Lead : Terry Corpus
    Activity Result : N/R
    Substances : Oil
    Quantity : N/R
    Lead and Program : HEER EP&R
    National Response Center Incident Report: N/R
    Organization : Alexander & Baldwin, Inc.
    Location Island : Maui
    Supplemental Location : N/R
    EP&R Environmental Interest : 32 Lono Avenue
    Was coordination needed on or off scene?: No
Map Findings 2019

Site Name: 32 LONO AVENUE
32 LONO AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI] (cont.)

Envirosite ID: 319997308
EPA ID: N/R

Tax Map Key: 237004006
23704989

SPILLS - HI (cont.)

Site Name: KAAHUMANU AVE & LONO AVE
KAAHUMANU AVE & LONO AVE
KAHULUI, HI 96732

Database(s): [SPILLS - HI]

Envirosite ID: 346295382
EPA ID: N/R

Facility Name: Kaahumanu Ave & Lono Ave
Facility Address: Kaahumanu Ave & Lono Ave, Kahului, 96732

Case Number: 19950204-2
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: N/R
Activity Type: Response
Activity Lead: Terry Corpus
Activity Result: SOSC NFA
Substances: wastewater
Quantity: 500 Gallons
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: N/R
Location Island: Maui
Supplemental Location: N/R
EP&R Environmental Interest: Lono Ave & Kaahumanu Ave
Was coordination needed on or off scene?: N/R

Tax Map Key: N/R
Map Findings

Site Name: LLOYD'S KAHULUI CHEVRON
130 W KAMEHAMEHA AVE
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI]

<table>
<thead>
<tr>
<th>Site Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUST Latest Status Date: 06/08/2009</td>
</tr>
<tr>
<td>LUST Latest Status: Site Cleanup Completed (NFA)</td>
</tr>
<tr>
<td>Facility ID: 9-501245</td>
</tr>
<tr>
<td>Event ID: 049011</td>
</tr>
<tr>
<td>Project Officer: Richard Takaba</td>
</tr>
<tr>
<td>Last Date in Agency List: 01/10/2018</td>
</tr>
</tbody>
</table>

| LUST Latest Status Date: 06/08/2009 |
| LUST Latest Status: Site Cleanup Completed (NFA) |
| Facility ID: 9-501245 |
| Event ID: 040068 |
| Project Officer: Richard Takaba |
| Last Date in Agency List: 01/10/2018 |

<table>
<thead>
<tr>
<th>UST - HI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Name: LLOYD'S KAHULUI CHEVRON</td>
</tr>
<tr>
<td>Facility Address: 130 W KAMEHAMEHA AVE, Kahului, HI 96732</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility ID: 9-501245</td>
</tr>
<tr>
<td>Formal Name: LLOYD'S KAHULUI CHEVRON</td>
</tr>
<tr>
<td>Address: 130 W Kamehameha Ave, Kahului, HI 96732</td>
</tr>
<tr>
<td>Latitude Measure: 20.887748</td>
</tr>
<tr>
<td>Longitude Measure: -156.469433</td>
</tr>
<tr>
<td>Horizontal Collection Method Name: GPS</td>
</tr>
<tr>
<td>Horizontal Reference Datum Name: NAO83</td>
</tr>
<tr>
<td>Last Date in Agency List: 01/10/2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tank Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank ID: 1</td>
</tr>
<tr>
<td>Tank Status: Environmentally Relevant</td>
</tr>
<tr>
<td>Tank Capacity: 10000</td>
</tr>
<tr>
<td>Product: Gasoline</td>
</tr>
<tr>
<td>Date Closed: N/R</td>
</tr>
<tr>
<td>Installed Date: 07/18/1984</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tank Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank ID: 2</td>
</tr>
<tr>
<td>Tank Status: Environmentally Relevant</td>
</tr>
<tr>
<td>Tank Capacity: 10000</td>
</tr>
<tr>
<td>Product: Gasoline</td>
</tr>
<tr>
<td>Date Closed: N/R</td>
</tr>
<tr>
<td>Installed Date: 07/18/1984</td>
</tr>
</tbody>
</table>
UST - HI (cont.)

Installed Date : 01/01/1984
Date Closed : 08/20/2004
Tank ID : r-4
Tank Status : Permanently Out of Use
Tank Capacity : 1000
Product : Used Oil

Installed Date : 01/01/1984
Date Closed : N/R
Tank ID : 3
Tank Status : Currently in Use
Tank Capacity : 10000
Product : Gasoline

SHWS - HI

Facility Name : Kahului Service, Inc dba Lloyd's Kahului Chevron
Facility Address : 130 W Kamehameha Ave, Kahului, HI 96732
County : Maui

Site Details
SDAR Environmental Interest Name : Kahului Service, Inc dba Lloyd's Kahului Chevron
Supplemental Location Text : N/R
HID Number : N/R
Facility Registry Identifier : 110013788829
Program Full Name : State
Potential Hazard and Controls : No Hazard
Assessment : Response Not Necessary
Priority : NFA
Nature of Contamination : N/R
Nature of Residual Contamination : fuel constituents below EALs
Response : N/R
Response Action Completed : 08/24/2005
Lead Agency : SHWB
Use Restrictions : No Hazard Present For Unrestricted Residential Use
Description of Restrictions : N/R
Engineering Control : N/R
Institutional Control : N/R
Date Issued : N/R
Within Designated Areawide Contamination: N/R
Map Findings

Site Name: KAHULUI SERVICE, INC DBA LLOYD'S KAHULUI CHEVRON
130 W KAMEHAMEHA AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI] (cont.)

Envirosite ID: 319997335
EPA ID: N/R

Map Id: D16
Direction: ESE
Distance: 0.102 mi.
Actual: 540.044 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Document Date: 08/24/2005
Document Number: 2005-436-CAC
Document Subject: NFA Letter for Lloyd's Chevron Service Station, Release ID 20040721-1514
Site Closure Document: No Further Action Letter - Unrestricted Residential Use
Project Manager: Clarence Callahan
Contact Information: (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: 237005010
Description of Portion: N/R

SPILLS - HI
Facility Name: Kahului Service, Inc dba Lloyd's Kahului Chevron
Facility Address: 130 W Kamehameha Ave, Kahului, 96732

Case Number: 20040721-1514
Activity End Date: 08/24/2005
HID Number: N/R
Facility Registry Identifier: 110013788829
Activity Type: Response
Activity Lead: Terry Corpus
Activity Result: Refer to ISST
Substances: TPH gas
Quantity: N/R
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: Chevron Products Company
Location Island: Maui
Supplemental Location: N/R
EP&R Environmental Interest: Hoist & Sand Grease Trap Removal
Was coordination needed on or off scene?: Referred

Tax Map Key: 237005010
Map Findings 2019

Map Id: D17
Direction: ESE
Distance: 0.102 mi.
Actual: 540.044 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: CHEVRON 92619
130 W KAMEHAMEHA AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN]

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Name</td>
<td>CHEVRON 92619</td>
</tr>
<tr>
<td>Facility Name</td>
<td>CHEVRON 92619</td>
</tr>
<tr>
<td>Facility Address</td>
<td>130 W KAMEHAMEHA AVE, KAHULUI, HI 96732</td>
</tr>
<tr>
<td>County</td>
<td>MAUI</td>
</tr>
<tr>
<td>Last Inspection Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Registry ID</td>
<td>110046393032</td>
</tr>
<tr>
<td>FIPS Code</td>
<td>15009</td>
</tr>
<tr>
<td>EPA Region</td>
<td>09</td>
</tr>
<tr>
<td>Inspection Count</td>
<td>0</td>
</tr>
<tr>
<td>Last Inspection Days</td>
<td>N/R</td>
</tr>
<tr>
<td>Informal Count</td>
<td>0</td>
</tr>
<tr>
<td>Last Informal Action Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Formal Action Count</td>
<td>0</td>
</tr>
<tr>
<td>Last Formal Action Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Total Penalties</td>
<td>0</td>
</tr>
<tr>
<td>Penalty Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Last Penalty Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Last Penalty Amount</td>
<td>N/R</td>
</tr>
<tr>
<td>QTRS IN NC</td>
<td>0</td>
</tr>
<tr>
<td>Programs IN SNC</td>
<td>0</td>
</tr>
<tr>
<td>Current Compliance Status</td>
<td>No Violation</td>
</tr>
<tr>
<td>Three-Year Compliance Status</td>
<td></td>
</tr>
<tr>
<td>Collection Method</td>
<td>ADDRESS MATCHING-HOUSE NUMBER</td>
</tr>
<tr>
<td>Reference Point</td>
<td>CENTER OF A FACILITY OR STATION</td>
</tr>
<tr>
<td>Accuracy Meters</td>
<td>30</td>
</tr>
<tr>
<td>Derived Tribes</td>
<td>N/R</td>
</tr>
<tr>
<td>Derived HUC</td>
<td>20020000</td>
</tr>
<tr>
<td>Derived WBD</td>
<td>2002000000103</td>
</tr>
<tr>
<td>Derived STCTY FIPS</td>
<td>15009</td>
</tr>
<tr>
<td>Derived Zip</td>
<td>96732</td>
</tr>
<tr>
<td>Derived CD113</td>
<td>02</td>
</tr>
<tr>
<td>Derived CB2010</td>
<td>150090319002018</td>
</tr>
<tr>
<td>MYRTK Universe</td>
<td>NNN</td>
</tr>
<tr>
<td>NPDES IDs</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Permit Types</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Compliance Tracking</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA NAICS</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA SICS</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Inspection Count</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Inspection Days</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Informal Count</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Formal Action Count</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Formal Action Date</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Penalties</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Penalty Date</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Penalty Amount</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Quarters IN NC</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Current Compliance Status</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Current SNC Flag</td>
<td>N</td>
</tr>
<tr>
<td>CWA 13 Quarters Compliance Status</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA 13 Quarters Effluent Exceedances</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Three-Year QNCR Codes</td>
<td>N/R</td>
</tr>
<tr>
<td>DFR URL</td>
<td>Click here for hyperlink provided by the agency.</td>
</tr>
<tr>
<td>Facility SIC Codes</td>
<td>N/R</td>
</tr>
</tbody>
</table>
Site Name: CHEVRON 92619  
130 W KAMEHAMEHA AVE  
KAHULUI, HI 96732  

Database(s): [ECHO, FRS, RCRA_NONGEN] (cont.)

---

ECHO (cont.)

- Facility NAICS Codes: 44711
- Facility Last Inspection EPA Date: N/R
- Facility Last Inspection State Date: N/R
- Facility Last Formal Act EPA Date: N/R
- Facility Last Formal Act State Date: N/R
- Facility Last Informal Act EPA Date: N/R
- Facility Last Informal Act State Date: N/R
- Facility Federal Agency: N/R
- TRI Reporter: N/R
- Facility Imp Water Flag: N/R
- Current SNC Flag: N
- Indian County Flag: N
- Federal Flag: N/R
- US Mexico Border Flag: N/R
- Chesapeake Bay Flag: N/R
- AIR Flag: N
- NPDES Flag: N
- SDWIS Flag: N
- RCRA Flag: Y
- TRI Flag: N
- GHG Flag: N
- Active Flag: N/R
- Major Flag: N/R
- NAA Flag: N/R
- Latitude: 20.88752
- Longitude: -156.4694
- Last Date in Agency List: 12/17/2018

---

FRS

- Facility Name: CHEVRON 92619
- Facility Address: 130 W KAMEHAMEHA AVE, KAHULUI, HI 96732
- County: MAUI

- Registry ID: 110046393032
- FRS Facility URL: Click here for hyperlink provided by the agency.
- Last Date in Agency List: 11/22/2018

---

Source Description:

RCRAInfo is EPA’s comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984 through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA. RCRAInfo also supports generation of the National Hazardous Waste Biennial Report. All generators and treatment, storage, and disposal facilities who handle hazardous waste are required to report to the EPA Administrator at least once every two years to support creation of the Biennial Report.
Map Findings 2019

Site Name: CHEVRON 92619
130 W KAMEHAMEHA AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN] (cont.)

**FRS (cont.)**

Source Description:

The Environmental Health Warehouse (EHW) contains the Hawaii Department of Health - Environmental Health Administration's (HDOH-EHA) environmental data. The web-based application allows EHA to inquire about sites in Hawaii that are regulated by the administration due to activities that affect the environment, regardless of the regulation or program that directly monitors those activities. The system allows users a consolidated view of sites without disrupting the underlying source systems or the staff involved as they process their day-to-day workload. The EHW offers geo-spatial and tabular inquiry, mapping, reconciliation/data consolidation, and GIS services.

**FRS Environmental Interest**

Source and System ID: HI-EHW - 14269
RCRAININFO - HIR000141267

**RCRA_NONGEN**

Facility Name: CHEVRON 92619
Facility Address: 130 W KAMEHAMEHA AVE, KAHULUI, HI 96732
County: MAUI

Date Form Received by Agency: 08/22/2015
EPA ID: HIR000141267
Mailing Address: PO BOX 6004, SAN RAMON, CA 94583
Contact: KATHY L NORRIS
Contact Address: PO BOX 6004, SAN RAMON, CA 94583
Contact Country: US
Contact Telephone: 877-386-6044
Contact Email: NAWTDESK@CHEVRON.COM
EPA Region: 09
Land Type: Private
Source Type: Notification
Classification: Not a generator, verified
Description: Not a generator, verified

**Owner/Operator Summary**

Owner/Operator Name: CHEVRON
Owner/Operator Address: N/R
Owner/Operator Country: US
Owner/Operator Telephone: N/R
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Type: Operator
Owner/Operator Start Date: N/R
Owner/Operator End Date: N/R

Owner/Operator Name: LLOYD YAMAMOTO
Owner/Operator Address: 130 W KAMEHAMEHA AVE, KAHULUI, HI 96732
Owner/Operator Country: US
Owner/Operator Telephone: N/R
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Map Findings 2019

Map Id: D17
Direction: ESE
Distance: 0.102 mi.
Actual: 540.044 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: CHEVRON 92619
130 W KAMEHAMEHA AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN] (cont.)

Envirosite ID: 414582600
EPA ID: HIR000141267

RA_NONGEN (cont.)

Legal Status: Private
Owner/Operator Type: Owner
Owner/Operator Start Date: 05/14/2005
Owner/Operator End Date: N/R

Handler Activities Summary
U.S. Importer of Hazardous Waste: N
Mixed Waste (Haz. and Radioactive): N
Recycler of Hazardous Waste: N
Transporter of Hazardous Waste: N
Treater, Storer or Disposer of HW: N
Underground Injection Activity: N
On-site Burner Exemption: N
Furnace Exemption: N
Used Oil Fuel Burner: N
Used Oil Processor: N
Used Oil Refiner: N
Used Oil Fuel Marker to Burner: N
Used Oil Specification Marker: N
Used Oil Transfer Facility: N
Used Oil Transporter: N

Historical Generators
Date Form Received by Agency: 07/20/2012
Facility Name: CHEVRON 92619
Classification: Small Quantity Generator

Notices of Violations Summary
Regulation Violated: N

Map Id: C18
Direction: S
Distance: 0.103 mi.
Actual: 541.781 ft.
Elevation: 0.003 mi. / 16.152 ft.
Relative: Higher

Site Name: MAUI PINEAPPLE CO., LTD - CARP S
120 KANE ST
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI]

Envirosite ID: 11178840
EPA ID: N/R

LUST - HI
Facility Name: MAUI PINEAPPLE CO., LTD - CARP S
Facility Address: 120 KANE ST, Kahului, HI 96732
LUST - HI (cont.)

Site Details
- LUST Latest Status Date: 10/28/1997
- LUST Latest Status: Site Cleanup Completed (NFA)
- Facility ID: 9-502695
- Event ID: 950086
- Project Officer: David Hodges
- Last Date in Agency List: 01/10/2018

UST - HI

- Facility Name: MAUI PINEAPPLE CO., LTD - CARP S
- Facility Address: 120 KANE ST, Kahului, HI 96732

Site Details
- Facility ID: 9-502695
- Formal Name: MAUI PINEAPPLE COMPANY, LTD.
- Address: 120 Kane St, Kahului, HI 96732
- Latitude Measure: 20.886163
- Longitude Measure: -156.471844
- Horizontal Collection Method Name: Address Matching
- Horizontal Reference Datum Name: NAD83
- Last Date in Agency List: 01/10/2019

Tank Details
- Installed Date: 04/10/1971
- Date Closed: 08/10/1994
- Tank ID: R-5
- Tank Status: Permanently Out of Use
- Tank Capacity: 2000
- Product: Diesel

- Installed Date: 04/09/1956
- Date Closed: 04/27/1995
- Tank ID: R-4
- Tank Status: Permanently Out of Use
- Tank Capacity: 1000
- Product: Gasoline
**Map Findings 2019**

**Map Id:** C19  
**Direction:** S  
**Distance:** 0.103 mi.  
**Actual:** 541.781 ft.  
**Elevation:** 0.003 mi. / 16.152 ft.  
**Relative:** Higher

---

### Site Details

**Facility Name:** MAUI PINEAPPLE COMPANY, LTD. - P  
**Facility Address:** 120 KANE ST, KAHULUI, HI 96732

**Database(s):** [LUST - HI, UST - HI]

---

### LUST - HI

**Facility Name:** MAUI PINEAPPLE COMPANY, LTD. - P  
**Facility Address:** 120 KANE ST, Kahului, HI 96732

**Site Details**

- **LUST Latest Status Date:** 02/11/2009  
- **LUST Latest Status:** Site Cleanup Completed (NFA)  
- **Facility ID:** 9-502696  
- **Event ID:** 090006  
- **Project Officer:** Josh Nagashima  
- **Last Date in Agency List:** 01/10/2018

---

### UST - HI

**Facility Name:** MAUI PINEAPPLE COMPANY, LTD. - P  
**Facility Address:** 120 KANE ST, Kahului, HI 96732

**Site Details**

- **Facility ID:** 9-502696  
- **Formal Name:** MAUI PINEAPPLE COMPANY, LTD.  
- **Address:** 120 Kane St, Kahului, HI 96732  
- **Latitude Measure:** 20.886021  
- **Longitude Measure:** -156.472208  
- **Horizontal Collection Method Name:** Map  
- **Horizontal Reference Datum Name:** NAD83  
- **Last Date in Agency List:** 01/10/2019

---

### Tank Details

**Installed Date:** 04/10/1971  
**Date Closed:** 12/01/1991  
**Tank ID:** R-6  
**Tank Status:** Permanently Out of Use  
**Tank Capacity:** 500  
**Product:** Kerosene

**Installed Date:** 04/10/1971  
**Date Closed:** 12/01/1991  
**Tank ID:** R-7  
**Tank Status:** Permanently Out of Use  
**Tank Capacity:** 500  
**Product:** Kerosene
Site Name: MAUI PINEAPPLE CO. LTD -- KAHULUI CANNERY
120 KANE ST
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI]
Site Name: MAUI PINEAPPLE CO LTD, KANE STREET
120 KANE ST
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI]

SHWS - HI

Facility Name: Maui Pineapple Co Ltd, Kane Street
Facility Address: 120 Kane St, Kahului, HI 96732
County: Maui

Site Details
SDAR Environmental Interest Name: Maui Pineapple Co Ltd, Kane Street
Supplemental Location Text: N/R
HID Number: N/R
Facility Registry Identifier: 110000486402
Program Full Name: State
Potential Hazard and Controls: Hazard Undetermined
Assessment: Assessment Ongoing
Priority: Low
Nature of Contamination: N/R
Nature of Residual Contamination: N/R
Response: N/R
Response Action Completed: N/R
Lead Agency: HEER
Use Restrictions: Undetermined
Description of Restrictions: Investigation on possible dump outstanding.
Engineering Control: N/R
Institutional Control: N/R
Date Issued: N/R
Within Designated Areawide Contamination: N/R
Document Date: N/R
Document Number: N/R
Document Subject: N/R
Site Closure Document: N/R
Project Manager: Eric Sadoyama
Contact Information: (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: 237002001
Description of Portion: Lot F1.

Tax Map Key: 237002028
Description of Portion: Lot F2.

Tax Map Key: 237002029
Description of Portion: Lot F3.

Tax Map Key: 237002030
Description of Portion: Lot F4.

SPILLS - HI

Facility Name: Maui Pineapple Co Ltd, Kane Street
Facility Address: 120 Kane St, Kahului, HI 96732
### SPILLS - HI (cont.)

<table>
<thead>
<tr>
<th>Case Number</th>
<th>19891108-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>HID Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Facility Registry Identifier</td>
<td>110000486402</td>
</tr>
<tr>
<td>Activity Type</td>
<td>Response</td>
</tr>
<tr>
<td>Activity Lead</td>
<td>N/R</td>
</tr>
<tr>
<td>Activity Result</td>
<td>SOSC NFA</td>
</tr>
<tr>
<td>Substances</td>
<td>Sulfuric Acid</td>
</tr>
<tr>
<td>Quantity</td>
<td>100 Gallons</td>
</tr>
<tr>
<td>Lead and Program</td>
<td>HEER EP&amp;R</td>
</tr>
<tr>
<td>National Response Center Incident Report</td>
<td>19986</td>
</tr>
<tr>
<td>Organization</td>
<td>Maui Land and Pineapple Company, Inc.</td>
</tr>
<tr>
<td>Location Island</td>
<td>Maui</td>
</tr>
<tr>
<td>Supplemental Location</td>
<td>N/R</td>
</tr>
<tr>
<td>EP&amp;R Environmental Interest</td>
<td>MAUI PINEAPPLE CO.</td>
</tr>
<tr>
<td>Was coordination needed on or off scene?</td>
<td>N/R</td>
</tr>
<tr>
<td>Tax Map Key</td>
<td></td>
</tr>
<tr>
<td></td>
<td>237002001</td>
</tr>
<tr>
<td></td>
<td>237002028</td>
</tr>
<tr>
<td></td>
<td>237002029</td>
</tr>
<tr>
<td></td>
<td>237002030</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case Number</th>
<th>19960802-0915</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>HID Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Facility Registry Identifier</td>
<td>110000486402</td>
</tr>
<tr>
<td>Activity Type</td>
<td>Response</td>
</tr>
<tr>
<td>Activity Lead</td>
<td>Terry Corpus</td>
</tr>
<tr>
<td>Activity Result</td>
<td>SOSC NFA</td>
</tr>
<tr>
<td>Substances</td>
<td>Hydraulic Oil</td>
</tr>
<tr>
<td>Quantity</td>
<td>30 Gallons</td>
</tr>
<tr>
<td>Lead and Program</td>
<td>HEER EP&amp;R</td>
</tr>
<tr>
<td>National Response Center Incident Report</td>
<td>N/R</td>
</tr>
<tr>
<td>Organization</td>
<td>Maui Land and Pineapple Company, Inc.</td>
</tr>
<tr>
<td>Location Island</td>
<td>Maui</td>
</tr>
<tr>
<td>Supplemental Location</td>
<td>N/R</td>
</tr>
<tr>
<td>EP&amp;R Environmental Interest</td>
<td>MAUI PINEAPPLE CO. Maui Pineapple Truck Hydraulic Spill on the side of Dairy Road</td>
</tr>
<tr>
<td>Was coordination needed on or off scene?</td>
<td>Yes</td>
</tr>
<tr>
<td>Tax Map Key</td>
<td></td>
</tr>
<tr>
<td></td>
<td>237002001</td>
</tr>
<tr>
<td></td>
<td>237002028</td>
</tr>
<tr>
<td></td>
<td>237002029</td>
</tr>
<tr>
<td></td>
<td>237002030</td>
</tr>
</tbody>
</table>
Map Findings

Map Id: C22
Direction: S
Distance: 0.103 mi.
Actual: 541.781 ft.
Elevation: 0.003 mi. / 16.152 ft.
Relative: Higher

Site Name: KAHULUI CANNERY MAUI PINEAPPLE
Facility Address: 120 KANE STREET
City: KAHULUI, HI 96732
Database(s): [RCRA_NONGEN]

Envirosite ID: 414582021
EPA ID: HID990675845

RCRA_NONGEN

Facility Name: KAHULUI CANNERY MAUI PINEAPPLE
Facility Address: 120 KANE STREET, KAHULUI, HI 96732
County: MAUI

Date Form Received by Agency: 07/18/2018
EPA ID: HID990675845
Mailing Address: PO BOX 187, KAHULUI, HI 96732-0187
Contact: MELVIN HIPO\LITO JR
Contact Address: P O BOX 187, KAHULUI, HI 96733-6687
Contact Country: US
Contact Telephone: 808-877-3835
Contact Email: N/R
EPA Region: 09
Land Type: Private
Source Type: Implementer
Classification: Not a generator, verified
Description: Not a generator, verified

Owner/Operator Summary
Owner/Operator Name: MAUI LAND & PINEAPPLE COMPANY INC
Owner/Operator Address: NOT REQUIRED, NOT REQUIRED, ME 99999
Owner/Operator Country: US
Owner/Operator Telephone: 415-555-1212
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Start Date: N/R
Owner/Operator End Date: N/R

Owner/Operator Name: MAUI PINEAPPLE CO LTD
Owner/Operator Address: PO BOX 187, KAHULUI, HI 96733-6687
Owner/Operator Country: US
Owner/Operator Telephone: 808-877-3351
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Type: Owner
Owner/Operator Start Date: N/R
Owner/Operator End Date: N/R

Owner/Operator Name: NOT REQUIRED
Owner/Operator Address: NOT REQUIRED, NOT REQUIRED, ME 99999
Owner/Operator Country: US
Owner/Operator Telephone: 415-555-1212
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Type: Operator
Owner/Operator Start Date: N/R
Owner/Operator End Date: N/R
Map Findings 2019

Site Name: KAHULUI CANNERY MAUI PINEAPPLE
120 KANE STREET
KAHULUI, HI 96732

Database(s): [RCRA_NONGEN] (cont.)

RCRA_NONGEN (cont.)

Handler Activities Summary
- U.S. Importer of Hazardous Waste: N
- Mixed Waste (Haz. and Radioactive): N
- Recycler of Hazardous Waste: N
- Transporter of Hazardous Waste: N
- Treater, Storer or Disposer of HW: N
- Underground Injection Activity: N
- On-site Burner Exemption: N
- Furnace Exemption: N
- Used Oil Fuel Burner: N
- Used Oil Processor: N
- Used Oil Refiner: N
- Used Oil Fuel Marketer to Burner: N
- Used Oil Specification Marketer: N
- Used Oil Transfer Facility: N
- Used Oil Transporter: N

Historical Generators
- Date Form Received by Agency: 08/22/1997
- Facility Name: KAHULUI CANNERY MAUI PINEAPPLE
- Classification: Not a generator, verified

- Date Form Received by Agency: 19940497
- Facility Name: KAHULUI CANNERY MAUI PINEAPPLE
- Classification: Not a generator, verified

Notices of Violations Summary
- Regulation Violated: N

Evaluation Action Summary
- Evaluation Date: 09/25/2002
- Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE
- Area of Violation: N/R
- Date Achieved Compliance: N/R
- Evaluation Lead Agency: State

- Evaluation Date: 20000389
- Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE
- Area of Violation: N/R
- Date Achieved Compliance: N/R
- Evaluation Lead Agency: State
Map Findings

Map Id: C23
Direction: S
Distance: 0.103 mi.
Actual: 541.781 ft.
Elevation: 0.003 mi. / 16.152 ft.
Relative: Higher

Site Name: CAMERON CHEMICAL CORP
120 KANE STREET, BUILDING 1
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN]

Envirosite ID: 414582639
EPA ID: HIR000145060

Facility Name: CAMERON CHEMICAL CORP
Facility Address: 120 KANE STREET, BUILDING 1, KAHULUI, HI 96732

Site Details:
Last Inspection Date: N/R
Registry ID: 110070207755
FIPS Code: 15009
EPA Region: 09
Inspection Count: 0
Last Inspection Days: N/R
Informal Count: 0
Last Informal Action Date: N/R
Formal Action Count: 0
Last Formal Action Date: N/R
Total Penalties: 0
Penalty Count: N/R
Last Penalty Date: N/R
Last Penalty Amount: N/R
QTRS IN NC: 0
Programs IN SNC: 0
Current Compliance Status: No Violation
Three-Year Compliance Status:
Collection Method: ADDRESS MATCHING-HOUSE NUMBER
Reference Point: CENTER OF A FACILITY OR STATION
Accuracy Meters: 30
Derived Tribes: N/R
Derived HUC: 20020000
Derived WBD: 200200000103
Derived STCTY FIPS: 15009
Derived Zip: 96732
Derived CD113: 02
Derived CB2010: 150090319002017
MYRTK Universe: NNN
NPDES IDs: N/R
CWA Permit Types: N/R
CWA Compliance Tracking: N/R
CWA NAICS: N/R
CWA SICS: N/R
CWA Inspection Count: N/R
CWA Last Inspection Days: N/R
CWA Informal Count: N/R
CWA Formal Action Count: N/R
CWA Last Formal Action Date: N/R
CWA Penalties: N/R
CWA Last Penalty Date: N/R
CWA Last Penalty Amount: N/R
CWA Quarters IN NC: N/R
CWA Current Compliance Status: N/R
CWA Current SNC Flag: N
CWA 13 Quarters Compliance Status: N/R
CWA 13 Quarters Effluent Exceedances: N/R
CWA Three-Year QNCR Codes: N/R
DFR URL: Click here for hyperlink provided by the agency.
Facility SIC Codes: N/R
Site Name: CAMERON CHEMICAL CORP
120 KANE STREET, BUILDING 1
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN] (cont.)

Facility NAICS Codes: 541620
Facility Last Inspection EPA Date: N/R
Facility Last Inspection State Date: N/R
Facility Last Formal Act EPA Date: N/R
Facility Last Formal Act State Date: N/R
Facility Last Informal Act EPA Date: N/R
Facility Last Informal Act State Date: N/R
Facility Federal Agency: N/R
TRI Reporter: N/R
Facility Imp Water Flag: N/R
Current SNC Flag: N
Indian County Flag: N
Federal Flag: N/R
US Mexico Border Flag: N/R
Chesapeake Bay Flag: N/R
AIR Flag: N
NPDES Flag: N
SDWIS Flag: N
RCRA Flag: Y
TRI Flag: N
GHG Flag: N
Major Flag: N/R
Active Flag: Y
NAA Flag: N/R
Latitude: 20.88617
Longitude: -156.47166
Last Date in Agency List: 12/17/2018

Last Inspection Date: N/R
Registry ID: N/R
FIPS Code: N/R
EPA Region: 09
Inspection Count: 0
Last Inspection Days: N/R
Informal Count: 0
Last Informal Action Date: N/R
Formal Action Count: 0
Last Formal Action Date: N/R
Total Penalties: 0
Penalty Count: N/R
Last Penalty Date: N/R
Last Penalty Amount: N/R
QTRS IN NC: 0
Programs IN SNC: 0
Current Compliance Status: No Violation
Three-Year Compliance Status:
Collection Method: Zip Code Centroid
Reference Point: N/R
Accuracy Meters: 10000
Derived Tribes: N/R
Derived HUC: N/R
Derived WBD: N/R
Derived STCTY FIPS: N/R
Derived Zip: N/R
Derived CD113: N/R
Derived CB2010: N/R
Map Findings 2019

Site Name: CAMERON CHEMICAL CORP
120 KANE STREET, BUILDING 1
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN] (cont.)

ECHO (cont.)

MYRTK Universe: NNN
NPDES IDs: N/R
CWA Permit Types: N/R
CWA Compliance Tracking: N/R
CWA NAICS: N/R
CWA SICS: N/R
CWA Inspection Count: N/R
CWA Last Inspection Days: N/R
CWA Informal Count: N/R
CWA Formal Action Count: N/R
CWA Last Formal Action Date: N/R
CWA Penalties: N/R
CWA Last Penalty Date: N/R
CWA Last Penalty Amount: N/R
CWA Quarters IN NC: N/R
CWA Current Compliance Status: N/R
CWA Current SNC Flag: N
CWA 13 Quarters Compliance Status: N/R
CWA 13 Quarters Effluent Exceedances: N/R
CWA Three-Year QNCR Codes: N/R
DFR URL: Click here for hyperlink provided by the agency.
Facility SIC Codes: N/R
Facility NAICS Codes: 541620
Facility Last Inspection EPA Date: N/R
Facility Last Inspection State Date: N/R
Facility Last Formal Act EPA Date: N/R
Facility Last Formal Act State Date: N/R
Facility Last Informal Act EPA Date: N/R
Facility Last Informal Act State Date: N/R
Facility Federal Agency: N/R
TRI Reporter: N/R
Facility Imp Water Flag: N/R
Current SNC Flag: N
Indian County Flag: N
Federal Flag: N/R
US Mexico Border Flag: N/R
Chesapeake Bay Flag: N/R
AIR Flag: N
NPDES Flag: N
SDWIS Flag: N
RCRA Flag: Y
TRI Flag: N
GHG Flag: N
Major Flag: N/R
Active Flag: Y
NAA Flag: N/R
Latitude: 20.55241
Longitude: -156.612422
Last Date in Agency List: 03/12/2018

FRS

Facility Name: CAMERON CHEMICAL CORP
Facility Address: 120 KANE STREET, BUILDING 1, KAHULUI, HI 96732
County: MAUI

Envirosite ID: 414582639
EPA ID: HIR000145060

Map Id: C23
Direction: S
Distance: 0.103 mi.
Actual: 541.781 ft.
Elevation: 0.003 mi. / 16.152 ft.
Relative: Higher

Latitude: 20.55241
Longitude: -156.612422
Last Date in Agency List: 03/12/2018
### Site Name
CAMERON CHEMICAL CORP
120 KANE STREET, BUILDING 1
KAHULUI, HI 96732

### Database(s)
[ECHO, FRS, RCRA_NONGEN] (cont.)

---

#### FRS (cont.)

<table>
<thead>
<tr>
<th>Registry ID</th>
<th>110070207755</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRS Facility URL</td>
<td>Click here for hyperlink provided by the agency.</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/22/2018</td>
</tr>
</tbody>
</table>

#### Source Description
RCRAInfo is EPA’s comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984 through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA. RCRAInfo also supports generation of the National Hazardous Waste Biennial Report. All generators and treatment, storage, and disposal facilities who handle hazardous waste are required to report to the EPA Administrator at least once every two years to support creation of the Biennial Report.

#### FRS Environmental Interest
Source and System ID : RCRAINFO - HIR000145060

#### RCRA_NONGEN

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>CAMERON CHEMICAL CORP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Address</td>
<td>120 KANE STREET, BUILDING 1, KAHULUI, HI 96732</td>
</tr>
<tr>
<td>County</td>
<td>MAUI</td>
</tr>
<tr>
<td>Date Form Received by Agency</td>
<td>20180255</td>
</tr>
<tr>
<td>EPA ID</td>
<td>HIR000145060</td>
</tr>
<tr>
<td>Mailing Address</td>
<td>110 LEOKANE STREET, WAIPAHU, HI 96797</td>
</tr>
<tr>
<td>Contact</td>
<td>BILL CAMERON</td>
</tr>
<tr>
<td>Contact Address</td>
<td>110 LEOKANE STREET, WAIPAHU, HI 96797</td>
</tr>
<tr>
<td>Contact Country</td>
<td>US</td>
</tr>
<tr>
<td>Contact Telephone</td>
<td>808-695-2999</td>
</tr>
<tr>
<td>Contact Email</td>
<td><a href="mailto:BILL@HAWAIICCC.COM">BILL@HAWAIICCC.COM</a></td>
</tr>
<tr>
<td>EPA Region</td>
<td>09</td>
</tr>
<tr>
<td>Land Type</td>
<td>Private</td>
</tr>
<tr>
<td>Source Type</td>
<td>Notification</td>
</tr>
<tr>
<td>Classification</td>
<td>Not a generator, verified</td>
</tr>
<tr>
<td>Description</td>
<td>Not a generator, verified</td>
</tr>
</tbody>
</table>

#### Owner/Operator Summary
Owner/Operator Name : CAMERON CHEMICAL CORP
Owner/Operator Address : 110 LEOKANE, WAIPAHU, HI 96797
Owner/Operator Country : US
Owner/Operator Telephone : 808-695-2999
Owner/Operator Email : BILL@HAWAIICCC.COM
Owner/Operator Fax : N/R
Legal Status : Private
Owner/Operator Type : Operator
Owner/Operator Start Date : 01/15/2018
Owner/Operator End Date : N/R
Map Findings 2019

Map Id: C23
Direction: S
Distance: 0.103 mi.
Actual: 541.781 ft.
Elevation: 0.003 mi. / 16.152 ft.
Relative: Higher

Site Name: CAMERON CHEMICAL CORP
120 KANE STREET, BUILDING 1
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_NONGEN] (cont.)

RCRA_NONGEN (cont.)

Owner/Operator Name: NAN CHUL SHIN TRUST
Owner/Operator Address: 636 LAUMAKA, HONOLULU, HI 96819
Owner/Operator Country: US
Owner/Operator Telephone: 808-842-4929
Owner/Operator Email: NSHIN@NANHAWAII.COM
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Type: Owner
Owner/Operator Start Date: 09/24/2017
Owner/Operator End Date: N/R

Handler Activities Summary
U.S. Importer of Hazardous Waste: N
Mixed Waste (Haz. and Radioactive): N
Recycler of Hazardous Waste: N
Transporter of Hazardous Waste: Y
Treater, Storer or Disposer of HW: N
Underground Injection Activity: N
On-site Burner Exemption: N
Furnace Exemption: N
Used Oil Fuel Burner: N
Used Oil Processor: N
Used Oil Refiner: N
Used Oil Fuel Marketer to Burner: N
Used Oil Specification Marketer: N
Used Oil Transfer Facility: Y
Used Oil Transporter: Y

Notices of Violations Summary
Regulation Violated: N

Map Id: D24
Direction: ESE
Distance: 0.105 mi.
Actual: 557.033 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: MECO TRANSFORMER 5317
95 LONO AVE
KAHULUI, HI 96732

Database(s): [SPILLS - HI]

Facility Name: MECO Transformer 5317
Facility Address: 95 Lono Ave, Kahului, 96732

Case Number: 20040622-1628
Activity End Date: 07/29/2004
HID Number: N/R
Facility Registry Identifier: N/R

Envirosite ID: 414582639
EPA ID: HIR000145060

Envirosite ID: 330387062
EPA ID: N/R

Page 74 of 327
**Site Name:** MECO TRANSFORMER 5317  
95 LONO AVE  
KAHULUI, HI 96732

**Database(s):** [SPILLS - HI](cont.)

**Activity Type:** Response
**Activity Lead:** Paul Chong
**Activity Result:** SOSC NFA
**Substances:** Shell Diala Oil AX
**Quantity:** < 25 Gallons
**Lead and Program:** HEER EP&R
**National Response Center Incident Report:** N/R
**Organization:** Maui Electric Co., Inc.
**Location Island:** Maui
**Supplemental Location:** N/R
**EP&R Environmental Interest:** MECO Transformer 5317
**Was coordination needed on or off scene?:** No

**Tax Map Key:** N/R

---

**Site Name:** BREWER ENVIRONMENTAL INDUSTRIES-KAHULUI BEACH ROAD  
65 KAHLUI BEACH RD  
KAHULUI, HI 96732

**Database(s):** [SHWS - HI, SPILLS - HI]

**Facility Name:** Brewer Environmental Industries-Kahului Beach Road
**Facility Address:** 65 Kahului Beach Rd, Kahului, HI 96732

**County:** Maui

**Site Details**

**SDAR Environmental Interest Name:** 65 Kahului Beach Road
**Supplemental Location Text:** Kahului Harbor
**HID Number:** N/R
**Facility Registry Identifier:** 110013779884
**Program Full Name:** State
**Potential Hazard and Controls:** Hazard Undetermined
**Assessment:** Assessment Ongoing
**Priority:** NFA
**Nature of Contamination:** N/R
**Nature of Residual Contamination:** N/R
**Response:** 06/25/1998
**Response Action Completed:** HEER
**Use Restrictions:** Undetermined
**Description of Restrictions:** N/R
**Engineering Control:** N/R
**Institutional Control:** N/R
Site Name: BREWER ENVIRONMENTAL INDUSTRIES-KAHULUI BEACH ROAD  
65 KAHULUI BEACH RD  
KAHULUI, HI 96732  

Database(s): [SHWS - HI, SPILLS - HI] (cont.)

SHWS - HI (cont.)

Date Issued: N/R  
Within Designated Areawide Contamination: N/R  
Document Date: 06/25/1998  
Document Number: N/R  
Document Subject: N/R  
Site Closure Document: No Further Action - Type Undetermined  
Project Manager: Unassigned  
Contact Information: (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782  
Last Date in Agency List: 11/29/2018

Tax Map Key Information

Tax Map Key: 237011017  
Description of Portion: N/R

Tax Map Key: 237011019  
Description of Portion: N/R

SPILLS - HI

Facility Name: Brewer Environmental Industries-Kahului Beach Road  
Facility Address: 65 Kahului Beach Rd, Kahului, 96732

Case Number: 19940718  
Activity End Date: N/R  
HID Number: N/R  
Facility Registry Identifier: 110013779884  
Activity Type: Response  
Activity Lead: Terry Corpus  
Activity Result: SOSC NFA  
Substances: Urea Ammonium Nitrate  
Quantity: 20000 Gallons  
Lead and Program: HEER EP&R  
National Response Center Incident Report: N/R  
Organization: Brewer Environmental Industries, Inc.  
Location Island: Maui  
Supplemental Location: Kahului Harbor  
EP&R Environmental Interest: Brewer Kahului Harbor 20,000 Gallon Urea Ammonium Nitrate Spill  
Was coordination needed on or off scene?: N/R

Tax Map Key: 237011017  
237011019
Map Findings 2019

Map Id: 26
Direction: SW
Distance: 0.172 mi.
Actual: 906.154 ft.
Elevation: 0.005 mi. / 26.253 ft.
Relative: Higher

Site Name: MAUI PINEAPPLE CO LTD, KANE STREET
716 UMI
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI]

SHWS - HI

Facility Name: Maui Pineapple Co Ltd, Kane Street
Facility Address: 716 umi, Kahului, HI 96732
County: Maui

Site Details
SDAR Environmental Interest Name: Maui Pineapple Co Ltd, Kane Street
Supplemental Location Text: N/R
HID Number: N/R
Facility Registry Identifier: 110000486402
Program Full Name: State
Potential Hazard and Controls: Hazard Undetermined
Assessment: Assessment Ongoing
Priority: Low
Nature of Contamination: N/R
Nature of Residual Contamination: N/R
Response: N/R
Response Action Completed: N/R
Lead Agency: HEER
Use Restrictions: Undetermined
Description of Restrictions: Investigation on possible dump outstanding.
Engineering Control: N/R
Institutional Control: N/R
Date Issued: N/R
Within Designated Areawide Contamination: N/R
Document Date: N/R
Document Number: N/R
Document Subject: N/R
Site Closure Document: N/R
Project Manager: Eric Sadoyama
Contact Information: (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782
Last Date in Agency List: 09/20/2018

Tax Map Key Information
Tax Map Key: 237002001
Description of Portion: Lot F1.

Tax Map Key: 237002028
Description of Portion: Lot F2.

Tax Map Key: 237002029
Description of Portion: Lot F3.

Tax Map Key: 237002030
Description of Portion: Lot F4.

SPILLS - HI

Facility Name: Maui Pineapple Co Ltd, Kane Street
Facility Address: 716 umi, Kahului, 96732

Envirosite ID: 345751959
EPA ID: N/R
Site Name: MAUI PINEAPPLE CO LTD, KANE STREET
716 UMI
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI] (cont.)

Map Id: 26
Direction: SW
Distance: 0.172 mi.
Actual: 906.154 ft.
Elevation: 0.005 mi. / 26.253 ft.
Relative: Higher

SPILLS - HI (cont.)

Case Number: 19891108-1
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: 110000486402
Activity Type: Response
Activity Lead: N/R
Activity Result: SOSC NFA
Substances: Sulfuric Acid
Quantity: 100 Gallons
Lead and Program: HEER EP&R
National Response Center Incident Report: 19986
Organization: Maui Land and Pineapple Company, Inc.
Location Island: Maui
Supplemental Location: N/R
EP&R Environmental Interest: MAUI PINEAPPLE CO.
Was coordination needed on or off scene?: N/R

Tax Map Key: 237002001
237002028
237002029
237002030

Case Number: 19960802-0915
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: 110000486402
Activity Type: Response
Activity Lead: Terry Corpus
Activity Result: SOSC NFA
Substances: Hydraulic Oil
Quantity: 30 Gallons
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: Maui Land and Pineapple Company, Inc.
Location Island: Maui
Supplemental Location: N/R
EP&R Environmental Interest: MAUI PINEAPPLE CO.
Was coordination needed on or off scene?: Yes

Tax Map Key: 237002001
237002028
237002029
237002030
SITE NAME:

VIP CAR RENTAL
80 KAAHUMANU AVE
KAHULUI, HI 96732

DATABASE(S):
[HIST LUST - HI, UST - HI]

HIST LUST - HI

Facility Name: VIP CAR RENTAL
Facility Address: 80 KAAHUMANU AVE, Kahului, HI 96732

Installed Date: N/R
Facility ID: 9-501882
Tank ID: R-1
Tank Status Description: Permanently Out of Use
Tank Capacity: 1000
Substance Description: Gasoline
Date Closed: 01/23/1997
Organization Name: A & B PROPERTIES, INC.
Organization Address: 80 KAAHUMANU AVE, Kahului, HI 96732
Last Date in Agency list: 03/04/2014

UST - HI

Facility Name: VIP CAR RENTAL
Facility Address: 80 KAAHUMANU AVE, Kahului, HI 96732

Site Details

Facility ID: 9-501882
Formal Name: A & B PROPERTIES, INC.
Address: Kahului, HI 96732
Latitude Measure: N/R
Longitude Measure: N/R
Horizontal Collection Method Name: N/R
Horizontal Reference Datum Name: N/R
Last Date in Agency List: 01/10/2019

Tank Details

Installed Date: N/R
Date Closed: 01/23/1997
Tank ID: R-1
Tank Status: Permanently Out of Use
Tank Capacity: 1000
Product: Gasoline

SITE NAME:

LONGS DRUG STORE #10848
275 W KAAHUMANU AVE 1C01
KAHULUI, HI 96732

DATABASE(S):
[BRS, ECHO, FRS, RCRA_LQG]

BRS

Facility Name: LONGS DRUG STORE #10848
Map Findings

Facility Address: 275 W KAAHUMANU AVE 1C01, KAHULUI, HI 96732
County: MAUI

Date Form Received by Agency: 20180259
EPA ID: HIR000143487
Mailing Address: ONE CVS DRIVE, WOONSOCKET, RI 02895
Contact: NICOLE WILKINSON
Contact Address: ONE CVS DRIVE MAIL CODE 2340, WOONSOCKET, RI 02895
Contact Country: US
Contact Telephone: 401-770-7132
Contact Email: NICOLE.WILKINSON@CVSHEALTH.COM
EPA Region: 09
Land Type: Private
Source Type: Annual/Biennial Report updated with Notification
Classification: Large Quantity Generator

Description:

Handlers that generate 1,000 kg or more of hazardous waste during any calendar month; or generate more than 1 kg of acutely hazardous waste during any calendar month; or generate more than 100 kg of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month; or generate 1 kg or less of acutely hazardous waste during any calendar month, and accumulate more than 1 kg of acutely hazardous waste at any time; or generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulated more than 100 kg of that material at any time.

Last Date in Agency List: 12/21/2018

Owner/Operator Summary

Owner/Operator Name: LONGS DRUG STORES CALIFORNIA, LLC
Owner/Operator Address: ONE CVS DR, WOONSOCKET, RI 02895
Owner/Operator Country: US
Owner/Operator Telephone: 401-765-1500
Owner/Operator Email: NICOLE.WILKINSON@CVSHEALTH.COM
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Type: Operator
Owner/Operator Start Date: 04/10/2015
Owner/Operator End Date: N/R

Owner/Operator Name: QKC MAUI OWNER, LLC
Owner/Operator Address: 600 MONTGOMERY ST, 4TH FL, SAN FRANCISCO, CA 94111
Owner/Operator Country: US
Owner/Operator Telephone: 808-877-3369
Owner/Operator Email: NICOLE.WILKINSON@CVSHEALTH.COM
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Type: Owner
Owner/Operator Start Date: 09/25/2010
Owner/Operator End Date: N/R
### Site Name: LONGS DRUG STORE #10848
275 W KAHAHUMANU AVE 1C01
KAHULUI, HI 96732

**Database(s):** [BRS, ECHO, FRS, RCRA_LQG] (cont.)

#### BRS (cont.)

**Waste Activity Monitoring**

<table>
<thead>
<tr>
<th>Report Cycle</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Waste Page Number</td>
<td>1</td>
</tr>
<tr>
<td>Hazardous Waste Sub-Page Number</td>
<td>1</td>
</tr>
<tr>
<td>BR Form</td>
<td>GM</td>
</tr>
<tr>
<td>Waste Description</td>
<td>ACUTE TOXIC SOLIDS</td>
</tr>
<tr>
<td>Primary NAICS</td>
<td>44611</td>
</tr>
<tr>
<td>Source Code</td>
<td>G11</td>
</tr>
</tbody>
</table>

**Form Code:** W005

**Form Code Description:** Waste pharmaceuticals managed as hazardous waste

**Management Method:** H141

**Management Method Description:** The site receiving this waste stored/bulked and transferred the waste with no treatment or recovery (H010-H129), fuel blending (H061), or disposal (H131-H135) at that receiving site.

| Generation Tons | 0.005 |
| Managed Tons | 0 |
| Shipped Tons | 0.005 |
| Received Tons | 0 |
| Receiver ID | WAD020257945 |
| Receiver State | WA |
| Shipper ID | HIR000143487 |
| Shipper State | HI |
| Waste Minimization Code | X |
| Waste Minimization Code Description | No waste minimization efforts were implemented for this waste |
| Waste Code List | N/R |
| Waste Code Group | PMIX |
| Waste Code Group Description | P mixtures |
| Waste Generation Type | N/R |

---

**Report Cycle:** 2017

| Hazardous Waste Page Number | 10 |
| Hazardous Waste Sub-Page Number | 1 |
| BR Form | GM |
| Waste Description | TOXIC LIQUIDS |
| Primary NAICS | 44611 |
| Source Code | G11 |

**Form Code:** W001

**Form Code Description:** Lab packs from any source not containing acute hazardous waste

**Management Method:** H141

**Management Method Description:** The site receiving this waste stored/bulked and transferred the waste with no treatment or recovery (H010-H129), fuel blending (H061), or disposal (H131-H135) at that receiving site.

| Generation Tons | 0.002 |
| Managed Tons | 0 |
### BRS (cont.)

<table>
<thead>
<tr>
<th>Item</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Name</td>
<td>LONGS DRUG STORE #10848</td>
</tr>
<tr>
<td>Location</td>
<td>275 W KAACHUMANU AVE 1C01</td>
</tr>
<tr>
<td>City</td>
<td>KAHULUI, HI 96732</td>
</tr>
<tr>
<td>Database(s)</td>
<td>[BRS, ECHO, FRS, RCRA_LQG]</td>
</tr>
</tbody>
</table>

#### Map Findings
- **Map Id:** F28
- **Direction:** W
- **Distance:** 0.203 mi.
- **Actual:** 1071.722 ft.
- **Elevation:** 0.003 mi. / 16.417 ft.
- **Relative:** Higher

#### Environmental ID
- **Envirosite ID:** 414165728
- **EPA ID:** HIR000143487

#### BRS Details

**Shipped Tons:** 0.002

**Received Tons:** 0

**Receiver ID:** WAD020257945

**Receiver State:** WA

**Shipper ID:** HIR000143487

**Shipper State:** HI

**Waste Minimization Code:** X

**Waste Minimization Code Description:** No waste minimization efforts were implemented for this waste

**Waste Code Group:** UMIX

**Waste Code Group Description:** U mixtures

**Waste Generation Type:** N/R

**Report Cycle:** 2017

**Hazardous Waste Page Number:** 2

**Hazardous Waste Sub-Page Number:** 1

**BR Form:** GM

**Waste Description:** AEROSOLS, FLAMMABLE

**Primary NAICS:** 44611

**Source Code:** G11

**Source Code Description:** Discarding off-specification, out-of-date, and/or unused chemicals or products

**Form Code:** W801

**Form Code Description:** Compressed gases of any type

**Management Method:** H141

**Management Method Description:** The site receiving this waste stored/bulked and transferred the waste with no treatment or recovery (H010-H129), fuel blending (H061), or disposal (H131-H135) at that receiving site.

**Generation Tons:** 0.017

**Managed Tons:** 0

**Shipped Tons:** 0.017

**Received Tons:** 0

**Receiver ID:** WAD020257945

**Receiver State:** WA

**Shipper ID:** HIR000143487

**Shipper State:** HI

**Waste Minimization Code:** X

**Waste Minimization Code Description:** No waste minimization efforts were implemented for this waste

**Waste Code List:** N/R

**Waste Code Group:** D001

**Waste Code Group Description:** IGNITABLE WASTE

**Waste Generation Type:** N/R

**Report Cycle:** 2017

**Hazardous Waste Page Number:** 3

**Hazardous Waste Sub-Page Number:** 1

**BR Form:** GM

**Waste Description:** BLEACH

**Primary NAICS:** 44611

**Source Code:** G11
### BRS (cont.)

<table>
<thead>
<tr>
<th><strong>Source Code Description</strong></th>
<th>Discarding off-specification, out-of-date, and/or unused chemicals or products</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Form Code</strong></td>
<td>W110</td>
</tr>
<tr>
<td><strong>Form Code Description</strong></td>
<td>Caustic aqueous waste without cyanides (pH &gt;12.5)</td>
</tr>
<tr>
<td><strong>Management Method</strong></td>
<td>H141</td>
</tr>
<tr>
<td><strong>Management Method Description</strong></td>
<td>The site receiving this waste stored/bulked and transferred the waste with no treatment or recovery (H010-H129), fuel blending (H061), or disposal (H131-H135) at that receiving site.</td>
</tr>
<tr>
<td><strong>Generation Tons</strong></td>
<td>0.004</td>
</tr>
<tr>
<td><strong>Managed Tons</strong></td>
<td>0</td>
</tr>
<tr>
<td><strong>Shipped Tons</strong></td>
<td>0.004</td>
</tr>
<tr>
<td><strong>Received Tons</strong></td>
<td>0</td>
</tr>
<tr>
<td><strong>Receiver ID</strong></td>
<td>WAD020257945</td>
</tr>
<tr>
<td><strong>Receiver State</strong></td>
<td>WA</td>
</tr>
<tr>
<td><strong>Shipper ID</strong></td>
<td>HIR000143487</td>
</tr>
<tr>
<td><strong>Shipper State</strong></td>
<td>HI</td>
</tr>
<tr>
<td><strong>Waste Minimization Code</strong></td>
<td>X</td>
</tr>
<tr>
<td><strong>Waste Minimization Code Description</strong></td>
<td>No waste minimization efforts were implemented for this waste</td>
</tr>
<tr>
<td><strong>Waste Code List</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Waste Code Group</strong></td>
<td>D002</td>
</tr>
<tr>
<td><strong>Waste Code Group Description</strong></td>
<td>CORROSIVE WASTE</td>
</tr>
<tr>
<td><strong>Waste Generation Type</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Report Cycle</strong></td>
<td>2017</td>
</tr>
<tr>
<td><strong>Hazardous Waste Page Number</strong></td>
<td>4</td>
</tr>
<tr>
<td><strong>Hazardous Waste Sub-Page Number</strong></td>
<td>1</td>
</tr>
<tr>
<td><strong>BR Form</strong></td>
<td>GM</td>
</tr>
<tr>
<td><strong>Waste Description</strong></td>
<td>CORROSIVE BASIC LIQUIDS</td>
</tr>
<tr>
<td><strong>Primary NAICS</strong></td>
<td>44611</td>
</tr>
<tr>
<td><strong>Source Code</strong></td>
<td>G11</td>
</tr>
<tr>
<td><strong>Source Code Description</strong></td>
<td>Discarding off-specification, out-of-date, and/or unused chemicals or products</td>
</tr>
<tr>
<td><strong>Form Code</strong></td>
<td>W110</td>
</tr>
<tr>
<td><strong>Form Code Description</strong></td>
<td>Caustic aqueous waste without cyanides (pH &gt;12.5)</td>
</tr>
<tr>
<td><strong>Management Method</strong></td>
<td>H141</td>
</tr>
<tr>
<td><strong>Management Method Description</strong></td>
<td>The site receiving this waste stored/bulked and transferred the waste with no treatment or recovery (H010-H129), fuel blending (H061), or disposal (H131-H135) at that receiving site.</td>
</tr>
<tr>
<td><strong>Generation Tons</strong></td>
<td>0.0025</td>
</tr>
<tr>
<td><strong>Managed Tons</strong></td>
<td>0</td>
</tr>
<tr>
<td><strong>Shipped Tons</strong></td>
<td>0.0025</td>
</tr>
<tr>
<td><strong>Received Tons</strong></td>
<td>0</td>
</tr>
<tr>
<td><strong>Receiver ID</strong></td>
<td>WAD020257945</td>
</tr>
<tr>
<td><strong>Receiver State</strong></td>
<td>WA</td>
</tr>
<tr>
<td><strong>Shipper ID</strong></td>
<td>HIR000143487</td>
</tr>
<tr>
<td><strong>Shipper State</strong></td>
<td>HI</td>
</tr>
<tr>
<td><strong>Waste Minimization Code</strong></td>
<td>X</td>
</tr>
<tr>
<td><strong>Waste Minimization Code Description</strong></td>
<td>No waste minimization efforts were implemented for this waste</td>
</tr>
<tr>
<td><strong>Waste Code List</strong></td>
<td>N/R</td>
</tr>
</tbody>
</table>
### BRS (cont.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Code Group</td>
<td>D002</td>
</tr>
<tr>
<td>Waste Code Group Description</td>
<td>CORROSIVE WASTE</td>
</tr>
<tr>
<td>Waste Generation Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Report Cycle</td>
<td>2017</td>
</tr>
<tr>
<td>Hazardous Waste Page Number</td>
<td>5</td>
</tr>
<tr>
<td>Hazardous Waste Sub-Page Number</td>
<td>1</td>
</tr>
<tr>
<td>BR Form</td>
<td>GM</td>
</tr>
<tr>
<td>Waste Description</td>
<td>EMPTY WARFARIN CONTAINERS</td>
</tr>
<tr>
<td>Primary NAICS</td>
<td>44611</td>
</tr>
<tr>
<td>Source Code</td>
<td>G11</td>
</tr>
<tr>
<td>Source Code Description</td>
<td>Discarding off-specification, out-of-date, and/or unused chemicals or products</td>
</tr>
<tr>
<td>Form Code</td>
<td>W319</td>
</tr>
<tr>
<td>Form Code Description</td>
<td>Other inorganic solids (specify in comments)</td>
</tr>
<tr>
<td>Management Method</td>
<td>H141</td>
</tr>
<tr>
<td>Management Method Description</td>
<td>The site receiving this waste stored/bulked and transferred the waste with no treatment or recovery (H010-H129), fuel blending (H061), or disposal (H131-H135) at that receiving site.</td>
</tr>
<tr>
<td>Generation Tons</td>
<td>0.002</td>
</tr>
<tr>
<td>Managed Tons</td>
<td>0</td>
</tr>
<tr>
<td>Shipped Tons</td>
<td>0.002</td>
</tr>
<tr>
<td>Received Tons</td>
<td>0</td>
</tr>
<tr>
<td>Receiver ID</td>
<td>WAD020257945</td>
</tr>
<tr>
<td>Receiver State</td>
<td>WA</td>
</tr>
<tr>
<td>Shipper ID</td>
<td>HIR000143487</td>
</tr>
<tr>
<td>Shipper State</td>
<td>HI</td>
</tr>
<tr>
<td>Waste Minimization Code</td>
<td>X</td>
</tr>
<tr>
<td>Waste Minimization Code Description</td>
<td>No waste minimization efforts were implemented for this waste</td>
</tr>
<tr>
<td>Waste Code List</td>
<td>N/R</td>
</tr>
<tr>
<td>Waste Code Group</td>
<td>P001</td>
</tr>
<tr>
<td>Waste Code Group Description</td>
<td>2H-1-BENZOPYRAN-2-ONE, 4-HYDROXY-3-(3-OXO-1-PHENYLBUTYL)-, &amp; WARFARIN, &amp; SALTS, WHEN PRESENT AT CONCENTRATIONS GREATER THAN 0.3% (OR)</td>
</tr>
<tr>
<td>Waste Generation Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Report Cycle</td>
<td>2017</td>
</tr>
<tr>
<td>Hazardous Waste Page Number</td>
<td>6</td>
</tr>
<tr>
<td>Hazardous Waste Sub-Page Number</td>
<td>1</td>
</tr>
<tr>
<td>BR Form</td>
<td>GM</td>
</tr>
<tr>
<td>Waste Description</td>
<td>FLAMMABLE LIQUIDS</td>
</tr>
<tr>
<td>Primary NAICS</td>
<td>44611</td>
</tr>
<tr>
<td>Source Code</td>
<td>G11</td>
</tr>
<tr>
<td>Source Code Description</td>
<td>Discarding off-specification, out-of-date, and/or unused chemicals or products</td>
</tr>
<tr>
<td>Form Code</td>
<td>W219</td>
</tr>
<tr>
<td>Form Code Description</td>
<td>Other organic liquid (specify in comments)</td>
</tr>
</tbody>
</table>
Site Name: LONGS DRUG STORE #10848  
275 W KAAHUMANU AVE 1C01  
KAHULUI, HI 96732  

Database(s): [BRS, ECHO, FRS, RCRA_LQG] (cont.)

BRS (cont.)

Management Method: H141

Management Method Description: The site receiving this waste stored/bulked and transferred the waste with no treatment or recovery (H010-H129), fuel blending (H061), or disposal (H131-H135) at that receiving site.

Generation Tons: 0.0295
Managed Tons: 0
Shipped Tons: 0.0295
Received Tons: 0
Receiver ID: WAD020257945
Receiver State: WA
Shipper ID: HIR000143487
Shipper State: HI
Waste Minimization Code: X
Waste Minimization Code Description: No waste minimization efforts were implemented for this waste
Waste Code List: N/R
Waste Code Group: U002
Waste Code Group Description: 2-PROPANONE (I) (OR) ACETONE (I)
Waste Generation Type: N/R

Report Cycle: 2017
Hazardous Waste Page Number: 7
Hazardous Waste Sub-Page Number: 1
BR Form: GM
Waste Description: OXIDIZING LIQUIDS
Primary NAICS: 44611
Source Code: G11
Source Code Description: Discarding off-specification, out-of-date, and/or unused chemicals or products

Form Code: W119
Form Code Description: Other inorganic liquid (specify in comments)
Management Method: H141
Management Method Description: The site receiving this waste stored/bulked and transferred the waste with no treatment or recovery (H010-H129), fuel blending (H061), or disposal (H131-H135) at that receiving site.

Generation Tons: 0.0005
Managed Tons: 0
Shipped Tons: 0.0005
Received Tons: 0
Receiver ID: WAD020257945
Receiver State: WA
Shipper ID: HIR000143487
Shipper State: HI
Waste Minimization Code: X
Waste Minimization Code Description: No waste minimization efforts were implemented for this waste
Waste Code List: N/R
Waste Code Group: D001
Waste Code Group Description: IGNITABLE WASTE
Waste Generation Type: N/R
Site Name: LONGS DRUG STORE #10848
275 W KAIAHUMANU AVE 1C01
KAHULUI, HI 96732
Database(s): [BRS, ECHO, FRS, RCRA_LQG] (cont.)

**BRS (cont.)**

- **Report Cycle:** 2017
- **Hazardous Waste Page Number:** 8
- **Hazardous Waste Sub-Page Number:** 1
- **BR Form:** GM
- **Waste Description:** RX TOXIC LIQUIDS
- **Primary NAICS:** 44611
- **Source Code:** G11

**Source Code Description:** Discarding off-specification, out-of-date, and/or unused chemicals or products

- **Form Code:** W005
- **Form Code Description:** Waste pharmaceuticals managed as hazardous waste
- **Management Method:** H141

**Management Method Description:** The site receiving this waste stored/bulked and transferred the waste with no treatment or recovery (H010-H129), fuel blending (H061), or disposal (H131-H135) at that receiving site.

- **Generation Tons:** 0.0015
- **Managed Tons:** 0
- **Shipped Tons:** 0.0015
- **Received Tons:** 0
- **Receiver ID:** WAD020257945
- **Receiver State:** WA
- **Shipper ID:** HIR000143487
- **Shipper State:** HI

- **Waste Minimization Code:** X
- **Waste Minimization Code Description:** No waste minimization efforts were implemented for this waste

- **Waste Code List:** N/R
- **Waste Code Group:** UMIX
- **Waste Code Group Description:** U mixtures
- **Waste Generation Type:** N/R

**Report Cycle:** 2017
- **Hazardous Waste Page Number:** 9
- **Hazardous Waste Sub-Page Number:** 1
- **BR Form:** GM
- **Waste Description:** RX TOXIC SOLIDS
- **Primary NAICS:** 44611
- **Source Code:** G11

**Source Code Description:** Discarding off-specification, out-of-date, and/or unused chemicals or products

- **Form Code:** W005
- **Form Code Description:** Waste pharmaceuticals managed as hazardous waste
- **Management Method:** H141

**Management Method Description:** The site receiving this waste stored/bulked and transferred the waste with no treatment or recovery (H010-H129), fuel blending (H061), or disposal (H131-H135) at that receiving site.

- **Generation Tons:** 0.003
- **Managed Tons:** 0
- **Shipped Tons:** 0.003
Site Name: LONGS DRUG STORE #10848
275 W KAHHUMANU AVE 1C01
KAHULUI, HI 96732

Database(s): [BRS, ECHO, FRS, RCRA_LQG] (cont.)

BRS (cont.)
Received Tons: 0
Receiver ID: WAD020257945
Receiver State: WA
Shipper ID: HIR000143487
Shipper State: HI
Waste Minimization Code: X
Waste Minimization Code Description: No waste minimization efforts were implemented for this waste
Waste Code List: N/R
Waste Code Group: TCMT
Waste Code Group Description: D004-D011 combinations
Waste Generation Type: N/R

ECHO
Facility Name: LONGS DRUG STORE #10848
Facility Address: 275 W KAHHUMANU AVE 1C01, KAHULUI, HI 96732
County: MAUI

Site Details
Last Inspection Date: N/R
Registry ID: 110067047145
FIPS Code: 15009
EPA Region: 09
Inspection Count: 0
Last Inspection Days: N/R
Informal Count: 0
Last Informal Action Date: N/R
Formal Action Count: 0
Last Formal Action Date: N/R
Total Penalties: 0
Penalty Count: N/R
Last Penalty Date: N/R
Last Penalty Amount: N/R
QTRS IN NC: 0
Programs IN SNC: 0
Current Compliance Status: No Violation
Three-Year Compliance Status: ____________
Collection Method: ADDRESS MATCHING-HOUSE NUMBER
Reference Point: CENTER OF A FACILITY OR STATION
Accuracy Meters: 30
Derived Tribes: N/R
Derived HUC: 20020000
Derived WBD: 200200000103
Derived STCTY FIPS: 15009
Derived Zip: 96732
Derived CD113: 02
Derived CB2010: 150090311021000
MYRTK Universe: NNY
NPDES IDs: N/R
CWA Permit Types: N/R
CWA Compliance Tracking: N/R
CWA NAICS: N/R
CWA SICS: N/R
CWA Inspection Count: N/R
CWA Last Inspection Days: N/R
Site Name: LONGS DRUG STORE #10848
275 W KAAHUMANU AVE 1C01
KAHULUI, HI 96732

Database(s): [BRS, ECHO, FRS, RCRA_LQG] (cont.)

MAP Findings 2019
Map Id: F28
Direction: W
Distance: 0.203 mi.
Actual: 1071.722 ft.
Elevation: 0.003 mi. / 16.417 ft.
Relative: Higher

ECHO (cont.)
CWA Informal Count : N/R
CWA Formal Action Count : N/R
CWA Last Formal Action Date : N/R
CWA Penalties : N/R
CWA Last Penalty Date : N/R
CWA Last Penalty Amount : N/R
CWA Quarters IN NC : N/R
CWA Current Compliance Status : N/R
CWA Current SNC Flag : N
CWA 13 Quarters Compliance Status : N/R
CWA 13 Quarters Effluent Exceedances: N/R
CWA Three-Year QNCR Codes : N/R
DFR URL : Click here for hyperlink provided by the agency.
Facility SIC Codes : N/R
Facility NAICS Codes : 44611
Facility Last Inspection EPA Date : N/R
Facility Last Inspection State Date : N/R
Facility Last Formal Act EPA Date : N/R
Facility Last Formal Act State Date : N/R
Facility Last Informal Act EPA Date : N/R
Facility Last Informal Act State Date: N/R
Facility Federal Agency : N/R
TRI Reporter : N/R
Facility Imp Water Flag : N/R
Current SNC Flag : N
Indian County Flag : N
Federal Flag : N/R
US Mexico Border Flag : N/R
Chesapeake Bay Flag : N/R
AIR Flag : N
NPDES Flag : N
SDWIS Flag : N
RCRA Flag : Y
TRI Flag : N
GHG Flag : N
Major Flag : N/R
Active Flag : Y
NAA Flag : N/R
Latitude : 20.88875
Longitude : -156.47608
Last Date in Agency List : 12/17/2018

FRS
Facility Name : LONGS DRUG STORE #10848
Facility Address : 275 W KAAHUMANU AVE 1C01, KAHULUI, HI 96732
County : MAUI

Registry ID : 110067047145
FRS Facility URL : Click here for hyperlink provided by the agency.
Last Date in Agency List : 11/22/2018

Envirosite ID: 414165728
EPA ID: HIR000143487
**Source Description:**

RCRAInfo is EPA’s comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984 through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA. RCRAInfo also supports generation of the National Hazardous Waste Biennial Report. All generators and treatment, storage, and disposal facilities who handle hazardous waste are required to report to the EPA Administrator at least once every two years to support creation of the Biennial Report.

**Source Description:**

The Environmental Health Warehouse (EHW) contains the Hawaii Department of Health - Environmental Health Administration’s (HDOH-EHA) environmental data. The web-based application allows HDOH to inquire about sites in Hawaii that are regulated by the administration due to activities that affect the environment, regardless of the regulation or program that directly monitors those activities. The system allows users a consolidated view of sites without disrupting the underlying source systems or the staff involved as they process their day-to-day workload. The EHW offers geo-spatial and tabular inquiry, mapping, reconciliation/data consolidation, and GIS services.

**FRS Environmental Interest**

<table>
<thead>
<tr>
<th>Source and System ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI-EHW - 15495</td>
</tr>
<tr>
<td>RCRAINFO - HIR000143487</td>
</tr>
</tbody>
</table>

**RCRA_LQG**

<table>
<thead>
<tr>
<th>Facility Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONGS DRUG STORE #10848</td>
</tr>
<tr>
<td>Facility Address</td>
</tr>
<tr>
<td>275 W KAAHUMANU AVE 1C01, KAHULUI, HI 96732</td>
</tr>
<tr>
<td>County</td>
</tr>
<tr>
<td>MAUI</td>
</tr>
<tr>
<td>Date Form Received by Agency</td>
</tr>
<tr>
<td>20180259</td>
</tr>
<tr>
<td>EPA ID</td>
</tr>
<tr>
<td>HIR000143487</td>
</tr>
<tr>
<td>Mailing Address</td>
</tr>
<tr>
<td>ONE CVS DRIVE, WOONSOCKET, RI 02895</td>
</tr>
<tr>
<td>Contact</td>
</tr>
<tr>
<td>NICOLE WILKINSON</td>
</tr>
<tr>
<td>Contact Address</td>
</tr>
<tr>
<td>ONE CVS DRIVE MAIL CODE 2340, WOONSOCKET, RI 02895</td>
</tr>
<tr>
<td>Contact Country</td>
</tr>
<tr>
<td>US</td>
</tr>
<tr>
<td>Contact Telephone</td>
</tr>
<tr>
<td>401-770-7132</td>
</tr>
<tr>
<td>Contact Email</td>
</tr>
<tr>
<td><a href="mailto:NICOLE.WILKINSON@CVSHEALTH.COM">NICOLE.WILKINSON@CVSHEALTH.COM</a></td>
</tr>
<tr>
<td>EPA Region</td>
</tr>
<tr>
<td>09</td>
</tr>
<tr>
<td>Land Type</td>
</tr>
<tr>
<td>Private</td>
</tr>
<tr>
<td>Source Type</td>
</tr>
<tr>
<td>Annual/Biennial Report updated with Notification</td>
</tr>
<tr>
<td>Classification</td>
</tr>
<tr>
<td>Large Quantity Generator</td>
</tr>
</tbody>
</table>

**Description:**

Handlers that generate 1,000 kg or more of hazardous waste during any calendar month; or generate more than 1 kg of acutely hazardous waste during any calendar month; or generate more than 100 kg of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month; or generate 1 kg or less of acutely hazardous waste during any calendar month, and accumulate more than 1 kg of acutely hazardous waste at any time; or generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulated more than 100 kg of that material at any time.
### Site Information

<table>
<thead>
<tr>
<th>Site Name</th>
<th>LONGS DRUG STORE #10848</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>275 W KAAMANU AVE 1C01</td>
</tr>
<tr>
<td>City</td>
<td>KAHULUI</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>Zip Code</td>
<td>96732</td>
</tr>
</tbody>
</table>

### Database(s)

- BRS
- ECHO
- FRS
- RCRA_LQG (cont.)

### Elevation

- Relative: Higher

### Environment

- Map Id: F28
- Direction: W
- Distance: 0.203 mi.
- Elevation: 0.003 mi. / 16.417 ft.

### Envirosite ID

- 414165728

### EPA ID

- HIR000143487

### Owner/Operator Summary

- Owner/Operator Name: LONGS DRUG STORES CALIFORNIA, LLC
- Owner/Operator Address: ONE CVS DR, WOONSOCKET, RI 02895
- Owner/Operator Country: US
- Owner/Operator Telephone: 401-765-1500
- Owner/Operator Email: NICOLE.WILKINSON@CVSHEALTH.COM
- Owner/Operator Fax: N/R
- Legal Status: Private
- Owner/Operator Type: Operator
- Owner/Operator Start Date: 04/10/2015
- Owner/Operator End Date: N/R

- Owner/Operator Name: QKC MAUI OWNER, LLC
- Owner/Operator Address: 600 MONTGOMERY ST, 4TH FL, SAN FRANCISCO, CA 94111
- Owner/Operator Country: US
- Owner/Operator Telephone: 808-877-3369
- Owner/Operator Email: NICOLE.WILKINSON@CVSHEALTH.COM
- Owner/Operator Fax: N/R
- Legal Status: Private
- Owner/Operator Type: Owner
- Owner/Operator Start Date: 09/25/2010
- Owner/Operator End Date: N/R

### Handler Activities Summary

- U.S. Importer of Hazardous Waste: N
- Mixed Waste (Haz. and Radioactive): N
- Recycler of Hazardous Waste: N
- Transporter of Hazardous Waste: N
- Treater, Storer or Disposer of HW: N
- Underground Injection Activity: N
- On-site Burner Exemption: N
- Furnace Exemption: N
- Used Oil Fuel Burner: N
- Used Oil Processor: N
- Used Oil Refiner: N
- Used Oil Fuel Marketer to Burner: N
- Used Oil Specification Marketer: N
- Used Oil Transfer Facility: N
- Used Oil Transporter: N

### Historical Generators

- Date Form Received by Agency: 20170368
- Facility Name: LONGS DRUG STORE #10848
- Classification: Large Quantity Generator

- Date Form Received by Agency: 20151233
- Facility Name: LONGS DRUG STORE #10848
Map Id: F28  
Direction: W  
Distance: 0.203 mi.  
Actual: 1071.722 ft.  
Elevation: 0.003 mi. / 16.417 ft.  
Relative: Higher

Site Name: LONGS DRUG STORE #10848  
275 W KAAMIHANU AVE 1C01  
KAHULUI, HI 96732

Database(s): [BRS, ECHO, FRS, RCRA_LQG] (cont.)

Map Id: G29  
Direction: SSE  
Distance: 0.204 mi.  
Actual: 1078.831 ft.  
Elevation: 0.001 mi. / 6.562 ft.  
Relative: Lower

Site Name: MECO VEHICLE 411  
210 KAMEHAMEHA AVE  
KAHULUI, HI 96733

Database(s): [I C - HI, SHWS - HI]
**Site Name:**  MECO VEHICLE 411  
210 KAMEHAMEHA AVE  
KAHULUI, HI 96733

**Database(s):**  [I C - HI, SHWS - HI] (cont.)

### I C - HI (cont.)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Action Completed</td>
<td>01/11/2013</td>
</tr>
<tr>
<td>Lead Agency</td>
<td>HEER</td>
</tr>
<tr>
<td>Use Restrictions</td>
<td>Controls Required to Manage Contamination</td>
</tr>
<tr>
<td>Description of Restrictions</td>
<td>N/R</td>
</tr>
<tr>
<td>Engineering Control</td>
<td>N/R</td>
</tr>
<tr>
<td>Institutional Control</td>
<td>Government - Hawaii Dept. of Health Letter Issued</td>
</tr>
<tr>
<td>Date Issued</td>
<td>01/11/2013</td>
</tr>
<tr>
<td>Within Designated Areawide Contamination</td>
<td>N/R</td>
</tr>
<tr>
<td>Document Date</td>
<td>01/11/2013</td>
</tr>
<tr>
<td>Document Number</td>
<td>2013-021-JQN</td>
</tr>
</tbody>
</table>

**Document Subject:**  No Further Action Determination with Institutional Controls for Transformer No. 13702 (Incident ID 20090212-0700) and MECO Transmission Oil Release at MECO Facility: Kahului Baseyard

**Site Closure Document:**  No Further Action Letter - Restricted Use

**Project Manager:**  Jordan Nakayama

**Contact Information:**  (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782

**Last Date in Agency List:**  11/29/2018

### SHWS - HI

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Name</td>
<td>MECO Vehicle 411</td>
</tr>
<tr>
<td>Facility Address</td>
<td>210 Kamehameha Ave, Kahului, HI 96733</td>
</tr>
<tr>
<td>County</td>
<td>Maui</td>
</tr>
</tbody>
</table>

### Site Details

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDAR Environmental Interest Name</td>
<td>MECO Vehicle 411</td>
</tr>
<tr>
<td>Supplemental Location Text</td>
<td>N/R</td>
</tr>
<tr>
<td>HID Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Facility Registry Identifier</td>
<td>110013766576</td>
</tr>
<tr>
<td>Program Full Name</td>
<td>State</td>
</tr>
<tr>
<td>Potential Hazard and Controls</td>
<td>Hazard Managed With Controls</td>
</tr>
<tr>
<td>Assessment</td>
<td>Response Necessary</td>
</tr>
<tr>
<td>Priority</td>
<td>NFA</td>
</tr>
<tr>
<td>Nature of Contamination</td>
<td>N/R</td>
</tr>
<tr>
<td>Nature of Residual Contamination</td>
<td>TPH above EALs.</td>
</tr>
<tr>
<td>Response</td>
<td>Response Complete</td>
</tr>
<tr>
<td>Response Action Completed</td>
<td>01/11/2013</td>
</tr>
<tr>
<td>Lead Agency</td>
<td>HEER</td>
</tr>
<tr>
<td>Use Restrictions</td>
<td>Controls Required to Manage Contamination</td>
</tr>
<tr>
<td>Description of Restrictions</td>
<td>N/R</td>
</tr>
<tr>
<td>Engineering Control</td>
<td>N/R</td>
</tr>
<tr>
<td>Institutional Control</td>
<td>Government - Hawaii Dept. of Health Letter Issued</td>
</tr>
<tr>
<td>Date Issued</td>
<td>01/11/2013</td>
</tr>
<tr>
<td>Within Designated Areawide Contamination</td>
<td>N/R</td>
</tr>
<tr>
<td>Document Date</td>
<td>01/11/2013</td>
</tr>
</tbody>
</table>
### Site Name: MECO VEHICLE 411
210 KAMEHAMEHA AVE
KAHULUI, HI 96733

**Database(s):** [I C - HI, SHWS - HI] *(cont.)*

### Site Name: PAD-MOUNT TRANSFORMER MECO
210 W KAMEHAMEHA AVE
KAHULUI, HI 96732

**Database(s):** [SHWS - HI, SPILLS - HI]

---

#### SHWS - HI *(cont.)*

**Document Number:** 2013-021-JQN

**Document Subject:** No Further Action Determination with Institutional Controls for Transformer No. 13702 (Incident ID 20090212-0700) and MECO Transmission Oil Release at MECO Facility: Kahului Baseyard

**Site Closure Document:** No Further Action Letter - Restricted Use

**Project Manager:** Jordan Nakayama

**Contact Information:** (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782

**Last Date in Agency List:** 11/29/2018

**Tax Map Key Information**

- **Tax Map Key:** N/R
- **Description of Portion:** N/R

---

#### SHWS - HI

**Facility Name:** Pad-Mount Transformer MECO

**Facility Address:** 210 W Kamehameha Ave, Kahului, HI 96732

**County:** Maui

**Site Details**

- **SDAR Environmental Interest Name:** MECO Pad-Mount Transformer No. 8052
- **Supplemental Location Text:** N/R
- **HID Number:** N/R
- **Facility Registry Identifier:** N/R
- **Program Full Name:** State
- **Potential Hazard and Controls:** No Hazard
- **Assessment:** Response Necessary
- **Priority:** NFA
- **Nature of Contamination:** N/R
- **Nature of Residual Contamination:** Below HDOH EALs; TPH (<150 mg/kg), PCB (<0.5 mg/kg)
- **Response:** Response Complete
- **Response Action Completed:** 04/23/2012
- **Lead Agency:** HEER
- **Use Restrictions:** No Hazard Present For Unrestricted Residential Use
- **Description of Restrictions:** N/R
- **Engineering Control:** No Engineering Control Required
- **Institutional Control:** N/R
- **Date Issued:** N/R
Site Name: PAD-MOUNT TRANSFORMER MECO
210 W KAMEHAMEHA AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI] (cont.)

SHWS - HI (cont.)

Within Designated Areawide Contamination:
Document Date: 04/23/2012
Document Number: 2012-254-AH


Site Closure Document: No Further Action Letter - Unrestricted Residential Use
Project Manager: Amelia Hicks
Contact Information: (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: 238007033
Description of Portion: N/R

SPILLS - HI

Facility Name: Pad-Mount Transformer MECO
Facility Address: 210 W Kamehameha Ave, Kahului, 96732

Case Number: 20070727-1441
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: N/R
Activity Type: Response
Activity Lead: Liz Galvez
Activity Result: Refer to SDAR
Substances: Oil Lubricating
Quantity: 1 Gallons
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: Maui Electric Co., Inc.
Location Island: Maui
Supplemental Location: N/R
EP&R Environmental Interest: MECO Mobile Substation Transformer No. 8052
Was coordination needed on or off scene?: None

Tax Map Key: 238007033
Map Findings 2019

Envirosite ID: 320004370
EPA ID: N/R

Site Name: MAUI ELECTRIC COMPANY, LTD. KAHULUI BASE YARD
210 WEST KAMEHAMEHA AVE
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI]

LUST - HI

Facility Name: Maui Electric Company, Ltd. Kahului Base Yard
Facility Address: 210 West KAMEHAMEHA AVE, Kahului, HI 96732

Site Details
LUST Latest Status Date: 08/26/1999
LUST Latest Status: Site Cleanup Completed (NFA)
Facility ID: 9-500956
Event ID: 900017
Project Officer: Renato Maniulit
Last Date in Agency List: 01/10/2018

UST - HI

Facility Name: Maui Electric Company, Ltd. Kahului Base Yard
Facility Address: 210 West KAMEHAMEHA AVE, Kahului, HI 96732

Site Details
Facility ID: 9-500956
Formal Name: MAUI ELECTRIC CO., INC.
Address: P.O. BOX 398, Kahului, HI 96732
Latitude Measure: 20.88777
Longitude Measure: -156.47459
Horizontal Collection Method Name: GPS
Horizontal Reference Datum Name: NAD83
Last Date in Agency List: 01/10/2019

Tank Details
Installed Date: 10/04/1990
Date Closed: N/R
Tank ID: 1
Tank Status: Currently in Use
Tank Capacity: 6000
Product: Gasohol

Installed Date: N/R
Date Closed: 11/14/1989
Tank ID: R-1
Tank Status: Permanently Out of Use
Tank Capacity: 1000
Product: Gasoline

Installed Date: N/R
Date Closed: 11/14/1989
Tank ID: R-2
Tank Status: Permanently Out of Use
Tank Capacity: 6000
Product: Gasoline
Map Findings 2019

Map Id: G32
Direction: SSE
Distance: 0.204 mi.
Actual: 1078.953 ft.
Elevation: 0.001 mi. / 6.562 ft.
Relative: Lower

Site Name: MECO KAHULUI T & D BASE YARD
210 WEST KAMEHAMEHA AVE
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI]

LUST - HI

Facility Name: MECO Kahului T & D BASE YARD
Facility Address: 210 West KAMEHAMEHA AVE, Kahului, HI 96732

Site Details
LUST Latest Status Date: 08/26/1999
LUST Latest Status: Site Cleanup Completed (NFA)
Facility ID: 9-500956
Event ID: 900017
Project Officer: Renato Maniulit
Last Date in Agency List: 11/14/2015

UST - HI

Facility Name: MECO Kahului T & D BASE YARD
Facility Address: 210 West KAMEHAMEHA AVE, Kahului, HI 96732

Site Details
Facility ID: 9-500956
Formal Name: MAUI ELECTRIC CO., INC.
Address: P.O. BOX 398, Kahului, HI 96732
Latitude Measure: 20.88777
Longitude Measure: -156.47459
Horizontal Collection Method Name: GPS
Horizontal Reference Datum Name: NAD83
Last Date in Agency List: 11/14/2015

Tank Details
Installed Date: N/R
Date Closed: 11/14/1989
Tank ID: R-2
Tank Status: Permanently Out of Use
Tank Capacity: 6000
Product: Gasoline

Map Id: G33
Direction: SSE
Distance: 0.204 mi.
Actual: 1078.953 ft.
Elevation: 0.001 mi. / 6.562 ft.
Relative: Lower

Site Name: KAHULUI BASEYARD
210 W KAMEHAMEHA AVENUE
KAHULUI, HI 96732

Database(s): [RCRA_SQG]

RCRA_SQG

Facility Name: KAHULUI BASEYARD
Facility Address: 210 W KAMEHAMEHA AVENUE, KAHULUI, HI 96732
County: MAUI

Envirosite ID: 406777975
EPA ID: N/R

Envirosite ID: 414975250
EPA ID: HID006927164
RCRA_SQG (cont.)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Form Received by Agency</td>
<td>20030378</td>
</tr>
<tr>
<td>EPA ID</td>
<td>HID006927164</td>
</tr>
<tr>
<td>Mailing Address</td>
<td>PO BOX 398, KAHULUI, HI 96733-6898</td>
</tr>
<tr>
<td>Contact</td>
<td>DONN FUKADA</td>
</tr>
<tr>
<td>Contact Address</td>
<td>HI</td>
</tr>
<tr>
<td>Contact Country</td>
<td>US</td>
</tr>
<tr>
<td>Contact Telephone</td>
<td>808-543-4525</td>
</tr>
<tr>
<td>Contact Email</td>
<td>N/R</td>
</tr>
<tr>
<td>EPA Region</td>
<td>09</td>
</tr>
<tr>
<td>Land Type</td>
<td>Private</td>
</tr>
<tr>
<td>Source Type</td>
<td>Notification</td>
</tr>
<tr>
<td>Classification</td>
<td>Small Quantity Generator</td>
</tr>
<tr>
<td>Description</td>
<td>Handlers that generate more than 100 and less than 1000 kilograms of hazardous waste during any calendar month and accumulate less than 6000 kg of hazardous waste at any time; or generate 100 kg or less of hazardous waste during any calendar month, and accumulate more than 1000 kg of hazardous waste at any time.</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>12/21/2018</td>
</tr>
</tbody>
</table>

Owner/Operator Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner/Operator Name</td>
<td>MAUI ELEC CO, LTD</td>
</tr>
<tr>
<td>Owner/Operator Address</td>
<td>N/R</td>
</tr>
<tr>
<td>Owner/Operator Country</td>
<td>US</td>
</tr>
<tr>
<td>Owner/Operator Telephone</td>
<td>N/R</td>
</tr>
<tr>
<td>Owner/Operator Email</td>
<td>N/R</td>
</tr>
<tr>
<td>Owner/Operator Fax</td>
<td>N/R</td>
</tr>
<tr>
<td>Legal Status</td>
<td>Private</td>
</tr>
<tr>
<td>Owner/Operator Type</td>
<td>Operator</td>
</tr>
<tr>
<td>Owner/Operator Start Date</td>
<td>01/01/1933</td>
</tr>
<tr>
<td>Owner/Operator End Date</td>
<td>N/R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner/Operator Name</td>
<td>MAUI ELEC CO, LTD</td>
</tr>
<tr>
<td>Owner/Operator Address</td>
<td>N/R</td>
</tr>
<tr>
<td>Owner/Operator Country</td>
<td>US</td>
</tr>
<tr>
<td>Owner/Operator Telephone</td>
<td>N/R</td>
</tr>
<tr>
<td>Owner/Operator Email</td>
<td>N/R</td>
</tr>
<tr>
<td>Owner/Operator Fax</td>
<td>N/R</td>
</tr>
<tr>
<td>Legal Status</td>
<td>Private</td>
</tr>
<tr>
<td>Owner/Operator Type</td>
<td>Owner</td>
</tr>
<tr>
<td>Owner/Operator Start Date</td>
<td>01/01/1933</td>
</tr>
<tr>
<td>Owner/Operator End Date</td>
<td>N/R</td>
</tr>
</tbody>
</table>

Handler Activities Summary

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Importer of Hazardous Waste</td>
<td>N</td>
</tr>
<tr>
<td>Mixed Waste (Haz. and Radioactive)</td>
<td>N</td>
</tr>
<tr>
<td>Recycler of Hazardous Waste</td>
<td>N</td>
</tr>
<tr>
<td>Transporter of Hazardous Waste</td>
<td>N</td>
</tr>
<tr>
<td>Treater, Storer or Disposer of HW</td>
<td>N</td>
</tr>
<tr>
<td>Underground Injection Activity</td>
<td>N</td>
</tr>
<tr>
<td>On-site Burner Exemption</td>
<td>N</td>
</tr>
</tbody>
</table>
Map Findings

Map Id: G33
Direction: SSE
Distance: 0.204 mi.
Elevation: 0.001 mi. / 6.562 ft.
Relative: Lower

Site Name: KAHULUI BASEYARD
210 W KAMEHAMEHA AVENUE
KAHULUI, HI 96732

Database(s): [RCRA_SQG] (cont.)

RCRA_SQG (cont.)

- Furnace Exemption: N
- Used Oil Fuel Burner: N
- Used Oil Processor: N
- Used Oil Refiner: N
- Used Oil Fuel Marketer to Burner: N
- Used Oil Specification Marketer: Y
- Used Oil Transfer Facility: N
- Used Oil Transporter: N

Envirosite ID: 414975250
EPA ID: HID006927164

Historical Generators
- Date Form Received by Agency: 07/21/1993
- Facility Name: MAUI ELECTRIC COMPANY OFFICE COMPLEX
- Classification: Not a generator, verified

Hazardous Waste Summary
- Waste Code / Name:
  - D001 - IGNITABLE WASTE
  - D006 - CADMIUM
  - D008 - LEAD

Notices of Violations Summary
- Regulation Violated: N

Map Id: E34
Direction: ENE
Distance: 0.219 mi.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: KAHULUI SHOPPING CENTER
47 WEST KAHAHNANU AVENUE
KAHULUI, HI 96732

Database(s): [ECHO, RCRA_SQG]

ECHO
- Facility Name: KAHULUI SHOPPING CENTER
- Facility Address: 47 WEST KAHAHNANU AVENUE, KAHULUI, HI 96732
- County: MAUI

Site Details
- Last Inspection Date: N/R
- Registry ID: N/R
- FIPS Code: N/R
- EPA Region: 09
- Inspection Count: 0
- Last Inspection Days: N/R
- Informal Count: 0
- Last Informal Action Date: N/R
Site Name: KAHULUI SHOPPING CENTER
47 WEST KAHAUMANU AVENUE
KAHULUI, HI 96732

Database(s): [ECHO, RCRA_SQG] (cont.)

Formal Action Count: 0
Last Formal Action Date: N/R
Total Penalties: 0
Penalty Count: N/R
Last Penalty Date: N/R
Last Penalty Amount: N/R
QTRS IN NC: 0
Programs IN SNC: 0
Current Compliance Status: No Violation
Three-Year Compliance Status: 

Collection Method: Zip Code Centroid
Reference Point: N/R
Accuracy Meters: 10000
Derived Tribes: N/R
Derived HUC: N/R
Derived WBD: N/R
Derived STCTY FIPS: N/R
Derived Zip: N/R
Derived CD113: N/R
Derived CB2010: N/R
MYRTK Universe: NNN
NPDES IDs: N/R
CWA Permit Types: N/R
CWA Compliance Tracking: N/R
CWA NAICS: N/R
CWA SICS: N/R
CWA Inspection Count: N/R
CWA Last Inspection Days: N/R
CWA Informal Count: N/R
CWA Formal Action Count: N/R
CWA Last Formal Action Date: N/R
CWA Penalties: N/R
CWA Last Penalty Date: N/R
CWA Last Penalty Amount: N/R
CWA Quarters IN NC: N/R
CWA Current Compliance Status: N/R
CWA Current SNC Flag: N
CWA 13 Quarters Compliance Status: N/R
CWA 13 Quarters Effluent Exceedances: N/R
CWA Three-Year QNCR Codes: N/R
DFR URL: Click here for hyperlink provided by the agency.
Facility SIC Codes: N/R
Facility NAICS Codes: 531120
Facility Last Inspection EPA Date: N/R
Facility Last Inspection State Date: N/R
Facility Last Formal Act EPA Date: N/R
Facility Last Formal Act State Date: N/R
Facility Last Informal Act EPA Date: N/R
Facility Last Informal Act State Date: N/R
Facility Federal Agency: N/R
TRI Reporter: N/R
Facility Imp Water Flag: N/R
Current SNCFlag: N
Indian County Flag: N
Federal Flag: N/R
US Mexico Border Flag: N/R
Chesapeake Bay Flag: N/R
Map Findings 2019

Map Id: E34
Direction: ENE
Distance: 0.219 mi.
Actual: 1153.750 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: KAHULUI SHOPPING CENTER
47 WEST KAHAHUMANU AVENUE
KAHULUI, HI 96732

Database(s): [ECHO, RCRA_SQG] (cont.)

ECHO (cont.)

AIR Flag : N
NPDES Flag : N
SDWIS Flag : N
RCRA Flag : Y
TRI Flag : N
GHG Flag : N
Major Flag : N/R
Active Flag : Y
NAA Flag : N/R
Latitude : 20.55241
Longitude : -156.612422
Last Date in Agency List : 12/17/2018

RCRA_SQG

Facility Name : KAHULUI SHOPPING CENTER
Facility Address : 47 WEST KAHAHUMANU AVENUE, KAHULUI, HI 96732
County : MAUI

Date Form Received by Agency : 08/23/2018
EPA ID : HIR000145318
Mailing Address : PO BOX 266, PUUNENE, HI 96784
Contact : SEAN M O'KEEFE
Contact Address : PO BOX 266, PUUNENE, HI 96784
Contact Country : US
Contact Telephone : 808-877-2959
Contact Email : SOKEEFE@ABHI.COM
EPA Region : 09
Land Type : Private
Source Type : Notification
Classification : Small Quantity Generator
Description : Handlers that generate more than 100 and less than 1000 kilograms of hazardous waste during any calendar month and accumulate less than 6000 kg of hazardous waste at any time; or generate 100 kg or less of hazardous waste during any calendar month, and accumulate more than 1000 kg of hazardous waste at any time.

Last Date in Agency List : 12/21/2018

Owner/Operator Summary
Owner/Operator Name : A&B PROPERTIES HAWAII LLC SERIES R
Owner/Operator Address : 822 BISHOP STREET, HONOLULU, HI 96813
Owner/Operator Country : US
Owner/Operator Telephone : 808-877-2959
Owner/Operator Email : SOKEEFE@ABHI.COM
Owner/Operator Fax : 808-871-7663
Legal Status : Private
Owner/Operator Type : Operator
Owner/Operator Start Date : 20170232
Owner/Operator End Date : N/R
Map Findings

Map Id: E34
Direction: ENE
Distance: 0.219 mi.
Actual: 1153.750 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: KAHULUI SHOPPING CENTER
47 WEST KAAHUMANU AVENUE
KAHULUI, HI 96732

Database(s): [ECHO, RCRA_SQG] (cont.)

RCRA_SQG (cont.)

Owner/Operator Name: KAHULUI TOWN CENTER MASTER CONDO
Owner/Operator Address: 822 BISHOP STREET, HONOLULU, HI 96813
Owner/Operator Country: US
Owner/Operator Telephone: 808-877-2959
Owner/Operator Email: SOKEEFE@ABHI.COM
Owner/Operator Fax: 808-871-7663
Legal Status: Private
Owner/Operator Type: Owner
Owner/Operator Start Date: 04/12/2008
Owner/Operator End Date: N/R

Handler Activities Summary
U.S. Importer of Hazardous Waste: N
Mixed Waste (Haz. and Radioactive): N
Recycler of Hazardous Waste: N
Transporter of Hazardous Waste: N
Treater, Storer or Disposer of HW: N
Underground Injection Activity: N
On-site Burner Exemption: N
Furnace Exemption: N
Used Oil Fuel Burner: N
Used Oil Processor: N
Used Oil Refiner: N
Used Oil Fuel Marketer to Burner: N
Used Oil Specification Marketer: N
Used Oil Transfer Facility: N
Used Oil Transporter: N

Hazardous Waste Summary
Waste Code / Name:
D001 - IGNITABLE WASTE
D004 - ARSENIC
D008 - LEAD

Notices of Violations Summary
Regulation Violated: N

Map Id: F35
Direction: W
Distance: 0.222 mi.
Actual: 1173.233 ft.
Elevation: 0.003 mi. / 16.453 ft.
Relative: Higher

Site Name: SEARS ROEBUCK & CO
275 KAAHUMANU AVE
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI]

LUST - HI
Facility Name: SEARS ROEBUCK & CO
Site Name: SEARS ROEBUCK & CO
275 KAHAHUMANU AVE
KAHULUI, HI 96732
Database(s): [LUST - HI, UST - HI] (cont.)

LUST - HI (cont.)
Facility Address: 275 KAHAHUMANU AVE, Kahului, HI 96732

Site Details
LUST Latest Status Date: 06/16/1998
LUST Latest Status: Site Cleanup Completed (NFA)
Facility ID: 9-501848
Event ID: 940042
Project Officer: Jose Ruiz
Last Date in Agency List: 01/10/2018

UST - HI
Facility Name: SEARS ROEBUCK & CO
Facility Address: 275 KAHAHUMANU AVE, Kahului, HI 96732

Site Details
Facility ID: 9-501848
Formal Name: SEARS ROEBUCK & COMPANY
Address: Kahului, HI 96732
Latitude Measure: 20.888443
Longitude Measure: -156.472843
Horizontal Collection Method Name: Address Matching
Horizontal Reference Datum Name: NAD83
Last Date in Agency List: 01/10/2019

Tank Details
Installed Date: 05/06/1972
Date Closed: 11/01/1993
Tank ID: R-1
Tank Status: Permanently Out of Use
Tank Capacity: 500
Product: Used Oil

Site Name: SEARS AUTO CENTER
275 KAHAHUMANU AVE
KAHULUI, HI 96732
Database(s): [SHWS - HI]
Site Name: SEARS AUTO CENTER
275 KAHAHUMANU AVE
KAHULUI, HI 96732
Database(s): [SHWS - HI] (cont.)

Envirosite ID: 319997423
EPA ID: N/R

Site Details
SDAR Environmental Interest Name: Sears Auto Center PCB Contamination
Supplemental Location Text: #1000
HID Number: N/R
Facility Registry Identifier: 110006399879
Program Full Name: State
Potential Hazard and Controls: Hazard Undetermined
Assessment: Assessment Ongoing
Priority: Low
Nature of Contamination: N/R
Nature of Residual Contamination: N/R
Response: N/R
Response Action Completed: N/R
Lead Agency: HEER
Use Restrictions: Undetermined
Description of Restrictions: N/R
Engineering Control: N/R
Institutional Control: N/R
Date Issued: N/R
Within Designated Areawide Contamination: N/R
Document Date: N/R
Document Number: N/R
Document Subject: N/R
Site Closure Document: N/R
Project Manager: Unassigned
Contact Information: (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: 237002020
Description of Portion: Plotted in ArcGIS and compared to mautmk basemap - no load date. Plotted in Road, unable to match database site address to TMK address. Chose likely adjacent TMK.

Envirosite ID: 414263820
EPA ID: HID981637994

Site Name: SEARS ROEBUCK AND COMPANY
275 KAHAHUMANU AVE STE 1000
KAHULUI, HI 96732
Database(s): [RCRA_CESQG]

RCRA_CESQG
Facility Name: SEARS ROEBUCK AND COMPANY
Facility Address: 275 KAHAHUMANU AVE STE 1000, KAHULUI, HI 96732
County: MAUI
Map Id: F37  
Direction: W  
Distance: 0.222 mi.  
Actual: 1173.233 ft.  
Elevation: 0.003 mi. / 16.453 ft.  
Relative: Higher  

Site Name: SEARS ROEBUCK AND COMPANY  
275 KAAHUMANU AVE STE 1000  
KAHULUI, HI 96732  

Database(s): [RCRA_CESQG] (cont.)

RCRA_CESQG (cont.)

Date Form Received by Agency: 09/26/1993  
EPA ID: HID981637994  
Mailing Address: 275 KAAHUMANU AVE STE 1000, KAHULUI, HI 96732  
Contact: RICHARD INAMASU  
Contact Address: 275 KAAHUMANU AVE STE 1000, KAHULUI, HI 96732  
Contact Country: US  
Contact Telephone: 808-877-2290  
Contact Email: N/R  
EPA Region: 09  
Land Type: Other land type  
Source Type: Notification  
Classification: Conditionally Exempt Small Quantity Generator  

Description: Handlers that generate 100 kilograms or less of hazardous waste per calendar month, and accumulate 1000 kg or less of hazardous waste at any time; or generate one kilogram or less of acutely hazardous waste per calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste; or generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste.

Owner/Operator Summary

Owner/Operator Name: NOT REQUIRED  
Owner/Operator Address: NOT REQUIRED, NOT REQUIRED, ME 99999  
Owner/Operator Country: N/R  
Owner/Operator Telephone: 415-555-1212  
Owner/Operator Email: N/R  
Legal Status: Private  
Owner/Operator Type: Operator  
Owner/Operator Start Date: N/R  
Owner/Operator End Date: N/R

Owner/Operator Name: SEARS ROEBUCK AND CO  
Owner/Operator Address: NOT REQUIRED, NOT REQUIRED, ME 99999  
Owner/Operator Country: N/R  
Owner/Operator Telephone: 415-555-1212  
Owner/Operator Email: N/R  
Legal Status: Private  
Owner/Operator Type: Owner  
Owner/Operator Start Date: N/R  
Owner/Operator End Date: N/R

Handler Activities Summary

U.S. Importer of Hazardous Waste: N  
Mixed Waste (Haz. and Radioactive): N  
Recycler of Hazardous Waste: N
Map Id: F37  
Direction: W  
Distance: 0.222 mi.  
Actual: 1173.233 ft.  
Elevation: 0.003 mi. / 16.453 ft.  
Relative: Higher

Site Name: SEARS ROEBUCK AND COMPANY  
275 KAAHUMANU AVE STE 1000  
KAHULUI, HI 96732  

Database(s): [RCRA_CESQG] (cont.)

RCRA_CESQG (cont.)

Transporter of Hazardous Waste: N  
Treater, Storer or Disposer of HW: N  
Underground Injection Activity: N  
On-site Burner Exemption: N  
Furnace Exemption: N  
Used Oil Fuel Burner: N  
Used Oil Processor: N  
Used Oil Refiner: N  
Used Oil Fuel Marketer to Burner: N  
Used Oil Specification Marketer: N  
Used Oil Transfer Facility: N  
Used Oil Transporter: N

Notices of Violations Summary
Regulation Violated: N

Map Id: F38  
Direction: W  
Distance: 0.222 mi.  
Actual: 1173.233 ft.  
Elevation: 0.003 mi. / 16.453 ft.  
Relative: Higher

Site Name: MACYS WEST KAAHUMANU  
275 KAAHUMANU AVE STE 1100  
KAHULUI, HI 96732  

Database(s): [FRS, RCRA_CESQG]

FRS

Facility Name: MACYS WEST KAAHUMANU  
Facility Address: 275 KAAHUMANU AVE STE 1100, KAHULUI, HI 96732  
County: MAUI

Registry ID: 11001221922  
FRS Facility URL: Click here for hyperlink provided by the agency.  
Last Date in Agency List: 03/25/2014

Source Description:

RCRAInfo is EPA's comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984 through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA. RCRAInfo also supports generation of the National Hazardous Waste Biennial Report. All generators and treatment, storage, and disposal facilities who handle hazardous waste are required to report to the EPA Administrator at least once every two years to support creation of the Biennial Report.
Map Findings 2019

Map Id: F38
Direction: W
Distance: 0.222 mi.
Actual: 1173.233 ft.
Elevation: 0.003 mi. / 16.453 ft.
Relative: Higher

Site Name: MACYS WEST KAHAUMANU
275 KAHAUMANU AVE STE 1100
KAHULUI, HI 96732

Database(s): [FRS, RCRA_CESQG] (cont.)

Envirosite ID: 414267077
EPA ID: HIR000113506

FRS (cont.)

FRS Environmental Interest
Source and System ID: RCRINFO - HIR000113506

RCRA_CESQG

Facility Name: MACYS WEST KAHAUMANU
Facility Address: 275 KAHAUMANU AVE STE 1100, KAHAUMANU, HI 96732
County: MAUI

Date Form Received by Agency: 20020373
EPA ID: HIR000113506
Mailing Address: 1585 KAPIOLANI BLVD 13 FL BOX, HONOLULU, HI 96814
Contact: ERIC BRIENZO
Contact Address: 1585 KAPIOLANI BLVD 13 FL BOX, HONOLULU, HI 96814
Contact Country: US
Contact Telephone: 808-945-5913
Contact Email: N/R
EPA Region: 09
Land Type: Private
Source Type: Notification
Classification: Conditionally Exempt Small Quantity Generator

Description:
Handlers that generate 100 kilograms or less of hazardous waste per calendar month, and accumulate 1000 kg or less of hazardous waste at any time; or generate one kilogram or less of acutely hazardous waste per calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste; or generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste.

Owner/Operator Summary
Owner/Operator Name: MACYS WEST
Owner/Operator Address: 1585 KAPIOLANI BLVD 13 FL BOX, HONOLULU, HI 96814
Owner/Operator Telephone: N/R
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Type: Owner
Owner/Operator Start Date: N/R
Owner/Operator End Date: N/R

Handler Activities Summary
U.S. Importer of Hazardous Waste: N
Mixed Waste (Haz. and Radioactive): N
Recycler of Hazardous Waste: N
Transporter of Hazardous Waste: N
Treater, Storer or Disposer of HW: N
## MACYS WEST KAHAUMANU

### Site Details
- **Facility Name:** MACYS WEST KAHAUMANU
- **Facility Address:** 275 KAHAUMANU AVE STE 1100, KAHULUI, HI 96732
- **County:** N/A
- **Database:** [FRS, RCRA_CESQG] (cont.)

### Hazardous Waste Summary
- **Waste Code / Name:**
  - D001 - IGNITABLE WASTE
  - F002 - THE FOLLOWING SPENT HALOGENATED SOLVENTS: TETRACHLOROETHYLENE, METHYLENE CHLORIDE, TRICHLOROETHYLENE, 1,1,1-TRICHLOROETHANE, CHLOROBENZENE, 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE, ORTHO-DICHLOROBENZENE, TRICHLOROFUOROMETHANE, AND 1,1,2, TRICHLOROETHANE; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F001, F004, AND F005; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.

## O'REILLY AUTO PARTS STORE 3494

### Site Details
- **Facility Name:** O'REILLY AUTO PARTS STORE 3494
- **Facility Address:** 24 KAHAUMANU AVENUE STE 1, KAHULUI, HI 96732
- **County:** MAUI
- **Database:** [ECHO, FRS, RCRA_CESQG]

### Notices of Violations Summary
- **Regulation Violated:** N

---

### ECHO

- **Facility Name:** O'REILLY AUTO PARTS STORE 3494
- **Facility Address:** 24 KAHAUMANU AVENUE STE 1, KAHULUI, HI 96732
- **Registry ID:** 110059667061
- **FIPS Code:** 15009
- **EPA Region:** 09
- **Site Details:**
  - **Last Inspection Date:** N/R
  - **Database(s):** [ECHO, FRS, RCRA_CESQG]
Site Name: O'REILLY AUTO PARTS STORE 3494
24 KAHAHUMANU AVENUE STE 1
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_CESQG] (cont.)

ECHO (cont.)

<table>
<thead>
<tr>
<th>Inspection Count</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Inspection Days</td>
<td>N/R</td>
</tr>
<tr>
<td>Informal Count</td>
<td>0</td>
</tr>
<tr>
<td>Last Informal Action Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Formal Action Count</td>
<td>0</td>
</tr>
<tr>
<td>Last Formal Action Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Total Penalties</td>
<td>0</td>
</tr>
<tr>
<td>Penalty Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Last Penalty Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Last Penalty Amount</td>
<td>N/R</td>
</tr>
<tr>
<td>QTRS IN NC</td>
<td>0</td>
</tr>
<tr>
<td>Programs IN SNC</td>
<td>0</td>
</tr>
<tr>
<td>Current Compliance Status</td>
<td>No Violation</td>
</tr>
<tr>
<td>Three-Year Compliance Status</td>
<td></td>
</tr>
</tbody>
</table>

Collection Method: ADDRESS MATCHING-HOUSE NUMBER
Reference Point: ENTRANCE POINT OF A FACILITY OR STATION
Accuracy Meters: 50
Derived Tribes: N/R
Derived HUC: 20020000
Derived WBD: 200200000103
Derived STCTY FIPS: 15009
Derived Zip: 96732
Derived CD113: 02
Derived CB2010: 150090319002005
MYRTK Universe: NNN
NPDES IDs: N/R
CWA Permit Types: N/R
CWA Compliance Tracking: N/R
CWA NAICS: N/R
CWA SICS: N/R
CWA Inspection Count: N/R
CWA Last Inspection Days: N/R
CWA Informal Count: N/R
CWA Last Formal Action Date: N/R
CWA Penalties: N/R
CWA Last Penalty Date: N/R
CWA Last Penalty Amount: N/R
CWA Quarters IN NC: N/R
CWA Current Compliance Status: N/R
CWA Current SNC Flag: N
CWA 13 Quarters Compliance Status: N/R
CWA 13 Quarters Effluent Exceedances: N/R
CWA Three-Year QNCR Codes: N/R

DFR URL: Click here for hyperlink provided by the agency.
Facility SIC Codes: N/R
Facility NAICS Codes: 493110
Facility Last Inspection EPA Date: N/R
Facility Last Inspection State Date: N/R
Facility Last Formal Act EPA Date: N/R
Facility Last Formal Act State Date: N/R
Facility Last Informal Act EPA Date: N/R
Facility Last Informal Act State Date: N/R
Facility Federal Agency: N/R
TRI Reporter: N/R
Facility Imp Water Flag: N/R
Current SNC Flag: N
Site Name: O'REILLY AUTO PARTS STORE 3494
24 KAAHUMANU AVENUE STE 1
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_CESQG] (cont.)

ECHO (cont.)

Indian County Flag: N
Federal Flag: N/R
US Mexico Border Flag: N/R
Chesapeake Bay Flag: N/R
AIR Flag: N
NPDES Flag: N
SDWIS Flag: N
RCRA Flag: Y
TRI Flag: N
GHG Flag: N
Major Flag: N/R
Active Flag: Y
NAA Flag: N/R
Latitude: 20.891074
Longitude: -156.468086
Last Date in Agency List: 12/17/2018

FRS

Facility Name: O'REILLY AUTO PARTS STORE 3494
Facility Address: 24 KAAHUMANU AVENUE STE 1, KAHULUI, HI 96732-1618
County: MAUI

Registry ID: 110059667061
FRS Facility URL: Click here for hyperlink provided by the agency.
Last Date in Agency List: 11/22/2018

Source Description:

RCRAInfo is EPA’s comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984 through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA. RCRAInfo also supports generation of the National Hazardous Waste Biennial Report. All generators and treatment, storage, and disposal facilities who handle hazardous waste are required to report to the EPA Administrator at least once every two years to support creation of the Biennial Report.

Source Description:

The Environmental Health Warehouse (EHW) contains the Hawaii Department of Health - Environmental Health Administration's (HDOH-EHA) environmental data. The web-based application allows EHA to inquire about sites in Hawaii that are regulated by the administration due to activities that affect the environment, regardless of the regulation or program that directly monitors those activities. The system allows users a consolidated view of sites without disrupting the underlying source systems or the staff involved as they process their day-to-day workload. The EHW offers geo-spatial and tabular inquiry, mapping, reconciliation/data consolidation, and GIS services.
Map Findings

Map Id: E39
Direction: NE
Distance: 0.223 mi.
Actual: 1177.674 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: O'REILLY AUTO PARTS STORE 3494
24 KAAHUMANU AVENUE STE 1
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_CESQG] (cont.)

Envirosite ID: 414267307
EPA ID: HIR000141986

RCRA_CESQG

Facility Name: O'REILLY AUTO PARTS STORE 3494
Facility Address: 24 KAAHUMANU AVENUE STE 1, KAHULUI, HI 96732
County: MAUI

Date Form Received by Agency: 20140370
EPA ID: HIR000141986
Mailing Address: 233 S. PATTERSON AVE., SPRINGFIELD, MO 65802
Contact: JOHN E BOUNDS
Contact Address: 233 S. PATTERSON AVE., SPRINGFIELD, MO 65802
Contact Country: US
Contact Telephone: 417-520-4589
Contact Email: JBOUNDS2@OREILLYAUTO.COM
EPA Region: 09
Land Type: Private
Source Type: Notification
Classification: Conditionally Exempt Small Quantity Generator

Description:

Handlers that generate 100 kilograms or less of hazardous waste per calendar month, and accumulate 1000 kg or less of hazardous waste at any time; or generate one kilogram or less of acutely hazardous waste per calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste; or generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste.

Owner/Operator Summary

Owner/Operator Name: O'REILLY AUTO ENTERPRISES, LLC
Owner/Operator Address: 233 S. PATTERSON AVE., SPRINGFIELD, MO 65802
Owner/Operator Country: US
Owner/Operator Telephone: 417-520-4589
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Type: Operator
Owner/Operator Start Date: 01/01/2014
Owner/Operator End Date: N/R
Map Findings
2019

Map Id: E39
Direction: NE
Distance: 0.223 mi.
Actual: 1177.674 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: O'REILLY AUTO PARTS STORE 3494
24 KAHAHUMANU AVENUE STE 1
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_CESQG] (cont.)

RCRA_CESQG (cont.)

Handler Activities Summary
- U.S. Importer of Hazardous Waste: N
- Mixed Waste (Haz. and Radioactive): N
- Recycler of Hazardous Waste: N
- Transporter of Hazardous Waste: N
- Treater, Storer or Disposer of HW: N
- Underground Injection Activity: N
- On-site Burner Exemption: N
- Furnace Exemption: N
- Used Oil Fuel Burner: N
- Used Oil Processor: N
- Used Oil Refiner: N
- Used Oil Fuel Marketer to Burner: N
- Used Oil Specification Marketer: N
- Used Oil Transfer Facility: N
- Used Oil Transporter: N

Hazardous Waste Summary

Waste Code / Name:
- D001 - IGNITABLE WASTE
- D035 - METHYL ETHYL KETONE
- F002 - THE FOLLOWING SPENT HALOGENATED SOLVENTS: TETRACHLOROETHYLENE, METHYLENE CHLORIDE, TRICHLOROETHYLENE, 1,1,1-TRICHLOROETHANE, CHLOROBENZENE, 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE, ORTHO-DICHLOROBENZENE, TRICHLOROFUOROMETHANE, AND 1,1,2, TRICHLOROETHANE; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F001, F004, AND F005; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.
- F003 - THE FOLLOWING SPENT NONHALOGENATED SOLVENTS: XYLENE, ACETONE, ETHYL ACETATE, ETHYL BENZENE, ETHYL ETHER, METHYL ISOButYL KETONE, N-BUTYL ALCOHOL, CYCLOHEXANONE, AND METHANOL; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONLY THE ABOVE SPENT NONHALOGENATED SOLVENTS; AND ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONE OR MORE OF THE ABOVE NONHALOGENATED SOLVENTS, AND A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THOSE SOLVENTS LISTED IN F001, F002, F004, AND F005; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.
- F005 - THE FOLLOWING SPENT NONHALOGENATED SOLVENTS: TOLUENE, METHYL ETHYL KETONE, CARBON DISULFIDE, ISOBUTANOL, PYRIDINE, BENZENE, 2-ETHOXYETHANOL, AND 2-NITROPROPANE; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE NONHALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F001, F002, OR F004; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.
Site Name: O’REILLY AUTO PARTS STORE 3494
24 KAHAHUMANU AVENUE STE 1
KAHULUI, HI 96732

Database(s): [ECHO, FRS, RCRA_CESQG] (cont.)

Notices of Violations Summary
Regulation Violated: N

Site Name: MAUI MEAT COMPANY FACILITY (FORMER), UST CLOSURE
601 2ND ST
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI]
### Site Name: MAUI MEAT COMPANY FACILITY (FORMER), UST CLOSURE
601 2ND ST
KAHULUI, HI 96732

**Database(s):** [SHWS - HI, SPILLS - HI](cont.)

---

### Site Name: SUGAR MILL AUTO CARE CENTER
1130 PUUNENE AVE
PUUNENE, HI 96784

**Database(s):** [HIST LUST - HI, UST - HI]

---

### Map Findings

- **Map Id:** H40
- **Direction:** NE
- **Distance:** 0.290 mi.
- **Actual:** 1531.215 ft.
- **Elevation:** 0.001 mi. / 3.281 ft.
- **Relative:** Lower

---

### SHWS - HI (cont.)

**Tax Map Key Information**

- **Tax Map Key:** 237008002
- **Description of Portion:** N/R

---

### SPILLS - HI

- **Facility Name:** Maui Meat Company Facility (Former), UST Closure
- **Facility Address:** 601 2nd St, 2nd St and Wharf St, Kahului, 96732

**Case Number:** 19950110
**Activity End Date:** N/R
**HID Number:** 110013767245
**Activity Type:** Response
**Activity Lead:** Greg Olmsted
**Activity Result:** Refer to ISS
**Substances:** Diesel Fuel
**Quantity:** N/R
**Lead and Program:** HEER EP&R
**National Response Center Incident Report:** N/R
**Organization:** Alexander & Baldwin, Inc.
**Location Island:** Maui
**Supplemental Location:** N/R
**EP&R Environmental Interest:** Maui Meat Company, Inc. UST
**Was coordination needed on or off scene?:** N/R

**Tax Map Key:** 237008002

---

### Map Findings

- **Map Id:** 41
- **Direction:** ENE
- **Distance:** 0.290 mi.
- **Actual:** 1532.336 ft.
- **Elevation:** 0.001 mi. / 6.565 ft.
- **Relative:** Lower

---

### HIST LUST - HI

- **Facility Name:** SUGAR MILL AUTO CARE CENTER
- **Facility Address:** 1130 PUUNENE AVE, Puunene, HI 96784

**Installed Date:** 03/29/1969
**Facility ID:** 9-501906
**Tank ID:** R-3
**Tank Status Description:** Permanently Out of Use
**Tank Capacity:** 1500
**Substance Description:** Used Oil
Site Name: SUGAR MILL AUTO CARE CENTER  
1130 PUUNENE AVE  
PUUNENE, HI 96784

Database(s): [HIST LUST - HI, UST - HI] (cont.)

HIST LUST - HI (cont.)

Date Closed: 10/31/1991
Organization Name: A & B PROPERTIES, INC.
Organization Address: 1130 PUUNENE AVE, Puunene, HI 96784
Last Date in Agency list: 03/04/2014

Installed Date: 05/06/1966
Facility ID: 9-501906
Tank ID: R-1
Tank Status Description: Permanently Out of Use
Tank Capacity: 1500
Substance Description: Diesel
Date Closed: 10/31/1991
Organization Name: A & B PROPERTIES, INC.
Organization Address: 1130 PUUNENE AVE, Puunene, HI 96784
Last Date in Agency list: 03/04/2014

Installed Date: 05/06/1966
Facility ID: 9-501906
Tank ID: R-2
Tank Status Description: Permanently Out of Use
Tank Capacity: 1500
Substance Description: Diesel
Date Closed: 10/31/1991
Organization Name: A & B PROPERTIES, INC.
Organization Address: 1130 PUUNENE AVE, Puunene, HI 96784
Last Date in Agency list: 03/04/2014

Installed Date: 05/29/1966
Facility ID: 9-501906
Tank ID: R-4
Tank Status Description: Permanently Out of Use
Tank Capacity: 6000
Substance Description: Gasoline
Date Closed: 10/31/1991
Organization Name: A & B PROPERTIES, INC.
Organization Address: 1130 PUUNENE AVE, Puunene, HI 96784
Last Date in Agency list: 03/04/2014

Installed Date: 05/30/1966
Facility ID: 9-501906
Tank ID: R-5
Tank Status Description: Permanently Out of Use
Tank Capacity: 6000
Substance Description: Gasoline
Date Closed: 10/31/1991
Organization Name: A & B PROPERTIES, INC.
Organization Address: 1130 PUUNENE AVE, Puunene, HI 96784
Last Date in Agency list: 03/04/2014

UST - HI

Facility Name: SUGAR MILL AUTO CARE CENTER
Facility Address: 1130 PUUNENE AVE, Puunene, HI 96784
### Site Details

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility ID</td>
<td>9-501906</td>
</tr>
<tr>
<td>Formal Name</td>
<td>A &amp; B PROPERTIES, INC.</td>
</tr>
<tr>
<td>Address</td>
<td>Puunene, HI 96784</td>
</tr>
<tr>
<td>Latitude Measure</td>
<td>20.868186</td>
</tr>
<tr>
<td>Longitude Measure</td>
<td>-156.456636</td>
</tr>
<tr>
<td>Horizontal Collection Method Name</td>
<td>Map</td>
</tr>
<tr>
<td>Horizontal Reference Datum Name</td>
<td>NAD83</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>01/10/2019</td>
</tr>
</tbody>
</table>

### Tank Details

<table>
<thead>
<tr>
<th>Tank ID</th>
<th>Installed Date</th>
<th>Date Closed</th>
<th>Tank Status</th>
<th>Tank Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-3</td>
<td>03/29/1969</td>
<td>10/31/1991</td>
<td>Permanently Out of Use</td>
<td>1500</td>
</tr>
<tr>
<td>R-5</td>
<td>05/30/1966</td>
<td>10/31/1991</td>
<td>Permanently Out of Use</td>
<td>6000</td>
</tr>
<tr>
<td>R-4</td>
<td>05/29/1966</td>
<td>10/31/1991</td>
<td>Permanently Out of Use</td>
<td>6000</td>
</tr>
<tr>
<td>R-1</td>
<td>05/06/1966</td>
<td>10/31/1991</td>
<td>Permanently Out of Use</td>
<td>1500</td>
</tr>
<tr>
<td>R-2</td>
<td>05/06/1966</td>
<td>10/31/1991</td>
<td>Permanently Out of Use</td>
<td>1500</td>
</tr>
</tbody>
</table>
Site Name: CHEVRON STATION 94682
101 PUUNENE AVE
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI]
### CHEVRON STATION 94682

**Address:** 101 PUUNENE AVE, KAHULUI, HI 96732

**Database(s):** [LUST - HI, UST - HI] (cont.)

- **Installed Date:** 06/01/1983
- **Date Closed:** 06/04/2001
- **Tank ID:** R-3
- **Tank Status:** Permanently Out of Use
- **Tank Capacity:** 10000
- **Product:** Gasoline

### TESORO #61071

**Address:** 243 PUUNENE AVE, Kahului, HI 96732

**Database(s):** [LUST - HI, UST - HI]

- **Envirosite ID:** 11178775
- **EPA ID:** N/R

- **Site Name:** CHEVRON STATION 94682
- **Facility Name:** TESORO #61071
- **Facility Address:** 243 PUUNENE AVE, Kahului, HI 96732

#### LUST - HI

**Facility ID:** 9-502743

**Event ID:** 180009

**Project Officer:** Richard Takaba

**Last Date in Agency List:** 01/10/2018

**LUST Latest Status Date:** 01/05/2018

**LUST Latest Status:** Confirmed Release

**Facility Name:** TESORO #61071

**Facility Address:** 243 PUUNENE AVE, Kahului, HI 96732

**Database(s):** [LUST - HI, UST - HI]

- **Envirosite ID:** 31489754
- **EPA ID:** N/R

- **Site Name:** TESORO #61071
- **Facility Name:** TESORO #61071
- **Facility Address:** 243 PUUNENE AVE, Kahului, HI 96732

#### LUST - HI

**Facility ID:** 9-502743

**Formal Name:** HIE Retail LLC

**Address:** 1132 Bishop St., Ste 2500, Kahului, HI 96732

**Latitude Measure:** 20.885361

**Longitude Measure:** -156.464178

**Horizontal Collection Method Name:** GPS

**Horizontal Reference Datum Name:** NAD83
Site Name: TESORO #61071
243 PUUNENE AVE
KAHULUI, HI 96732
Database(s): [LUST - HI, UST - HI] (cont.)

UST - HI (cont.)

Last Date in Agency List: 01/10/2019

Tank Details

Tank ID: 1
 Installed Date: 02/01/1992
 Date Closed: N/R
 Tank Status: Currently In Use
 Tank Capacity: 10000
 Product: Gasohol

Tank ID: 2
 Installed Date: 02/01/1992
 Date Closed: N/R
 Tank Status: Currently In Use
 Tank Capacity: 10000
 Product: Gasohol

Tank ID: 3
 Installed Date: 02/01/1992
 Date Closed: N/R
 Tank Status: Temporarily out of Use
 Tank Capacity: 10000
 Product: Gasohol

Tank ID: 4
 Installed Date: 02/01/1992
 Date Closed: N/R
 Tank Status: Currently In Use
 Tank Capacity: 10000
 Product: Diesel

Site Name: ALOHA SHELL
110 S PUUNENE ST
KAHULUI, HI 96732
Database(s): [LUST - HI, UST - HI]

Facility Name: ALOHA SHELL
Facility Address: 110 S PUUNENE ST, Kahului, HI 96732
Site Name: ALOHA SHELL  
110 S PUUENE ST  
KAHULUI, HI 96732  

Database(s): [LUST - HI, UST - HI] (cont.)

LUST - HI (cont.)

Site Details
LUST Latest Status Date: 11/30/2012
LUST Latest Status: Site Cleanup Completed (NFA)
Facility ID: 9-501006
Event ID: 080014
Project Officer: Shaobin Li
Last Date in Agency List: 01/10/2018

UST - HI

Facility Name: ALOHA SHELL  
Facility Address: 110 S PUUENE ST, Kahului, HI 96732

Site Details
Facility ID: 9-501006
Formal Name: ALOHA PETROLEUM, LTD.
Address: 1132 BISHOP STREET, SUITE 1700, Kahului, HI 96732
Latitude Measure: 20.88831
Longitude Measure: -156.46635
Horizontal Collection Method Name: GPS
Horiztonal Reference Datum Name: NAD83
Last Date in Agency List: 08/23/2018

Tank Details
- Installed Date: 04/18/1988
- Date Closed: N/R
- Tank ID: 5
- Tank Status: Currently In Use
- Tank Capacity: 550
- Product: Used Oil

- Installed Date: 04/18/1982
- Date Closed: N/R
- Tank ID: 1
- Tank Status: Currently In Use
- Tank Capacity: 12000
- Product: Gasohol

- Installed Date: 04/18/1982
- Date Closed: N/R
- Tank ID: 2
- Tank Status: Currently In Use
- Tank Capacity: 12000
- Product: Gasohol

- Installed Date: 04/18/1982
- Date Closed: N/R
- Tank ID: 3
- Tank Status: Currently In Use
- Tank Capacity: 12000
**Site Name:** ALOHA SHELL  
110 S PUUNENE ST  
KAHULUI, HI 96732

**Database(s):** [LUST - HI, UST - HI] (cont.)

**Product:** Diesel

**Installed Date:** 04/18/1957  
**Date Closed:** 04/18/1988  
**Tank ID:** R-4  
**Tank Status:** Permanently Out of Use  
**Tank Capacity:** 550  
**Product:** Used Oil

---

**Site Name:** MCC-AUTOMOTIVE TECHNOLOGY BUILDING CONTAMINATION  
310 KAAHUMANU AVE  
KAHULUI, HI 96732

**Database(s):** [SHWS - HI, SPILLS - HI]

---

**Facility Name:** MCC-Automotive Technology Building Contamination  
**Facility Address:** 310 Kaahumanu Ave, Kahului, HI 96732  
**County:** Maui

---

**SDAR Environmental Interest Name:** MCC-Lead Contamination from Washing Operations  
**Supplemental Location Text:** Automotive Technology Building  
**HID Number:** N/R  
**Facility Registry Identifier:** 110013767593  
**Program Full Name:** State  
**Potential Hazard and Controls:** Hazard Undetermined  
**Assessment:** Assessment Ongoing  
**Priority:** NFA  
**Nature of Contamination:** N/R  
**Nature of Residual Contamination:** N/R  
**Response:** N/R  
**Response Action Completed:** 04/04/2003  
**Lead Agency:** HEER  
**Use Restrictions:** Undetermined  
**Description of Restrictions:** N/R  
**Engineering Control:** N/R  
**Institutional Control:** N/R  
**Date Issued:** N/R  
**Within Designated Areawide Contamination:** N/R  
**Document Date:** 04/04/2003  
**Document Number:** N/R  
**Document Subject:** N/R  
**Site Closure Document:** No Further Action - Type Undetermined  
**Project Manager:** Richard Palmer
Map Id: J45
Direction: W
Distance: 0.330 mi.
Actual: 1742.493 ft.
Elevation: 0.006 mi. / 29.531 ft.
Relative: Higher

Site Name: MCC-AUTOMOTIVE TECHNOLOGY BUILDING CONTAMINATION
310 KAHAHUMANU AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI] (cont.)

Contact Information:
(808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: N/R
Description of Portion: N/R

SPILLS - HI

Facility Name: MCC-Automotive Technology Building Contamination
Facility Address: 310 Kaahumanu Ave, Kahului, 96732

Case Number: 19990818-1019
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: 110013767593
Activity Type: Response
Activity Lead: Liz Galvez
Activity Result: Refer to ISST
Substances: lead
Quantity: N/R
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: State of Hawaii, University of Hawaii, Maui Community College
Location Island: Maui
Supplemental Location: Automotive Technology Building
EP&R Environmental Interest: MCC-Automotive Technology Building Contamination
Was coordination needed on or off scene?: No

Tax Map Key: N/R

Map Id: J46
Direction: W
Distance: 0.330 mi.
Actual: 1742.493 ft.
Elevation: 0.006 mi. / 29.531 ft.
Relative: Higher

Site Name: MAUI COMMUNITY COLLEGE
310 KAHAHUMANU AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, HAZNET - CA, LUST - HI, RCRA_CESQG, UST - HI]

ECHO

Facility Name: MAUI COMMUNITY COLLEGE
Facility Address: 310 KAHAHUMANU AVE, KAULUI, HI 96732
County: MAUI
Site Name: MAUI COMMUNITY COLLEGE
310 KAHAUMANU AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, HAZNET - CA, LUST - HI, RCRA_CESQG, UST - HI] (cont.)

ECHO (cont.)

Site Details

- Last Inspection Date: 08/27/2003
- Registry ID: 110005725750
- FIPS Code: N/R
- EPA Region: 09
- Inspection Count: 0
- Last Inspection Days: 5583
- Informal Count: 0
- Last Informal Action Date: N/R
- Formal Action Count: 0
- Last Formal Action Date: 06/26/2001
- Total Penalties: 0
- Penalty Count: N/R
- Last Penalty Date: 06/26/2001
- Last Penalty Amount: 10600
- QTRS IN NC: 0
- Programs IN SNC: 0
- Current Compliance Status: No Violation
- Three-Year Compliance Status: N/R
- Collection Method: ADDRESS MATCHING-HOUSE NUMBER
- Reference Point: ENTRANCE POINT OF A FACILITY OR STATION
- Accuracy Meters: 50
- Derived Tribes: N/R
- Derived HUC: 20020000
- Derived WBD: 200200000103
- Derived STCTY FIPS: 15009
- Derived Zip: 96732
- Derived CD113: 02
- Derived CB2010: 150090319002007
- MYRTK Universe: NNN
- NPDES IDs: HIF002161 HIF005944
- CWA Permit Types: Minor
- CWA Compliance Tracking: Off
- CWA NAICS: N/R
- CWA SICS: N/R
- CWA Inspection Count: N/R
- CWA Last Inspection Days: N/R
- CWA Informal Count: N/R
- CWA Formal Action Count: N/R
- CWA Last Formal Action Date: N/R
- CWA Penalties: N/R
- CWA Last Penalty Date: N/R
- CWA Last Penalty Amount: N/R
- CWA Quarters IN NC: 0
- CWA Current Compliance Status: No Violation
- CWA Current SNC Flag: N
- CWA 13 Quarters Compliance Status: N/R
- CWA 13 Quarters Effluent Exceedances: N/R
- CWA Three-Year QNCR Codes: N/R
- DFR URL: Click here for hyperlink provided by the agency.
- Facility SIC Codes: N/R
- Facility NAICS Codes: 61121 61131
- Facility Last Inspection EPA Date: N/R
- Facility Last Inspection State Date: 08/27/2003
- Facility Last Formal Act EPA Date: N/R
- Facility Last Formal Act State Date: 06/26/2001
Map Findings 2019

Map Id: J46
Direction: W
Distance: 0.330 mi.
Actual: 1742.493 ft.
Elevation: 0.006 mi. / 29.531 ft.
Relative: Higher

Site Name: MAUI COMMUNITY COLLEGE
310 KAAHUMANU AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, HAZNET - CA, LUST - HI, RCRA_CESQG, UST - HI] (cont.)

ECHO (cont.)

Facility Last Informal Act EPA Date: N/R
Facility Last Informal Act State Date: N/R
Facility Federal Agency: N/R
TRI Reporter: N/R
Facility Imp Water Flag: N/R
Current SNC Flag: N
Indian County Flag: N
Federal Flag: N/R
US Mexico Border Flag: N/R
Chesapeake Bay Flag: N/R
AIR Flag: N
NPDES Flag: Y
SDWIS Flag: N
RCRA Flag: Y
TRI Flag: N
GHG Flag: N
Major Flag: N/R
Active Flag: Y
NAA Flag: N/R
Latitude: 20.893079
Longitude: -156.462944
Last Date in Agency List: 12/17/2018

FRS

Facility Name: MAUI COMMUNITY COLLEGE
Facility Address: 310 KAAHUMANU AVE, KAHULUI, HI 96732-1644
County: MAUI
Registry ID: 1100005725750
FRS Facility URL: Click here for hyperlink provided by the agency.
Last Date in Agency List: 11/22/2018

Source Description:

RCRAInfo is EPA's comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984 through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste.

RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA. RCRAInfo also supports generation of the National Hazardous Waste Biennial Report. All generators and treatment, storage, and disposal facilities who handle hazardous waste are required to report to the EPA Administrator at least once every two years to support creation of the Biennial Report.

Source Description:

The Environmental Health Warehouse (EHW) contains the Hawaii Department of Health - Environmental Health Administration's (HDOH-EHA) environmental data. The web-based application allows HHA to inquire about sites in Hawaii that are regulated by the administration due to activities that affect the environment, regardless of the regulation or program that directly monitors those activities. The system allows users a consolidated view of sites without disrupting the underlying source systems or the staff involved as they process their day-to-day workload. The EHW offers geo-spatial and tabular inquiry, mapping, reconciliation/data consolidation, and GIS services.
Map Findings 2019

Map Id: J46
Direction: W
Distance: 0.330 mi.
Actual: 1742.493 ft.
Elevation: 0.006 mi. / 29.531 ft.
Relative: Higher

Site Name: MAUI COMMUNITY COLLEGE
310 KAHAHUMANU AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, HAZNET - CA, LUST - HI, RCRA_CESQG, UST - HI] (cont.)

FRS (cont.)

Source Description:

The NPDES module of the Compliance Information System (ICIS) tracks surface water permits issued under the Clean Water Act. Under NPDES, all facilities that discharge pollutants from any point source into waters of the United States are required to obtain a permit. The permit will likely contain limits on what can be discharged, impose monitoring and reporting requirements, and include other provisions to ensure that the discharge does not adversely affect water quality.

FRS Environmental Interest
Source and System ID:
HI-EHW - 8193
ICIS - HIF002161
ICIS - HIF005944
RCRAIN - HID981975170

HAZNET - CA

Facility Name: MAUI COMMUNITY COLLEGE
Facility Address: 310 KAHAHUMANU AVE, KAHULUI, HI 96732
County: Unknown

Site Details
Year: 2003
Contact Name: DAVID TAMANAHA
Facility Mailing Address: 310 KAHAHUMANU AVE, KAHULUI, HI 96732
Contact Phone: 8089843253

Year: 2001
Contact Name: DAVID TAMANAHA
Facility Mailing Address: 310 KAHAHUMANU AVE, KAHULUI, HI 96732
Contact Phone: 8089843253

Waste Generator Summary 2003
Generator EPA ID: HID981975170
Generator County: Unknown
TSDF EPA ID: CAD059494310
TSDF Disposal County: Santa Clara
State Waste: Laboratory waste chemicals
Disposal Method: Transfer station
Tons: 0.0025

Generator EPA ID: HID981975170
Generator County: Unknown
TSDF EPA ID: CAD059494310
TSDF Disposal County: Santa Clara
State Waste: Paint sludge
Disposal Method: Transfer station
Tons: 0.1
Site Name: MAUI COMMUNITY COLLEGE
310 KAHAUMANU AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, HAZNET - CA, LUST - HI, RCRA_CESQG, UST - HI] (cont.)

HAZNET - CA (cont.)

Generator EPA ID: HID981975170
Generator County: Unknown
TSDF EPA ID: CAT000646117
TSDF Disposal County: Kings
State Waste: Polychlorinated biphenyls and material containing PCBs
Disposal Method: Disposal, landfill
Tons: 0.4959

Waste Generator Summary 2001
Generator EPA ID: HID981975170
Generator County: Unknown
TSDF EPA ID: CAD059494310
TSDF Disposal County: Santa Clara
State Waste: Unspecified solvent mixture
Disposal Method: Disposal, other
Tons: 0.15

Waste Generator Summary 2000
Generator EPA ID: HID981975170
Generator County: Unknown
TSDF EPA ID: CAD088504881
TSDF Disposal County: Orange
State Waste: Blank or unknown
Disposal Method: Transfer station
Tons: 0.01

LUST - HI

Facility Name: MAUI COMMUNITY COLLEGE
Facility Address: 310 KAHAUMANU AVE, Kahului, HI 96732

Site Details
LUST Latest Status Date: 05/06/2005
LUST Latest Status: Site Cleanup Completed (NFA)
Facility ID: 9-502687
Event ID: 990071
Project Officer: Chad Pritchard
Last Date in Agency List: 01/10/2018

RCRA_CESQG

Facility Name: MAUI COMMUNITY COLLEGE
Facility Address: 310 KAHAUMANU AVE, KAHULUI, HI 96732
County: MAUI

Date Form Received by Agency: 05/14/2000
EPA ID: HID981975170
Mailing Address: 310 KAHAUMANU AVE, KAHULUI, HI 96732
Contact: DAVID TAMANAHA
Map Findings 2019

Map Id: J46
Direction: W
Distance: 0.330 mi.
Actual: 1742.493 ft.
Elevation: 0.006 mi. / 29.531 ft.
Relative: Higher

Site Name: MAUI COMMUNITY COLLEGE
310 KAHAUMANU AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, HAZNET - CA, LUST - HI, RCRA_CESQG, UST - HI] (cont.)

Envirosite ID: 356178957
EPA ID: HID981975170

RCRA_CESQG (cont.)

Contact Address: 310 KAHAUMANU AVE, KAHULUI, HI 96732
Contact Country: US
Contact Telephone: 808-984-3253
Contact Email: N/R
EPA Region: 09
Land Type: State
Source Type: Notification
Classification: Conditionally Exempt Small Quantity Generator

Description:

Handlers that generate 100 kilograms or less of hazardous waste per calendar month, and accumulate 1000 kg or less of hazardous waste at any time; or generate one kilogram or less of acutely hazardous waste per calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste; or generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulate at any time: 1 kg or less of acutely hazardous waste; or 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste.

Owner/Operator Summary

Owner/Operator Name: NOT REQUIRED
Owner/Operator Address: NOT REQUIRED, NOT REQUIRED, ME 99999
Owner/Operator Country: N/R
Owner/Operator Telephone: 415-555-1212
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Legal Status: State
Owner/Operator Type: Operator
Owner/Operator Start Date: N/R
Owner/Operator End Date: N/R

Owner/Operator Name: UNIVERSITY OF HAWAII
Owner/Operator Address: 2040 EAST WEST ROAD, HONOLULU, HI 96822
Owner/Operator Country: N/R
Owner/Operator Telephone: 808-956-3198
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Legal Status: State
Owner/Operator Type: Owner
Owner/Operator Start Date: N/R
Owner/Operator End Date: N/R

Handler Activities Summary

U.S. Importer of Hazardous Waste: N
Mixed Waste (Haz. and Radioactive): N
Recycler of Hazardous Waste: N
Transporter of Hazardous Waste: N
Treater, Storer or Disposer of HW: N
Underground Injection Activity: N
Map Findings 2019

Map Id: J46
Direction: W
Distance: 0.330 mi.
Actual: 1742.493 ft.
Elevation: 0.006 mi. / 29.531 ft.
Relative: Higher

Site Name: MAUI COMMUNITY COLLEGE
310 KAAHUMANU AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, HAZNET - CA, LUST - HI, RCRA_CESQG, UST - HI] (cont.)

Envirosite ID: 356178957
EPA ID: HID981975170

RCRA_CESQG (cont.)

- On-site Burner Exemption: N
- Furnace Exemption: N
- Used Oil Fuel Burner: N
- Used Oil Processor: N
- Used Oil Refiner: N
- Used Oil Fuel Marketer to Burner: N
- Used Oil Specification Marketer: N
- Used Oil Transfer Facility: N
- Used Oil Transporter: N

Hazardous Waste Summary
- Waste Code / Name:
  D000 - DESCRIPTION
  D001 - IGNITABLE WASTE
  D002 - CORROSIVE WASTE
  D003 - REACTIVE WASTE
  P012 - ARSENIC OXIDE AS2O3 (OR) ARSENIC TRIOXIDE
  P098 - POTASSIUM CYANIDE (OR) POTASSIUM CYANIDE K(CN)
  P106 - SODIUM CYANIDE (OR) SODIUM CYANIDE NA(CN)
  U012 - ANILINE (I,T) (OR) BENZENAMINE (I,T)
  U019 - BENZENE (I,T)
  U044 - CHLOROFORM (OR) METHANE, TRICHLORO-
  U170 - P-NITROPHENOL (I,T) (OR) PHENOL, 4-NITRO-
  U201 - 1,3-BENZENEDIOL (OR) RESORCINOL
  U211 - BENZENE, DIMETHYL- (I,T) (OR) XYLENE (I)

Notices of Violations Summary
- Date of Violation: 10/29/1998
- Date Achieved Compliance: 06/17/2001
- Regulation Violated: Y
- Area of Violation: Generators - General
- Enforcement Action: N/R
- Enforcement Action Date: N/R
- Enf. Disp. Status Date: N/R
- Violation Lead Agency: State
- Enforcement Lead Agency: N/R
- Proposed Penalty Amount: N/R
- Final Penalty Amount: N/R
- Paid Penalty Amount: N/R

- Date of Violation: 10/29/1998
- Date Achieved Compliance: 06/17/2001
- Regulation Violated: Y
- Area of Violation: TSD - General
- Enforcement Action: N/R
- Enforcement Action Date: N/R
- Enf. Disp. Status Date: N/R
Site Name: MAUI COMMUNITY COLLEGE
310 KAHAHUMANU AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, HAZNET - CA, LUST - HI, RCRA_CESQG, UST - HI] (cont.)

Envirosite ID: 356178957
EPA ID: HID981975170

Evaluation Action Summary

RCRA_CESQG (cont.)
Violation Lead Agency: State
Enforcement Lead Agency: N/R
Proposed Penalty Amount: N/R
Final Penalty Amount: N/R
Paid Penalty Amount: N/R

Evaluation Date: 08/23/2003
Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE
Area of Violation: N/R
Date Achieved Compliance: N/R
Evaluation Lead Agency: State

Evaluation Date: 06/17/2001
Evaluation: NOT A SIGNIFICANT NON-COMPLIER
Area of Violation: N/R
Date Achieved Compliance: N/R
Evaluation Lead Agency: State

Evaluation Date: 01/18/2000
Evaluation: SIGNIFICANT NON-COMPLIER
Area of Violation: N/R
Date Achieved Compliance: N/R
Evaluation Lead Agency: State

Evaluation Date: 10/29/1998
Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE
Area of Violation: Generators - General
Date Achieved Compliance: 06/17/2001
Evaluation Lead Agency: State

Evaluation Date: 10/29/1998
Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE
Area of Violation: TSD - General
Date Achieved Compliance: 06/17/2001
Evaluation Lead Agency: State

Evaluation Date: 05/13/1992
Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE
Area of Violation: N/R
Date Achieved Compliance: N/R
Evaluation Lead Agency: State

UST - HI
Facility Name: MAUI COMMUNITY COLLEGE
Facility Address: 310 KAHAHUMANU AVE, Kahului, HI 96732
Map Findings 2019

Site Name: MAUI COMMUNITY COLLEGE
310 KAHAHUMANU AVE
KAHULUI, HI 96732

Database(s): [ECHO, FRS, HAZNET - CA, LUST - HI, RCRA_CESQG, UST - HI] (cont.)

UST - HI (cont.)

Facility ID: 9-502687
Formal Name: STATE U.H. - MAUI COMMUNITY COLLEGE
Address: 310 KAHAHUMANU AVE, Kahului, HI 96732
Latitude Measure: 20.889787
Longitude Measure: -156.47715
Horizontal Collection Method Name: GPS
Horizontal Reference Datum Name: NAD83
Last Date in Agency List: 01/10/2019

Tank Details

Installed Date: 06/30/1980
Date Closed: 11/19/1998
Tank ID: R-1
Tank Status: Permanently Out of Use
Tank Capacity: 300
Product: Used Oil

Installed Date: N/R
Date Closed: 06/09/1998
Tank ID: R-2
Tank Status: Permanently Out of Use
Tank Capacity: 750
Product: Gasoline

Lot: F3 South Wakea Avenue
Facility Address: 231 S Wakea Ave, Kahului, HI 96732
County: Maui

SDAR Environmental Interest Name: Lot F3 South Wakea Avenue
Supplemental Location Text: N/R
HID Number: N/R
Facility Registry Identifier: N/R
Program Full Name: State
Potential Hazard and Controls: Hazard Managed With Controls
Assessment: Response Necessary
Priority: NFA
Nature of Contamination: N/R
Site Name: LOT F3 SOUTH WAKEA AVENUE
231 S WAKEA AVE
KAHULUI, HI 96732

Database(s): [I C - HI, SHWS - HI] (cont.)

I C - HI (cont.)

Nature of Residual Contamination: PCBs, metals and petroleum hydrocarbons.
Response: Response Complete
Response Action Completed: 04/10/2012
Lead Agency: HEER
Use Restrictions: Controls Required to Manage Contamination
Description of Restrictions: N/R
Engineering Control: Engineering Control Required
Institutional Control: Government - Hawaii Dept. of Health Letter Issued
Date Issued: 02/28/2011
Within Designated Areawide Contamination: N/R
Document Date: 04/10/2012

Document Subject: No Further Action with Engineering Institutional Control Determination for Lot F3, 231 South Wakea Ave, Kahului, Maui, TMK 2-3-7-002-029
Site Closure Document: No Further Action Letter - Restricted Use
Project Manager: John Peard
Contact Information: (808) 933-9921, Environmental Health Bldg, 1582 Kamehameha Ave, Hilo, HI 96720
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: 237002029
Description of Portion: N/R

SHWS - HI

Facility Name: Lot F3 South Wakea Avenue
Facility Address: 231 S Wakea Ave, Kahului, HI 96732
County: Maui

Site Details
SDAR Environmental Interest Name: Lot F3 South Wakea Avenue
Supplemental Location Text: N/R
HID Number: N/R
Facility Registry Identifier: N/R
Program Full Name: State
Potential Hazard and Controls: Hazard Managed With Controls
Assessment: Response Necessary
Priority: NFA
Nature of Contamination: N/R
Nature of Residual Contamination: PCBs, metals and petroleum hydrocarbons.
Response: Response Complete
Response Action Completed: 04/10/2012
Lead Agency: HEER
Use Restrictions: Controls Required to Manage Contamination
Description of Restrictions: N/R
Engineering Control: Engineering Control Required
Institutional Control: Government - Hawaii Dept. of Health Letter Issued
### SHWS - HI (cont.)

- **Site Name:** LOT F3 SOUTH WAKEA AVENUE  
  231 S WAKEA AVE  
  KAHLULUI, HI 96732  
- **Database(s):** [I C - HI, SHWS - HI](cont.)  
- **Envirosite ID:** 11230063  
- **EPA ID:** N/R

#### Site Details:
- **Document Date:** 04/10/2012  
- **Document Number:** 2012-230-JP  
- **Document Subject:** No Further Action with Engineering Institutional Control Determination for Lot F3, 231 South Wakea Ave, Kahului, Maui, TMK 2-3-7-002-029

#### Contact Information:
- **Project Manager:** John Peard  
- **Contact Information:** (808) 933-9921, Environmental Health Bldg, 1582 Kamehameha Ave, Hilo, HI 96720

#### Map Id: 47
- **Direction:** SW  
- **Distance:** 0.332 mi.  
- **Actual:** 1754.844 ft.  
- **Elevation:** 0.006 mi. / 30.446 ft.  
- **Relative:** Higher

### LUST - HI

- **Site Name:** J'S SHELL STATION  
  147 S PUUNENE AVE  
  KAHLULUI, HI 96732  
- **Database(s):** [LUST - HI, UST - HI]

#### Site Details:
- **LUST Latest Status Date:** 02/11/2011  
- **LUST Latest Status:** Site Cleanup Completed (NFA)  
- **Facility ID:** 9-500422  
- **Event ID:** 060024  
- **Project Officer:** Shunsheng Fu  
- **Last Date in Agency List:** 11/29/2018

#### Contact Information:
- **Project Manager:** John Peard  
- **Contact Information:** (808) 933-9921, Environmental Health Bldg, 1582 Kamehameha Ave, Hilo, HI 96720

#### Map Id: I48
- **Direction:** E  
- **Distance:** 0.336 mi.  
- **Actual:** 1776.022 ft.  
- **Elevation:** 0.001 mi. / 3.281 ft.  
- **Relative:** Lower

### Tax Map Key Information
- **Tax Map Key:** 237002029  
- **Description of Portion:** N/R
**Site Name:** J'S SHELL STATION  
147 S PUUNENE AVE  
KAHULUI, HI 96732

**Database(s):** [LUST - HI, UST - HI] *(cont.)*

### UST - HI

<table>
<thead>
<tr>
<th>Facility Name:</th>
<th>J’S SHELL STATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Address:</td>
<td>147 S PUUNENE AVE, Kahului, HI 96732</td>
</tr>
</tbody>
</table>

#### Site Details

| Facility ID: | 9-500422 |
| Formal Name: | EQUILON ENTERPRISES, LLC DBA SHELL OIL PRODUCTS US |
| Address: | 2555 13TH AVE, SW, Kahului, HI 96732 |
| Latitude Measure: | 20.887855 |
| Longitude Measure: | -156.46551 |
| Horizontal Collection Method Name: | GPS |
| Horizontal Reference Datum Name: | NAD83 |
| Last Date in Agency List: | 01/10/2019 |

#### Tank Details

- **Installed Date:** 12/30/1991  
  **Date Closed:** 04/01/2006  
  **Tank ID:** R-1  
  **Status:** Permanently Out of Use  
  **Capacity:** 550  
  **Product:** Used Oil

- **Installed Date:** 12/30/1991  
  **Date Closed:** 04/01/2006  
  **Tank ID:** R-87  
  **Status:** Permanently Out of Use  
  **Capacity:** 10000  
  **Product:** Gasoline

- **Installed Date:** 12/30/1991  
  **Date Closed:** 04/01/2006  
  **Tank ID:** R-89  
  **Status:** Permanently Out of Use  
  **Capacity:** 10000  
  **Product:** Gasoline

- **Installed Date:** 12/30/1991  
  **Date Closed:** 10/29/1991  
  **Tank ID:** R-4  
  **Status:** Permanently Out of Use  
  **Capacity:** 4000  
  **Product:** Gasoline
**J'S SHELL STATION**
147 S PUUNENE AVE
KAHULUI, HI 96732

**Database(s)**: [LUST - HI, UST - HI] (cont.)

**UST - HI (cont.)**

- **Installed Date**: 02/07/1964
- **Date Closed**: 10/29/1991
- **Tank ID**: R-1
- **Tank Status**: Permanently Out of Use
- **Tank Capacity**: 550
- **Product**: Used Oil

- **Installed Date**: 02/07/1963
- **Date Closed**: 10/29/1991
- **Tank ID**: R-2
- **Tank Status**: Permanently Out of Use
- **Tank Capacity**: 4000
- **Product**: Gasoline

- **Installed Date**: 02/07/1963
- **Date Closed**: 10/29/1991
- **Tank ID**: R-3
- **Tank Status**: Permanently Out of Use
- **Tank Capacity**: 4000
- **Product**: Gasoline

**WAKEA PAPA JOHN'S 76 (#301)**
9 S WAKEA AVE
KAHULUI, HI 96732

**Database(s)**: [LUST - HI, UST - HI]

**LUST - HI**

- **Facility Name**: Wakea Papa John's 76 (#301)
- **Facility Address**: 9 S WAKEA AVE, Kahului, HI 96732

**Site Details**

- **LUST Latest Status Date**: 08/10/2018
- **LUST Latest Status**: Suspected release
- **Facility ID**: 9-500007
- **Event ID**: suspected
- **Project Officer**: Nicole Okino
- **Last Date in Agency List**: 01/10/2018

- **LUST Latest Status Date**: 08/18/2011
- **LUST Latest Status**: Site Cleanup Completed with EHE/EHMP
- **Facility ID**: 9-500007
- **Event ID**: 950017
- **Project Officer**: Nicole Okino
- **Last Date in Agency List**: 01/10/2018
Map Findings 2019

Site Name: WAKEA PAPA JOHN’S 76 (#301)
9 S WAKEA AVE
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI] (cont.)

Envirosite ID: 340339273
EPA ID: N/R

UST - HI

Facility Name: Wakea Papa John's 76 (#301)
Facility Address: 9 S WAKEA AVE, Kahului, HI 96732

Site Details

Facility ID: 9-500007
Formal Name: HIE Retail LLC
Address: 1132 Bishop St., Ste 2500, Kahului, HI 96732
Latitude Measure: 20.888448
Longitude Measure: -156.47838
Horizontal Collection Method Name: GPS
Horizontal Reference Datum Name: NAD83
Last Date in Agency List: 01/10/2019

Facility ID: 9-500007
Formal Name: Mid Pac Petroleum LLC
Address: 1132 Bishop Street, Suite 2500, Kahului, HI 96732
Latitude Measure: 20.888448
Longitude Measure: -156.47838
Horizontal Collection Method Name: GPS
Horizontal Reference Datum Name: NAD83
Last Date in Agency List: 01/10/2019

Facility ID: 9-500007
Formal Name: Mid Pac Petroleum LLC
Address: 677 Ala Moana Blvd Suite 625, Kahului, HI 96732
Latitude Measure: 20.888448
Longitude Measure: -156.47838
Horizontal Collection Method Name: GPS
Horizontal Reference Datum Name: NAD83
Last Date in Agency List: 01/10/2019

Tank Details

Installed Date: 02/27/1995
Date Closed: 07/13/2010
Tank ID: r-3
Tank Status: Permanently out of Use
Tank Capacity: 520
Product: Used Oil

Installed Date: 02/27/1995
Date Closed: N/R
Tank ID: 1
Tank Status: Temporarily out of Use
Tank Capacity: 12000
Product: Gasohol

Installed Date: 02/27/1995
Date Closed: N/R
Tank ID: 2
Site Name: WAKEA PAPA JOHN’S 76 (#301)  
9 S WAKEA AVE  
KAHULUI, HI 96732  
Database(s): [LUST - HI, UST - HI]  

UST - HI (cont.)

Tank Status: Currently in Use  
Tank Capacity: 12000  
Product: Gasohol

Installed Date: 04/15/1960  
Date Closed: 01/01/1990  
Tank ID: R-4653-4  
Tank Status: Permanently Out of Use  
Tank Capacity: 280  
Product: Used Oil

Installed Date: 04/15/1960  
Date Closed: 01/30/1995  
Tank ID: R-4653-2-1  
Tank Status: Permanently Out of Use  
Tank Capacity: 3000  
Product: Gasoline

Installed Date: 04/15/1960  
Date Closed: 10/23/1994  
Tank ID: R-4653-1  
Tank Status: Permanently Out of Use  
Tank Capacity: 5000  
Product: Gasoline

Installed Date: 04/15/1960  
Date Closed: 11/02/1994  
Tank ID: R-4653-2-2  
Tank Status: Permanently Out of Use  
Tank Capacity: 3000  
Product: Gasoline

Site Name: MID PAC PETROLEUM 254653 (PREV: CENTRAL 76 L-4653)  
9 S WAKEA AVE  
KAHULUI, HI 96732  
Database(s): [LUST - HI, UST - HI]  

LUST - HI

Facility Name: Mid Pac Petroleum 254653 (prev: CENTRAL 76 L-4653)  
Facility Address: 9 S WAKEA AVE, Kahului, HI 96732
Site Name: MID PAC PETROLEUM 254653 (PREV: CENTRAL 76 L-4653)
9 S WAKEA AVE
KAHULUI, HI 96732

Database(s): [LUST - HI, UST - HI] (cont.)

LUST - HI (cont.)

Site Details
- LUST Latest Status Date: 08/18/2011
- LUST Latest Status: Site Cleanup Completed with EHE/EHMP
- Facility ID: 9-500007
- Event ID: 950017
- Project Officer: Shaobin Li
- Last Date in Agency List: 09/28/2016

UST - HI

Facility Name: Mid Pac Petroleum 254653 (prev: CENTRAL 76 L-4653)
Facility Address: 9 S WAKEA AVE, Kahului, HI 96732

Site Details
- Facility ID: 9-500007
- Formal Name: Mid Pac Petroleum LLC
- Address: 677 Ala Moana Blvd Suite 625, Kahului, HI 96732
- Latitude Measure: N/R
- Longitude Measure: N/R
- Horizontal Collection Method Name: N/R
- Horizontal Reference Datum Name: N/R
- Last Date in Agency List: 09/28/2016

Tank Details
- Installed Date: 04/15/1960
- Date Closed: 01/01/1990
- Tank ID: R-4653-4
- Tank Status: Permanently Out of Use
- Tank Capacity: 280
- Product: Used Oil

HIST LUST - HI

Facility Name: W & F WASHERETTE, INC.
Facility Address: 125 S WAKEA AVE
KAHULUI, HI 96732

Database(s): [HIST LUST - HI, UST - HI]
Map Id: 51
Direction: WSW
Distance: 0.385 mi.
Actual: 2033.185 ft.
Elevation: 0.009 mi. / 47.589 ft.
Relative: Higher

**HIST LUST - HI (cont.)**

- **Tank Status Description**: Permanently Out of Use
- **Tank Capacity**: 3000
- **Substance Description**: Diesel
- **Date Closed**: 01/28/1992
- **Organization Name**: W & F WASHERETTE, INC.
- **Organization Address**: 125 S WAKEA AVE, Kahului, HI 96732
- **Last Date in Agency list**: 03/04/2014

**UST - HI**

- **Facility Name**: W & F WASHERETTE, INC.
- **Facility Address**: 125 S WAKEA AVE, Kahului, HI 96732

**Site Details**

- **Facility ID**: 9-500427
- **Formal Name**: W & F WASHERETTE, INC.
- **Address**: 125 S WAKEA AVE, Kahului, HI 96732
- **Latitude Measure**: N/R
- **Longitude Measure**: N/R
- **Horizontal Collection Method Name**: N/R
- **Horizontal Reference Datum Name**: N/R
- **Last Date in Agency List**: 01/10/2019

**Tank Details**

- **Installed Date**: 04/11/1968
- **Date Closed**: 01/28/1992
- **Tank ID**: R-1
- **Tank Status**: Permanently Out of Use
- **Tank Capacity**: 3000
- **Product**: Diesel

---

Map Id: 52
Direction: NE
Distance: 0.388 mi.
Actual: 2047.364 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

**Site Name**: YOUNG BROTHERS LTD
125 S WAKEA AVE
KAHULUI, HI 96732

**Database(s)**: [LUST - HI, UST - HI]

---

**Site Details**

- **LUST Latest Status Date**: 05/16/2003
- **LUST Latest Status**: Site Cleanup Completed (NFA)
Site Name : YOUNG BROTHERS LTD
PIER 2
KAHULUI, HI 96732
Database(s) : [LUST - HI, UST - HI] (cont.)

Site Details
Facility ID : 9-500667
Event ID : 000089
Project Officer : Shunsheng Fu
Last Date in Agency List : 01/10/2018

UST - HI
Facility Name : YOUNG BROTHERS LTD
Facility Address : PIER 2, Kahului, HI 96732

Tank Details
Installed Date : 03/31/1951
Date Closed : 09/30/1989
Tank ID : R-01
Tank Status : Permanently Out of Use
Tank Capacity : 1000
Product : Gasoline

Site Name : HALEAKALA DAIRY
55 S WAKEA
KAHULUI, HI 96732
Database(s) : [HIST LUST - HI, UST - HI]

HIST LUST - HI
Facility Name : HALEAKALA DAIRY
Facility Address : 55 S WAKEA, Kahului, HI 96732

Installed Date : 04/11/1968
Facility ID : 9-501575
Tank ID : R-1
Tank Status Description : Permanently Out of Use
Tank Capacity : 1000
Substance Description : Gasoline
Date Closed : 09/17/1997
Map Id: 53
Direction: WSW
Distance: 0.399 mi.
Actual: 2107.907 ft.
Elevation: 0.008 mi. / 42.274 ft.
Relative: Higher

**Database(s):** [HIST LUST - HI, UST - HI] **(cont.)**

**Site Name:** HALEAKALA DAIRY
55 S WAKEA
KAHULUI, HI 96732

**Organization Name:** HALEAKALA DAIRY
**Organization Address:** 55 S WAKEA, Kahului, HI 96732
**Last Date in Agency list:** 03/04/2014

**Site Details**
**Facility ID:** 9-501575
**Formal Name:** HALEAKALA DAIRY
**Address:** Kahului, HI 96732
**Latitude Measure:** 20.887575
**Longitude Measure:** -156.477995
**Horizontal Collection Method Name:** GPS
**Horizontal Reference Datum Name:** NAD83
**Last Date in Agency List:** 01/10/2019

**Tank Details**
**Installed Date:** 04/11/1968
**Date Closed:** 09/17/1997
**Tank ID:** R-1
**Tank Status:** Permanently Out of Use
**Tank Capacity:** 1000
**Product:** Gasoline

---

Map Id: 54
Direction: WSW
Distance: 0.401 mi.
Actual: 2116.542 ft.
Elevation: 0.008 mi. / 42.726 ft.
Relative: Higher

**Site Name:** MINIT STOP WAKEA
85 S WAKEA AVE
KAHULUI, HI 96732

**Organization Name:** MINIT STOP WAKEA
**Organization Address:** 85 S WAKEA AVE, KAHULUI, HI 96732

**Site Details**
**Last Inspection Date:** 01/17/1996
**Registry ID:** 110006400000
**FIPS Code:** 15009
**EPA Region:** 09
**Inspection Count:** 0
Map Findings 2019

Site Name: MINIT STOP WAKEA
85 S WAKEA AVE
KAHULUI, HI 96732

Database(s): [ECHO, LUST - HI, UST - HI] (cont.)

Envirosite ID: 340339184
EPA ID: N/R

ECHO (cont.)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Inspection Days</td>
<td>7739</td>
</tr>
<tr>
<td>Informal Count</td>
<td>0</td>
</tr>
<tr>
<td>Last Informal Action Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Formal Action Count</td>
<td>0</td>
</tr>
<tr>
<td>Last Formal Action Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Total Penalties</td>
<td>0</td>
</tr>
<tr>
<td>Penalty Count</td>
<td>0</td>
</tr>
<tr>
<td>Last Penalty Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Last Penalty Amount</td>
<td>N/R</td>
</tr>
<tr>
<td>QTRS IN NC</td>
<td>0</td>
</tr>
<tr>
<td>Programs IN SNC</td>
<td>0</td>
</tr>
<tr>
<td>Current Compliance Status</td>
<td>No Violation</td>
</tr>
<tr>
<td>Three-Year Compliance Status</td>
<td>N/R</td>
</tr>
<tr>
<td>Collection Method</td>
<td>ADDRESS MATCHING-HOUSE NUMBER</td>
</tr>
<tr>
<td>Reference Point</td>
<td>CENTER OF A FACILITY OR STATION</td>
</tr>
<tr>
<td>Accuracy Meters</td>
<td>30</td>
</tr>
<tr>
<td>Derived Tribes</td>
<td>N/R</td>
</tr>
<tr>
<td>Derived HUC</td>
<td>20020000</td>
</tr>
<tr>
<td>Derived WBD</td>
<td>N/R</td>
</tr>
<tr>
<td>Derived STCTY FIPS</td>
<td>15009</td>
</tr>
<tr>
<td>Derived Zip</td>
<td>96732</td>
</tr>
<tr>
<td>Derived CD113</td>
<td>02</td>
</tr>
<tr>
<td>Derived CB2010</td>
<td>150090311022003</td>
</tr>
<tr>
<td>MYRTK Universe</td>
<td>NNN</td>
</tr>
<tr>
<td>NPDES IDs</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Permit Types</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Compliance Tracking</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA NAICS</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA SICS</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Inspection Count</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Inspection Days</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Informal Count</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Formal Action Count</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Formal Action Date</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Penalties</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Penalty Date</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Last Penalty Amount</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Quarters IN NC</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Current Compliance Status</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Current SNC Flag</td>
<td>N</td>
</tr>
<tr>
<td>CWA 13 Quarters Compliance Status</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA 13 Quarters Effluent Exceedances</td>
<td>N/R</td>
</tr>
<tr>
<td>CWA Three-Year QNCR Codes</td>
<td>N/R</td>
</tr>
<tr>
<td>DFR URL</td>
<td>Click here for hyperlink provided by the agency.</td>
</tr>
<tr>
<td>Facility SIC Codes</td>
<td>N/R</td>
</tr>
<tr>
<td>Facility NAICS Codes</td>
<td>N/R</td>
</tr>
<tr>
<td>Facility Last Inspection EPA Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Facility Last Inspection State Date</td>
<td>01/17/1996</td>
</tr>
<tr>
<td>Facility Last Formal Act EPA Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Facility Last Formal Act State Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Facility Last Informal Act EPA Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Facility Last Informal Act State Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Facility Federal Agency</td>
<td>N/R</td>
</tr>
<tr>
<td>TRI Reporter</td>
<td>N/R</td>
</tr>
<tr>
<td>Facility Imp Water Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Current SNC Flag</td>
<td>N</td>
</tr>
<tr>
<td>Indian County Flag</td>
<td>N</td>
</tr>
</tbody>
</table>
ECHO

Federal Flag : N/R
US Mexico Border Flag : N/R
Chesapeake Bay Flag : N/R
AIR Flag : N
NPDES Flag : N
SDWIS Flag : N
RCRA Flag : Y
TRI Flag : N
GHG Flag : N
Major Flag : N/R
Active Flag : N/R
NAA Flag : N/R
Latitude : 20.88617
Longitude : -156.47827
Last Date in Agency List : 03/27/2017

LUST - HI

Facility Name : MINIT STOP WAKEA
Facility Address : 85 S WAKEA AVE, Kahului, HI 96732

Site Details
LUST Latest Status Date : 04/01/1999
LUST Latest Status : Site Cleanup Completed (NFA)
Facility ID : 9-500423
Event ID : 990066
Project Officer : Richard Takaba
Last Date in Agency List : 01/10/2018

UST - HI

Facility Name : MINIT STOP WAKEA
Facility Address : 85 S WAKEA AVE, Kahului, HI 96732

Site Details
Facility ID : 9-500423
Formal Name : Hawaii Petroleum, Inc.
Address : 385 Hukilike St., #101, Kahului, HI 96732
Latitude Measure : 20.886547
Longitude Measure : -156.478144
Horizontal Collection Method Name : GPS
Horizontal Reference Datum Name : NAD83
Last Date in Agency List : 01/10/2019

Tank Details
Installed Date : 10/01/1999
Date Closed : N/R
Tank ID : 1A
Tank Status : Currently In Use
Tank Capacity : 4000
Product : Diesel
Site Name: MINIT STOP WAKEA
85 S WAKEA AVE
KAHULUI, HI 96732
Database(s): [ECHO, LUST - HI, UST - HI] (cont.)

Envirosite ID: 340339184
EPA ID: N/R

UST - HI (cont.)

Installed Date:
Date Closed:
Tank ID:
Tank Status:
Tank Capacity:
Product:
10/01/1999
N/R
1B
Currently In Use
6000
Gasohol

Installed Date:
Date Closed:
Tank ID:
Tank Status:
Tank Capacity:
Product:
10/01/1999
N/R
2
Currently In Use
10000
Gasohol

Installed Date:
Date Closed:
Tank ID:
Tank Status:
Tank Capacity:
Product:
07/30/1969
11/19/1998
R-1
Permanently Out of Use
550
Used Oil

Installed Date:
Date Closed:
Tank ID:
Tank Status:
Tank Capacity:
Product:
07/30/1969
11/19/1998
R-2
Permanently Out of Use
4000
Gasoline

Installed Date:
Date Closed:
Tank ID:
Tank Status:
Tank Capacity:
Product:
07/30/1969
11/19/1998
R-3
Permanently Out of Use
4000
Gasoline

Installed Date:
Date Closed:
Tank ID:
Tank Status:
Tank Capacity:
Product:
07/30/1969
11/19/1998
R-4
Permanently Out of Use
4000
Gasoline

Installed Date:
Date Closed:
Tank ID:
Tank Status:
Tank Capacity:
Product:
07/30/1969
11/19/1998
R-5
Permanently Out of Use
4000
Gasoline
SHWS - HI

Facility Name: Young Brothers Kahului
Facility Address: 65 Wharf St, Kahului, HI 96732
County: Maui

Site Details
SDAR Environmental Interest Name: Young Brothers Kahului
Supplemental Location Text: Kahului Harbor Pier 2
HID Number: N/R
Facility Registry Identifier: 110013774576
Program Full Name: State
Potential Hazard and Controls: No Hazard
Assessment: Response Necessary
Priority: NFA
Nature of Contamination: N/R
Nature of Residual Contamination: TPHo from tar to groundwater
Response: Response Complete
Response Action Completed: 07/01/2004
Lead Agency: HEER
Use Restrictions: No Hazard Present For Unrestricted Residential Use
Description of Restrictions: N/R
Engineering Control: N/R
Institutional Control: N/R
Date Issued: N/R
Within Designated Areawide Contamination: N/R
Document Date: 07/01/2004
Document Number: 2004-255-CAC
Document Subject: NFA Letter for Young Brothers Operations Area, Pier 2, Kahului, Maui, Facility ID 9-500667

Site Closure Document: No Further Action Letter - Unrestricted Residential Use
Project Manager: Clarence Callahan
Contact Information: (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: N/R
Description of Portion: N/R

SPILLS - HI

Facility Name: Young Brothers Kahului
Facility Address: 65 Wharf St, Kahului, HI 96732

Case Number: 19981014-1725
Activity End Date: 10/16/1998
HID Number: N/R
Facility Registry Identifier: 110013774576
Activity Type: Response
Activity Lead: Bill Perry
Activity Result: SOSC NFA
### Map Findings 2019

**Map Id:** 55  
**Direction:** NE  
**Distance:** 0.408 mi.  
**Actual:** 2156.110 ft.  
**Elevation:** 0.001 mi. / 3.281 ft.  
**Relative:** Lower

**Site Name:** YOUNG BROTHERS KAHULUI  
65 WHARF ST  
KAHULUI, HI 96732  
**Database(s):** [SHWS - HI, SPILLS - HI] (cont.)

<table>
<thead>
<tr>
<th>SPILLS - HI (cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Substances:</strong> Oil, No. 2-D</td>
</tr>
<tr>
<td><strong>Quantity:</strong> 50 Gallons</td>
</tr>
<tr>
<td><strong>Lead and Program:</strong> HEER EP&amp;R</td>
</tr>
<tr>
<td><strong>National Response Center Incident Report:</strong> 459894</td>
</tr>
<tr>
<td><strong>Organization:</strong> Young Brothers, Ltd.</td>
</tr>
<tr>
<td><strong>Location Island:</strong> Maui</td>
</tr>
<tr>
<td><strong>Supplemental Location:</strong> Kahului Harbor Pier 2</td>
</tr>
<tr>
<td><strong>EP&amp;R Environmental Interest:</strong> M/V Hokukea, Kahului Harbor</td>
</tr>
<tr>
<td><strong>Was coordination needed on or off scene?:</strong> N/R</td>
</tr>
<tr>
<td><strong>Tax Map Key:</strong> N/R</td>
</tr>
<tr>
<td><strong>Case Number:</strong> 19990923-1741</td>
</tr>
<tr>
<td><strong>Activity End Date:</strong> N/R</td>
</tr>
<tr>
<td><strong>HID Number:</strong> N/R</td>
</tr>
<tr>
<td><strong>Facility Registry Identifier:</strong> 110013774576</td>
</tr>
<tr>
<td><strong>Activity Type:</strong> Response</td>
</tr>
<tr>
<td><strong>Activity Lead:</strong> Terry Corpus</td>
</tr>
<tr>
<td><strong>Activity Result:</strong> SOSC NFA</td>
</tr>
<tr>
<td><strong>Substances:</strong> Solvent</td>
</tr>
<tr>
<td><strong>Quantity:</strong> 780 Gallons</td>
</tr>
<tr>
<td><strong>Lead and Program:</strong> HEER EP&amp;R</td>
</tr>
<tr>
<td><strong>National Response Center Incident Report:</strong> N/R</td>
</tr>
<tr>
<td><strong>Organization:</strong> Young Brothers, Ltd.</td>
</tr>
<tr>
<td><strong>Location Island:</strong> Maui</td>
</tr>
<tr>
<td><strong>Supplemental Location:</strong> Kahului Harbor Pier 2</td>
</tr>
<tr>
<td><strong>EP&amp;R Environmental Interest:</strong> Young Brothers Pier 2, Solvent Spill</td>
</tr>
<tr>
<td><strong>Was coordination needed on or off scene?:</strong> Off Scene</td>
</tr>
<tr>
<td><strong>Tax Map Key:</strong> N/R</td>
</tr>
<tr>
<td><strong>Case Number:</strong> 20020826-1000</td>
</tr>
<tr>
<td><strong>Activity End Date:</strong> 03/24/2003</td>
</tr>
<tr>
<td><strong>HID Number:</strong> N/R</td>
</tr>
<tr>
<td><strong>Facility Registry Identifier:</strong> 110013774576</td>
</tr>
<tr>
<td><strong>Activity Type:</strong> Response</td>
</tr>
<tr>
<td><strong>Activity Lead:</strong> Liz Galvez</td>
</tr>
<tr>
<td><strong>Activity Result:</strong> SOSC NFA</td>
</tr>
<tr>
<td><strong>Substances:</strong> Oil, Used</td>
</tr>
<tr>
<td><strong>Quantity:</strong> &lt; 350 Gallons</td>
</tr>
<tr>
<td><strong>Lead and Program:</strong> HEER EP&amp;R</td>
</tr>
<tr>
<td><strong>National Response Center Incident Report:</strong> 621082</td>
</tr>
<tr>
<td><strong>Organization:</strong> Young Brothers, Ltd.</td>
</tr>
<tr>
<td><strong>Location Island:</strong> Maui</td>
</tr>
<tr>
<td><strong>Supplemental Location:</strong> Kahului Harbor Pier 2</td>
</tr>
<tr>
<td><strong>EP&amp;R Environmental Interest:</strong> Young Brothers Kahului</td>
</tr>
<tr>
<td><strong>Was coordination needed on or off scene?:</strong> Off Scene</td>
</tr>
</tbody>
</table>
Site Name: YOUNG BROTHERS KAHULUI
65 WHARF ST
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI] (cont.)

Tax Map Key: N/R

Case Number: 20090123-0921
Activity End Date: 01/23/2009
HID Number: N/R
Facility Registry Identifier: 110013774576
Activity Type: Response
Activity Lead: Paul Chong
Activity Result: SOSC NFA
Substances: Diesel Fuel
Quantity: 10 Gallons
Lead and Program: HEER EP&R
National Response Center Incident Report: 895660
Organization: Young Brothers, Ltd.
Location Island: Maui
Supplemental Location: Kahului Harbor Pier 2
EP&R Environmental Interest: Hokuloa Diesel Release NRC 895660
Was coordination needed on or off scene?: Off Scene

Site Name: FUDS NAVY MILITARY RESERVATION (KAHULUI)
N/R
KAHULUI, HI

Database(s): [SHWS - HI]

Facility Name: FUDS Navy Military Reservation (Kahului)
Facility Address: Kahului, HI
County: Maui

Site Details
SDAR Environmental Interest Name: FUDS Navy Military Reservation (Kahului)
Supplemental Location Text: H09HI024500
HID Number: N/R
Facility Registry Identifier: N/R
Program Full Name: Formerly Used Defense Site
Potential Hazard and Controls: Hazard Undetermined
Assessment: Assessment Ongoing
Priority: Low
Nature of Contamination: N/R
Nature of Residual Contamination: N/R
**Map Findings 2019**

**Map Id:** 56  
**Direction:** NNE  
**Distance:** 0.520 mi.  
**Actual:** 2744.829 ft.  
**Elevation:** 0 mi. / 0 ft.  
**Relative:** Lower

<table>
<thead>
<tr>
<th>Site Name:</th>
<th>FUDS NAVY MILITARY RESERVATION (KAHULUI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/R</td>
</tr>
<tr>
<td></td>
<td>KAHULUI, HI</td>
</tr>
<tr>
<td>Database(s):</td>
<td>[SHWS - HI] (cont.)</td>
</tr>
</tbody>
</table>

**Envirosite ID:** 363381541  
**EPA ID:** N/R

**SHWS - HI (cont.)**

- **Response:** N/R  
- **Response Action Completed:** N/R  
- **Lead Agency:** HEER  
- **Use Restrictions:** Undetermined  
- **Description of Restrictions:** N/R  
- **Engineering Control:** N/R  
- **Institutional Control:** N/R  
- **Date Issued:** N/R  
- **Within Designated Area-wide Contamination:** N/R  
- **Document Date:** N/R  
- **Document Number:** N/R  
- **Document Subject:** N/R  
- **Site Closure Document:** N/R  
- **Project Manager:** N/R  
- **Contact Information:** (808) 586-4249  
  Waimano Home Rd, Pearl City, HI 96782

**Last Date in Agency List:** 11/29/2018

**Tax Map Key Information**

- **Tax Map Key 1:** 237008003  
  **Description of Portion:** Portion

- **Tax Map Key 2:** 237008004  
  **Description of Portion:** Portion

- **Tax Map Key 3:** 237010003  
  **Description of Portion:** Portion

**Map Id:** L57  
**Direction:** ENE  
**Distance:** 0.658 mi.  
**Actual:** 3473.738 ft.  
**Elevation:** 0.001 mi. / 3.281 ft.  
**Relative:** Lower

<table>
<thead>
<tr>
<th>Site Name:</th>
<th>VIP WAREHOUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>74 HOBRON AVE</td>
</tr>
<tr>
<td></td>
<td>KAHULUI, HI 96732</td>
</tr>
<tr>
<td>Database(s):</td>
<td>[SHWS - HI, SPILLS - HI]</td>
</tr>
</tbody>
</table>

**Envirosite ID:** 319997429  
**EPA ID:** N/R

**SHWS - HI**

- **Facility Name:** VIP Warehouse  
- **Facility Address:** 74 Hobron Ave, Kahului, HI 96732  
- **County:** Maui

**Site Details**

- **SDAR Environmental Interest Name:** VIP Warehouse  
- **Supplemental Location Text:** VIP Foodservice Warehouse  
- **HID Number:** N/R

Page 146 of 327
SHWS - HI (cont.)

Facility Registry Identifier : 110013773265
Program Full Name : State
Potential Hazard and Controls : Hazard Present
Assessment : Assessment Ongoing
Priority : Low
Nature of Contamination : Presumed: Petroleum in soil and groundwater
Nature of Residual Contamination : N/R
Response : N/R
Response Action Completed : N/R
Lead Agency : HEER
Use Restrictions : Controls Required to Manage Contamination
Description of Restrictions : N/R
Engineering Control : N/R
Institutional Control : N/R
Date Issued : N/R
Within Designated Areawide Contamination: Kahului Harbor
Document Date : N/R
Document Number : N/R
Site Closure Document : N/R
Project Manager : John Peard

Contact Information : (808) 933-9921, Environmental Health Bldg, 1582 Kamehameha Ave, Hilo, HI 96720

Last Date in Agency List : 11/29/2018

Tax Map Key Information
Tax Map Key : 237011006
Description of Portion : Parcel 6, Lot C-1

Tax Map Key : 237011011
Description of Portion : N/R

Tax Map Key : 237011022
Description of Portion : N/R

Tax Map Key : 237011025
Description of Portion : N/R

SPILLS - HI

Facility Name : VIP Warehouse
Facility Address : 74 Hobron Ave, Kahului, 96732

Case Number : 19920426
Activity End Date : N/R
HID Number : N/R
Facility Registry Identifier : 110013773265
Activity Type : Response
Map Findings 2019

Map Id: L57
Direction: ENE
Distance: 0.658 mi.
Actual: 3473.738 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

**Site Name:** VIP WAREHOUSE
74 HOBRON AVE
KAHULUI, HI 96732

**Database(s):** [SHWS - HI, SPILLS - HI] (cont.)

**Activity Lead:** Kevin Wood
**Activity Result:** Refer to ISST
**Substances:** Diesel Fuel
**Quantity:** N/R
**Lead and Program:** HEER EP&R
**National Response Center Incident Report:** N/R
**Organization:** Shell Oil Company
**Location Island:** Maui
**Supplemental Location:** VIP Foodservice Warehouse
**EP&R Environmental Interest:** Valley Isle Produce Food Service at TMK # 3-7-11-6
**Was coordination needed on or off scene?:** N/R

**Tax Map Key:**
237011006
237011011
237011022
237011025

Map Id: L58
Direction: ENE
Distance: 0.661 mi.
Actual: 3492.215 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

**Site Name:** KAHULUI FUEL DISTRIBUTION TERMINAL
60 HOBRON AVE
KAHULUI, HI 96732

**Database(s):** [SHWS - HI, SPILLS - HI]

**Facility Name:** Kahului Fuel Distribution Terminal
**Facility Address:** 60 Hobron Ave, Kahului, HI 96732
**County:** Maui

**Site Details**
- **SDAR Environmental Interest Name:** Shell Kahului Bulk Terminal
- **Supplemental Location Text:** Aloha Kahului Fuel Distribution Terminal
- **HID Number:** N/R
- **Facility Registry Identifier:** 110013788856
- **Program Full Name:** State
- **Potential Hazard and Controls:** Hazard Present
- **Assessment:** Response Necessary
- **Priority:** Low
- **Nature of Contamination:** Found: Petroleum in soil and groundwater
- **Nature of Residual Contamination:** N/R
- **Response:** Response Ongoing
- **Response Action Completed:** N/R
- **Lead Agency:** HEER
- **Use Restrictions:** Controls Required to Manage Contamination
- **Description of Restrictions:** N/R
- **Engineering Control:** N/R
Map Findings 2019

Map Id: L58  
Direction: ENE  
Distance: 0.661 mi.  
Actual: 3492.215 ft.  
Elevation: 0.001 mi. / 3.281 ft.  
Relative: Lower

Envirosite ID: 319997333  
EPA ID: N/R

Site Name : KAHULUI FUEL DISTRIBUTION TERMINAL  
60 HOBRON AVE  
KAHULUI, HI 96732

Database(s) : [SHWS - HI, SPILLS - HI] (cont.)

SHWS - HI (cont.)

<table>
<thead>
<tr>
<th>Institutional Control</th>
<th>N/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Issued</td>
<td>N/R</td>
</tr>
<tr>
<td>Within Designated Areawide</td>
<td>Kahului Harbor</td>
</tr>
<tr>
<td>Contamination</td>
<td>N/R</td>
</tr>
<tr>
<td>Document Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Document Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Document Subject</td>
<td>N/R</td>
</tr>
<tr>
<td>Site Closure Document</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Manager</td>
<td>John Peard</td>
</tr>
</tbody>
</table>

Contact Information : (808) 933-9921, Environmental Health Bldg, 1582 Kamehameha Ave, Hilo, HI 96720

Last Date in Agency List : 11/29/2018

Tax Map Key Information

<table>
<thead>
<tr>
<th>Tax Map Key</th>
<th>237011008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of Portion</td>
<td>N/R</td>
</tr>
</tbody>
</table>

SPILLS - HI

Facility Name : Kahului Fuel Distribution Terminal
Facility Address : 60 Hobron Ave, Kahului, 96732

Case Number : 19941103-2
Activity End Date : 01/31/2017
HID Number : N/R
Facility Registry Identifier : 110013788856
Activity Type : Response
Activity Lead : Terry Corpus
Activity Result : Closed Incomplete Documentation
Substances : Diesel Fuel High Sulfur
Quantity : 500 Gallons
Lead and Program : HEER EP&R
National Response Center Incident Report: N/R
Organization : Equilon Enterprises LLC dba Shell Oil Products US
Location Island : Maui
Supplemental Location : Aloha Kahului Fuel Distribution Terminal
EP&R Environmental Interest : Shell Terminal Kahului
Was coordination needed on or off scene?: N/R

Tax Map Key : 237011008
Site Name: TOSCO BULK PLANT NUMBER 0323
76 HOBRON AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI]

Facility Name: TOSCO Bulk Plant Number 0323
Facility Address: 76 Hobron Ave, Kahului, HI 96732
County: Maui

Site Details
SDAR Environmental Interest Name: TOSCO Bulk Plant Number 0323
Supplemental Location Text: TOSCO Bulk Plant Number 0323
HID Number: N/R
Facility Registry Identifier: 110007501881
Program Full Name: State
Potential Hazard and Controls: No Hazard
Assessment: Response Necessary
Priority: NFA
Nature of Contamination: N/R
Nature of Residual Contamination: Petroleum in soil
Response: Response Complete
Response Action Completed: 03/10/2004
Lead Agency: HEER
Use Restrictions: No Hazard Present for Unrestricted Residential Use
Description of Restrictions: N/R
Engineering Control: N/R
Institutional Control: N/R
Date Issued: N/R
Within Designated Areawide Contamination: Kahului Harbor
Document Date: 03/10/2004
Document Number: 2004-092-ES
Document Subject: Former Tosco Bulk Plant 0323
Site Closure Document: No Further Action Letter - Unrestricted Residential Use
Project Manager: Eric Sadoyama
Contact Information: (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: 237011008
Description of Portion: Tanks and loading rack listed as 76 Hobron Lane by Maui County

Tax Map Key: 237011021
Description of Portion: 40 Hobron Lane according to Maui County tanks formerly on this portion site
Map Findings

Map Id: M60
Direction: ENE
Distance: 0.668 mi.
Actual: 3524.940 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: KAHULUI TERMINAL
100 HOBRON AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI]

Facility Name: Kahului Terminal
Facility Address: 100 Hobron Ave, Unit A, Kahului, HI 96732
County: Maui

SHWS - HI

Facility Details
SDAR Environmental Interest Name: Chevron Kahului Bulk Terminal
Supplemental Location Text: No FRS Number Match Unit A
HID Number: N/R
Facility Registry Identifier: 110001764083
Program Full Name: State
Potential Hazard and Controls: Hazard Present
Assessment: Response Necessary
Priority: Low
Nature of Residual Contamination: N/R
Response: Response Ongoing
Response Action Completed: N/R
Lead Agency: HEER
Use Restrictions: Controls Required to Manage Contamination
Description of Restrictions: N/R
Engineering Control: N/R
Institutional Control: N/R
Date Issued: N/R
Within Designated Areawide Contamination: Kahului Harbor
Document Date: N/R
Document Number: N/R
Document Subject: N/R
Site Closure Document: N/R
Project Manager: John Peard
Contact Information: (808) 933-9921, Environmental Health Bldg, 1582 Kamehameha Ave, Hilo, HI 96720
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: 237011012
Description of Portion: N/R

SPILLS - HI

Facility Name: Kahului Terminal
Facility Address: 100 Hobron Ave, Unit A, Kahului, 96732

Case Number: 19960105-1339
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: 110001764083
Activity Type: Response
Activity Lead: Bill Perry
Activity Result: SOSC NFA
Site Name: KAHULUI TERMINAL
100 HOBRON AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI] (cont.)

Map Findings
Map Id: M60
Direction: ENE
Distance: 0.668 mi.
Actual: 3524.940 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Envirosite ID: 330757624
EPA ID: N/R

SPILLS - HI (cont.)

Substances: Gasoline
Quantity: 80 Gallons
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: Chevron Products Company
Location Island: Maui
Supplemental Location: No FRS Number Match Unit A
EP&R Environmental Interest: Chevron Terminal (See 960105-0140)
Was coordination needed on or off scene?: No

Tax Map Key: 237011012

Case Number: 19960105-1340
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: 110001764083
Activity Type: Response
Activity Lead: Terry Corpus
Activity Result: Refer to ISST
Substances: Gasoline
Quantity: 400 Gallons
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: Chevron Products Company
Location Island: Maui
Supplemental Location: No FRS Number Match Unit A
EP&R Environmental Interest: Chevron Terminal Bulk Storage (See 960105-0139)
Was coordination needed on or off scene?: Yes

Tax Map Key: 237011012

Case Number: 19971022-1215
Activity End Date: 10/22/1997
HID Number: N/R
Facility Registry Identifier: 110001764083
Activity Type: Drill
Activity Lead: Liz Galvez
Activity Result: Drill
Substances: N/R
Quantity: N/R
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: Chevron Products Company
Location Island: Maui
Supplemental Location: No FRS Number Match Unit A
EP&R Environmental Interest: DRILL - Chevron Drill
Was coordination needed on or off scene?: Drill

Organization: Chevron Products Company
Location Island: Maui
Supplemental Location: No FRS Number Match Unit A
EP&R Environmental Interest: DRILL - Chevron Drill
Was coordination needed on or off scene?: Drill

Activity Type: Drill
Activity Lead: Liz Galvez
Activity Result: Drill
Substances: N/R
Quantity: N/R
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: Chevron Products Company
Location Island: Maui
Supplemental Location: No FRS Number Match Unit A
EP&R Environmental Interest: DRILL - Chevron Drill
Was coordination needed on or off scene?: Drill
Map Findings 2019

Site Name: KAHULUI TERMINAL
100 HOBRON AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI (cont.)

Envirosite ID: 330757624
EPA ID: N/R

SPILLS - HI (cont.)

Tax Map Key: 237011012

Case Number: 20110525-1042
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: 110001764083
Activity Type: Response
Activity Lead: Liz Galvez
Activity Result: N/R
Substances: Diesel Fuel Low Sulfur
Quantity: 1000 Gallons
Lead and Program: HEER EP&R
National Response Center Incident Report: 977400
Organization: Chevron Products Company
Location Island: Maui
Supplemental Location: No FRS Number Match Unit A
EP&R Environmental Interest: Drill - Chevron Diesel Release
Was coordination needed on or off scene?: None

Tax Map Key: 237011012

Case Number: 20110525-1043
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: 110001764083
Activity Type: Response
Activity Lead: Liz Galvez
Activity Result: N/R
Substances: N/R
Quantity: N/R
Lead and Program: HEER EP&R
National Response Center Incident Report: 977402
Organization: Chevron Products Company
Location Island: Maui
Supplemental Location: No FRS Number Match Unit A
EP&R Environmental Interest: Drill - Trespassing at Chevron Kahului
Was coordination needed on or off scene?: None

Tax Map Key: 237011012

Case Number: 20141124-1708
Activity End Date: 11/26/2014
HID Number: N/R
Facility Registry Identifier: 110001764083
Activity Type: Response
Activity Lead: Liz Galvez
Activity Result: Refer to SDAR
Substances: Oil
<table>
<thead>
<tr>
<th>Site Name</th>
<th>KAHULUI TERMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 HOBRON AVE</td>
</tr>
<tr>
<td></td>
<td>KAHULUI, HI 96732</td>
</tr>
<tr>
<td>Database(s)</td>
<td>[SHWS - HI, SPILLS - HI] (cont.)</td>
</tr>
<tr>
<td>Envirosite ID</td>
<td>330757624</td>
</tr>
<tr>
<td>EPA ID</td>
<td>N/R</td>
</tr>
</tbody>
</table>

SPILLS - HI (cont.)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead and Program</td>
<td>HEER EP&amp;R</td>
</tr>
<tr>
<td>National Response Center Incident Report</td>
<td>N/R</td>
</tr>
<tr>
<td>Organization</td>
<td>Chevron Products Company</td>
</tr>
<tr>
<td>Location Island</td>
<td>Maui</td>
</tr>
<tr>
<td>Supplemental Location</td>
<td>No FRS Number Match Unit A</td>
</tr>
<tr>
<td>Was coordination needed on or off scene?</td>
<td>None</td>
</tr>
</tbody>
</table>

Tax Map Key : 237011012

Case Number : 20141217-1125
Activity End Date : N/R
HID Number : N/R
Facility Registry Identifier : 110001764083
Activity Type : Response
Activity Lead : Liz Galvez
Activity Result : N/R
Substances : N/R
Quantity : N/R
Lead and Program : HEER EP&R
National Response Center Incident Report | N/R |
Organization | Chevron Products Company |
Location Island | Maui |
Supplemental Location | No FRS Number Match Unit A |
EP&R Environmental Interest | Chevron Kahului Terminal 12-17-14 |
Was coordination needed on or off scene? | None |

Tax Map Key : 237011012

Case Number : 20150421-1140
Activity End Date : 04/22/2015
HID Number : N/R
Facility Registry Identifier : 110001764083
Activity Type : Response
Activity Lead : Liz Galvez
Activity Result : Refer to SDAR
Substances : Diesel Fuel
Quantity : 0
Lead and Program : HEER EP&R
National Response Center Incident Report | N/R |
Organization | Chevron Products Company |
Location Island | Maui |
Supplemental Location | No FRS Number Match Unit A |
EP&R Environmental Interest | Kahului Chevron Tank 3 weathered diesel |
Was coordination needed on or off scene? | None |
Site Name: KAHULUI TERMINAL
100 HOBRON AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI]

Map Findings 2019

Map Id: M60
Direction: ENE
Distance: 0.668 mi.
Actual: 3524.940 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Envirosite ID: 330757624
EPA ID: N/R

SPILLS - HI (cont.)

Tax Map Key: 237011012

Case Number: 19880111-2
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: 110001764083
Activity Type: Response
Activity Lead: Chris Takeno
Activity Result: Refer to ISST
Substances: Transmix (Petroleum)
Quantity: 250 Gallons
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: Chevron Products Company
Location Island: Maui
Supplemental Location: No FRS Number Match Unit A
EP&R Environmental Interest: Chevron Terminal
Was coordination needed on or off scene?: N/R

Tax Map Key: 237011012

Case Number: 19941104
Activity End Date: 01/31/2017
HID Number: N/R
Facility Registry Identifier: 110001764083
Activity Type: Response
Activity Lead: Terry Corpus
Activity Result: Closed Incomplete Documentation
Substances: Diesel Fuel High Sulfur
Quantity: 500 Gallons
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: Chevron Products Company
Location Island: Maui
Supplemental Location: No FRS Number Match Unit A
EP&R Environmental Interest: Chevron Terminal Above Ground
Was coordination needed on or off scene?: N/R

Tax Map Key: 237011012

Case Number: 19950413
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: 110001764083
Activity Type: Response
Activity Lead: Terry Corpus
Activity Result: Refer to ISST
Substances: Diesel Fuel High Sulfur
SPILLS - HI (cont.)

Quantity: > 50 Gallons
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: Chevron Products Company
Location Island: Maui
Supplemental Location: No FRS Number Match Unit A
EP&R Environmental Interest: Chevron Kahului Terminal
Was coordination needed on or off scene?: N/R

Tax Map Key: 237011012

SHWS - HI

Facility Name: Kahului Harbor Parcel B
Facility Address: 140 Hobron Ave, Bounded: Hobron West, Aalahao South, Amala East, Kahului, HI
County: Maui

Site Details
SDAR Environmental Interest Name: Kahului Harbor Parcel B
Supplemental Location Text: Kahului Harbor
HID Number: N/R
Facility Registry Identifier: N/R
Program Full Name: State
Potential Hazard and Controls: Hazard Undetermined
Assessment: Assessment Ongoing
Priority: Low
Nature of Contamination: N/R
Nature of Residual Contamination: N/R
Response: N/R
Response Action Completed: N/R
Lead Agency: HEER
Use Restrictions: Undetermined
Description of Restrictions: N/R
Engineering Control: N/R
Institutional Control: N/R
Date Issued: N/R
Within Designated Areawide Contamination: Kahului Harbor
Document Date: N/R
Map Findings

Map Id: M61
Direction: ENE
Distance: 0.671 mi.
Actual: 3541.889 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: KAHULUI HARBOR PARCEL B
140 HOBRON AVE
KAHULUI, HI

Database(s): [SHWS - HI] (cont.)

Envirosite ID: 363381615
EPA ID: N/R

SHWS - HI (cont.)

Document Number:
Document Subject:
Site Closure Document:
Project Manager:
Contact Information:
Last Date in Agency List:

Tax Map Key Information
Tax Map Key:
Description of Portion:

Tax Map Key:
Description of Portion:

Map Id: 62
Direction: ENE
Distance: 0.740 mi.
Actual: 3909.120 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: HOBRON AVE AREA (KAHULUI)
HOBRON AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI]

Envirosite ID: 319997330
EPA ID: N/R

Facility Name: Hobron Ave Area (Kahului)
Facility Address: Hobron Ave, Kahului, HI 96732
County: Maui

Site Details
SDAR Environmental Interest Name: Hobron Avenue Area
Supplemental Location Text:
HID Number:
Facility Registry Identifier:
Program Full Name:
Potential Hazard and Controls:
Assessment:
Priority:
Nature of Contamination:
Nature of Residual Contamination:
Response:
Response Action Completed:
Lead Agency:
Use Restrictions:
Description of Restrictions:
Engineering Control:
Map Findings

Map Id: 62
Direction: ENE
Distance: 0.740 mi.
Actual: 3909.120 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

SHWS - HI (cont.)

Institutional Control : N/R
Date Issued : N/R
Within Designated Areawide Contamination: Kahului Harbor
Document Date : N/R
Document Number : N/R
Document Subject : N/R
Site Closure Document : N/R
Project Manager : John Peard

Contact Information : (808) 933-9921, Environmental Health Bldg, 1582 Kamehameha Ave, Hilo, HI 96720

Last Date in Agency List : 11/29/2018

Tax Map Key Information

Tax Map Key : 237011001
Description of Portion : N/R

Tax Map Key : 237011002
Description of Portion : N/R

Tax Map Key : 237011005
Description of Portion : N/R

Tax Map Key : 237011006
Description of Portion : N/R

Tax Map Key : 237011008
Description of Portion : N/R

Tax Map Key : 237011011
Description of Portion : N/R

Tax Map Key : 237011012
Description of Portion : N/R

Tax Map Key : 237011019
Description of Portion : N/R

Tax Map Key : 237011021
Description of Portion : N/R

Tax Map Key : 237011022
Description of Portion : N/R
Site Name: HOBRON AVE AREA (KAHULUI)
HOBRON AVE
KAHULUI, HI 96732

Database(s): [SHWS - HI] (cont.)

Envirosite ID: 319997330
EPA ID: N/R

Site Name: ALII LINEN SERVICE (FKA SNOW WHITE LINEN)
312 ALAMAHA PL
KAHULUI, HI 96732

Database(s): [I C - HI, SHWS - HI, SPILLS - HI]

Envirosite ID: 11230060
EPA ID: N/R

Facility Name: Alii Linen Service (fka Snow White Linen)
Facility Address: 312 Alamaha Pl, Unit H, Kahului, HI 96732
County: Maui

SDAR Environmental Interest Name: Snow White Linen Solvent Contamination
Supplemental Location Text: N/R
HID Number: N/R
Facility Registry Identifier: 110013771374
Program Full Name: State
Potential Hazard and Controls: Hazard Managed With Controls
Assessment: Response Necessary
Priority: NFA
Nature of Contamination: N/R
Nature of Residual Contamination: Vapor intrusion hazard. Operating Sub-Slab Vapor Depressurization system.
Response: Response Complete
Lead Agency: HEER
Use Restrictions: Controls Required to Manage Contamination
Site Name: ALII LINEN SERVICE (FKA SNOW WHITE LINEN)
312 ALAMAHA PL
KAHULUI, HI 96732

Database(s): [I C - HI, SHWS - HI, SPILLS - HI] (cont.)

I C - HI (cont.)

Description of Restrictions:
Prohibit Any Activity That May Disturb the Integrity of the Capping or Monitoring System

Engineering Control:
Engineering Control Required

Institutional Control:
Government - Hawaii Dept. of Health Letter Issued

Date Issued:
11/09/2011

Within Designated Areawide Contamination:
N/R

Document Date:
11/09/2011

Document Number:
2011-653-KO

Document Subject:
No Further Action Determination with Institutional Controls

Site Closure Document:
No Further Action Letter - Restricted Use

Project Manager:
Cal Miyahara

Contact Information:
(808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782

Last Date in Agency List:
11/29/2018

Tax Map Key Information
Tax Map Key:
238066025

Description of Portion:
N/R

SHWS - HI

Facility Name:
Alii Linen Service (fka Snow White Linen)

Facility Address:
312 Alamaha Pl, Unit H, Kahului, HI 96732

County:
Maui

Site Details

SDAR Environmental Interest Name:
Snow White Linen Solvent Contamination

Supplemental Location Text:
N/R

HID Number:
N/R

Facility Registry Identifier:
110013771374

Program Full Name:
State

Potential Hazard and Controls:
Hazard Managed With Controls

Assessment:
Response Necessary

Priority:
NFA

Nature of Contamination:
N/R

Nature of Residual Contamination:
Vapor intrusion hazard. Operating Sub-Slab Vapor Depressurization system.

Response:
Response Complete

Response Action Completed:
11/09/2011

Lead Agency:
HEER

Use Restrictions:
Controls Required to Manage Contamination

Description of Restrictions:
Prohibit Any Activity That May Disturb the Integrity of the Capping or Monitoring System

Engineering Control:
Engineering Control Required

Institutional Control:
Government - Hawaii Dept. of Health Letter Issued

Date Issued:
11/09/2011

Within Designated Areawide Contamination:
N/R

Document Date:
11/09/2011
Map Findings

Site Name: ALII LINEN SERVICE (FKA SNOW WHITE LINEN)
312 ALAMAH PL
KAHULUI, HI 96732

Database(s): [I C - HI, SHWS - HI, SPILLS - HI] (cont.)

SHWS - HI (cont.)

Document Number: 2011-653-KO
Document Subject: No Further Action Determination with Institutional Controls
Site Closure Document: No Further Action Letter - Restricted Use
Project Manager: Cal Miyahara
Contact Information: (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782
Last Date in Agency List: 11/29/2018

Tax Map Key Information
Tax Map Key: 238066025
Description of Portion: N/R

SPILLS - HI

Facility Name: Alii Linen Service (fka Snow White Linen)
Facility Address: 312 Alama Pl, Unit H, Kahului, 96732

Case Number: 20031118-0904
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: 110013771374
Activity Type: Response
Activity Lead: Unassigned
Activity Result: N/R
Substances: N/R
Quantity: N/R
Lead and Program: HEER EP&R
National Response Center Incident Report: N/R
Organization: Alii Linen Service (Formerly Snow White Linen)
Location Island: Maui
Supplemental Location: N/R
EP&R Environmental Interest: Lili Laundry
Was coordination needed on or off scene?: N/R

Tax Map Key: 238066025

Site Name: MAUI DISPOSAL COMPANY
221 LALO PL
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI]

SHWS - HI

Facility Name: Maui Disposal Company
| Site Name          | MAUI DISPOSAL COMPANY  
|                   | 221 LALO PL  
|                   | KAHULUI, HI 96732  
| Database(s)       | [SHWS - HI, SPILLS - HI] (cont.)  
| Envirosite ID     | 319997359  
| EPA ID            | N/R  

SHWS - HI (cont.)

| Facility Address | 221 Lalo Pl, Kahului, HI 96732  
| County          | Maui  

Site Details

| SDAR Environmental Interest Name | Opala Partners Diesel Release  
| Supplemental Location Text       | N/R  
| HID Number                      | N/R  
| Facility Registry Identifier    | 110013767218  
| Program Full Name               | State  
| Potential Hazard and Controls   | No Hazard  
| Assessment                      | Response Necessary  
| Priority                        | NFA  
| Nature of Contamination         | N/R  
| Nature of Residual Contamination| TPH-Diesel, TPH-Oil, Acenaphthene  
| Response                        | Response Complete  
| Response Action Completed       | 02/14/2002  
| Lead Agency                     | HEER  
| Use Restrictions                | No Hazard Present For Unrestricted Residential Use  
| Description of Restrictions     | N/R  
| Engineering Control             | N/R  
| Institutional Control           | N/R  
| Date Issued                     | N/R  

Within Designated Areawide Contamination: N/R

| Document Date       | 02/14/2002  
| Document Number     | 2002-029-MGC  
| Document Subject    | Priority Letter for Opala Partners LLC  
| Site Closure Document| No Further Action Letter - Unrestricted Residential Use  
| Project Manager     | Melody Calisay  
| Contact Information | (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782  
| Last Date in Agency List | 11/29/2018  

Tax Map Key Information

| Tax Map Key | 238066035  
| Description of Portion | N/R  

SPILLS - HI

| Facility Name | Maui Disposal Company  
| Facility Address | 221 Lalo Pl, Kahului, 96732  

Case Number: 20000320-0954
Activity End Date: N/R
HID Number: N/R
Facility Registry Identifier: 110013767218
Activity Type: Response
Activity Lead: Bill Perry
Activity Result: Refer to ISST
Substances: Diesel Fuel
Quantity: < 25 Gallons
Lead and Program: HEER EP&R
### MAUI DISPOSAL COMPANY

- **Address:** 221 LALO PL
- **City:** KAHULUI
- **State:** HI
- **Zip Code:** 96732

**Database(s):** [SHWS - HI, SPILLS - HI](cont.)

---

**National Response Center Incident Report:**
- **Organization:** Maui Disposal Company, Inc.
- **Location Island:** Maui
- **Supplemental Location:** N/R
- **EP&R Environmental Interest:** Lalo St-release
- **Was coordination needed on or off scene?:** N/R

**Activity End Date:** N/R
- **HID Number:** N/R
- **Facility Registry Identifier:** 110013767218
- **Activity Type:** Response
- **Activity Lead:** Bill Perry
- **Activity Result:** Refer to ISST
- **Substances:** Oil, Lubricating
- **Quantity:** N/R
- **Lead and Program:** HEER EP&R

**Tax Map Key:** 238066035

---

**National Response Center Incident Report:**
- **Organization:** Maui Disposal Company, Inc.
- **Location Island:** Maui
- **Supplemental Location:** N/R
- **EP&R Environmental Interest:** Lalo St-release
- **Was coordination needed on or off scene?:** N/R

**Activity End Date:** N/R
- **HID Number:** N/R
- **Facility Registry Identifier:** 110013767218
- **Activity Type:** Response
- **Activity Lead:** Chris Takeno
- **Activity Result:** SOSC NFA
- **Substances:** Oil, Waste
- **Quantity:** N/R
- **Lead and Program:** HEER EP&R

**Tax Map Key:** 238066035

---

**National Response Center Incident Report:**
- **Organization:** Maui Disposal Company, Inc.
- **Location Island:** Maui
- **Supplemental Location:** N/R
- **EP&R Environmental Interest:** Maui Disposal Company
- **Was coordination needed on or off scene?:** N/R

**Activity End Date:** N/R
- **HID Number:** N/R
- **Facility Registry Identifier:** 110013767218
- **Activity Type:** Response
- **Activity Lead:** Maui
- **Activity Result:** N/R
- **Substances:** N/R
- **Quantity:** N/R
- **Lead and Program:** HEER EP&R

**Tax Map Key:** 238066035

---
MAP FINDINGS 2019

Site Name: MAUI DISPOSAL COMPANY
221 LAHO PL
KAHULUI, HI 96732

Database(s): [SHWS - HI, SPILLS - HI] (cont.)

Map Id: 64
Direction: ESE
Distance: 0.875 mi.
Actual: 4621.134 ft.
Elevation: 0.004 mi. / 19.685 ft.
Relative: Higher

Envirosite ID: 319997359
EPA ID: N/R

Site Name: HAWAII WOOD PRESERVING CO.
356 HANAKAI ST
KAHULUI, HI 96732

Database(s): [SHWS - HI]

Site Details
SDAR Environmental Interest Name: Hawaii Wood Preserving Co. (Osmose)
Supplemental Location Text: N/R
HID Number: HID980883185
Facility Registry Identifier: 1100000486386
Program Full Name: State
Potential Hazard and Controls: No Hazard
Assessment: Response Necessary
Priority: NFA
Nature of Contamination: Found: CCA in soil
Nature of Residual Contamination: N/R
Response: Response Complete
Map Findings 2019

Site Name: HAWAII WOOD PRESERVING CO.
356 HANAKAI ST
KAHULUI, HI 96732

Database(s): [SHWS - HI] (cont.)

SHWS - HI (cont.)
Response Action Completed: 12/29/2008
Lead Agency: SHWB
Use Restrictions: No Hazard Present for Unrestricted Residential Use
Description of Restrictions: N/R
Engineering Control: N/R
Institutional Control: N/R
Date Issued: N/R
Within Designated Areawide Contamination: N/R
Document Date: 12/29/2008
Document Number: N/R
Document Subject: Hazardous Waste Closure Certification Approval, Former Hawaii Wood Preserving Company Treatment Plant, 356 Hanakai St, Kahului, Hawaii (Maui), EPA HID 900883185

Site Closure Document: No Further Action Letter - Unrestricted Residential Use
Project Manager: Eric Sadoyama
Contact Information: (808) 586-4249 2385, Waimano Home Rd, Pearl City, HI 96782

Tax Map Key Information
Tax Map Key: 238066002
Description of Portion: N/R

Site Name: MAUI TOYOTA FKA HI WOOD PRESERVING CO
356 HANAKAI STREET
KAHULUI, HI 96732

Database(s): [BRS, HIST CORRACTS 2, RCRA_NONGEN]

BRS
Facility Name: MAUI TOYOTA FKA HI WOOD PRESERVING CO
Facility Address: 356 HANAKAI STREET, KAHULUI, HI 96732
County: MAUI

Site Details
Date Form Received by Agency: 04/10/2006
EPA ID: HID980883185
Mailing Address: 320 HANA HIGHWAY, KAHULUI, HI 96732
Contact: DAMIEN J FARIAS
Contact Address: N/R
Contact Country: N/R
Contact Telephone: 808-877-2781
Site Name: MAUI TOYOTA FKA HI WOOD PRESERVING CO 356 HANAKAI STREET KAHULUI, HI 96732

Database(s): [BRS, HIST CORRACTS 2, RCRA_NONGEN] (cont.)

BRS (cont.)

Contact Email: DAMIEN@MAUITOYOTA.NET
EPA Region: 09
Land Type: Private
Source Type: Annual/Biennial Report
Classification: Large Quantity Generator

Description:

Handlers that generate 1,000 kg or more of hazardous waste during any calendar month; or generate more than 1 kg of acutely hazardous waste during any calendar month; or generate more than 100 kg of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month; or generate 1 kg or less of acutely hazardous waste during any calendar month, and accumulate more than 1 kg of acutely hazardous waste at any time; or generate 100 kg or less of any residue or contaminated soil, waste or other debris resulting from the cleanup of a spill, into or on any land or water, of acutely hazardous waste during any calendar month, and accumulated more than 100 kg of that material at any time.

Last Date in Agency List: 12/21/2018

Owner/Operator Summary

Owner/Operator Name: DAMIEN FARIAS
Owner/Operator Address: 320 HANA HIGHWAY, KAHULUI, HI 96732
Owner/Operator Country: US
Owner/Operator Telephone: N/R
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Type: Owner
Owner/Operator Start Date: 08/24/2002
Owner/Operator End Date: N/R

Owner/Operator Name: DAMIEN FARIAS
Owner/Operator Address: N/R
Owner/Operator Country: US
Owner/Operator Telephone: N/R
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Type: Operator
Owner/Operator Start Date: 08/24/2002
Owner/Operator End Date: N/R

Waste Activity Monitoring

Report Cycle: 2005
Hazardous Waste Page Number: 1
Hazardous Waste Sub-Page Number: 1
BR Form: GM
Waste Description: CCA LIQUID
Primary NAICS: 321114
Source Code: G14
Map Findings 2019

Map Id: N66  
Direction: E  
Distance: 0.919 mi.  
Actual: 4852.056 ft.  
Elevation: 0.002 mi. / 9.764 ft.  
Relative: Higher

Site Name: MAUI TOYOTA FKA HI WOOD  
PRESERVING CO  
356 HANAKAI STREET  
KAHULUI, HI 96732

Database(s): [BRS, HIST CORRACTS 2, RCRA_NONGEN]

BRS (cont.)

<table>
<thead>
<tr>
<th>Source Code Description</th>
<th>Removal of tank sludge, sediments, or slag (periodic sludge or residual removal from storage tanks including internal scrubbing or cleaning)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Code</td>
<td>N/R</td>
</tr>
<tr>
<td>Form Code Description</td>
<td>N/R</td>
</tr>
<tr>
<td>Management Method</td>
<td>N/R</td>
</tr>
<tr>
<td>Management Method Description</td>
<td>N/R</td>
</tr>
<tr>
<td>Generation Tons</td>
<td>50.04</td>
</tr>
<tr>
<td>Managed Tons</td>
<td>0</td>
</tr>
<tr>
<td>Shipped Tons</td>
<td>50.04</td>
</tr>
<tr>
<td>Received Tons</td>
<td>0</td>
</tr>
<tr>
<td>Receiver ID</td>
<td>WAD020257945</td>
</tr>
<tr>
<td>Receiver State</td>
<td>WA</td>
</tr>
<tr>
<td>Shipper ID</td>
<td>H980883185</td>
</tr>
<tr>
<td>Shipper State</td>
<td>HI</td>
</tr>
<tr>
<td>Waste Minimization Code</td>
<td>N/R</td>
</tr>
<tr>
<td>Waste Minimization Code Description</td>
<td>N/R</td>
</tr>
<tr>
<td>Waste Code List</td>
<td>N/R</td>
</tr>
<tr>
<td>Waste Code Group</td>
<td>TCMT</td>
</tr>
<tr>
<td>Waste Code Group Description</td>
<td>D004-D011 combinations</td>
</tr>
<tr>
<td>Waste Generation Type</td>
<td>N/R</td>
</tr>
</tbody>
</table>

Report Cycle: 2005  
Hazardous Waste Page Number: 1  
Hazardous Waste Sub-Page Number: 2  
BR Form: GM  
Waste Description: CCA LIQUID  
Primary NAICS: 321114  
Source Code: G14

<table>
<thead>
<tr>
<th>Source Code Description</th>
<th>Removal of tank sludge, sediments, or slag (periodic sludge or residual removal from storage tanks including internal scrubbing or cleaning)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Code</td>
<td>N/R</td>
</tr>
<tr>
<td>Form Code Description</td>
<td>N/R</td>
</tr>
<tr>
<td>Management Method</td>
<td>N/R</td>
</tr>
<tr>
<td>Management Method Description</td>
<td>N/R</td>
</tr>
<tr>
<td>Generation Tons</td>
<td>245.196</td>
</tr>
<tr>
<td>Managed Tons</td>
<td>0</td>
</tr>
<tr>
<td>Shipped Tons</td>
<td>245.196</td>
</tr>
<tr>
<td>Received Tons</td>
<td>0</td>
</tr>
<tr>
<td>Receiver ID</td>
<td>W902057945</td>
</tr>
<tr>
<td>Receiver State</td>
<td>WA</td>
</tr>
<tr>
<td>Shipper ID</td>
<td>H980883185</td>
</tr>
<tr>
<td>Shipper State</td>
<td>HI</td>
</tr>
<tr>
<td>Waste Minimization Code</td>
<td>N/R</td>
</tr>
<tr>
<td>Waste Minimization Code Description</td>
<td>N/R</td>
</tr>
<tr>
<td>Waste Code List</td>
<td>N/R</td>
</tr>
<tr>
<td>Waste Code Group</td>
<td>TCMT</td>
</tr>
<tr>
<td>Waste Code Group Description</td>
<td>D004-D011 combinations</td>
</tr>
<tr>
<td>Waste Generation Type</td>
<td>N/R</td>
</tr>
</tbody>
</table>
Site Name: MAUI TOYOTA FKA HI WOOD PRESERVING CO
356 HANAKAI STREET
KAHULUI, HI 96732

Database(s): [BRS, HIST CORRACTS 2, RCRA_NONGEN]

Report Cycle: 2005
Hazardous Waste Page Number: 2
Hazardous Waste Sub-Page Number: 1
BR Form: GM
Waste Description: CCA SLUDGE
Primary NAICS: 321114
Source Code: G14

Source Code Description: Removal of tank sludge, sediments, or slag (periodic sludge or residual removal from storage tanks including internal scrubbing or cleaning)

Form Code: N/R
Form Code Description: N/R
Management Method: N/R
Management Method Description: N/R
Generation Tons: 6.3125
Managed Tons: 0
Shipped Tons: 6.3125
Received Tons: 0
Receiver ID: WAD991281767
Receiver State: WA
Shipper ID: HID980883185
Shipper State: HI
Waste Minimization Code: N/R
Waste Minimization Code Description: N/R
Waste Code List: N/R
Waste Code Group: F035
Waste Code Group Description: WASTEWATERS, PROCESS RESIDUALS, PRESERVATIVE DRIPPAGE, AND SPENT FORMULATIONS FROM WOOD PRESERVING PROCESSES GENERATED AT PLANTS THAT USE INORGANIC PR
Waste Generation Type: N/R

Report Cycle: 2005
Hazardous Waste Page Number: 3
Hazardous Waste Sub-Page Number: 1
BR Form: GM
Waste Description: DRIED CCA MATERIAL
Primary NAICS: 321114
Source Code: G14

Source Code Description: Removal of tank sludge, sediments, or slag (periodic sludge or residual removal from storage tanks including internal scrubbing or cleaning)

Form Code: N/R
Form Code Description: N/R
Management Method: N/R
Management Method Description: N/R
Generation Tons: 1.225
Managed Tons: 0
Shipped Tons: 1.225
Received Tons: 0
Receiver ID: WAD991281767
### BR Form: GM

**Site Name:** MAUI TOYOTA FKA HI WOOD PRESERVING CO  356 HANAKAI STREET  KAHULUI, HI 96732

**Database(s):** [BRS, HIST CORRACTS 2, RCRA_NONGEN] (cont.)

**Envirosite ID:** 410853523  
**EPA ID:** HID980883185

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map Id:</td>
<td>N66</td>
</tr>
<tr>
<td>Direction:</td>
<td>E</td>
</tr>
<tr>
<td>Distance:</td>
<td>0.919 mi.</td>
</tr>
<tr>
<td>Actual:</td>
<td>4852.056 ft.</td>
</tr>
<tr>
<td>Elevation:</td>
<td>0.002 mi. / 9.764 ft.</td>
</tr>
<tr>
<td>Relative:</td>
<td>Higher</td>
</tr>
<tr>
<td>Envirosite ID:</td>
<td>410853523</td>
</tr>
<tr>
<td>EPA ID:</td>
<td>HID980883185</td>
</tr>
<tr>
<td>Site Name:</td>
<td>MAUI TOYOTA FKA HI WOOD PRESERVING CO 356 HANAKAI STREET KAHULUI, HI 96732</td>
</tr>
<tr>
<td>Database(s):</td>
<td>[BRS, HIST CORRACTS 2, RCRA_NONGEN] (cont.)</td>
</tr>
<tr>
<td>Receiver State:</td>
<td>WA</td>
</tr>
<tr>
<td>Shipper ID:</td>
<td>HID980883185</td>
</tr>
<tr>
<td>Shipper State:</td>
<td>HI</td>
</tr>
<tr>
<td>Waste Minimization Code:</td>
<td>N/R</td>
</tr>
<tr>
<td>Waste Minimization Code Description:</td>
<td>WASTEWATERS, PROCESS RESIDUALS, PRESERVATIVE DRIPAGE, AND SPENT FORMULATIONS FROM WOOD PRESERVING PROCESSES GENERATED AT PLANTS THAT USE INORGANIC PR</td>
</tr>
<tr>
<td>Waste Code List:</td>
<td>N/R</td>
</tr>
<tr>
<td>Waste Code Group:</td>
<td>F035</td>
</tr>
<tr>
<td>Waste Code Group Description:</td>
<td>WASTEWATERS, PROCESS RESIDUALS, PRESERVATIVE DRIPAGE, AND SPENT FORMULATIONS FROM WOOD PRESERVING PROCESSES GENERATED AT PLANTS THAT USE INORGANIC PR</td>
</tr>
<tr>
<td>Waste Generation Type:</td>
<td>N/R</td>
</tr>
<tr>
<td>Report Cycle:</td>
<td>2005</td>
</tr>
<tr>
<td>Hazardous Waste Page Number:</td>
<td>4</td>
</tr>
<tr>
<td>Hazardous Waste Sub-Page Number:</td>
<td>1</td>
</tr>
<tr>
<td>BR Form:</td>
<td>GM</td>
</tr>
<tr>
<td>Waste Description:</td>
<td>CCA RINSE WATER</td>
</tr>
<tr>
<td>Primary NAICS:</td>
<td>321114</td>
</tr>
<tr>
<td>Source Code:</td>
<td>G14</td>
</tr>
<tr>
<td>Source Code Description:</td>
<td>Removal of tank sludge, sediments, or slag (periodic sludge or residual removal from storage tanks including internal scrubbing or cleaning)</td>
</tr>
<tr>
<td>Form Code:</td>
<td>N/R</td>
</tr>
<tr>
<td>Form Code Description:</td>
<td>N/R</td>
</tr>
<tr>
<td>Management Method:</td>
<td>N/R</td>
</tr>
<tr>
<td>Management Method Description:</td>
<td>N/R</td>
</tr>
<tr>
<td>Generation Tons:</td>
<td>1</td>
</tr>
<tr>
<td>Shipped Tons:</td>
<td>1</td>
</tr>
<tr>
<td>Managed Tons:</td>
<td>0</td>
</tr>
<tr>
<td>Received Tons:</td>
<td>0</td>
</tr>
<tr>
<td>Receiver ID:</td>
<td>WAD991281767</td>
</tr>
<tr>
<td>Receiver State:</td>
<td>WA</td>
</tr>
<tr>
<td>Shipper ID:</td>
<td>HID980883185</td>
</tr>
<tr>
<td>Shipper State:</td>
<td>HI</td>
</tr>
<tr>
<td>Waste Minimization Code:</td>
<td>N/R</td>
</tr>
<tr>
<td>Waste Minimization Code Description:</td>
<td>WASTEWATERS, PROCESS RESIDUALS, PRESERVATIVE DRIPAGE, AND SPENT FORMULATIONS FROM WOOD PRESERVING PROCESSES GENERATED AT PLANTS THAT USE INORGANIC PR</td>
</tr>
<tr>
<td>Waste Code List:</td>
<td>N/R</td>
</tr>
<tr>
<td>Waste Code Group:</td>
<td>F035</td>
</tr>
<tr>
<td>Waste Code Group Description:</td>
<td>WASTEWATERS, PROCESS RESIDUALS, PRESERVATIVE DRIPAGE, AND SPENT FORMULATIONS FROM WOOD PRESERVING PROCESSES GENERATED AT PLANTS THAT USE INORGANIC PR</td>
</tr>
<tr>
<td>Waste Generation Type:</td>
<td>N/R</td>
</tr>
<tr>
<td>Report Cycle:</td>
<td>2005</td>
</tr>
<tr>
<td>Hazardous Waste Page Number:</td>
<td>5</td>
</tr>
<tr>
<td>Hazardous Waste Sub-Page Number:</td>
<td>1</td>
</tr>
<tr>
<td>BR Form:</td>
<td>GM</td>
</tr>
<tr>
<td>Waste Description:</td>
<td>STODDARD SOLVENT AND WATER</td>
</tr>
</tbody>
</table>

---

Page 169 of 327
Map Findings 2019

Map Id: N66
Direction: E
Distance: 0.919 mi.
Actual: 4852.056 ft.
Elevation: 0.002 mi. / 9.764 ft.
Relative: Higher

Site Name: MAUI TOYOTA FKA HI WOOD PRESERVING CO
356 HANAKAI STREET
KAHULUI, HI 96732

Database(s): [BRS, HIST CORRACTS 2, RCRA_NONGEN]
(cont.)

BRS (cont.)

Primary NAICS: 321114
Source Code: G14
Source Code Description: Removal of tank sludge, sediments, or slag (periodic sludge or residual removal from storage tanks including internal scrubbing or cleaning)

Form Code: N/R
Form Code Description: N/R
Management Method: N/R
Management Method Description: N/R
Generation Tons: 18.765
Managed Tons: 0
Shipped Tons: 18.765
Received Tons: 0
Receiver ID: WAD020257945
Receiver State: WA
Shipper ID: HID980883185
Shipper State: HI
Waste Minimization Code: N/R
Waste Minimization Code Description: N/R
Waste Code List: N/R
Waste Code Group: D001
Waste Code Group Description: IGNITABLE WASTE
Waste Generation Type: N/R

HIST CORRACTS 2

Facility Name: MAUI TOYOTA FKA HI WOOD PRESERVING CO
Facility Address: 356 HANAKAI STREET, KAHULUI, HI 96732
County: MAUI

Handler ID: HID980883185
Type: N/R
EPA Region: 9
Resource Conservation and Recovery Act Information Report: Click here for hyperlink provided by the agency.
Latitude: 20.88689
Longitude: -156.45671
Last Date in Agency List: 02/19/2015

RCRA_NONGEN

Facility Name: MAUI TOYOTA FKA HI WOOD PRESERVING CO
Facility Address: 356 HANAKAI STREET, KAHULUI, HI 96732
County: MAUI

Date Form Received by Agency: 20100256
EPA ID: HID980883185
Mailing Address: 320 HANA HIGHWAY, KAHULUI, HI 96732
Contact: DAMIEN J FARIAS
Contact Address: N/R
Contact Country: US
Contact Telephone: 808-877-2781
Site Name: MAUI TOYOTA FKA HI WOOD PRESERVING CO
356 HANAKAI STREET
KAHULUI, HI 96732

Database(s): [BRS, HIST CORRACTS 2, RCRA_NONGEN] (cont.)

Contact Email: DAMIEN@MAUITOYOTA.NET
EPA Region: 09
Land Type: Private
Source Type: Implementer
Classification: Not a generator, verified
Description: Not a generator, verified

Owner/Operator Summary

Owner/Operator Name: DAMIEN FARIAS
Owner/Operator Address: 320 HANA HIGHWAY, KAHULUI, HI 96732
Owner/Operator Country: US
Owner/Operator Telephone: N/R
Owner/Operator Email: N/R
Owner/Operator Fax: N/R
Legal Status: Private
Owner/Operator Type: Owner
Owner/Operator Start Date: 08/24/2002
Owner/Operator End Date: N/R

Handler Activities Summary

U.S. Importer of Hazardous Waste: N
Mixed Waste (Haz. and Radioactive): N
Recycler of Hazardous Waste: N
Transporter of Hazardous Waste: N
Treater, Storer or Disposer of HW: N
Underground Injection Activity: N
On-site Burner Exemption: N
Furnace Exemption: N
Used Oil Fuel Burner: N
Used Oil Processor: N
Used Oil Refiner: N
Used Oil Fuel Marketer to Burner: N
Used Oil Specification Marketer: N
Used Oil Transfer Facility: N
Used Oil Transporter: N
Map Findings 2019

Map Id: N66
Direction: E
Distance: 0.919 mi.
Actual: 4852.056 ft.
Elevation: 0.002 mi. / 9.764 ft.
Relative: Higher

Site Name: MAUI TOYOTA FKA HI WOOD PRESERVING CO
356 HANAKAI STREET
KAHULUI, HI 96732

Database(s): [BRS, HIST CORRACTS 2, RCRA_NONGEN]

RCRA_NONGEN (cont.)

Historical Generators

<table>
<thead>
<tr>
<th>Date Form Received by Agency</th>
<th>Facility Name</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/10/2006</td>
<td>MAUI TOYOTA FKA HI WOOD PRESERVING CO</td>
<td>Large Quantity Generator</td>
</tr>
<tr>
<td>10/28/1998</td>
<td>HAWAII WOOD PRESERVING COMPANY</td>
<td>Large Quantity Generator</td>
</tr>
<tr>
<td>04/11/1997</td>
<td>HAWAII WOOD PRESERVING CO</td>
<td>Large Quantity Generator</td>
</tr>
<tr>
<td>19940360</td>
<td>HAWAII WOOD PRESERVING COMPANY</td>
<td>Large Quantity Generator</td>
</tr>
<tr>
<td>19960252</td>
<td>HAWAII WOOD PRESERVING CO</td>
<td>Large Quantity Generator</td>
</tr>
<tr>
<td>19980364</td>
<td>HAWAII WOOD PRESERVING CO</td>
<td>Large Quantity Generator</td>
</tr>
<tr>
<td>20000235</td>
<td>HAWAII WOOD PRESERVING COMPANY</td>
<td>Large Quantity Generator</td>
</tr>
</tbody>
</table>

Hazardous Waste Summary

<table>
<thead>
<tr>
<th>Waste Code / Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>D001 - IGNITABLE WASTE</td>
</tr>
<tr>
<td>D004 - ARSENIC</td>
</tr>
<tr>
<td>D007 - CHROMIUM</td>
</tr>
<tr>
<td>F035 - WASTEWATERS, PROCESS RESIDUALS, PRESERVATIVE DRIPPAGE, AND SPENT FORMULATIONS FROM WOOD PRESERVING PROCESSES GENERATED AT PLANTS THAT USE INORGANIC PRESERVATIVES CONTAINING ARSENIC OR CHROMIUM. THIS LISTING DOES NOT INCLUDE K001 BOTTOM SEDIMENT SLUDGE FROM THE TREATMENT OF WASTEWATER FROM WOOD PRESERVING PROCESSES THAT USE CREOSOTE AND/OR PENTACHLOROPHENOL.</td>
</tr>
</tbody>
</table>

Notices of Violations Summary

<table>
<thead>
<tr>
<th>Date of Violation</th>
<th>Date Achieved Compliance</th>
<th>Regulation Violated</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/19/1994</td>
<td>08/22/1999</td>
<td>Y</td>
</tr>
</tbody>
</table>

Envirosite ID: 410853523
EPA ID: HID980883185
<table>
<thead>
<tr>
<th>Site Name</th>
<th>MAUI TOYOTA FKA HI WOOD PRESERVING CO 356 HANAKAI STREET KAHLUI, HI 96732</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database(s)</td>
<td>[BRS, HIST CORRACTS 2, RCRA_NONGEN] (cont.)</td>
</tr>
</tbody>
</table>

**RCRA_NONGEN (cont.)**

<table>
<thead>
<tr>
<th>Area of Violation</th>
<th>TSD - General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enforcement Action</td>
<td>FINAL 3008(A) COMPLIANCE ORDER</td>
</tr>
<tr>
<td>Enforcement Action Date</td>
<td>05/14/1995</td>
</tr>
<tr>
<td>Enf. Disposition Status</td>
<td>N/R</td>
</tr>
<tr>
<td>Enf. Disp. Status Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Violation Lead Agency</td>
<td>State</td>
</tr>
<tr>
<td>Enforcement Lead Agency</td>
<td>State</td>
</tr>
<tr>
<td>Proposed Penalty Amount</td>
<td>N/R</td>
</tr>
<tr>
<td>Final Penalty Amount</td>
<td>15259</td>
</tr>
<tr>
<td>Paid Penalty Amount</td>
<td>2544</td>
</tr>
</tbody>
</table>

**Evaluation Action Summary**

<table>
<thead>
<tr>
<th>Evaluation Date</th>
<th>01/26/2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation</td>
<td>FOCUSED COMPLIANCE INSPECTION</td>
</tr>
<tr>
<td>Area of Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Achieved Compliance</td>
<td>N/R</td>
</tr>
<tr>
<td>Evaluation Lead Agency</td>
<td>State</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation Date</th>
<th>08/23/2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation</td>
<td>NOT A SIGNIFICANT NON-COMPLIER</td>
</tr>
<tr>
<td>Area of Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Achieved Compliance</td>
<td>N/R</td>
</tr>
<tr>
<td>Evaluation Lead Agency</td>
<td>State</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation Date</th>
<th>10/29/2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation</td>
<td>SIGNIFICANT NON-COMPLIER</td>
</tr>
<tr>
<td>Area of Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Achieved Compliance</td>
<td>N/R</td>
</tr>
<tr>
<td>Evaluation Lead Agency</td>
<td>State</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation Date</th>
<th>08/22/1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation</td>
<td>COMPLIANCE EVALUATION INSPECTION ON-SITE</td>
</tr>
<tr>
<td>Area of Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Achieved Compliance</td>
<td>N/R</td>
</tr>
<tr>
<td>Evaluation Lead Agency</td>
<td>State</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation Date</th>
<th>07/19/1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation</td>
<td>COMPLIANCE EVALUATION INSPECTION ON-SITE</td>
</tr>
<tr>
<td>Area of Violation</td>
<td>TSD - General</td>
</tr>
<tr>
<td>Date Achieved Compliance</td>
<td>08/22/1999</td>
</tr>
<tr>
<td>Evaluation Lead Agency</td>
<td>State</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation Date</th>
<th>06/15/1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation</td>
<td>COMPLIANCE EVALUATION INSPECTION ON-SITE</td>
</tr>
<tr>
<td>Area of Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Achieved Compliance</td>
<td>N/R</td>
</tr>
<tr>
<td>Evaluation Lead Agency</td>
<td>State</td>
</tr>
</tbody>
</table>
### Map Findings 2019

**Site Name:** MAUI TOYOTA FKA HI WOOD PRESERVING CO 356 HANAKAI STREET KAHULUI, HI 96732

**Database(s):** [BRS, HIST CORRACTS 2, RCRA_NONGEN] (cont.)

**Envirosite ID:** 410853523  
**EPA ID:** HID980883185

<table>
<thead>
<tr>
<th>Evaluation Date</th>
<th>Evaluation</th>
<th>Area of Violation</th>
<th>Date Achieved Compliance</th>
<th>Evaluation Lead Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RCRA_NONGEN (cont.)</strong></td>
<td>19941236</td>
<td>SIGNIFICANT NON-COMPLIER</td>
<td>N/R</td>
<td>State</td>
</tr>
<tr>
<td>Evaluation Date</td>
<td>Evaluation</td>
<td>Area of Violation</td>
<td>Date Achieved Compliance</td>
<td>Evaluation Lead Agency</td>
</tr>
<tr>
<td>19970238</td>
<td>NOT A SIGNIFICANT NON-COMPLIER</td>
<td>N/R</td>
<td>N/R</td>
<td>State</td>
</tr>
<tr>
<td>Evaluation Date</td>
<td>Evaluation</td>
<td>Area of Violation</td>
<td>Date Achieved Compliance</td>
<td>Evaluation Lead Agency</td>
</tr>
<tr>
<td>20090236</td>
<td>COMPLIANCE EVALUATION INSPECTION ON-SITE</td>
<td>N/R</td>
<td>N/R</td>
<td>State</td>
</tr>
<tr>
<td>ENVIROSITE ID</td>
<td>NAME</td>
<td>ADDRESS</td>
<td>CITY</td>
<td>ZIP</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>363381418</td>
<td>A&amp;B PROPERTIES, INC.,..</td>
<td>HALEAKALA ST</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>319997311</td>
<td>A&amp;B PROPERTIES, INC.,..</td>
<td>HALEAKALA ST</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>330382320</td>
<td>A&amp;B PROPERTY, 55-GALL...</td>
<td>HALEAKALA HWY</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>1394007</td>
<td>ALEXANDER &amp; BALDWIN D...</td>
<td>WEST PAPA AVENUE</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>11687946</td>
<td>AVIS RENT-A-CAR SYSTEM IN...</td>
<td>KAHULUI AIRPORT</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>411045497</td>
<td>DOTA EMERGENCY GENERATOR ...</td>
<td>KAHULUI AIRPORT</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>1393728</td>
<td>E &amp; E BLACK CONTRACTO...</td>
<td>AMALA PLACE</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>1336692</td>
<td>F &amp; M CONTRACTORS, IN...</td>
<td>AMALA PLACE</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>11687882</td>
<td>HAWAIIAN HOMES SPS (PAUKA...</td>
<td>WAIEHU BEACH RD/KUKONA PL...</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>11687913</td>
<td>HI DOT HIGHWAYS DIVISION</td>
<td>HANSEN RD - OLD BASEYARD</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>1394044</td>
<td>KANAHNA POND EAST</td>
<td>AMALA PLACE</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>1393810</td>
<td>KING'S TOWING</td>
<td>AMALA PLACE</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>4203193</td>
<td>KIUAU SPS 2</td>
<td>HANA HWY / AOLANI PL</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>339090718</td>
<td>MAUI PINEAPPLE CO LTD, SE...</td>
<td>HALEAKALA HWY</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>414582759</td>
<td>MAUI SVC LTD</td>
<td>TMK 3 7 11 17</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>330386983</td>
<td>MECO POLE-MOUNT TRANSFORM...</td>
<td>KAHAHMAMU AVE</td>
<td>WAILUKU</td>
<td>96732</td>
</tr>
<tr>
<td>330386990</td>
<td>MECO POLE-MOUNT TRANSFORM...</td>
<td>CORNER OF PUUNENE &amp; KAHAHU...</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>330387138</td>
<td>MECO VEHICLE HYDRAULIC OI...</td>
<td>HANA HWY E7</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>1393811</td>
<td>RAINBOW HAULING</td>
<td>AMALA PLACE</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>397328412</td>
<td>SAFEWAY FUEL CENTER</td>
<td>SWC HOOKELE ST AND HANA H...</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>1393729</td>
<td>SMILE'S JUNK YARD</td>
<td>AMALA PLACE</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
<tr>
<td>1392432</td>
<td>WAIKAPU DUMP-MAUI COUNTY ...</td>
<td>CENTRAL MAUI</td>
<td>KAHULUI</td>
<td>96732</td>
</tr>
</tbody>
</table>
FEDERAL RCRA NON-CORRACTS TSD FACILITIES LIST

ARCHIVED RCRA TSDF: Resource Conservation and Recovery Act hazardous waste transportation storage disposal and treatment facilities

Agency Version Date: 12/17/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 03/01/2019

FEDERAL CERCLIS LIST

CERCLIS NFRAP: The CERCLIS sites with No Further Remedial Action Planned from the CERCLIS program database. The Environmental Protection Agency decommissioned the CERCLIS data in 2014. The last update was November 12, 2013.

Agency Version Date: 07/26/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/01/2019

CERCLIS-HIST: The CERCLIS program database contains information on the assessment and remediation of federal hazardous waste sites. The Environmental Protection Agency decommissioned the CERCLIS data in 2014. The last update was November 12, 2013.

Agency Version Date: 07/26/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/01/2019

FEDERAL FACILITY: Sites where Federal Facilities Restoration and Reuse Office (FFRRO) arranged cleanup for Base Closure and Property Transfer at Federal Facilities

Agency Version Date: 08/13/2018
Agency Update Frequency: Varies
Planned Next Contact: 04/01/2019

SEMS_8R_ACTIVE SITES: The Active Site Inventory Report displays site and location information at active SEMS sites. An active site is one at which site assessment, removal, remedial, enforcement, cost recovery, or oversight activities are being planned or conducted. NPL sites include latitude and longitude information. For non-NPL sites, a brief site status is provided.

Agency Version Date: 08/13/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/01/2019

SEMS_8R_ARCHIVED SITES: The Archived Site Inventory displays site and location information at sites archived from SEMS. An archived site is one at which EPA has determined that assessment has been completed and no further remedial action is planned under the Superfund program at this time.

Agency Version Date: 08/13/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/01/2019
FEDERAL RCRA CORRACTS FACILITIES LIST

CORRACTS: List of facilities where Resource Conservation and Recovery Act Corrective Action Program used to investigate and remediate hazardous releases

Agency Version Date: 12/17/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 03/01/2019

Agency: U.S. Environmental Protection Agency  
Agency Contact: 202-566-1667  
Most Recent Contact: 12/21/2018

HIST CORRACTS 2: List of facilities where Resource Conservation and Recovery Act Corrective Action Program used to investigate and remediate hazardous releases that are no longer in current agency list.

Agency Version Date: 10/12/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 03/01/2019

Agency: U.S. Environmental Protection Agency  
Agency Contact: 202-566-1667  
Most Recent Contact: 12/21/2018

FEDERAL DELISTED NPL SITE LIST

DELISTED NPL: National Priority List of sites that were delisted and no longer require action

Agency Version Date: 10/31/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 04/01/2019

Agency: U.S. Environmental Protection Agency  
Agency Contact: 703-603-8867  
Most Recent Contact: 11/19/2018

DELISTED PROPOSED NPL: Sites that have been delisted from the proposed National Priority List

Agency Version Date: 11/12/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 04/01/2019

Agency: U.S. Environmental Protection Agency  
Agency Contact: 703-603-8867  
Most Recent Contact: 01/21/2019

SEMS_DELETED NPL: All Deleted National Priority List Sites

Agency Version Date: 08/13/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 04/01/2019

Agency: U.S. Environmental Protection Agency  
Agency Contact: 703-603-8867  
Most Recent Contact: 01/21/2019

FEDERAL LANDFILL AND/OR SOLID WASTE DISPOSAL SITE LISTS

EPA LF MOP: Sites in the EPA Landfill Methane Outreach Program

Agency Version Date: 12/17/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 02/25/2019

Agency: U.S. Environmental Protection Agency  
Agency Contact: 703-603-8867  
Most Recent Contact: 12/17/2018

FEDERAL ERNS LIST

ERNS: Emergency Response Notification System records of reported spills

Agency Version Date: 01/23/2019  
Agency Update Frequency: Annually  
Planned Next Contact: 04/03/2019

Agency: National Response Center United States Coast Guard  
Agency Contact: N/R  
Most Recent Contact: 01/23/2019

FEDERAL RCRA GENERATORS LIST

HIST RCRA_CESQG: List of Resource Conservation and Recovery Act licensed conditionally exempt small quantity generators that are no longer in current agency list.

Agency Version Date: 10/12/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 03/01/2019

Agency: U.S. Environmental Protection Agency  
Agency Contact: 215-814-2469  
Most Recent Contact: 12/21/2018
FEDERAL RCRA GENERATORS LIST (cont.)

HIST RCRA_LQG: List of Resource Conservation and Recovery Act licensed large quantity generators that are no longer in current agency list.

Agency Version Date: 10/12/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 03/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 215-814-2469
Most Recent Contact: 12/21/2018

HIST RCRA_NONGEN: List of Resource Conservation and Recovery Act licensed non-generators that are no longer in current agency list.

Agency Version Date: 10/12/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 03/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 215-814-2469
Most Recent Contact: 12/21/2018

HIST RCRA_SQG: List of Resource Conservation and Recovery Act licensed small quantity generators that are no longer in current agency list.

Agency Version Date: 10/12/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 03/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 215-814-2469
Most Recent Contact: 12/21/2018

RCRA_CESQG: Resource Conservation and Recovery Act listing of licensed conditionally exempt small quantity generators

Agency Version Date: 12/17/2018
Agency Update Frequency: Varies
Planned Next Contact: 03/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 215-814-2469
Most Recent Contact: 12/21/2018

RCRA_LQG: Resource Conservation and Recovery Act listing of licensed large quantity generators

Agency Version Date: 12/17/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 03/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 215-814-2469
Most Recent Contact: 12/21/2018

RCRA_NONGEN: Resource Conservation and Recovery Act listing of licensed non-generators

Agency Version Date: 12/17/2018
Agency Update Frequency: Varies
Planned Next Contact: 03/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 215-814-2469
Most Recent Contact: 12/21/2018

RCRA_SQG: Resource Conservation and Recovery Act listing of licensed small quantity generators

Agency Version Date: 12/17/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 03/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 215-814-2469
Most Recent Contact: 12/21/2018

FEDERAL NPL SITE LIST

NPL: List of priority contaminated sites among identified releases or threatened releases of hazardous substances pollutants or contaminants nationally

Agency Version Date: 10/31/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 703-603-8867
Most Recent Contact: 01/21/2019

NPL EPA R1 GIS: Geospatial data for the Environmental Protection Agency Region 1 National Priority List subject to environmental regulation

Agency Version Date: 11/12/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 202-566-2132
Most Recent Contact: 01/21/2019
FEDERAL NPL SITE LIST (cont.)

NPL EPA R3 GIS: Geospatial data for the Environmental Protection Agency Region 3 National Priority List subject to environmental regulation

- Agency Version Date: 11/12/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 04/01/2019
- Agency: U.S. Environmental Protection Agency
- Agency Contact: 202-566-2132
- Most Recent Contact: 01/21/2019

NPL EPA R6 GIS: Geospatial data for the Environmental Protection Agency Region 6 National Priority List subject to environmental regulation

- Agency Version Date: 11/12/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 04/01/2019
- Agency: U.S. Environmental Protection Agency
- Agency Contact: 202-566-2132
- Most Recent Contact: 01/21/2019

NPL EPA R8 GIS: Geospatial data for the Environmental Protection Agency Region 8 National Priority List subject to environmental regulation

- Agency Version Date: 11/12/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 04/01/2019
- Agency: U.S. Environmental Protection Agency
- Agency Contact: 202-566-2132
- Most Recent Contact: 11/19/2018

NPL EPA R9 GIS: Geospatial data for the Environmental Protection Agency Region 9 National Priority List subject to environmental regulation

- Agency Version Date: 11/12/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 04/01/2019
- Agency: U.S. Environmental Protection Agency
- Agency Contact: 202-566-2132
- Most Recent Contact: 01/21/2019

PART NPL: Sites that are a part of an National Priority List site referred to as the parent site

- Agency Version Date: 11/12/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 04/01/2019
- Agency: U.S. Environmental Protection Agency
- Agency Contact: 703-603-8867
- Most Recent Contact: 01/21/2019

PROPOSED NPL: Sites that have been proposed for the National Priority List

- Agency Version Date: 10/31/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 04/01/2019
- Agency: U.S. Environmental Protection Agency
- Agency Contact: 703-603-8867
- Most Recent Contact: 01/21/2019

SEMS_FINAL NPL: All Included National Priority List Sites

- Agency Version Date: 08/13/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 04/01/2019
- Agency: U.S. Environmental Protection Agency
- Agency Contact: 703-603-8867
- Most Recent Contact: 01/21/2019

SEMS_PROPOSED NPL: All Proposed National Priority List Sites

- Agency Version Date: 08/13/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 04/01/2019
- Agency: U.S. Environmental Protection Agency
- Agency Contact: 703-603-8867
- Most Recent Contact: 01/21/2019

FEDERAL INSTITUTIONAL CONTROLS / ENGINEERING CONTROLS REGISTRIES

RCRA IC_EC: Sites with institutional or engineering controls related to Resource Conservation and Recovery Act

- Agency Version Date: 11/19/2018
- Agency Update Frequency: Varies
- Planned Next Contact: 04/09/2019
- Agency: U.S. Environmental Protection Agency
- Agency Contact: 215-814-2469
- Most Recent Contact: 01/29/2019
<table>
<thead>
<tr>
<th>Registry Type</th>
<th>Agency Version Date</th>
<th>Agency Update Frequency</th>
<th>Planned Next Contact</th>
<th>Agency Contact</th>
<th>Most Recent Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Federal Institutional Controls</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fed E C</td>
<td>11/28/2018</td>
<td>Varies</td>
<td>04/17/2019</td>
<td>800-424-9346</td>
<td>02/06/2019</td>
</tr>
<tr>
<td>Fed I C</td>
<td>11/28/2018</td>
<td>Varies</td>
<td>04/17/2019</td>
<td>800-424-9346</td>
<td>02/06/2019</td>
</tr>
<tr>
<td><strong>State and Tribal Registered Storage Tank Lists</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEMA UST</td>
<td>12/17/2018</td>
<td>Varies</td>
<td>03/15/2019</td>
<td>202-212-5283</td>
<td>12/17/2018</td>
</tr>
<tr>
<td>INDIAN UST R1</td>
<td>04/13/2018</td>
<td>Quarterly</td>
<td>03/19/2019</td>
<td>855-246-3642</td>
<td>01/08/2019</td>
</tr>
<tr>
<td>INDIAN UST R10</td>
<td>04/12/2018</td>
<td>Quarterly</td>
<td>04/15/2019</td>
<td>855-246-3642</td>
<td>02/04/2019</td>
</tr>
<tr>
<td>INDIAN UST R2</td>
<td>12/07/2016</td>
<td>Quarterly</td>
<td>03/25/2019</td>
<td>855-246-3642</td>
<td>01/14/2019</td>
</tr>
<tr>
<td>INDIAN UST R4</td>
<td>05/08/2018</td>
<td>Semi Annually</td>
<td>04/15/2019</td>
<td>855-246-3642</td>
<td>02/04/2019</td>
</tr>
<tr>
<td>INDIAN UST R5</td>
<td>04/12/2018</td>
<td>Varies</td>
<td>04/04/2019</td>
<td>855-246-3642</td>
<td>01/24/2019</td>
</tr>
<tr>
<td>INDIAN UST R6</td>
<td>04/01/2018</td>
<td>Semi Annually</td>
<td>04/18/2019</td>
<td>855-246-3642</td>
<td>02/07/2019</td>
</tr>
</tbody>
</table>
### STATE AND TRIBAL REGISTERED STORAGE TANK LISTS (cont.)

**INDIAN UST R7: Underground Storage Tanks on Indian Land in EPA Region 7**
- Agency Version Date: 04/24/2018
- Agency Update Frequency: Varies
- Planned Next Contact: 04/04/2019
- Agency: U.S. Environmental Protection Agency Region 7
- Most Recent Contact: 01/24/2019

**INDIAN UST R8: Underground Storage Tanks on Indian Land in EPA Region 8**
- Agency Version Date: 04/25/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 03/18/2019
- Agency: U.S. Environmental Protection Agency Region 8
- Most Recent Contact: 01/07/2019

**INDIAN UST R9: Underground Storage Tanks on Indian Land in EPA Region 9**
- Agency Version Date: 04/10/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 03/18/2019
- Agency: U.S. Environmental Protection Agency Region 9
- Most Recent Contact: 01/07/2019

**AST - HI: Aboveground storage tank listing**
- Agency Version Date: 12/11/2018
- Agency Update Frequency: No Update
- Planned Next Contact: 04/30/2019
- Agency: Hawaii Fire Department
- Most Recent Contact: 02/19/2019

**HIST AST - HI: Historical list of Aboveground storage tank listing**
- Agency Version Date: 10/02/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 04/30/2019
- Agency: Hawaii Fire Department
- Most Recent Contact: 02/19/2019

**UST - HI: Underground storage tank listing**
- Agency Version Date: 01/10/2019
- Agency Update Frequency: Quarterly
- Planned Next Contact: 03/21/2019
- Agency: Hawai’i State Department of Health
- Most Recent Contact: 01/10/2019

### STATE AND TRIBAL LEAKING STORAGE TANK LISTS

**INDIAN LUST R1: Leaking Underground Storage Tanks on Indian Land in EPA Region 1**
- Agency Version Date: 04/13/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 03/19/2019
- Agency: U.S. Environmental Protection Agency Region 1
- Most Recent Contact: 01/08/2019

**INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land in EPA Region 10**
- Agency Version Date: 04/12/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 04/15/2019
- Agency: U.S. Environmental Protection Agency Region 10
- Most Recent Contact: 02/04/2019

**INDIAN LUST R2: Leaking Underground Storage Tanks on Indian Land in EPA Region 2**
- Agency Version Date: 12/07/2016
- Agency Update Frequency: Quarterly
- Planned Next Contact: 03/25/2019
- Agency: U.S. Environmental Protection Agency Region 2
- Most Recent Contact: 01/14/2019
STATE AND TRIBAL LEAKING STORAGE TANK LISTS (cont.)

INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land in EPA Region 4

Agency Version Date: 05/08/2018
Agency Update Frequency: Semi Annually
Planned Next Contact: 04/15/2019

Agency: U.S. Environmental Protection Agency Region 4
Agency Contact: 855-246-3642
Most Recent Contact: 02/04/2019

INDIAN LUST R5: Leaking Underground Storage Tanks on Indian Land in EPA Region 5

Agency Version Date: 04/12/2018
Agency Update Frequency: Varies
Planned Next Contact: 04/04/2019

Agency: U.S. Environmental Protection Agency Region 5
Agency Contact: 855-246-3642
Most Recent Contact: 01/24/2019

INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land in EPA Region 6

Agency Version Date: 11/19/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/08/2019

Agency: U.S. Environmental Protection Agency Region 6
Agency Contact: 855-246-3642
Most Recent Contact: 01/28/2019

INDIAN LUST R7: Leaking Underground Storage Tanks on Indian Land in EPA Region 7

Agency Version Date: 04/24/2018
Agency Update Frequency: Varies
Planned Next Contact: 04/04/2019

Agency: U.S. Environmental Protection Agency Region 7
Agency Contact: 855-246-3642
Most Recent Contact: 01/24/2019

INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land in EPA Region 8

Agency Version Date: 04/25/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/05/2019

Agency: U.S. Environmental Protection Agency Region 8
Agency Contact: 855-246-3642
Most Recent Contact: 01/25/2019

INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land in EPA Region 9

Agency Version Date: 04/10/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 03/18/2019

Agency: U.S. Environmental Protection Agency Region 9
Agency Contact: 855-246-3642
Most Recent Contact: 01/07/2019

HIST LUST - HI: List of leaking underground storage tank sites that are no longer in current agency list.

Agency Version Date: 01/10/2019
Agency Update Frequency: Quarterly
Planned Next Contact: 03/21/2019

Agency: Hawai’i State Department of Health
Agency Contact: 808-586-4226
Most Recent Contact: 01/10/2019

LUST - HI: Leaking underground storage tank sites listing

Agency Version Date: 01/10/2019
Agency Update Frequency: Quarterly
Planned Next Contact: 03/21/2019

Agency: Hawai’i State Department of Health
Agency Contact: 808-586-4226
Most Recent Contact: 01/10/2019

STATE AND TRIBAL BROWNFIELD SITES

TRIBAL BROWNFIELDS: Tribal brownfield remediation site listing

Agency Version Date: 02/10/2014
Agency Update Frequency: Quarterly
Planned Next Contact: 03/04/2019

Agency: U.S. Environmental Protection Agency
Agency Contact: 855-246-3642
Most Recent Contact: 12/06/2018
STATE AND TRIBAL BROWNFIELD SITES (cont.)

BROWNFIELDS - HI: Listing of brownfield remediation sites

Agency Version Date: 09/27/2018  
Agency Update Frequency: Varies  
Planned Next Contact: 04/18/2019

Agency: Hawai’i State Department of Health  
Agency Contact: 808-586-4249  
Most Recent Contact: 02/07/2019

STATE INSTITUTIONAL CONTROLS / ENGINEERING CONTROLS REGISTRIES

I C - HI: Remediation sites with institutional controls

Agency Version Date: 09/27/2018  
Agency Update Frequency: Semi Annually  
Planned Next Contact: 04/18/2019

Agency: Hawai’i State Department of Health  
Agency Contact: 808-586-4249  
Most Recent Contact: 02/07/2019

STATE- AND TRIBAL - EQUIVALENT CERCLIS

SHWS - HI: Listing of state hazardous waste sites

Agency Version Date: 09/27/2018  
Agency Update Frequency: Semi Annually  
Planned Next Contact: 04/18/2019

Agency: Hawai’i State Department of Health  
Agency Contact: 808-586-4226  
Most Recent Contact: 02/07/2019

STATE AND TRIBAL LANDFILL AND/OR SOLID WASTE DISPOSAL SITE LISTS

SWF LF CLOSED - HI: Closed solid waste facilities and landfill listing

Agency Version Date: 12/11/2017  
Agency Update Frequency: Semi Annually  
Planned Next Contact: 04/15/2019

Agency: Hawai’i State Department of Health  
Agency Contact: 808-586-4226  
Most Recent Contact: 02/04/2019

SWF/LF - HI: Solid waste facility and landfill listing

Agency Version Date: 04/19/2017  
Agency Update Frequency: Semi Annually  
Planned Next Contact: 03/20/2019

Agency: Hawai’i State Department of Health  
Agency Contact: 808-586-4226  
Most Recent Contact: 01/09/2019

STATE AND TRIBAL VOLUNTARY CLEANUP SITES

VCP - HI: Voluntary cleanup program remediation sites listing

Agency Version Date: 09/27/2018  
Agency Update Frequency: Varies  
Planned Next Contact: 04/18/2019

Agency: Hawai’i State Department of Health  
Agency Contact: 808-586-4249  
Most Recent Contact: 02/07/2019

LOCAL BROWNFIELD LISTS

BROWNFIELDS-ACRES: EPA Brownfields Assessment, Cleanup and Redevelopment Exchange System.

Agency Version Date: 12/06/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 04/25/2019

Agency: U.S. Environmental Protection Agency  
Agency Contact: 855-246-3642  
Most Recent Contact: 02/14/2019

Fed Brownfields: Federal brownfield remediation sites

Agency Version Date: 01/15/2019  
Agency Update Frequency: Semi Annually  
Planned Next Contact: 03/26/2019

Agency: U.S. Environmental Protection Agency  
Agency Contact: 855-246-3642  
Most Recent Contact: 01/15/2019
<table>
<thead>
<tr>
<th><strong>LOCAL LISTS OF HAZARDOUS WASTE / CONTAMINATED SITES</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FED CDL:</strong> The U.S. Department of Justice listing of clandestine drug lab locations</td>
</tr>
<tr>
<td>Agency Version Date: 01/07/2019</td>
</tr>
<tr>
<td>Agency Update Frequency: Quarterly</td>
</tr>
<tr>
<td>Planned Next Contact: 03/18/2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>US HIST CDL:</strong> The U.S. Department of Justice historical listing of clandestine drug lab locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Version Date: 01/07/2019</td>
</tr>
<tr>
<td>Agency Update Frequency: Quarterly</td>
</tr>
<tr>
<td>Planned Next Contact: 03/18/2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>LOCAL LISTS OF LANDFILL / SOLID WASTE DISPOSAL SITES</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HIST INDIAN ODI R8:</strong> List of Region 8 Indian land open dump inventory sites maintained within the STARS program that is no longer in current agency list.</td>
</tr>
<tr>
<td>Agency Version Date: 11/12/2018</td>
</tr>
<tr>
<td>Agency Update Frequency: Varies</td>
</tr>
<tr>
<td>Planned Next Contact: 04/01/2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>INDIAN ODI R8:</strong> Region 8 Indian land open dump inventory sites maintained within the STARS program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Version Date: 01/21/2019</td>
</tr>
<tr>
<td>Agency Update Frequency: Varies</td>
</tr>
<tr>
<td>Planned Next Contact: 04/01/2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>ODI:</strong> Open dump inventory sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Version Date: 10/03/2017</td>
</tr>
<tr>
<td>Agency Update Frequency: No Update</td>
</tr>
<tr>
<td>Planned Next Contact: 04/16/2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>TRIBAL ODI:</strong> Indian land open dump inventory for all regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Version Date: 11/29/2018</td>
</tr>
<tr>
<td>Agency Update Frequency: Varies</td>
</tr>
<tr>
<td>Planned Next Contact: 04/18/2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>RECORDS OF EMERGENCY RELEASE REPORTS</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HMIRS (DOT):</strong> Hazardous Material spills reported by the Department of Transportation</td>
</tr>
<tr>
<td>Agency Version Date: 12/12/2018</td>
</tr>
<tr>
<td>Agency Update Frequency: Varies</td>
</tr>
<tr>
<td>Planned Next Contact: 05/01/2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>HIST SPILLS - HI:</strong> List of oil and hazardous material spills report sites that are no longer in current agency list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Version Date: 07/17/2018</td>
</tr>
<tr>
<td>Agency Update Frequency: Varies</td>
</tr>
<tr>
<td>Planned Next Contact: 04/22/2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>SPILLS - HI:</strong> Oil and hazardous material spills report sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Version Date: 03/16/2017</td>
</tr>
<tr>
<td>Agency Update Frequency: Varies</td>
</tr>
<tr>
<td>Planned Next Contact: 04/22/2019</td>
</tr>
</tbody>
</table>
LOCAL LAND RECORDS
LIENS 2: Comprehensive Environmental Response Compensation and Liability Act sites with liens
Agency Version Date: 05/11/2017
Agency Update Frequency: No Longer Maintained
Planned Next Contact: 03/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 800-424-9346
Most Recent Contact: 09/05/2018

OTHER ASCERTAINABLE RECORDS
AFS: Air Facility Systems Quarterly Extract
Agency Version Date: 11/16/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/05/2019
Agency: Environmental Protection Agency
Agency Contact: (202) 566-1667
Most Recent Contact: 01/25/2019

BRS: Reporting of hazardous waste generation and management from large quantity generators
Agency Version Date: 12/17/2018
Agency Update Frequency: Biennial
Planned Next Contact: 03/01/2019
Agency: Environmental Protection Agency
Agency Contact: (202) 566-1667
Most Recent Contact: 12/21/2018

CDC HAZDAT: The Agency for Toxic Substances and Disease Registry's Hazardous Substance Release/Health Effects Database.
Agency Version Date: 07/26/2018
Agency Update Frequency: Varies
Planned Next Contact: 04/01/2019
Agency: Agency for Toxic Substances and Disease Registry
Agency Contact: 770-488-6399
Most Recent Contact: 01/21/2019

COAL ASH DOE: List of existing and planned generators with 1 megawatt or greater of combined capacity that are utilizing coal ash impoundments.
Agency Version Date: 12/13/2018
Agency Update Frequency: Varies
Planned Next Contact: 02/21/2019
Agency: Department of Energy
Agency Contact: (202) 586-8800
Most Recent Contact: 12/13/2018

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List
Agency Version Date: 07/31/2014
Agency Update Frequency: Varies
Planned Next Contact: 04/08/2019
Agency: Environmental Protection Agency
Agency Contact: (202) 566-1667
Most Recent Contact: 01/28/2019

COAL GAS: Manufactured Gas Plant locations
Agency Version Date: 01/02/2019
Agency Update Frequency: Quarterly
Planned Next Contact: 03/29/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 855-246-3642
Most Recent Contact: 01/02/2019

CONSENT (DECREES): Legal decisions regarding responsibility for Superfund locations
Agency Version Date: 11/12/2018
Agency Update Frequency: Varies
Planned Next Contact: 04/01/2019
Agency: Environmental Protection Agency
Agency Contact: (800) 424-9346
Most Recent Contact: 01/21/2019

DEBRIS R5 LF: US EPA Region 5 Disaster Debris Recovery Database is a list of public facilities for disaster construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in EPA Region 5.
Agency Version Date: 01/04/2019
Agency Update Frequency: Quarterly
Planned Next Contact: 03/15/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 855-246-3642
Most Recent Contact: 01/04/2019
DEBRIS R5 SWRCY: US EPA Region 5 Disaster Debris Recovery Database is a list of public facilities for disaster construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in EPA Region 5.

Agency Version Date: 01/04/2019  
Agency Update Frequency: Quarterly  
Planned Next Contact: 03/15/2019  
Most Recent Contact: 01/04/2019

DOD: Department of Defense sites

Agency Version Date: 10/25/2018  
Agency Update Frequency: Varies  
Planned Next Contact: 04/01/2019  
Most Recent Contact: 01/21/2019

DOT OPS: Incident Data Report

Agency Version Date: 11/26/2018  
Agency Update Frequency: Varies  
Planned Next Contact: 04/15/2019  
Most Recent Contact: 02/04/2019

ECHO: ECHO is EPA Enforcement and Compliance History Online website to search for facilities in your community to assess their compliance with environmental regulations related to CAA, CWA, RCRA, & SDWA.

Agency Version Date: 12/17/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 02/25/2019  
Most Recent Contact: 01/25/2019

ENOI: The Electronic Notice of Intent (eNOI) database contains construction sites and industrial facilities that submit permit requests to EPA for Construction General Permits (CGP) and Multi-Sector General Permits (MSGP).

Agency Version Date: 11/30/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 04/19/2019  
Most Recent Contact: 02/08/2019

EPA FUELS: List of companies and facilities registered to participate in EPA Fuel Programs under Title 40 CFR Part 80.

Agency Version Date: 11/16/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 04/05/2019  
Most Recent Contact: 01/25/2019

EPA OSC: Listing of oil spills and hazardous substance release sites requiring EPA On-Site Coordinators.

Agency Version Date: 12/12/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 05/01/2019  
Most Recent Contact: 02/20/2019

EPA WATCH: The EPA Watch List was used to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. EPA maintained the lists from 2011 - 2013.

Agency Version Date: 02/09/2018  
Agency Update Frequency: Quarterly  
Planned Next Contact: 04/05/2019  
Most Recent Contact: 01/25/2019

FA HWF: Hazardous Waste Facilities with Financial Assurance

Agency Version Date: 01/01/2019  
Agency Update Frequency: Varies  
Planned Next Contact: 03/12/2019  
Most Recent Contact: 01/01/2019
### OTHER ASCERTAINABLE RECORDS (cont.)

**FEDLAND:** Federal land locations

<table>
<thead>
<tr>
<th>Agency Version Date:</th>
<th>11/12/2018</th>
<th>Agency: Environmental Protection Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Update Frequency:</td>
<td>Varies</td>
<td>Agency Contact: (800) 424-9346</td>
</tr>
<tr>
<td>Planned Next Contact:</td>
<td>04/01/2019</td>
<td>Most Recent Contact: 01/21/2019</td>
</tr>
</tbody>
</table>

**FRS:** Facility Registry Systems

<table>
<thead>
<tr>
<th>Agency Version Date:</th>
<th>11/22/2018</th>
<th>Agency: Environmental Protection Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Update Frequency:</td>
<td>Varies</td>
<td>Agency Contact: (202) 566-1667</td>
</tr>
<tr>
<td>Planned Next Contact:</td>
<td>04/11/2019</td>
<td>Most Recent Contact: 01/31/2019</td>
</tr>
</tbody>
</table>

**FTTS:** Tracking of administrative and enforcement activities related to FIFRA/TSCA

<table>
<thead>
<tr>
<th>Agency Version Date:</th>
<th>04/16/2013</th>
<th>Agency: Environmental Protection Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Update Frequency:</td>
<td>Varies</td>
<td>Agency Contact: (202) 564-2280</td>
</tr>
<tr>
<td>Planned Next Contact:</td>
<td>03/22/2019</td>
<td>Most Recent Contact: 09/24/2018</td>
</tr>
</tbody>
</table>

**FTTS INSP:** Tracking of inspections related to FIFRA/TSCA

<table>
<thead>
<tr>
<th>Agency Version Date:</th>
<th>05/08/2017</th>
<th>Agency: Environmental Protection Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Update Frequency:</td>
<td>Varies</td>
<td>Agency Contact: (202) 564-2280</td>
</tr>
<tr>
<td>Planned Next Contact:</td>
<td>03/14/2019</td>
<td>Most Recent Contact: 12/17/2018</td>
</tr>
</tbody>
</table>

**FUDS:** Defense sites that require cleanup

<table>
<thead>
<tr>
<th>Agency Version Date:</th>
<th>09/30/2015</th>
<th>Agency: US Army Corps of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Update Frequency:</td>
<td>Varies</td>
<td>Agency Contact: (202) 761-0011</td>
</tr>
<tr>
<td>Planned Next Contact:</td>
<td>04/08/2019</td>
<td>Most Recent Contact: 01/28/2019</td>
</tr>
</tbody>
</table>

**HIST AFS:** List of Air Facility Systems Quarterly Extract that are no longer in current agency list.

<table>
<thead>
<tr>
<th>Agency Version Date:</th>
<th>11/16/2018</th>
<th>Agency: Environmental Protection Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Update Frequency:</td>
<td>Quarterly</td>
<td>Agency Contact: (202) 566-1667</td>
</tr>
<tr>
<td>Planned Next Contact:</td>
<td>04/05/2019</td>
<td>Most Recent Contact: 01/25/2019</td>
</tr>
</tbody>
</table>

**HIST AFS 2:** List of Air Facility Systems Quarterly Extract that are no longer in current agency list.

<table>
<thead>
<tr>
<th>Agency Version Date:</th>
<th>11/16/2018</th>
<th>Agency: Environmental Protection Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Update Frequency:</td>
<td>Quarterly</td>
<td>Agency Contact: (202) 566-1667</td>
</tr>
<tr>
<td>Planned Next Contact:</td>
<td>04/05/2019</td>
<td>Most Recent Contact: 01/25/2019</td>
</tr>
</tbody>
</table>

**HIST DOD:** Department of Defense historical sites

<table>
<thead>
<tr>
<th>Agency Version Date:</th>
<th>08/17/2018</th>
<th>Agency: Environmental Protection Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Update Frequency:</td>
<td>No Longer Maintained</td>
<td>Agency Contact: (800) 424-9346</td>
</tr>
<tr>
<td>Planned Next Contact:</td>
<td>04/01/2019</td>
<td>Most Recent Contact: 01/21/2019</td>
</tr>
</tbody>
</table>

**HIST LEAD_SMELTER:** List of former Lead Smelter Sites that are no longer in current agency list.

<table>
<thead>
<tr>
<th>Agency Version Date:</th>
<th>11/27/2018</th>
<th>Agency: Environmental Protection Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Update Frequency:</td>
<td>Varies</td>
<td>Agency Contact: (202) 566-1667</td>
</tr>
<tr>
<td>Planned Next Contact:</td>
<td>04/16/2019</td>
<td>Most Recent Contact: 02/05/2019</td>
</tr>
</tbody>
</table>

**HIST MLTS:** List of sites in possession/use of radioactive materials regulated by NRC that are no longer in current agency list.

<table>
<thead>
<tr>
<th>Agency Version Date:</th>
<th>07/05/2013</th>
<th>Agency: Nuclear Regulatory Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency Update Frequency:</td>
<td>Varies</td>
<td>Agency Contact: (800) 397-4209</td>
</tr>
<tr>
<td>Planned Next Contact:</td>
<td>03/29/2019</td>
<td>Most Recent Contact: 01/02/2019</td>
</tr>
</tbody>
</table>
OTHER ASCERTAINABLE RECORDS (cont.)

HIST PCB TRANS: List of PCB Disposal Facilities that are no longer in current agency list.

- Agency Version Date: 01/18/2018
- Agency Update Frequency: No Update
- Planned Next Contact: 04/18/2019
- Agency: Environmental Protection Agency
- Agency Contact: (703) 308-8404
- Most Recent Contact: 01/22/2019

HIST PCS ENF: List of permitted facilities to discharge wastewater (Federal equivalent to NPDES) that are no longer in current agency list.

- Agency Version Date: 07/31/2018
- Agency Update Frequency: Varies
- Planned Next Contact: 02/26/2019
- Agency: Environmental Protection Agency
- Agency Contact: (202) 564-6582
- Most Recent Contact: 12/18/2018

HIST PCS FACILITY: List of Permitted facilities to discharge wastewater (Federal equivalent to NPDES) that are no longer in current agency list.

- Agency Version Date: 07/31/2018
- Agency Update Frequency: Varies
- Planned Next Contact: 02/26/2019
- Agency: Environmental Protection Agency
- Agency Contact: (202) 564-6582
- Most Recent Contact: 12/18/2018

HIST SSTS: List of tracking of facilities who produce pesticides and their quantity that are no longer in current agency list.

- Agency Version Date: 12/05/2018
- Agency Update Frequency: Annually
- Planned Next Contact: 04/24/2019
- Agency: Environmental Protection Agency
- Agency Contact: (202) 566-1667
- Most Recent Contact: 02/13/2019

HWC DOCKET: Listing of Federal facilities which are managing or have managed hazardous waste; or have had a release of hazardous waste.

- Agency Version Date: 11/16/2018
- Agency Update Frequency: Quarterly
- Planned Next Contact: 04/05/2019
- Agency: U.S. Environmental Protection Agency
- Agency Contact: (202) 564-2307
- Most Recent Contact: 01/25/2019

ICIS: Comprised of all Federal Administrative and Judicial enforcement information [intended to replace PCS] by tracking enforcement and compliance information (also contains what used to be known as FFTS)

- Agency Version Date: 10/09/2018
- Agency Update Frequency: Varies
- Planned Next Contact: 02/26/2019
- Agency: Environmental Protection Agency
- Agency Contact: (202) 566-1667
- Most Recent Contact: 12/18/2018

INACTIVE PCS: Inactive Permitted facilities to discharge wastewater

- Agency Version Date: 10/09/2018
- Agency Update Frequency: Varies
- Planned Next Contact: 02/26/2019
- Agency: Environmental Protection Agency
- Agency Contact: (202) 564-6582
- Most Recent Contact: 12/18/2018

INDIAN RESERVATION: Indian Reservation sites

- Agency Version Date: 01/01/2019
- Agency Update Frequency: Varies
- Planned Next Contact: 03/12/2019
- Agency: Environmental Protection Agency
- Agency Contact: (800) 424-9346
- Most Recent Contact: 01/01/2019

LEAD_SMELTER: Listing of former Lead Smelter Sites

- Agency Version Date: 11/27/2018
- Agency Update Frequency: Varies
- Planned Next Contact: 04/16/2019
- Agency: Environmental Protection Agency
- Agency Contact: (202) 566-1667
- Most Recent Contact: 02/05/2019
OTHER ASCERTAINABLE RECORDS (cont.)

LUCIS: Land Use Control Information Systems
Agency Version Date: 05/02/2018
Agency Update Frequency: No Longer Maintained
Planned Next Contact: 03/21/2019
Agency: Department of the Navy: BRAC PMO
Agency Contact: (619) 532-0900
Most Recent Contact: 12/24/2018

LUCIS 2: Land Use Control Information Systems
Agency Version Date: 01/17/2018
Agency Update Frequency: No Longer Maintained
Planned Next Contact: 09/30/2019
Agency: Department of the Navy: BRAC PMO
Agency Contact: (619) 532-0900
Most Recent Contact: 10/02/2018

MINES: Mines Master Index Files
Agency Version Date: 12/19/2018
Agency Update Frequency: Varies
Planned Next Contact: 02/27/2019
Agency: Department of Labor
Agency Contact: (202) 693-9400
Most Recent Contact: 12/19/2018

MLTS: Sites in possession/use of radioactive materials regulated by NRC
Agency Version Date: 01/28/2019
Agency Update Frequency: Varies
Planned Next Contact: 03/29/2019
Agency: Nuclear Regulatory Commission
Agency Contact: (800) 397-4209
Most Recent Contact: 01/02/2019

NPL AOC: Areas of Concern related to NPL remediation sites
Agency Version Date: 10/25/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/01/2019
Agency: Environmental Protection Agency
Agency Contact: N/R
Most Recent Contact: 01/21/2019

NPL LIENS: National Priority List of sites with Liens
Agency Version Date: 08/13/2018
Agency Update Frequency: Varies
Planned Next Contact: 04/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 703-603-8867
Most Recent Contact: 01/21/2019

OSHA: OSHA's listing of inspections violations and fatality information
Agency Version Date: 12/18/2018
Agency Update Frequency: Varies
Planned Next Contact: 02/26/2019
Agency: Occupational Safety & Health Administration
Agency Contact: 800-321-6742
Most Recent Contact: 12/18/2018

PADS: Listing of generators transporters commercial store/ brokers and disposers of PCB
Agency Version Date: 09/20/2018
Agency Update Frequency: Varies
Planned Next Contact: 03/29/2019
Agency: Environmental Protection Agency
Agency Contact: (703) 308-8404
Most Recent Contact: 01/18/2019

PCB TRANSFORMER: Disposal and Storage of Polychlorinated Biphenyl (PCB) Waste
Agency Version Date: 11/21/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/10/2019
Agency: Environmental Protection Agency
Agency Contact: (703) 308-8404
Most Recent Contact: 01/30/2019

PCS ENF: Permitted facilities to discharge wastewater (Federal equivalent to NPDES)
Agency Version Date: 10/09/2018
Agency Update Frequency: Varies
Planned Next Contact: 02/26/2019
Agency: Environmental Protection Agency
Agency Contact: (202) 564-6582
Most Recent Contact: 12/18/2018
OTHER ASCERTAINABLE RECORDS (cont.)

PCS FACILITY: Permitted facilities to discharge wastewater (Federal equivalent to NPDES)
Agency Version Date: 10/09/2018
Agency Update Frequency: Varies
Planned Next Contact: 02/26/2019
Agency: Environmental Protection Agency
Agency Contact: (202) 564-6582
Most Recent Contact: 12/18/2018

RAATS: Listing of major violators with enforcement actions issued under RCRA. Includes administrative and civil actions filed by the EPA. This dataset is no longer maintained.
Agency Version Date: 12/17/2018
Agency Update Frequency: Varies
Planned Next Contact: 03/01/2019
Agency: Environmental Protection Agency
Agency Contact: (202) 566-1667
Most Recent Contact: 12/21/2018

RADINFO: EPA regulated facilities with radiation and radioactive materials
Agency Version Date: 01/03/2019
Agency Update Frequency: Varies
Planned Next Contact: 03/14/2019
Agency: Environmental Protection Agency
Agency Contact: (202) 566-1667
Most Recent Contact: 01/03/2019

RMP: Facilities producing/handling/ process/ distribute/ store specific chemicals report plans required by the Clean Air Act
Agency Version Date: 10/10/2018
Agency Update Frequency: Monthly
Planned Next Contact: 03/14/2019
Agency: Environmental Protection Agency
Agency Contact: (202) 564-2534
Most Recent Contact: 12/17/2018

ROD: Permanent remedy at an NPL site
Agency Version Date: 11/12/2018
Agency Update Frequency: Varies
Planned Next Contact: 04/01/2019
Agency: Environmental Protection Agency
Agency Contact: (800) 424-9346
Most Recent Contact: 01/21/2019

SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners
Agency Version Date: 11/29/2018
Agency Update Frequency: No Update
Planned Next Contact: 04/01/2019
Agency: Environmental Protection Agency
Agency Contact: (202) 566-1667
Most Recent Contact: 02/07/2019

SEMS_SMELTER: This report includes sites that have smelting-related, or potentially smelting-related, indicators in the SEMS database. The report includes information on the site location as well as contaminants of concern.
Agency Version Date: 08/13/2018
Agency Update Frequency: Quarterly
Planned Next Contact: 04/01/2019
Agency: U.S. Environmental Protection Agency
Agency Contact: 703-603-8867
Most Recent Contact: 01/21/2019

SSTS: Tracking of facilities who produce pesticides and their quantity
Agency Version Date: 12/05/2018
Agency Update Frequency: Annually
Planned Next Contact: 04/24/2019
Agency: Environmental Protection Agency
Agency Contact: (202) 566-1667
Most Recent Contact: 02/13/2019

STORMWATER: Permitted storm water sites
Agency Version Date: 12/18/2018
Agency Update Frequency: Varies
Planned Next Contact: 02/26/2019
Agency: Environmental Protection Agency
Agency Contact: (202) 566-1667
Most Recent Contact: 12/18/2018
OTHER ASCERTAINABLE RECORDS (cont.)

TOSCA-PLANT: Plants controlled by the Toxic Substance Control Act

<table>
<thead>
<tr>
<th>Agency Version Date</th>
<th>Agency Update Frequency</th>
<th>Planned Next Contact</th>
<th>Agency</th>
<th>Agency Contact</th>
<th>Most Recent Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/05/2018</td>
<td>Varies</td>
<td>04/24/2019</td>
<td>EPA</td>
<td>(202) 566-1667</td>
<td>02/13/2019</td>
</tr>
</tbody>
</table>

TRIS: Information regarding toxic chemicals that are being used/manufactured/ treated/ transported/released into the environment

<table>
<thead>
<tr>
<th>Agency Version Date</th>
<th>Agency Update Frequency</th>
<th>Planned Next Contact</th>
<th>Agency</th>
<th>Agency Contact</th>
<th>Most Recent Contact</th>
</tr>
</thead>
</table>

UMTRA: Uranium Recovery Sites

<table>
<thead>
<tr>
<th>Agency Version Date</th>
<th>Agency Update Frequency</th>
<th>Planned Next Contact</th>
<th>Agency</th>
<th>Agency Contact</th>
<th>Most Recent Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/02/2018</td>
<td>Varies</td>
<td>02/28/2019</td>
<td>USNRC</td>
<td>(301) 415-8200</td>
<td>12/20/2018</td>
</tr>
</tbody>
</table>

Corrective Actions 2020: The RCRA cleanup baseline includes facilities expected to need corrective action.

<table>
<thead>
<tr>
<th>Agency Version Date</th>
<th>Agency Update Frequency</th>
<th>Planned Next Contact</th>
<th>Agency</th>
<th>Agency Contact</th>
<th>Most Recent Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/21/2018</td>
<td>Quarterly</td>
<td>03/01/2019</td>
<td>EPA</td>
<td>N/R</td>
<td>12/21/2018</td>
</tr>
</tbody>
</table>

AIRS - HI: Facilities with air permits

<table>
<thead>
<tr>
<th>Agency Version Date</th>
<th>Agency Update Frequency</th>
<th>Planned Next Contact</th>
<th>Agency</th>
<th>Agency Contact</th>
<th>Most Recent Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/04/2018</td>
<td>Varies</td>
<td>05/06/2019</td>
<td>HSDH</td>
<td>808-586-4200</td>
<td>02/08/2019</td>
</tr>
</tbody>
</table>

DRYCLEANERS - HI: Drycleaner facility listing

<table>
<thead>
<tr>
<th>Agency Version Date</th>
<th>Agency Update Frequency</th>
<th>Planned Next Contact</th>
<th>Agency</th>
<th>Agency Contact</th>
<th>Most Recent Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/04/2018</td>
<td>Quarterly</td>
<td>05/06/2019</td>
<td>HSDH</td>
<td>808-586-4226</td>
<td>02/08/2019</td>
</tr>
</tbody>
</table>
SUBJECT PROPERTY ADDRESS:
Kahului Site
153 West Kaahumanu Avenue
Kahului, Hawaii

SUBJECT PROPERTY COORDINATES:
Latitude(North): 20.888683 - 20°53'19.3"
Longitude(West): -156.471823 - -156°28'18.6"
Universal Transverse Mercator: Zone 4N
UTM X (Meters): 763008.79
UTM Y (Meters): 2311897.79

ELEVATION:
Elevation: 8.130 ft. above sea level

USGS TOPOGRAPHIC MAP:
Subject Property Map: 20156-G4 Wailuku, HI
Most Recent Revision: 2017

GEOHYDROLOGY DATA:

SUBJECT PROPERTY TOPOGRAPHY:
Topographic Gradient: Northeast

DFIRM FLOOD ZONE:

<table>
<thead>
<tr>
<th>Subject Property County:</th>
<th>Electronic Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAUI</td>
<td>Yes - refer to the PROPERTY PROXIMITY MAP and AREA MAP</td>
</tr>
<tr>
<td>Flood Plain Panel at Subject Property:</td>
<td>150003</td>
</tr>
<tr>
<td>Additional Panels in search area:</td>
<td>No available data</td>
</tr>
</tbody>
</table>

FEMA FLOOD ZONE:

<table>
<thead>
<tr>
<th>Subject Property County:</th>
<th>Electronic Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAUI</td>
<td>Yes - refer to the PROPERTY PROXIMITY MAP and AREA MAP</td>
</tr>
<tr>
<td>Flood Plain Panel at Subject Property:</td>
<td>1500030190D</td>
</tr>
<tr>
<td>Additional Panels in search area:</td>
<td>No available data</td>
</tr>
</tbody>
</table>
NATIONAL WETLAND INVENTORY:

<table>
<thead>
<tr>
<th>NWI Quad at Subject Property</th>
<th>Data Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wailuku</td>
<td>Yes - refer to the Geological Findings Map</td>
</tr>
</tbody>
</table>

LITHOSTRATIGRAPHIC INFORMATION:

<table>
<thead>
<tr>
<th>ROCK STRATIGRAPHIC UNIT</th>
<th>GEOLOGIC AGE IDENTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Era: No available data</td>
<td>Category: No available data</td>
</tr>
<tr>
<td>System: No available data</td>
<td></td>
</tr>
<tr>
<td>Series: No available data</td>
<td></td>
</tr>
<tr>
<td>Code: No available data</td>
<td></td>
</tr>
</tbody>
</table>
SURROUNDING ELEVATION PROFILES:
SOIL COMPOSITION IN GENERAL AREA OF SUBJECT PROPERTY:
Agency source: Soil Conservation Service, US Department of Agriculture

### SOIL MAP ID 1

<table>
<thead>
<tr>
<th>USDA Soil Name</th>
<th>Puuone, Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Soil Texture</td>
<td>Sand</td>
</tr>
<tr>
<td>Hydrologic Soil Group</td>
<td>A</td>
</tr>
<tr>
<td>Soil Drainage Class</td>
<td>Somewhat excessively drained</td>
</tr>
<tr>
<td>Hydric Classification</td>
<td>0</td>
</tr>
<tr>
<td>Corrosion Potential - Uncoated Steel</td>
<td>Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Depth (inches)</th>
<th>Soil Texture</th>
<th>AASHTO Group</th>
<th>Unified Soil Description</th>
<th>Saturated Hydraulic Conductivity (micro m/sec)</th>
<th>Soil Reaction pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-51</td>
<td>Sand</td>
<td>Granular materials (35% or less passing No. 200), fine sand. Reference: This is a classification of soil material for highway and airfield construction (Procedure M 145-73 in Am. Assoc. of State Highway and Transportation Officials, 1984.)</td>
<td>Reference: This is a classification of soil material designed for general construction purposes. It is dependent on the particle size distribution of the &lt;75 mm, the liquid limit, and the plasticity index and on whether the soil material is high in organic matter (ASTM test D 2487, in ASTM, 1984).</td>
<td>42.34-141</td>
<td>7.9-8.4</td>
</tr>
<tr>
<td>2</td>
<td>51-102</td>
<td>Granular materials (35% or less passing No. 200), fine sand. Reference: This is a classification of soil material for highway and airfield construction (Procedure M 145-73 in Am. Assoc. of State Highway and Transportation Officials, 1984.)</td>
<td>Reference: This is a classification of soil material designed for general construction purposes. It is dependent on the particle size distribution of the &lt;75 mm, the liquid limit, and the plasticity index and on whether the soil material is high in organic matter (ASTM test D 2487, in ASTM, 1984).</td>
<td>4.23-14.11</td>
<td>8-8.5</td>
<td></td>
</tr>
</tbody>
</table>

### SOIL MAP ID 2

<table>
<thead>
<tr>
<th>USDA Soil Name</th>
<th>Fill land, Taxon above family</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Soil Texture</td>
<td>Silty clay loam</td>
</tr>
<tr>
<td>Hydrologic Soil Group</td>
<td>B</td>
</tr>
<tr>
<td>Soil Drainage Class</td>
<td>Well drained</td>
</tr>
<tr>
<td>Hydric Classification</td>
<td>0</td>
</tr>
<tr>
<td>Corrosion Potential - Uncoated Steel</td>
<td>Low</td>
</tr>
<tr>
<td>Layer</td>
<td>Depth</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>0-30</td>
</tr>
<tr>
<td>2</td>
<td>30-76</td>
</tr>
<tr>
<td>3</td>
<td>76-152</td>
</tr>
<tr>
<td>4</td>
<td>152-162</td>
</tr>
</tbody>
</table>

**SOIL MAP ID A**

<table>
<thead>
<tr>
<th>USDA Soil Name</th>
<th>Puuone,Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDA Soil Texture</td>
<td>Sand</td>
</tr>
<tr>
<td>Hydrologic Soil Group</td>
<td>C</td>
</tr>
<tr>
<td>Soil Drainage Class</td>
<td>Somewhat excessively drained</td>
</tr>
<tr>
<td>Hydric Classification</td>
<td>0</td>
</tr>
<tr>
<td>Corrosion Potential - Uncoated Steel</td>
<td>High</td>
</tr>
</tbody>
</table>
## Geological Landscape Section Summary 2019

<table>
<thead>
<tr>
<th>Layer</th>
<th>Depth (inches)</th>
<th>Soil Texture</th>
<th>AASHTO Group</th>
<th>Unified Soil Description</th>
<th>Saturated Hydraulic Conductivity micro m/sec</th>
<th>Soil Reaction pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-51</td>
<td>Sand</td>
<td>No data</td>
<td>No data</td>
<td>42.343-141.1433</td>
<td>7.9-8.4</td>
</tr>
<tr>
<td>2</td>
<td>51-102</td>
<td>No data</td>
<td>No data</td>
<td>14.1143-42.343</td>
<td>No data</td>
<td></td>
</tr>
</tbody>
</table>

### WATER AGENCY DATA:

#### WATER AGENCY SEARCH DISTANCES:

<table>
<thead>
<tr>
<th>DATABASE:</th>
<th>SEARCH DISTANCE (MILES):</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWIS</td>
<td>1.000</td>
</tr>
<tr>
<td>PWS</td>
<td>1.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISTANCE TO NEAREST:</th>
<th>DISTANCE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWIS</td>
<td>0.031 mi / 162 ft</td>
</tr>
<tr>
<td>PWS</td>
<td>0.702 mi / 3704 ft</td>
</tr>
</tbody>
</table>

### FEDERAL WATER AGENCY DATA SUMMARY:

<table>
<thead>
<tr>
<th>MAP ID:</th>
<th>WELL ID:</th>
<th>LOCATION FROM SP:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>205324156281901</td>
<td>&lt; 1/8 Mile N</td>
</tr>
<tr>
<td>2</td>
<td>205331156283501</td>
<td>&lt; 1/8 Mile W</td>
</tr>
<tr>
<td>3</td>
<td>205323156283101</td>
<td>&lt; 1/8 Mile SSW</td>
</tr>
<tr>
<td>A4</td>
<td>205323156283401</td>
<td>&lt; 1/8 Mile SW</td>
</tr>
<tr>
<td>B5</td>
<td>205325156282001</td>
<td>&lt; 1/8 Mile ESE</td>
</tr>
<tr>
<td>6</td>
<td>205310156281701</td>
<td>&lt; 1/8 Mile S</td>
</tr>
<tr>
<td>A7</td>
<td>205311156282501</td>
<td>1/8 - 1/4 Mile SW</td>
</tr>
<tr>
<td>B8</td>
<td>205323156282101</td>
<td>1/8 - 1/4 Mile SE</td>
</tr>
<tr>
<td>9</td>
<td>205320156282401</td>
<td>1/8 - 1/4 Mile SSE</td>
</tr>
<tr>
<td>10</td>
<td>205318156283301</td>
<td>1/8 - 1/4 Mile SSW</td>
</tr>
<tr>
<td>11</td>
<td>205326156281501</td>
<td>1/8 - 1/4 Mile ESE</td>
</tr>
<tr>
<td>12</td>
<td>205320156284001</td>
<td>1/8 - 1/4 Mile SW</td>
</tr>
<tr>
<td>13</td>
<td>205316156282501</td>
<td>1/8 - 1/4 Mile SSE</td>
</tr>
<tr>
<td>14</td>
<td>205315156283401</td>
<td>1/8 - 1/4 Mile SSW</td>
</tr>
<tr>
<td>C15</td>
<td>205313156282901</td>
<td>1/4 - 1/2 Mile S</td>
</tr>
<tr>
<td>C16</td>
<td>205313156282701</td>
<td>1/4 - 1/2 Mile S</td>
</tr>
<tr>
<td>D17</td>
<td>205312156282101</td>
<td>1/4 - 1/2 Mile SSE</td>
</tr>
<tr>
<td>E18</td>
<td>205313156281801</td>
<td>1/4 - 1/2 Mile SSE</td>
</tr>
<tr>
<td>F19</td>
<td>205302156283201</td>
<td>1/4 - 1/2 Mile SW</td>
</tr>
<tr>
<td>F20</td>
<td>205302156283202</td>
<td>1/4 - 1/2 Mile SW</td>
</tr>
<tr>
<td>21</td>
<td>205314156281501</td>
<td>1/4 - 1/2 Mile SE</td>
</tr>
<tr>
<td>D22</td>
<td>205311156282201</td>
<td>1/4 - 1/2 Mile SSE</td>
</tr>
<tr>
<td>F23</td>
<td>205300156283201</td>
<td>1/4 - 1/2 Mile SW</td>
</tr>
<tr>
<td>F24</td>
<td>205300156283202</td>
<td>1/4 - 1/2 Mile SW</td>
</tr>
<tr>
<td>E25</td>
<td>205311156281801</td>
<td>1/4 - 1/2 Mile SSE</td>
</tr>
<tr>
<td>G26</td>
<td>205308156282501</td>
<td>1/4 - 1/2 Mile S</td>
</tr>
<tr>
<td>F27</td>
<td>205311156284303</td>
<td>1/4 - 1/2 Mile SW</td>
</tr>
<tr>
<td>F28</td>
<td>205311156284304</td>
<td>1/4 - 1/2 Mile SW</td>
</tr>
<tr>
<td>F29</td>
<td>205311156284301</td>
<td>1/4 - 1/2 Mile SW</td>
</tr>
<tr>
<td>F30</td>
<td>205311156284302</td>
<td>1/4 - 1/2 Mile SW</td>
</tr>
<tr>
<td>G31</td>
<td>205307156282301</td>
<td>1/4 - 1/2 Mile SSE</td>
</tr>
<tr>
<td>H32</td>
<td>205313156281001</td>
<td>1/4 - 1/2 Mile SE</td>
</tr>
<tr>
<td>H33</td>
<td>205312156281001</td>
<td>1/4 - 1/2 Mile SE</td>
</tr>
<tr>
<td>H34</td>
<td>205312156280801</td>
<td>1/4 - 1/2 Mile SE</td>
</tr>
<tr>
<td>I35</td>
<td>205306156281801</td>
<td>1/4 - 1/2 Mile SSE</td>
</tr>
</tbody>
</table>
### FEDERAL WATER AGENCY DATA SUMMARY: (cont.)

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>WELL ID</th>
<th>LOCATION FROM SP:</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>205317156280301</td>
<td>1/4 - 1/2 Mile ESE</td>
</tr>
<tr>
<td>J37</td>
<td>205309156281101</td>
<td>1/4 - 1/2 Mile SE</td>
</tr>
<tr>
<td>K38</td>
<td>205304156282301</td>
<td>1/4 - 1/2 Mile SSE</td>
</tr>
<tr>
<td>39</td>
<td>205320156280101</td>
<td>1/4 - 1/2 Mile ESE</td>
</tr>
<tr>
<td>I40</td>
<td>205306156281601</td>
<td>1/4 - 1/2 Mile SSE</td>
</tr>
<tr>
<td>M41</td>
<td>205305156281701</td>
<td>1/4 - 1/2 Mile SSE</td>
</tr>
<tr>
<td>42</td>
<td>205316156285501</td>
<td>1/4 - 1/2 Mile WSW</td>
</tr>
<tr>
<td>I43</td>
<td>205304156281801</td>
<td>1/4 - 1/2 Mile SSE</td>
</tr>
<tr>
<td>J44</td>
<td>205308156280901</td>
<td>1/4 - 1/2 Mile SE</td>
</tr>
<tr>
<td>K45</td>
<td>205302156282301</td>
<td>1/2 - 1 Mile S</td>
</tr>
<tr>
<td>J46</td>
<td>205305156281401</td>
<td>1/2 - 1 Mile SSE</td>
</tr>
<tr>
<td>L47</td>
<td>205310156285001</td>
<td>1/2 - 1 Mile SW</td>
</tr>
<tr>
<td>48</td>
<td>205303156284301</td>
<td>1/2 - 1 Mile SSW</td>
</tr>
<tr>
<td>L49</td>
<td>205301056285401</td>
<td>1/2 - 1 Mile SW</td>
</tr>
<tr>
<td>M50</td>
<td>205301056280301</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>N51</td>
<td>205307156280601</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>L52</td>
<td>205310156285002</td>
<td>1/2 - 1 Mile SW</td>
</tr>
<tr>
<td>N53</td>
<td>205305156280801</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>L54</td>
<td>205307156285301</td>
<td>1/2 - 1 Mile SW</td>
</tr>
<tr>
<td>M55</td>
<td>205308156280301</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>S6</td>
<td>205301156281301</td>
<td>1/2 - 1 Mile SSE</td>
</tr>
<tr>
<td>O57</td>
<td>205258156282001</td>
<td>1/2 - 1 Mile SSE</td>
</tr>
<tr>
<td>O59</td>
<td>205257156282201</td>
<td>1/2 - 1 Mile S</td>
</tr>
<tr>
<td>P60</td>
<td>205301156280901</td>
<td>1/2 - 1 Mile SSE</td>
</tr>
<tr>
<td>61</td>
<td>205313156290101</td>
<td>1/2 - 1 Mile WSW</td>
</tr>
<tr>
<td>63</td>
<td>205255156282501</td>
<td>1/2 - 1 Mile SSE</td>
</tr>
<tr>
<td>Q64</td>
<td>205257156284401</td>
<td>1/2 - 1 Mile SSW</td>
</tr>
<tr>
<td>65</td>
<td>205303156285401</td>
<td>1/2 - 1 Mile SW</td>
</tr>
<tr>
<td>R66</td>
<td>205305156280101</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>P67</td>
<td>205259156281001</td>
<td>1/2 - 1 Mile SSE</td>
</tr>
<tr>
<td>68</td>
<td>205259156284901</td>
<td>1/2 - 1 Mile SSW</td>
</tr>
<tr>
<td>Q69</td>
<td>205255156284201</td>
<td>1/2 - 1 Mile SSW</td>
</tr>
<tr>
<td>71</td>
<td>205309156290201</td>
<td>1/2 - 1 Mile WSW</td>
</tr>
<tr>
<td>R72</td>
<td>205303156275901</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>73</td>
<td>205303156285901</td>
<td>1/2 - 1 Mile WSW</td>
</tr>
<tr>
<td>74</td>
<td>205313156290601</td>
<td>1/2 - 1 Mile SSW</td>
</tr>
<tr>
<td>75</td>
<td>205330156291101</td>
<td>1/2 - 1 Mile W</td>
</tr>
<tr>
<td>S76</td>
<td>HI0000209</td>
<td>1/2 - 1 Mile E</td>
</tr>
<tr>
<td>S77</td>
<td>HI0000251</td>
<td>1/2 - 1 Mile E</td>
</tr>
<tr>
<td>T78</td>
<td>205254156281201</td>
<td>1/2 - 1 Mile SSE</td>
</tr>
<tr>
<td>79</td>
<td>205259156280101</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>80</td>
<td>205310156290601</td>
<td>1/2 - 1 Mile WSW</td>
</tr>
<tr>
<td>T81</td>
<td>205254156280901</td>
<td>1/2 - 1 Mile SSE</td>
</tr>
<tr>
<td>T82</td>
<td>205253156281101</td>
<td>1/2 - 1 Mile SSE</td>
</tr>
<tr>
<td>83</td>
<td>205249156283701</td>
<td>1/2 - 1 Mile S</td>
</tr>
<tr>
<td>T85</td>
<td>205254156280601</td>
<td>1/2 - 1 Mile SSE</td>
</tr>
<tr>
<td>V86</td>
<td>205337156290101</td>
<td>1/2 - 1 Mile WNW</td>
</tr>
<tr>
<td>87</td>
<td>205303156290401</td>
<td>1/2 - 1 Mile SW</td>
</tr>
<tr>
<td>B8</td>
<td>205311156274701</td>
<td>1/2 - 1 Mile ESE</td>
</tr>
<tr>
<td>89</td>
<td>205250156281101</td>
<td>1/2 - 1 Mile SSE</td>
</tr>
<tr>
<td>U90</td>
<td>205401156275403</td>
<td>1/2 - 1 Mile NE</td>
</tr>
<tr>
<td>U91</td>
<td>205401156275402</td>
<td>1/2 - 1 Mile NE</td>
</tr>
<tr>
<td>U92</td>
<td>205401156275405</td>
<td>1/2 - 1 Mile NE</td>
</tr>
<tr>
<td>U93</td>
<td>205401156275404</td>
<td>1/2 - 1 Mile NE</td>
</tr>
<tr>
<td>U94</td>
<td>205401156275407</td>
<td>1/2 - 1 Mile NE</td>
</tr>
<tr>
<td>U95</td>
<td>205401156275406</td>
<td>1/2 - 1 Mile NE</td>
</tr>
<tr>
<td>U96</td>
<td>205401156275401</td>
<td>1/2 - 1 Mile NE</td>
</tr>
<tr>
<td>V97</td>
<td>205351156291201</td>
<td>1/2 - 1 Mile WNW</td>
</tr>
<tr>
<td>W98</td>
<td>205257156275201</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>99</td>
<td>205323156291001</td>
<td>1/2 - 1 Mile W</td>
</tr>
<tr>
<td>W101</td>
<td>205259156274901</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>W102</td>
<td>205257156275101</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>103</td>
<td>205330156291001</td>
<td>1/2 - 1 Mile WNW</td>
</tr>
</tbody>
</table>
### FEDERAL WATER AGENCY DATA SUMMARY: (cont.)

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>WELL ID</th>
<th>LOCATION FROM SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>W104</td>
<td>205258156274901</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>105</td>
<td>205301156274601</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>106</td>
<td>205318156273701</td>
<td>1/2 - 1 Mile ESE</td>
</tr>
<tr>
<td>W107</td>
<td>205256156274801</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>108</td>
<td>205300156274301</td>
<td>1/2 - 1 Mile SE</td>
</tr>
<tr>
<td>109</td>
<td>205312156292101</td>
<td>1/2 - 1 Mile WSW</td>
</tr>
<tr>
<td>110</td>
<td>205302156274001</td>
<td>1/2 - 1 Mile ESE</td>
</tr>
<tr>
<td>111</td>
<td>205315156292401</td>
<td>1/2 - 1 Mile WSW</td>
</tr>
</tbody>
</table>

Note: PWS System location is not always the same as well location.
Site Name: 205324156281901
20.89000000, -156.47194440
HI
Database(s): [NWIS]
**Site Name:** 205331156283501  
**Map Id:** 2  
**Direction:** W  
**Distance:** 0.058 mi.  
**Actual:** 308.249 ft.  
**Elevation:** 0.002 mi. / 13.123 ft.  
**Relative:** Higher

**NWIS**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Identification Number:</td>
<td>205331156283501</td>
</tr>
<tr>
<td>Site Type:</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name:</td>
<td>6-5328.01 -02/W20D</td>
</tr>
<tr>
<td>Agency:</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District:</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State:</td>
<td>HI</td>
</tr>
<tr>
<td>County:</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country:</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location:</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map:</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map:</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface:</td>
<td>20.00</td>
</tr>
<tr>
<td>Method Altitude Determined:</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy:</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum:</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit:</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin:</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting:</td>
<td>N/R</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction:</td>
<td>01/01/1926</td>
</tr>
<tr>
<td>Date Site Established or Inventoried:</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area:</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area:</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability:</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files:</td>
<td>NYNNNNNNN</td>
</tr>
<tr>
<td>National Aquifer:</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer:</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type:</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth:</td>
<td>300</td>
</tr>
<tr>
<td>Hole Depth:</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data:</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number:</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag:</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count:</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count:</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count:</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude:</td>
<td>20.88873573</td>
</tr>
<tr>
<td>Longitude:</td>
<td>-156.47356800</td>
</tr>
<tr>
<td>Last Date in Agency List:</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>

**Database(s):** [NWIS]
Geological Landscape Section Map Findings

Map Id: 3
Direction: SSW
Distance: 0.084 mi.
Actual: 441.231 ft.
Elevation: 0.003 mi. / 16.404 ft.
Relative: Higher

Envirosite ID: 404428246
EPA ID: N/R

Site Name : 205323156283101
20.88651370, -156.47245690
HI

Database(s) : [NWIS]
Site Name: 205323156283401
20.88651370, -156.47329020
HI
Database(s): [NWIS]
### Site Information

**Site Name:** 205325156282001  
**Latitude:** 20.88706920  
**Longitude:** -156.46940140  
**State:** HI  
**Database(s):** [NWIS]

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Identification Number</td>
<td>205325156282001</td>
</tr>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5328-10 W20-40</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>20.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Flat surface</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>NYYNNNNNNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88706920</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.46940140</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>

**Envirosite ID:** 404003146  
**EPA ID:** N/R
<table>
<thead>
<tr>
<th>Site Name</th>
<th>205310156281701</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.88611110,-156.47138890</td>
<td>HI</td>
</tr>
<tr>
<td>Database(s)</td>
<td>[NWIS]</td>
</tr>
</tbody>
</table>

**NWIS**

- Site Identification Number: 205310156281701
- Site Type: Well
- Station Name: 6-5328-51 Akahi, Maui, HI
- Agency: U.S. Geological Survey
- District: Hawaii
- State: HI
- County: Maui County
- Country: USA
- Land Net Location: N/R
- Name of Location Map: WAILUKU, HI
- Scale of Location Map: 24000
- Altitude of Gage/Land Surface: 30
- Altitude Accuracy: 1
- Altitude Datum: Local Mean Sea Level
- Hydrologic Unit: Maui
- Drainage Basin: N/R
- Topographic Setting: N/R
- Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- Date of First Construction: N/R
- Date Site Established or Inventoried: N/R
- Drainage Area: N/R
- Contributing Drainage Area: N/R
- Data Reliability: Unchecked data.
- Data-other GW Files: Y
- National Aquifer: N/R
- Local Aquifer: N/R
- Local Aquifer Type: N/R
- Well Depth: N/R
- Hole Depth: N/R
- Source of Depth Data: N/R
- Project Number: N/R
- Real-Time Data Flag: N/R
- Peak-Streamflow Data Begin Date: N/R
- Peak-Streamflow Data End Date: N/R
- Peak-Streamflow Data Count: N/R
- Water-Quality Data Begin Date: N/R
- Water-Quality Data End Date: N/R
- Water-Quality Data Count: N/R
- Field Water-Level Data Begin Date: N/R
- Field Water-Level Data End Date: N/R
- Field Water-Level Data Count: N/R
- Site-Visit Data Begin Date: N/R
- Site-Visit Data End Date: N/R
- Site-Visit Data Count: N/R
- Latitude: 20.88611110
- Longitude: -156.47138890
- Last Date in Agency List: 11/23/2018
<table>
<thead>
<tr>
<th>Site Name</th>
<th>205311156282501</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20.88638889, -156.47361100</td>
</tr>
<tr>
<td></td>
<td>HI</td>
</tr>
<tr>
<td>Database(s)</td>
<td>[NWIS]</td>
</tr>
</tbody>
</table>

**NWIS**

<table>
<thead>
<tr>
<th>Site Identification Number</th>
<th>205311156282501</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5328-02 Cannery, Maui, HI</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>20</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Reported method of determination.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>1</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>N/R</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>N/R</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>300</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>A</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88638889</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.47361100</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
### Geological Landscape Section Map Findings

**Site Name:** 205323156282101  
20.88651370, -156.46967920  
HI  
**Database(s):** [NWIS]

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Identification Number</td>
<td>205323156282101</td>
</tr>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5328-09 W20-39</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>20.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Flat surface</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>NYYNNNNNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88651370</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.46967920</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
### Geological Landscape Section Map Findings 2019

**Site Name:** 205320156282401  
20.88568044, -156.47051250  
HI  

**Database(s):** [NWIS]

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Site Identification Number:</strong></td>
<td>205320156282401</td>
</tr>
<tr>
<td><strong>Site Type:</strong></td>
<td>Well</td>
</tr>
<tr>
<td><strong>Station Name:</strong></td>
<td>6-5328-08 W20-38</td>
</tr>
<tr>
<td><strong>Agency:</strong></td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td><strong>District:</strong></td>
<td>Hawaii</td>
</tr>
<tr>
<td><strong>State:</strong></td>
<td>HI</td>
</tr>
<tr>
<td><strong>County:</strong></td>
<td>Maui County</td>
</tr>
<tr>
<td><strong>Country:</strong></td>
<td>USA</td>
</tr>
<tr>
<td><strong>Land Net Location:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Name of Location Map:</strong></td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td><strong>Scale of Location Map:</strong></td>
<td>24000</td>
</tr>
<tr>
<td><strong>Altitude of Gage/Land Surface:</strong></td>
<td>20.00</td>
</tr>
<tr>
<td><strong>Method Altitude Determined:</strong></td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td><strong>Altitude Accuracy:</strong></td>
<td>5</td>
</tr>
<tr>
<td><strong>Altitude Datum:</strong></td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td><strong>Hydrologic Unit:</strong></td>
<td>Maui</td>
</tr>
<tr>
<td><strong>Drainage Basin:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Topographic Setting:</strong></td>
<td>Flat surface</td>
</tr>
<tr>
<td><strong>Flags for the Type of Data Collected:</strong></td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td><strong>Flags for Instruments at Site:</strong></td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td><strong>Date of First Construction:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Date Site Established or Inventoried:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Drainage Area:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Contributing Drainage Area:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Data Reliability:</strong></td>
<td>Unchecked data.</td>
</tr>
<tr>
<td><strong>Data-other GW Files:</strong></td>
<td>YYNNNNNN</td>
</tr>
<tr>
<td><strong>National Aquifer:</strong></td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td><strong>Local Aquifer:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Local Aquifer Type:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Well Depth:</strong></td>
<td>20.0</td>
</tr>
<tr>
<td><strong>Hole Depth:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Source of Depth Data:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Project Number:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Real-Time Data Flag:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Peak-Streamflow Data Begin Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Peak-Streamflow Data End Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Peak-Streamflow Data Count:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Water-Quality Data Begin Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Water-Quality Data End Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Water-Quality Data Count:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Field Water-Level Data Begin Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Field Water-Level Data End Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Field Water-Level Data Count:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Site-Visit Data Begin Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Site-Visit Data End Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Site-Visit Data Count:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Latitude:</strong></td>
<td>20.88568044</td>
</tr>
<tr>
<td><strong>Longitude:</strong></td>
<td>-156.47051250</td>
</tr>
<tr>
<td><strong>Last Date in Agency List:</strong></td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>

**Envirosite ID:** 403989379

**EPA ID:** N/R
<table>
<thead>
<tr>
<th>Site Name</th>
<th>205318156283301</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20.88512494, -156.47301240</td>
</tr>
<tr>
<td></td>
<td>HI</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Database(s)</td>
<td>[NWIS]</td>
</tr>
</tbody>
</table>

**NWIS**

<table>
<thead>
<tr>
<th>Site Identification Number :</th>
<th>205318156283301</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5328-27 W20B</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location :</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map :</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map :</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface :</td>
<td>30.00</td>
</tr>
<tr>
<td>Method Altitude Determined :</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy :</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum :</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit :</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin :</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting :</td>
<td>Flat surface</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site :</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction :</td>
<td>01/01/1958</td>
</tr>
<tr>
<td>Date Site Established or Inventoried :</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area :</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area :</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability :</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files :</td>
<td>YNNNNNNNN</td>
</tr>
<tr>
<td>National Aquifer :</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer :</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type :</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth :</td>
<td>317</td>
</tr>
<tr>
<td>Hole Depth :</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data :</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number :</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag :</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date :</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date :</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count :</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date :</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date :</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count :</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date :</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date :</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count :</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date :</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date :</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count :</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude :</td>
<td>20.88512494</td>
</tr>
<tr>
<td>Longitude :</td>
<td>-156.47301240</td>
</tr>
<tr>
<td>Last Date in Agency List :</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
Site Name: 205326156281501
20.88734696, -156.46801260
HI
Database(s): [NWIS]
### Geological Landscape Section Map Findings

**Site Name:** 205320156284001  
20.88555556, -156.47500000  
HI  

**Database(s):** [NWIS]  

---  

**Database Information: NWIS**  

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Identification Number</td>
<td>205320156284001</td>
</tr>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5328-01 Cannery Shaft (S13), Maui, HI</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>24</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Flat surface</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>01/01/1926</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Data have been checked by the reporting agency.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>YYYNNNYYN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>28.0</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>0</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>05/17/2005</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>05/17/2005</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>1</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.885555556</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.47500000</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2019</td>
</tr>
</tbody>
</table>
### Geological Landscape Section Map Findings

**Map Id:** 13  
**Direction:** SSE  
**Distance:** 0.236 mi.  
**Actual:** 1244.598 ft.  
**Elevation:** 0.002 mi. / 9.961 ft.  
**Relative:** Higher

<table>
<thead>
<tr>
<th>Database(s)</th>
<th>[NWIS]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th><strong>Site Name:</strong></th>
<th>205316156282501</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20.88456943, -156.47079030</td>
</tr>
<tr>
<td></td>
<td>HI</td>
</tr>
</tbody>
</table>

**Envirosite ID:** 404013080  
**EPA ID:** N/R

#### NWIS

- **Site Identification Number:** 205316156282501
- **Site Type:** Well
- **Station Name:** 6-5328-07 W20-37
- **Agency:** U.S. Geological Survey
- **District:** Hawaii
- **State:** HI
- **County:** Maui County
- **Country:** USA
- **Land Net Location:** N/R
- **Name of Location Map:** WAILUKU, HI
- **Scale of Location Map:** 24000
- **Altitude of Gage/Land Surface:** 20.00
- **Method Altitude Determined:** Interpolated from topographic map.
- **Altitude Accuracy:** 5
- **Altitude Datum:** Local Mean Sea Level
- **Hydrologic Unit:** Maui
- **Drainage Basin:** N/R
- **Topographic Setting:** Flat surface
- **Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- **Flags for Instruments at Site:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- **Date of First Construction:** N/R
- **Date Site Established or Inventoried:** N/R
- **Drainage Area:** N/R
- **Contributing Drainage Area:** N/R
- **Data Reliability:** Unchecked data.
- **Data-other GW Files:** YNNNNNNN
- **National Aquifer:** Hawaii volcanic-rock aquifers
- **Local Aquifer:** N/R
- **Local Aquifer Type:** N/R
- **Well Depth:** 20.0
- **Hole Depth:** N/R
- **Source of Depth Data:** N/R
- **Project Number:** N/R
- **Real-Time Data Flag:** N/R
- **Peak-Streamflow Data Begin Date:** N/R
- **Peak-Streamflow Data End Date:** N/R
- **Peak-Streamflow Data Count:** N/R
- **Water-Quality Data Begin Date:** N/R
- **Water-Quality Data End Date:** N/R
- **Water-Quality Data Count:** N/R
- **Field Water-Level Data Begin Date:** N/R
- **Field Water-Level Data End Date:** N/R
- **Field Water-Level Data Count:** N/R
- **Site-Visit Data Begin Date:** N/R
- **Site-Visit Data End Date:** N/R
- **Site-Visit Data Count:** N/R
- **Latitude:** 20.88456943
- **Longitude:** -156.47079030
- **Last Date in Agency List:** 11/23/2018
### Geographical Information

<table>
<thead>
<tr>
<th>Map Id: 14</th>
<th>Direction: SSW</th>
<th>Distance: 0.245 mi.</th>
<th>Actual: 1292.380 ft.</th>
<th>Elevation: 0.002 mi. / 11.499 ft.</th>
<th>Relative: Higher</th>
</tr>
</thead>
</table>

### Site Information

<table>
<thead>
<tr>
<th>Site Name: 205315156283401</th>
<th>Envirosite ID: 404007770</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.88429168, -156.47329020 HI</td>
<td>EPA ID: N/R</td>
</tr>
</tbody>
</table>

### Database(s)

- [NWIS]

### NWIS Details

| Field Water-Level Data Begin Date: | 05/21/1979 |
| Field Water-Level Data End Date: | 05/21/1979 |
| Field Water-Level Data Count: | 1 |
| Site-Visit Data Begin Date: | N/R |
| Site-Visit Data End Date: | N/R |
| Site-Visit Data Count: | 0 |
| Latitude: | 20.88429168 |
| Longitude: | -156.47329020 |
| Last Date in Agency List: | 11/23/2018 |
| Site Name : | 205313156282901 |
| Database(s) : | [NWIS] |

| Envirosite ID : | 403992408 |
| EPA ID : | N/R |

<table>
<thead>
<tr>
<th>NWIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Identification Number :</td>
</tr>
<tr>
<td>Site Type :</td>
</tr>
<tr>
<td>Station Name :</td>
</tr>
<tr>
<td>Agency :</td>
</tr>
<tr>
<td>District :</td>
</tr>
<tr>
<td>State :</td>
</tr>
<tr>
<td>County :</td>
</tr>
<tr>
<td>Country :</td>
</tr>
<tr>
<td>Land Net Location :</td>
</tr>
<tr>
<td>Name of Location Map :</td>
</tr>
<tr>
<td>Scale of Location Map :</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface :</td>
</tr>
<tr>
<td>Method Altitude Determined :</td>
</tr>
<tr>
<td>Altitude Accuracy :</td>
</tr>
<tr>
<td>Altitude Datum :</td>
</tr>
<tr>
<td>Hydrologic Unit :</td>
</tr>
<tr>
<td>Drainage Basin :</td>
</tr>
<tr>
<td>Topographic Setting :</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected :</td>
</tr>
<tr>
<td>Flags for Instruments at Site :</td>
</tr>
<tr>
<td>Date of First Construction :</td>
</tr>
<tr>
<td>Date Site Established or Inventoried :</td>
</tr>
<tr>
<td>Drainage Area :</td>
</tr>
<tr>
<td>Contributing Drainage Area :</td>
</tr>
<tr>
<td>Data Reliability :</td>
</tr>
<tr>
<td>Data-other GW Files :</td>
</tr>
<tr>
<td>National Aquifer :</td>
</tr>
<tr>
<td>Local Aquifer :</td>
</tr>
<tr>
<td>Local Aquifer Type :</td>
</tr>
<tr>
<td>Well Depth :</td>
</tr>
<tr>
<td>Hole Depth :</td>
</tr>
<tr>
<td>Source of Depth Data :</td>
</tr>
<tr>
<td>Project Number :</td>
</tr>
<tr>
<td>Real-Time Data Flag :</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date :</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date :</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count :</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date :</td>
</tr>
<tr>
<td>Water-Quality Data End Date :</td>
</tr>
<tr>
<td>Water-Quality Data Count :</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date :</td>
</tr>
<tr>
<td>Field Water-Level Data End Date :</td>
</tr>
<tr>
<td>Field Water-Level Data Count :</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date :</td>
</tr>
<tr>
<td>Site-Visit Data End Date :</td>
</tr>
<tr>
<td>Site-Visit Data Count :</td>
</tr>
<tr>
<td>Latitude :</td>
</tr>
<tr>
<td>Longitude :</td>
</tr>
<tr>
<td>Last Date in Agency List :</td>
</tr>
<tr>
<td>Field</td>
</tr>
<tr>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>Site Name</td>
</tr>
<tr>
<td>Latitude</td>
</tr>
<tr>
<td>Longitude</td>
</tr>
<tr>
<td>EPA ID</td>
</tr>
<tr>
<td>Envirosite ID</td>
</tr>
<tr>
<td>Database(s)</td>
</tr>
<tr>
<td>Site Identification Number</td>
</tr>
<tr>
<td>Site Type</td>
</tr>
<tr>
<td>Station Name</td>
</tr>
<tr>
<td>Agency</td>
</tr>
<tr>
<td>District</td>
</tr>
<tr>
<td>State</td>
</tr>
<tr>
<td>County</td>
</tr>
<tr>
<td>Country</td>
</tr>
<tr>
<td>Land Net Location</td>
</tr>
<tr>
<td>Name of Location Map</td>
</tr>
<tr>
<td>Scale of Location Map</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
</tr>
<tr>
<td>Altitude Datum</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
</tr>
<tr>
<td>Drainage Basin</td>
</tr>
<tr>
<td>Topographic Setting</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
</tr>
<tr>
<td>Date of First Construction</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
</tr>
<tr>
<td>Drainage Area</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
</tr>
<tr>
<td>Data Reliability</td>
</tr>
<tr>
<td>Data-other GW Files</td>
</tr>
<tr>
<td>National Aquifer</td>
</tr>
<tr>
<td>Local Aquifer</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
</tr>
<tr>
<td>Well Depth</td>
</tr>
<tr>
<td>Hole Depth</td>
</tr>
<tr>
<td>Source of Depth Data</td>
</tr>
<tr>
<td>Project Number</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
</tr>
<tr>
<td>Latitude</td>
</tr>
<tr>
<td>Longitude</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
</tr>
</tbody>
</table>
Site Name: 205312156282101
          20.88345840, -156.46967920
          HI

Database(s): [NWIS]

NWIS

Site Identification Number: 205312156282101
Site Type: Well
Station Name: 6-5328-11 W20-44
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 30.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 06/02/1962
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YYNYNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 30.0
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88345840
Longitude: -156.46967920
Last Date in Agency List: 11/23/2018
Site Name : 205313156281801
             20.88373617, -156.46884590
             HI

Database(s) : [NWIS]

NWIS

Site Identification Number : 205313156281801
Site Type : Well
Station Name : 6-5328-30 W20-50
Agency : U.S. Geological Survey
District : Hawaii
State : HI
County : Maui County
Country : USA
Land Net Location : N/R
Name of Location Map : WAILUKU, HI
Scale of Location Map : 24000
Altitude of Gage/Land Surface : 30.00
Method Altitude Determined : Interpolated from topographic map.
Altitude Accuracy : 5
Altitude Datum : Local Mean Sea Level
Hydrologic Unit : Maui
Drainage Basin : N/R
Topographic Setting : Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site : NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction : 01/01/1962
Date Site Established or inventoried: N/R
Drainage Area : N/R
Contributing Drainage Area : N/R
Data Reliability : Unchecked data.
Data-other GW Files : YYNNN
National Aquifer : Hawaii volcanic-rock aquifers
Local Aquifer : N/R
Local Aquifer Type : N/R
Well Depth : 40.0
Hole Depth : N/R
Source of Depth Data : N/R
Project Number : N/R
Real-Time Data Flag : N/R
Peak-Streamflow Data Begin Date : N/R
Peak-Streamflow Data End Date : N/R
Peak-Streamflow Data Count : N/R
Water-Quality Data Begin Date : N/R
Water-Quality Data End Date : N/R
Water-Quality Data Count : N/R
Field Water-Level Data Begin Date : N/R
Field Water-Level Data End Date : N/R
Field Water-Level Data Count : N/R
Site-Visit Data Begin Date : N/R
Site-Visit Data End Date : N/R
Site-Visit Data Count : N/R
Latitude : 20.88373617
Longitude : -156.46884590
Last Date in Agency List : 11/23/2018
### Site Name: 205302156283201
20.88388889, -156.47555560
HI

### Database(s): [NWIS]

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Identification Number</td>
<td>205302156283201</td>
</tr>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5328-43 Kahului, Maui, HI</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>20</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from Digital Elevation Model</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>10</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>N/R</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>Y</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>283</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>A</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88388889</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.47555560</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2019</td>
</tr>
</tbody>
</table>
### Site Identification Details

**Site Identification Number:** 205302156283202  
**Site Type:** Well  
**Station Name:** 6-5328-45 Kahului, Maui, HI  
**Agency:** U.S. Geological Survey  
**District:** Hawaii  
**State:** HI  
**County:** Maui County  
**Country:** USA  
**Land Net Location:** N/R  
**Name of Location Map:** WAILUKU, HI  
**Scale of Location Map:** 24000  
**Altitude of Gage/Land Surface:** 20  
**Method Altitude Determined:** Interpolated from Digital Elevation Model  
**Altitude Accuracy:** 10  
**Altitude Datum:** Local Mean Sea Level  
**Hydrologic Unit:** Maui  
**Drainage Basin:** N/R  
**Topographic Setting:** N/R  
**Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
**Flags for Instruments at Site:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
**Date of First Construction:** N/R  
**Date Site Established or Inventoried:** N/R  
**Drainage Area:** N/R  
**Contributing Drainage Area:** N/R  
**Data Reliability:** Unchecked data.  
**Data-other GW Files:** Y  
**National Aquifer:** N/R  
**Local Aquifer:** N/R  
**Local Aquifer Type:** N/R  
**Well Depth:** 282  
**Hole Depth:** N/R  
**Source of Depth Data:** A  
**Project Number:** N/R  
**Real-Time Data Flag:** N/R  
**Peak-Streamflow Data Begin Date:** N/R  
**Peak-Streamflow Data End Date:** N/R  
**Peak-Streamflow Data Count:** N/R  
**Water-Quality Data Begin Date:** N/R  
**Water-Quality Data End Date:** N/R  
**Water-Quality Data Count:** N/R  
**Field Water-Level Data Begin Date:** N/R  
**Field Water-Level Data End Date:** N/R  
**Field Water-Level Data Count:** N/R  
**Site-Visit Data Begin Date:** N/R  
**Site-Visit Data End Date:** N/R  
**Site-Visit Data Count:** N/R  
**Latitude:** 20.88388889  
**Longitude:** -156.47555560  
**Last Date in Agency List:** 11/23/2018
**Site Name:** 205314156281501
20.88401390, -156.46801260
HI

**Database(s):** [NWIS]

**Site Identification Number:** 205314156281501

**Site Type:** Well

**Station Name:** 6-5328-15 W20-51

**Agency:** U.S. Geological Survey

**District:** Hawaii

**State:** HI

**County:** Maui County

**Country:** USA

**Land Net Location:** N/R

**Name of Location Map:** WAILUKU, HI

**Scale of Location Map:** 24000

**Altitude of Gage/Land Surface:** 35.00

**Method Altitude Determined:** Interpolated from topographic map.

**Altitude Accuracy:** 5

**Altitude Datum:** Local Mean Sea Level

**Hydrologic Unit:** Maui

**Drainage Basin:** N/R

**Topographic Setting:** Flat surface

**Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

**Flags for Instruments at Site:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

**Date of First Construction:** N/R

**Date Site Established or Inventoried:** N/R

**Drainage Area:** N/R

**Contributing Drainage Area:** N/R

**Data Reliability:** Unchecked data.

**Data-other GW Files:** YNYNNNNNN

**National Aquifer:** Hawaii volcanic-rock aquifers

**Local Aquifer:** N/R

**Local Aquifer Type:** N/R

**Well Depth:** N/R

**Hole Depth:** N/R

**Source of Depth Data:** N/R

**Project Number:** N/R

**Real-Time Data Flag:** N/R

**Peak-Streamflow Data Begin Date:** N/R

**Peak-Streamflow Data End Date:** N/R

**Peak-Streamflow Data Count:** N/R

**Water-Quality Data Begin Date:** N/R

**Water-Quality Data End Date:** N/R

**Water-Quality Data Count:** N/R

**Field Water-Level Data Begin Date:** N/R

**Field Water-Level Data End Date:** N/R

**Field Water-Level Data Count:** N/R

**Site-Visit Data Begin Date:** N/R

**Site-Visit Data End Date:** N/R

**Site-Visit Data Count:** N/R

**Latitude:** 20.88401390

**Longitude:** -156.46801260

**Last Date in Agency List:** 11/23/2018
Site Name: 205311156282201
20.88318066,-156.46995700
HI

Database(s): [NWIS]

NWIS

Site Identification Number: 205311156282201
Site Type: Well
Station Name: 6-5328-25 W20-43
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 30.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1953
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YYNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 30.0
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88318066
Longitude: -156.46995700
Last Date in Agency List: 11/23/2018
Site Name: 205300156283201
20.88333333, -156.47555560
HI

Database(s): [NWIS]
Site Name: 205300156283202
20.88333333, -156.47555560
HI
Database(s): [NWIS]

NWIS

Site Identification Number: 205300156283202
Site Type: Well
Station Name: 6-5328-47 Kahului, Maui, HI
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 15
Method Altitude Determined: Interpolated from Digital Elevation Model
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: N/R
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: N/R
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: Y
National Aquifer: N/R
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 280
Hole Depth: N/R
Source of Depth Data: A
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88333333
Longitude: -156.47555560
Last Date in Agency List: 11/23/2018
## Map Information
- **Map Id:** E25
- **Direction:** SSE
- **Distance:** 0.370 mi.
- **Actual:** 1953.178 ft.
- **Elevation:** 0.003 mi. / 16.404 ft.
- **Relative:** Higher

## Site Information
- **Site Name:** 205311156281801
  - 20.88318066, -156.46884590
  - HI
- **Database(s):** [NWIS]

## NWIS Data
- **Site Identification Number:** 205311156281801
- **Site Type:** Well
- **Station Name:** 6-5328-14 W20-49
- **Agency:** U.S. Geological Survey
- **District:** Hawaii
- **County:** Maui County
- **Country:** USA
- **Elevation:**
  - Actual: 1953.178 ft.
  - Relative: Higher
- **Envirosite ID:** 404006260
- **EPA ID:** N/R
- **Site Name:** 205311156281801
  - 20.88318066, -156.46884590
- **Hydrologic Unit:** Flat surface
- **Drainage Basin:** Hawaiian Islands
- **Topographic Setting:** Flat surface
- **Date of First Construction:** N/R
- **Date Site Established or Inventoried:** N/R
- **Drainage Area:** N/R
- **Contributing Drainage Area:** N/R
- **Data Reliability:** Unchecked data.
- **Data-other GW Files:** NYN
- **National Aquifer:** Hawaii volcanic-rock aquifers
- **Local Aquifer:** N/R
- **Local Aquifer Type:** N/R
- **Well Depth:** N/R
- **Hole Depth:** N/R
- **Source of Depth Data:** N/R
- **Project Number:** N/R
- **Real-Time Data Flag:** N/R
- **Peak-Streamflow Data Begin Date:** N/R
- **Peak-Streamflow Data End Date:** N/R
- **Peak-Streamflow Data Count:** N/R
- **Water-Quality Data Begin Date:** N/R
- **Water-Quality Data End Date:** N/R
- **Water-Quality Data Count:** N/R
- **Field Water-Level Data Begin Date:** N/R
- **Field Water-Level Data End Date:** N/R
- **Field Water-Level Data Count:** N/R
- **Site-Visit Data Begin Date:** N/R
- **Site-Visit Data End Date:** N/R
- **Site-Visit Data Count:** N/R
- **Latitude:** 20.88318066
- **Longitude:** -156.46884590
- **Last Date in Agency List:** 11/23/2018
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Name</td>
<td>205308156282501</td>
</tr>
<tr>
<td>20.88234740,-156.47079030</td>
<td></td>
</tr>
<tr>
<td>HI</td>
<td></td>
</tr>
<tr>
<td>Database(s)</td>
<td>[NWIS]</td>
</tr>
<tr>
<td>Envirosite ID</td>
<td>404012655</td>
</tr>
<tr>
<td>EPA ID</td>
<td>N/R</td>
</tr>
</tbody>
</table>

**NWIS**

- **Site Identification Number**: 205308156282501
- **Site Type**: Well
- **Station Name**: 6-5328-41 W20-41
- **Agency**: U.S. Geological Survey
- **District**: Hawaii
- **State**: HI
- **County**: Maui County
- **Country**: USA
- **Land Net Location**: N/R
- **Name of Location Map**: WAILUKU, HI
- **Scale of Location Map**: 24000
- **Altitude of Gage/Land Surface**: 35
- **Method Altitude Determined**: Reported method of determination.
- **Altitude Accuracy**: 20
- **Altitude Datum**: Local Mean Sea Level
- **Hydrologic Unit**: Maui
- **Drainage Basin**: N/R
- **Topographic Setting**: Flat surface
- **Flags for the Type of Data Collected**: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- **Flags for Instruments at Site**: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- **Date of First Construction**: 01/01/1963
- **Date Site Established or Inventoried**: N/R
- **Drainage Area**: N/R
- **Contributing Drainage Area**: N/R
- **Data Reliability**: Unchecked data.
- **Data-other GW Files**: YYNNNNNN
- **National Aquifer**: Hawaii volcanic-rock aquifers
- **Local Aquifer**: N/R
- **Local Aquifer Type**: N/R
- **Well Depth**: 70
- **Hole Depth**: N/R
- **Source of Depth Data**: D
- **Project Number**: N/R
- **Real-Time Data Flag**: N/R
- **Peak-Streamflow Data Begin Date**: N/R
- **Peak-Streamflow Data End Date**: N/R
- **Peak-Streamflow Data Count**: N/R
- **Water-Quality Data Begin Date**: N/R
- **Water-Quality Data End Date**: N/R
- **Water-Quality Data Count**: N/R
- **Field Water-Level Data Begin Date**: N/R
- **Field Water-Level Data End Date**: N/R
- **Field Water-Level Data Count**: N/R
- **Site-Visit Data Begin Date**: N/R
- **Site-Visit Data End Date**: N/R
- **Site-Visit Data Count**: N/R
- **Latitude**: 20.88234740
- **Longitude**: -156.47079030
- **Last Date in Agency List**: 11/23/2018
Map Id: F27
Direction: SW
Distance: 0.387 mi.
Actual: 2042.057 ft.
Elevation: 0.003 mi. / 17.008 ft.
Relative: Higher

Site Name: 205311156284303
20.88318068, -156.47579000
HI
Database(s): [NWIS]

NWIS

Site Identification Number: 205311156284303
Site Type: Groundwater drain
Station Name: 6-5328.08B -46
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 6.00
Method Altitude Determined: Level or other surveyed method.
Altitude Accuracy: .1
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Local depression
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 03/23/1971
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Data have been checked by the reporting agency.
Data-other GW Files: YYNNNNNN
National Aquifer: N/R
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 282
Hole Depth: 282
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data Count: N/R
Site-Visit Data End Date: N/R
Latitude: 20.88318068
Longitude: -156.47579000
Last Date in Agency List: 11/23/2018
Geological Landscape Section Map Findings

Map Id: F28
Direction: SW
Distance: 0.387 mi.
Actual: 2042.057 ft.
Elevation: 0.003 mi. / 17.008 ft.
Relative: Higher

<table>
<thead>
<tr>
<th>Site Name</th>
<th>205311156284304</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale of Location Map</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>6.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Level or other surveyed method.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>.1</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Local depression</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>06/29/1971</td>
</tr>
<tr>
<td>Date Site Established or Inventoried:</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Data have been checked by the reporting agency.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>YNNNNNNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>280</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>280</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88318068</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.47579000</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>

Database(s): [NWIS]
Site Name : 205311156284301
20.88318068, -156.47579000
HI
Database(s) : [NWIS]

NWIS

Site Identification Number : 205311156284301
Site Type : Groundwater drain
Station Name : 6-5328.06 -43/W20-31
Agency : U.S. Geological Survey
District : Hawaii
State : HI
County : Maui County
Country : USA
Land Net Location : N/R
Name of Location Map : WAILUKU, HI
Scale of Location Map : 24000
Altitude of Gage/Land Surface : 6.00
Method Altitude Determined : Level or other surveyed method.
Altitude Accuracy : .1
Altitude Datum : Local Mean Sea Level
Hydrologic Unit : Maui
Drainage Basin : N/R
Topographic Setting : Local depression
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site : NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction : 05/20/1970
Date Site Established or Inventoried: N/R
Drainage Area : N/R
Contributing Drainage Area : N/R
Data Reliability : Unchecked data.
Data-other GW Files : YYNNNYNN
National Aquifer : N/R
Local Aquifer : N/R
Local Aquifer Type : N/R
Well Depth : 250
Hole Depth : 250
Source of Depth Data : N/R
Project Number : N/R
Real-Time Data Flag : 0
Peak-Streamflow Data Begin Date : N/R
Peak-Streamflow Data End Date : N/R
Peak-Streamflow Data Count : 0
Water-Quality Data Begin Date : N/R
Water-Quality Data End Date : N/R
Water-Quality Data Count : 0
Field Water-Level Data Begin Date : 05/20/1970
Field Water-Level Data End Date : 05/20/1970
Field Water-Level Data Count : 1
Site-Visit Data Begin Date : N/R
Site-Visit Data End Date : N/R
Site-Visit Data Count : 0
Latitude : 20.88318068
Longitude : -156.47579000
Last Date in Agency List : 11/23/2018
<table>
<thead>
<tr>
<th>NWIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Identification Number : 205311156284302</td>
</tr>
<tr>
<td>Site Type : Groundwater drain</td>
</tr>
<tr>
<td>Station Name : 6-5328.08A -45</td>
</tr>
<tr>
<td>Agency : U.S. Geological Survey</td>
</tr>
<tr>
<td>District : Hawaii</td>
</tr>
<tr>
<td>State : HI</td>
</tr>
<tr>
<td>County : Maui County</td>
</tr>
<tr>
<td>Country : USA</td>
</tr>
<tr>
<td>Land Net Location : N/R</td>
</tr>
<tr>
<td>Name of Location Map : WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map : 24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface : 6.00</td>
</tr>
<tr>
<td>Method Altitude Determined : Level or other surveyed method.</td>
</tr>
<tr>
<td>Altitude Accuracy : .1</td>
</tr>
<tr>
<td>Altitude Datum : Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit : Maui</td>
</tr>
<tr>
<td>Drainage Basin : N/R</td>
</tr>
<tr>
<td>Topographic Setting : Local depression</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site : NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction : 01/11/1971</td>
</tr>
<tr>
<td>Date Site Established or Inventoried : N/R</td>
</tr>
<tr>
<td>Drainage Area : N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area : N/R</td>
</tr>
<tr>
<td>Data Reliability : Data have been checked by the reporting agency.</td>
</tr>
<tr>
<td>Data-other GW Files : YNNNYNN</td>
</tr>
<tr>
<td>National Aquifer : N/R</td>
</tr>
<tr>
<td>Local Aquifer : N/R</td>
</tr>
<tr>
<td>Local Aquifer Type : N/R</td>
</tr>
<tr>
<td>Well Depth : 282</td>
</tr>
<tr>
<td>Hole Depth : 282</td>
</tr>
<tr>
<td>Source of Depth Data : N/R</td>
</tr>
<tr>
<td>Project Number : N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag : 0</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date : N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date : N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count : 0</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date : 05/08/1978</td>
</tr>
<tr>
<td>Water-Quality Data End Date : 08/14/1978</td>
</tr>
<tr>
<td>Water-Quality Data Count : 11</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date : 02/24/1978</td>
</tr>
<tr>
<td>Field Water-Level Data End Date : 02/24/1978</td>
</tr>
<tr>
<td>Field Water-Level Data Count : 1</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date : N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date : N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count : 0</td>
</tr>
<tr>
<td>Latitude : 20.88318068</td>
</tr>
<tr>
<td>Longitude : -156.47579000</td>
</tr>
<tr>
<td>Last Date in Agency List : 11/23/2018</td>
</tr>
</tbody>
</table>
Geological Landscape Section Map Findings 2019

Map Id: G31
Direction: SSE
Distance: 0.410 mi.
Actual: 2162.261 ft.
Elevation: 0.004 mi. / 22.966 ft.
Relative: Higher

Site Name: 205307156282301
20.88206965, -156.47023480
HI
Database(s): [NWIS]

Envirosite ID: 403978827
EPA ID: N/R

NWIS

Site Identification Number: 205307156282301
Site Type: Well
Station Name: 6-5328-38 W20-42
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 35
Method Altitude Determined: Reported method of determination.
Altitude Accuracy: 20
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1963
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 46
Hole Depth: N/R
Source of Depth Data: D
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88206965
Longitude: -156.47023480
Last Date in Agency List: 11/23/2018
Site Name : 205313156281001
20.88373616, -156.46662380
HI

Database(s) : [NWIS]

Site Identification Number : 205313156281001
Site Type : Well
Station Name : 6-5328-19 W20-84
Agency : U.S. Geological Survey
District : Hawaii
State : HI
County : Maui County
Country : USA
Land Net Location : N/R
Name of Location Map : WAILUKU, HI
Scale of Location Map : 24000
Altitude of Gage/Land Surface : 30.00
Method Altitude Determined : Interpolated from topographic map.
Altitude Accuracy : 5
Altitude Datum : Local Mean Sea Level
Hydrologic Unit : Maui
Drainage Basin : N/R
Topographic Setting : Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site : NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction : N/R
Date Site Established or Inventoried: N/R
Drainage Area : N/R
Contributing Drainage Area : N/R
Data Reliability : Unchecked data.
Data-other GW Files : YYNNNNNN
National Aquifer : Hawaii volcanic-rock aquifers
Local Aquifer : N/R
Local Aquifer Type : N/R
Well Depth : 70.0
Hole Depth : N/R
Source of Depth Data : N/R
Project Number : N/R
Real-Time Data Flag : N/R
Peak-Streamflow Data Begin Date : N/R
Peak-Streamflow Data End Date : N/R
Peak-Streamflow Data Count : N/R
Water-Quality Data Begin Date : N/R
Water-Quality Data End Date : N/R
Water-Quality Data Count : N/R
Field Water-Level Data Begin Date : N/R
Field Water-Level Data End Date : N/R
Field Water-Level Data Count : N/R
Site-Visit Data Begin Date : N/R
Site-Visit Data End Date : N/R
Site-Visit Data Count : N/R
Latitude : 20.88373616
Longitude : -156.46662380
Last Date in Agency List : 11/23/2018
Site Name: 205312156281001
20.88345840, -156.46662380
HI
Database(s): [NWIS]
Site Name: 205312156280801
20.88345840, -156.46606820
HI
Database(s): [NWIS]
### NWIS

<table>
<thead>
<tr>
<th>Site Identification Number</th>
<th>205306156281801</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5328-33 W20-53</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>35.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Flat surface</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site :</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>01/01/1962</td>
</tr>
<tr>
<td>Date Site Established or Inventoried:</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>YYNNNNNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>59.0</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88179189</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.46884590</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
Site Name: 205317156280301
20.88484717, -156.46467940
HI
Database(s): [NWIS]
Map Id: J37  
Direction: SE  
Distance: 0.462 mi.  
Actual: 2437.422 ft.  
Elevation: 0.004 mi. / 19.685 ft.  
Relative: Higher  

**Site Name:** 205309156281101  
20.88262515, -156.46690160  
HI  

**Database(s):** [NWIS]  

**NWIS**  

Site Identification Number: 205309156281101  
Site Type: Well  
Station Name: 6-5328-40 W20-82  
Agency: U.S. Geological Survey  
District: Hawaii  
State: HI  
County: Maui County  
Country: USA  
Land Net Location: N/R  
Name of Location Map: WAILUKU, HI  
Scale of Location Map: 24000  
Altitude of Gage/Land Surface: 35  
Method Altitude Determined: Reported method of determination.  
Altitude Accuracy: 20  
Altitude Datum: Local Mean Sea Level  
Hydrologic Unit: Maui  
Drainage Basin: N/R  
Topographic Setting: Flat surface  
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
Date of First Construction: 01/01/1963  
Date Site Established or Inventoried: N/R  
Drainage Area: N/R  
Contributing Drainage Area: N/R  
Data Reliability: Unchecked data.  
Data-other GW Files: YYNNNNNN  
National Aquifer: Hawaii volcanic-rock aquifers  
Local Aquifer: N/R  
Local Aquifer Type: N/R  
Well Depth: 61  
Hole Depth: N/R  
Source of Depth Data: D  
Project Number: N/R  
Real-Time Data Flag: N/R  
Peak-Streamflow Data Begin Date: N/R  
Peak-Streamflow Data End Date: N/R  
Peak-Streamflow Data Count: N/R  
Water-Quality Data Begin Date: N/R  
Water-Quality Data End Date: N/R  
Water-Quality Data Count: N/R  
Field Water-Level Data Begin Date: N/R  
Field Water-Level Data End Date: N/R  
Field Water-Level Data Count: N/R  
Site-Visit Data Begin Date: N/R  
Site-Visit Data End Date: N/R  
Site-Visit Data Count: N/R  
Latitude: 20.88262515  
Longitude: -156.46690160  
Last Date in Agency List: 11/23/2018
Geological Landscape Section Map Findings 2019

Map Id: K38
Direction: SSE
Distance: 0.464 mi.
Actual: 2451.091 ft.
Elevation: 0.005 mi. / 26.247 ft.
Relative: Higher

Site Name: 205304156282301
20.88123639, -156.47023480
HI

Database(s): [NWIS]

Envirosite ID: 405386154
EPA ID: N/R

NWIS

Site Identification Number: 205304156282301
Site Type: Well
Station Name: 6-5328-12 W20-45
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 35.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: N/R
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: NYNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: N/R
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88123639
Longitude: -156.47023480
Last Date in Agency List: 11/23/2018
Site Name: 205306156281601
20.88179189, -156.46829040
HI

Database(s): [NWIS]

NWIS

Site Identification Number: 205306156281601
Site Type: Well
Station Name: 6-5328-16 W20-54
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 35.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: N/R
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: NYNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: N/R
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88179189
Longitude: -156.46829040
Last Date in Agency List: 11/23/2018
<table>
<thead>
<tr>
<th>Site Name</th>
<th>205305156281701</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type</td>
<td>Groundwater drain</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5328.05 -42/W20-58</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>29.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>N/R</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>04/01/1969</td>
</tr>
<tr>
<td>Date Site Established or inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>YYNNNNNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>83.0</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>83.0</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88151414</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.46856820</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
<tr>
<td>Field</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>Site Name</td>
<td>205316156285501</td>
</tr>
<tr>
<td>20.88456946, -156.47912330</td>
<td>HI</td>
</tr>
<tr>
<td><strong>Database(s)</strong></td>
<td>[NWIS]</td>
</tr>
<tr>
<td>Envirosite ID</td>
<td>403989377</td>
</tr>
<tr>
<td>EPA ID</td>
<td>N/R</td>
</tr>
<tr>
<td>Site Identification Number</td>
<td>205316156285501</td>
</tr>
<tr>
<td>Site Type</td>
<td>Groundwater drain</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5328.02 -4/W20-20</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>40.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>N/R</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>NYNNNNNNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88456946</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.47912330</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2019</td>
</tr>
</tbody>
</table>
### NWIS

<table>
<thead>
<tr>
<th>Site Identification Number</th>
<th>205304156281801</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5328-31 W20-52</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>35.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>5</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Flat surface</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>51.0</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88123639</td>
</tr>
<tr>
<td>Longtude</td>
<td>-156.46884590</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
Site Name: 205308156280901
20.88234739, -156.46634600
HI
Database(s): [NWIS]

## NWIS

- Site Identification Number: 205308156280901
- Site Type: Well
- Station Name: 6-5328-20 W20-91
- Agency: U.S. Geological Survey
- District: Hawaii
- State: HI
- County: Maui County
- Country: USA
- Land Net Location: N/R
- Name of Location Map: WAILUKU, HI
- Scale of Location Map: 24000
- Altitude of Gage/Land Surface: 35.00
- Method Altitude Determined: Interpolated from topographic map.
- Altitude Accuracy: 5
- Altitude Datum: Local Mean Sea Level
- Hydrologic Unit: Maui
- Drainage Basin: N/R
- Topographic Setting: Flat surface
- Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- Date of First Construction: N/R
- Date Site Established or Inventoried: N/R
- Drainage Area: N/R
- Contributing Drainage Area: N/R
- Data Reliability: Unchecked data.
- Data-other GW Files: NYNNNNNN
- National Aquifer: Hawaii volcanic-rock aquifers
- Local Aquifer: N/R
- Local Aquifer Type: N/R
- Well Depth: N/R
- Hole Depth: N/R
- Source of Depth Data: N/R
- Project Number: N/R
- Real-Time Data Flag: N/R
- Peak-Streamflow Data Begin Date: N/R
- Peak-Streamflow Data End Date: N/R
- Peak-Streamflow Data Count: N/R
- Water-Quality Data Begin Date: N/R
- Water-Quality Data End Date: N/R
- Water-Quality Data Count: N/R
- Field Water-Level Data Begin Date: N/R
- Field Water-Level Data End Date: N/R
- Field Water-Level Data Count: N/R
- Site-Visit Data Begin Date: N/R
- Site-Visit Data End Date: N/R
- Site-Visit Data Count: N/R
- Latitude: 20.88234739
- Longitude: -156.46634600
- Last Date in Agency List: 11/23/2018
Site Identification Number: 205302156282301
Site Type: Well
Station Name: 6-5328-13 W20-46
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 35.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: N/R
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: NYNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: N/R
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88068088
Longitude: -156.47023480
Last Date in Agency List: 11/23/2018
### Site Name: 205305156281401

20.88151414, -156.46773490  
HI

<table>
<thead>
<tr>
<th>Database(s)</th>
<th>[NWIS]</th>
</tr>
</thead>
</table>

**NWIS**

- **Site Identification Number:** 205305156281401
- **Site Type:** Well
- **Station Name:** 6-5328-34 W20-59
- **Agency:** U.S. Geological Survey
- **District:** Hawaii
- **State:** HI
- **County:** Maui County
- **Country:** USA
- **Land Net Location:** N/R
- **Name of Location Map:** WAILUKU, HI
- **Scale of Location Map:** 24000
- **Altitude of Gage/Land Surface:** 35.00
- **Method Altitude Determined:** Interpolated from topographic map.
- **Altitude Accuracy:** 5
- **Altitude Datum:** Local Mean Sea Level
- **Hydrologic Unit:** Maui
- **Drainage Basin:** N/R
- **Topographic Setting:** Flat surface
- **Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- **Flags for Instruments at Site:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- **Date of First Construction:** 01/01/1962
- **Date Site Established or Inventoried:** N/R
- **Drainage Area:** N/R
- **Contributing Drainage Area:** N/R
- **Data Reliability:** Unchecked data.
- **Data-other GW Files:** YYNNNNNN
- **National Aquifer:** Hawaii volcanic-rock aquifers
- **Local Aquifer:** N/R
- **Local Aquifer Type:** N/R
- **Well Depth:** 76.0
- **Hole Depth:** N/R
- **Source of Depth Data:** N/R
- **Project Number:** N/R
- **Real-Time Data Flag:** N/R
- **Peak-Streamflow Data Begin Date:** N/R
- **Peak-Streamflow Data End Date:** N/R
- **Peak-Streamflow Data Count:** N/R
- **Water-Quality Data Begin Date:** N/R
- **Water-Quality Data End Date:** N/R
- **Water-Quality Data Count:** N/R
- **Field Water-Level Data Begin Date:** N/R
- **Field Water-Level Data End Date:** N/R
- **Field Water-Level Data Count:** N/R
- **Site-Visit Data Begin Date:** N/R
- **Site-Visit Data End Date:** N/R
- **Site-Visit Data Count:** N/R
- **Latitude:** 20.88151414
- **Longitude:** -156.46773490
- **Last Date in Agency List:** 11/23/2018
Geological Landscape Section Map Findings

Map Id: L47  
Direction: SW  
Distance: 0.512 mi.  
Actual: 2702.397 ft.  
Elevation: 0.008 mi. / 43.599 ft.  
Relative: Higher

<table>
<thead>
<tr>
<th>Site Name</th>
<th>205310156285001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20.88290294, -156.47829000</td>
</tr>
<tr>
<td></td>
<td>HI</td>
</tr>
<tr>
<td>Database(s)</td>
<td>[NWIS]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Envirosite ID</th>
<th>404016054</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA ID</td>
<td>N/R</td>
</tr>
</tbody>
</table>

NWIS

Site Identification Number : 205310156285001  
Site Type : Groundwater drain  
Station Name : 6-5328.09A  
Agency : U.S. Geological Survey  
District : Hawaii  
State : HI  
County : Maui County  
Country : USA  
Land Net Location : N/R  
Name of Location Map : WAILUKU, HI  
Scale of Location Map : 24000  
Altitude of Gage/Land Surface : 51.30  
Method Altitude Determined : Level or other surveyed method.  
Altitude Accuracy : .5  
Altitude Datum : Local Mean Sea Level  
Hydrologic Unit : Maui  
Drainage Basin : N/R  
Topographic Setting : N/R  
Flags for the Type of Data Collected:: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
Flags for Instruments at Site : NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
Date of First Construction : 05/01/1977  
Date Site Established or Inventoried: N/R  
Drainage Area : N/R  
Contributing Drainage Area : N/R  
Data Reliability : Unchecked data.  
Data-other GW Files : YYNNNYNN  
National Aquifer : N/R  
Local Aquifer : N/R  
Local Aquifer Type : N/R  
Well Depth : 120  
Hole Depth : 120  
Source of Depth Data : N/R  
Project Number : N/R  
Real-Time Data Flag : 0  
Peak-Streamflow Data Begin Date : N/R  
Peak-Streamflow Data End Date : N/R  
Peak-Streamflow Data Count : 0  
Water-Quality Data Begin Date : N/R  
Water-Quality Data End Date : N/R  
Water-Quality Data Count : 0  
Field Water-Level Data Begin Date : 05/05/1977  
Field Water-Level Data End Date : 05/05/1977  
Field Water-Level Data Count : 1  
Site-Visit Data Begin Date : N/R  
Site-Visit Data End Date : N/R  
Site-Visit Data Count : 0  
Latitude : 20.88290294  
Longitude : -156.47829000  
Last Date in Agency List : 11/23/2018
<table>
<thead>
<tr>
<th><strong>Site Name:</strong></th>
<th>205303156284301</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Latitude:</strong></td>
<td>20.88095866</td>
</tr>
<tr>
<td><strong>Longitude:</strong></td>
<td>-156.47579000</td>
</tr>
<tr>
<td><strong>State:</strong></td>
<td>HI</td>
</tr>
<tr>
<td><strong>Database(s):</strong></td>
<td>[NWIS]</td>
</tr>
<tr>
<td><strong>EPA ID:</strong></td>
<td>N/R</td>
</tr>
</tbody>
</table>

---

**NWIS**

<table>
<thead>
<tr>
<th><strong>Site Identification Number:</strong></th>
<th>205303156284301</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Site Type:</strong></td>
<td>Well</td>
</tr>
<tr>
<td><strong>Station Name:</strong></td>
<td>6-5327-11 W20-111</td>
</tr>
<tr>
<td><strong>Agency:</strong></td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td><strong>District:</strong></td>
<td>Hawaii</td>
</tr>
<tr>
<td><strong>State:</strong></td>
<td>HI</td>
</tr>
<tr>
<td><strong>County:</strong></td>
<td>Maui County</td>
</tr>
<tr>
<td><strong>Country:</strong></td>
<td>USA</td>
</tr>
<tr>
<td><strong>Land Net Location:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Name of Location Map:</strong></td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td><strong>Scale of Location Map:</strong></td>
<td>24000</td>
</tr>
<tr>
<td><strong>Altitude of Gage/Land Surface:</strong></td>
<td>69.00</td>
</tr>
<tr>
<td><strong>Method Altitude Determined:</strong></td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td><strong>Altitude Accuracy:</strong></td>
<td>5</td>
</tr>
<tr>
<td><strong>Hydrologic Unit:</strong></td>
<td>Maui</td>
</tr>
<tr>
<td><strong>Drainage Basin:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Topographic Setting:</strong></td>
<td>Flat surface</td>
</tr>
<tr>
<td><strong>Flags for the Type of Data Collected:</strong></td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td><strong>Flags for Instruments at Site:</strong></td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td><strong>Date of First Construction:</strong></td>
<td>01/01/1970</td>
</tr>
<tr>
<td><strong>Date Site Established or Inventoried:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Drainage Area:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Contributing Drainage Area:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Data Reliability:</strong></td>
<td>Unchecked data.</td>
</tr>
<tr>
<td><strong>Data-other GW Files:</strong></td>
<td>YNNNNNNN</td>
</tr>
<tr>
<td><strong>National Aquifer:</strong></td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td><strong>Local Aquifer:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Local Aquifer Type:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Well Depth:</strong></td>
<td>69.0</td>
</tr>
<tr>
<td><strong>Hole Depth:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Source of Depth Data:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Project Number:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Real-Time Data Flag:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Peak-Streamflow Data Begin Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Peak-Streamflow Data End Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Peak-Streamflow Data Count:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Water-Quality Data Begin Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Water-Quality Data End Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Water-Quality Data Count:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Field Water-Level Data Begin Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Field Water-Level Data End Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Site-Visit Data Begin Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Site-Visit Data End Date:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Site-Visit Data Count:</strong></td>
<td>N/R</td>
</tr>
<tr>
<td><strong>Latitude:</strong></td>
<td>20.88095866</td>
</tr>
<tr>
<td><strong>Longitude:</strong></td>
<td>-156.47579000</td>
</tr>
<tr>
<td><strong>Last Date in Agency List:</strong></td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
Site Name: 205310156285401
20.88290294, -156.47884560
HI
Database(s): [NWIS]

NWIS

Site Identification Number: 205310156285401
Site Type: Well
Station Name: 6-5328-05 W20-21
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 40.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: N/R
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: N/R
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YNNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 85.0
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88290294
Longitude: -156.47884560
Last Date in Agency List: 11/23/2018
### Geological Landscape Section Map Findings

**Site Name:** 205310156280301  
20.88290289, -156.46467940  
HI  

**Database(s):** [NWIS]

<table>
<thead>
<tr>
<th>Envirosite ID: 403992398</th>
<th>EPA ID: N/R</th>
</tr>
</thead>
</table>

**Map Id:** M50  
**Direction:** SE  
**Distance:** 0.541 mi.  
**Elevation:** 0.003 mi. / 16.404 ft.  
**Relative:** Higher

---

**NWIS**

<table>
<thead>
<tr>
<th>Site Identification Number:</th>
<th>205310156280301</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type:</td>
<td>Groundwater drain</td>
</tr>
<tr>
<td>Station Name:</td>
<td>6-5328.03 -22/W20-98</td>
</tr>
<tr>
<td>Agency:</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District:</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State:</td>
<td>HI</td>
</tr>
<tr>
<td>County:</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country:</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location:</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map:</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map:</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface:</td>
<td>25.00</td>
</tr>
<tr>
<td>Method Altitude Determined:</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy:</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum:</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit:</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin:</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting:</td>
<td>N/R</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction:</td>
<td>04/01/1969</td>
</tr>
<tr>
<td>Date Site Established or Inventoried:</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area:</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area:</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability:</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files:</td>
<td>NYNNNNNNN</td>
</tr>
<tr>
<td>National Aquifer:</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer:</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type:</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth:</td>
<td>97.0</td>
</tr>
<tr>
<td>Hole Depth:</td>
<td>97.0</td>
</tr>
<tr>
<td>Source of Depth Data:</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number:</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag:</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count:</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count:</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count:</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count:</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude:</td>
<td>20.88290289</td>
</tr>
<tr>
<td>Longitude:</td>
<td>-156.46467940</td>
</tr>
<tr>
<td>Last Date in Agency List:</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
Site Name : 205307156280601
20.88206964, -156.46551270
HI
Database(s) : [NWIS]

NWIS

Site Identification Number : 205307156280601
Site Type : Well
Station Name : 6-5328-35 W20-95
Agency : U.S. Geological Survey
District : Hawaii
State : HI
County : Maui County
Country : USA
Land Net Location : N/R
Name of Location Map : WAILUKU, HI
Scale of Location Map : 24000
Altitude of Gage/Land Surface : 35
Method Altitude Determined : Reported method of determination.
Altitude Accuracy : 20
Altitude Datum : Local Mean Sea Level
Hydrologic Unit : Maui
Drainage Basin : N/R
Topographic Setting : Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site : NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction : 01/01/1962
Date Site Established or Inventoried: N/R
Drainage Area : N/R
Contributing Drainage Area : N/R
Data Reliability : Unchecked data.
Data-other GW Files : YYNNNNNN
National Aquifer : Hawaii volcanic-rock aquifers
Local Aquifer : N/R
Local Aquifer Type : N/R
Well Depth : 71
Hole Depth : N/R
Source of Depth Data : D
Project Number : N/R
Real-Time Data Flag : N/R
Peak-Streamflow Data Begin Date : N/R
Peak-Streamflow Data End Date : N/R
Peak-Streamflow Data Count : N/R
Water-Quality Data Begin Date : N/R
Water-Quality Data End Date : N/R
Water-Quality Data Count : N/R
Field Water-Level Data Begin Date : N/R
Field Water-Level Data End Date : N/R
Field Water-Level Data Count : N/R
Site-Visit Data Begin Date : N/R
Site-Visit Data End Date : N/R
Site-Visit Data Count : N/R
Latitude : 20.88206964
Longitude : -156.46551270
Last Date in Agency List : 11/23/2018
Site Name: 205310156285002
20.88234744, -156.47856780
HI

Database(s): [NWIS]

Envirosite ID: 405386157
EPA ID: N/R

NWIS

Site Identification Number: 205310156285002
Site Type: Groundwater drain
Station Name: 6-5328.09B
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 63.70
Method Altitude Determined: Level or other surveyed method.
Altitude Accuracy: .5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: N/R
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 06/01/1977
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YNNNNYNN
National Aquifer: N/R
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 126
Hole Depth: 126
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: 0
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: 0
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: 0
Field Water-Level Data Begin Date: 06/14/1977
Field Water-Level Data End Date: 06/14/1977
Field Water-Level Data Count: 1
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: 0
Latitude: 20.88234744
Longitude: -156.47856780
Last Date in Agency List: 11/23/2018
### Site Details

**Site Name:** 205305156280801  
**Location:** 20.88151413, -156.46606830, HI

**Database(s):** [NWIS]

### Location Details

- **Map Id:** N53
- **Direction:** SE
- **Distance:** 0.555 mi. / 2931.000 ft.
- **Elevation:** 0.005 mi. / 26.247 ft.
- **Relative:** Higher

### Geophysical Details

- **Site Identification Number:** 205305156280801
- **Site Type:** Well
- **Station Name:** 6-5328-32 W20-90
- **Agency:** U.S. Geological Survey
- **District:** Hawaii
- **State:** HI
- **County:** Maui County
- **Country:** USA
- **Land Net Location:** N/R
- **Name of Location Map:** WAILUKU, HI
- **Scale of Location Map:** 24000
- **Altitude of Gage/Land Surface:** 35
- **Method Altitude Determined:** Reported method of determination.
- **Altitude Accuracy:** 20
- **Hydrologic Unit:** Maui
- **Drainage Basin:** N/R
  - **Topographic Setting:** Flat surface
  - **Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
  - **Flags for Instruments at Site:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- **Date of First Construction:** 01/01/1962
- **Drainage Area:** N/R
- **Contributing Drainage Area:** N/R
- **Data Reliability:** Unchecked data.
- **Data-other GW Files:** YYNNNNNN
- **National Aquifer:** Hawaii volcanic-rock aquifers
- **Local Aquifer:** N/R
- **Local Aquifer Type:** N/R
- **Well Depth:** 61
- **Hole Depth:** N/R
- **Source of Depth Data:** D
- **Project Number:** N/R
- **Real-Time Data Flag:** N/R
- **Peak-Streamflow Data Begin Date:** N/R
- **Peak-Streamflow Data End Date:** N/R
- **Peak-Streamflow Data Count:** N/R
- **Water-Quality Data Begin Date:** N/R
- **Water-Quality Data End Date:** N/R
- **Water-Quality Data Count:** N/R
- **Field Water-Level Data Begin Date:** N/R
- **Field Water-Level Data End Date:** N/R
- **Field Water-Level Data Count:** N/R
- **Site-Visit Data Begin Date:** N/R
- **Site-Visit Data End Date:** N/R
- **Site-Visit Data Count:** N/R
- **Latitude:** 20.88151413
- **Longitude:** -156.46606830
- **Last Date in Agency List:** 11/23/2018
Site Name: 205307156285301
20.88206969,-156.47856780
HI
Database(s): [NWIS]

NWIS

Site Identification Number: 205307156285301
Site Type: Well
Station Name: 6-5327-09 W20-103
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 35.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1962
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YYNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 76.0
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88206969
Longitude: -156.47856780
Last Date in Agency List: 11/23/2018
Site Name: 205308156280301
20.88234739, -156.46467940
HI

Database(s): [NWIS]

NWIS

Site Identification Number: 205308156280301
Site Type: Well
Station Name: 6-5328-39 W20-97
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 35
Method Altitude Determined: Reported method of determination.
Altitude Accuracy: 20
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: N/R
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1963
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YYNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 78
Hole Depth: N/R
Source of Depth Data: D
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88234739
Longitude: -156.46467940
Last Date in Agency List: 11/23/2018
| Site Name | Site Identification Number | Site Type | Station Name | Agency | District | State | County | Country | Land Net Location | Name of Location Map | Scale of Location Map | Altitude of Gage/Land Surface | Method Altitude Determined | Altitude Accuracy | Altitude Datum | Hydrologic Unit | Drainage Basin | Topographic Setting | Flags for the Type of Data Collected | Flags for Instruments at Site | Date of First Construction | Date Site Established or Inventoried | Drainage Area | Contributing Drainage Area | Data Reliability | Data-other GW Files | National Aquifer | Local Aquifer | Local Aquifer Type | Well Depth | Hole Depth | Source of Depth Data | Project Number | Real-Time Data Flag | Peak-Streamflow Data Begin Date | Peak-Streamflow Data End Date | Peak-Streamflow Data Count | Water-Quality Data Begin Date | Water-Quality Data End Date | Water-Quality Data Count | Field Water-Level Data Begin Date | Field Water-Level Data End Date | Field Water-Level Data Count | Site-Visit Data Begin Date | Site-Visit Data End Date | Site-Visit Data Count | Latitude | Longitude | Last Date in Agency List |
|-----------|---------------------------|----------|--------------|--------|----------|-------|--------|---------|------------------|------------------------|------------------------|-----------------------------|-----------------------------|------------------------|----------------|---------------|----------------|----------------|-------------------|-----------------------------|--------------------------|--------------------------|------------------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 205301156281301 | 205301156281301 | Well | 6-5328-37 W20-85 | U.S. Geological Survey | Hawaii | HI | Maui County | USA | N/R | WAILUKU, HI | 24000 | 35.00 | Interpolated from topographic map. | 5 | Local Mean Sea Level | Maui | N/R | N/R | N/R | Interpolated from topographic map. | NNNNNNNNNNNNNNNNNNNNNNNNNNNNN | 01/01/1963 | N/R | N/R | N/R | Unchecked data. | YYNNNNNN | Hawaii volcanic-rock aquifers | N/R | N/R | N/R | 68.0 | N/R | 20.88040312 | -156.46745700 | 11/23/2018 |
Map Id: O57  
Direction: SSE  
Distance: 0.590 mi.  
Actual: 3113.663 ft.  
Elevation: 0.006 mi. / 32.805 ft.  
Relative: Higher

| Site Name          | 205258156282001  
|                   | 20.87956987, -156.46940150  
|                   | HI  
| Database(s)       | [NWIS]  

**NWIS**

- **Site Identification Number**: 205258156282001
- **Site Type**: Well
- **Station Name**: 6-5228-10 W20-57
- **Agency**: U.S. Geological Survey
- **District**: Hawaii
- **State**: HI
- **County**: Maui County
- **Country**: USA
- **Land Net Location**: N/R
- **Name of Location Map**: WAILUKU, HI
- **Scale of Location Map**: 24000
- **Altitude of Gage/Land Surface**: 40
- **Method Altitude Determined**: Reported method of determination.
- **Accuracy**: 20
- **Datum**: Local Mean Sea Level
- **Hydrologic Unit**: Maui
- **Drainage Basin**: N/R
- **Topographic Setting**: Flat surface
- **Flags for the Type of Data Collected**: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- **Flags for Instruments at Site**: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
- **Date of First Construction**: 01/01/1962
- **Date Site Established or Inventoried**: N/R
- **Drainage Area**: N/R
- **Contributing Drainage Area**: N/R
- **Data Reliability**: Unchecked data.
- **Data-other GW Files**: YYNNNNNN
- **National Aquifer**: Hawaii volcanic-rock aquifers
- **Local Aquifer**: N/R
- **Local Aquifer Type**: N/R
- **Well Depth**: 45
- **Hole Depth**: N/R
- **Source of Depth Data**: D
- **Project Number**: N/R
- **Real-Time Data Flag**: N/R
- **Peak-Streamflow Data Begin Date**: N/R
- **Peak-Streamflow Data End Date**: N/R
- **Peak-Streamflow Data Count**: N/R
- **Water-Quality Data Begin Date**: N/R
- **Water-Quality Data End Date**: N/R
- **Water-Quality Data Count**: N/R
- **Field Water-Level Data Begin Date**: N/R
- **Field Water-Level Data End Date**: N/R
- **Field Water-Level Data Count**: N/R
- **Site-Visit Data Begin Date**: N/R
- **Site-Visit Data End Date**: N/R
- **Site-Visit Data Count**: N/R
- **Latitude**: 20.87956987
- **Longitude**: -156.46940150
- **Last Date in Agency List**: 11/23/2018
Site Name: WINDMILL
20 53 28.62N, 156 28 54.03W
KAHULUI, HI

Database(s): [DIGITAL OBSTACLE]

Map Id: 59
Direction: WNW
Distance: 0.590 mi.
Actual: 3116.249 ft.
Elevation: 0.004 mi. / 20.075 ft.
Relative: Higher

DIGITAL OBSTACLE

Facility Name: WINDMILL
Facility Address: KAHULUI, HI

Date of Action: 05/04/2014
Action: Change
FAA Study Number: 2004AWP03994OE
OBS Number: 15-000372
Obstacle Type: WINDMILL
Country Identifier: US
Type of Lighting: Red
Verification Status: Unverified
Quantity: 1
Mark Indicator: None
Above Ground Level Height (Feet): 2400
Above Mean Sea Level Height (Feet): 278
Horizontal Accuracy: +250'
Vertical Accuracy: +50'
Latitude: 20 53 28.62N
Longitude: 156 28 54.03W
Last Date in Agency List: 11/08/2018

Map Id: O59
Direction: S
Distance: 0.598 mi.
Actual: 3157.378 ft.
Elevation: 0.006 mi. / 33.566 ft.
Relative: Higher

NWIS

Site Identification Number: 205257156282201
Site Type: Well
Station Name: 6-5228-12 W20-56
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 40
Method Altitude Determined: Reported method of determination.
Altitude Accuracy: 20
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1963

Envirosite ID: 350947878
EPA ID: N/R

Envirosite ID: 404427947
EPA ID: N/R
NWIS (cont.)

- **Site Name:** 205257156282201
- **Latitude:** 20.87929210
- **Longitude:** -156.46995700
- **Database(s):** [NWIS] (cont.)

- **Location Information:**
  - **Envirosite ID:** 404427947
  - **EPA ID:** N/R
  - **Site Identification Number:** 205257156282201
  - **Site Type:** Well
  - **Station Name:** 205257156282201
  - **Agency:** U.S. Geological Survey
  - **District:** Hawaii
  - **State:** HI
  - **County:** Maui County
  - **Country:** USA
  - **Land Net Location:** N/R
  - **Name of Location Map:** WAILUKU, HI
  - **Scale of Location Map:** 24000
  - **Altitude of Gage/Land Surface:** 35.00
  - **Method Altitude Determined:** Interpolated from topographic map.
  - **Altitude Accuracy:** 5

- **Map Information:**
  - **Map Id:** O59
  - **Direction:** S
  - **Distance:** 0.598 mi.
  - **Actual:** 3157.378 ft.
  - **Elevation:** 0.006 mi. / 33.566 ft.
  - **Relative:** Higher

- **Site Details:**
  - **Date Site Established or Inventoried:** N/R
  - **Drainage Area:** N/R
  - **Contributing Drainage Area:** N/R
  - **Data Reliability:** Unchecked data.
  - **Data-other GW Files:** YNNNNNN
  - **National Aquifer:** Hawaii volcanic-rock aquifers
  - **Local Aquifer:** N/R
  - **Local Aquifer Type:** N/R
  - **Well Depth:** 48
  - **Hole Depth:** N/R
  - **Source of Depth Data:** D
  - **Project Number:** N/R
  - **Real-Time Data Flag:** N/R
  - **Peak-Streamflow Data Begin Date:** N/R
  - **Peak-Streamflow Data End Date:** N/R
  - **Peak-Streamflow Data Count:** N/R
  - **Water-Quality Data Begin Date:** N/R
  - **Water-Quality Data End Date:** N/R
  - **Water-Quality Data Count:** N/R
  - **Field Water-Level Data Begin Date:** N/R
  - **Field Water-Level Data End Date:** N/R
  - **Field Water-Level Data Count:** N/R
  - **Site-Visit Data Begin Date:** N/R
  - **Site-Visit Data End Date:** N/R
  - **Site-Visit Data Count:** N/R
  - **Latitude:** 20.87929210
  - **Longitude:** -156.46995700
  - **Last Date in Agency List:** 11/23/2018
Site Name : 205301156280901
20.88040310, -156.46634600
HI
Database(s) : [NWIS] (cont.)

NWIS (cont.)

Altitude Datum : Local Mean Sea Level
Hydrologic Unit : Maui
Drainage Basin : N/R
Topographic Setting : Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site : NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction : 01/01/1962
Date Site Established or Inventoried: N/R
Drainage Area : N/R
Contributing Drainage Area : N/R
Data Reliability : Unchecked data.
Data-other GW Files : YNNNNNNN
National Aquifer : Hawaii volcanic-rock aquifers
Local Aquifer : N/R
Local Aquifer Type : N/R
Well Depth : 91.0
Hole Depth : N/R
Source of Depth Data : N/R
Project Number : N/R
Real-Time Data Flag : N/R
Peak-Streamflow Data Begin Date : N/R
Peak-Streamflow Data End Date : N/R
Peak-Streamflow Data Count : N/R
Water-Quality Data Begin Date : N/R
Water-Quality Data End Date : N/R
Water-Quality Data Count : N/R
Field Water-Level Data Begin Date : N/R
Field Water-Level Data End Date : N/R
Field Water-Level Data Count : N/R
Site-Visit Data Begin Date : N/R
Site-Visit Data End Date : N/R
Site-Visit Data Count : N/R
Latitude : 20.88040310
Longitude : -156.46634600
Last Date in Agency List : 11/23/2018

Site Name : 205313156290101
20.88373620, -156.48079000
HI
Database(s) : [NWIS]

NWIS

Site Identification Number : 205313156290101
Site Type : Groundwater drain
Station Name : 6-5329.04 -02/W20-18
Agency : U.S. Geological Survey
District : Hawaii
State : HI
County : Maui County
Site Name: 205313156290101
20.88373620, -156.48079000
HI

Database(s): [NWIS] (cont.)

Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 75.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: N/R
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1969
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: NYYNNNNNN
National Aquifer: N/R
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: N/R
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88373620
Longitude: -156.48079000
Last Date in Agency List: 11/23/2018
**Map Id:** 62  
**Direction:** NNE  
**Distance:** 0.624 mi.  
**Actual:** 3292.991 ft.  
**Elevation:** 0.001 mi. / 3.281 ft.  
**Relative:** Lower

**Site Name:** CRANE  
20 53 52.90N, 156 28 04.30W  
KAHULUI, HI

**Database(s):** [DIGITAL OBSTACLE]

**Digital Obstacle**

- **Facility Name:** CRANE  
- **Facility Address:** KAHULUI, HI  
- **Date of Action:** 09/02/2007  
- **Action:** Add  
- **FAA Study Number:** 2007AWP01541OE  
- **OBS Number:** 15-000414  
- **Obstacle Type:** CRANE  
- **Country Identifier:** US  
- **Type of Lighting:** Red  
- **Verification Status:** Unverified  
- **Quantity:** 1  
- **Mark Indicator:** Orange or Orange And White Paint  
- **Above Ground Level Height (Feet):** 00226  
- **Above Mean Sea Level Height (Feet):** 00236  
- **Horizontal Accuracy:** N/R  
- **Vertical Accuracy:** N/R  
- **Latitude:** 20 53 52.90N  
- **Longitude:** 156 28 04.30W  
- **Last Date in Agency List:** 11/08/2018

**Map Id:** 63  
**Direction:** S  
**Distance:** 0.625 mi.  
**Actual:** 3298.422 ft.  
**Elevation:** 0.007 mi. / 36.407 ft.  
**Relative:** Higher

**Site Name:** 205255156282501  
20.87873660, -156.47079030  
HI

**Database(s):** [NWIS]

**NWIS**

- **Site Identification Number:** 205255156282501  
- **Site Type:** Well  
- **Station Name:** 6-5228-13 W20-48  
- **Agency:** U.S. Geological Survey  
- **District:** Hawaii  
- **State:** HI  
- **County:** Maui County  
- **Country:** USA  
- **Land Net Location:** N/R  
- **Name of Location Map:** WAILUKU, HI  
- **Scale of Location Map:** 24000  
- **Altitude of Gage/Land Surface:** 40.00  
- **Method Altitude Determined:** Interpolated from topographic map.  
- **Altitude Accuracy:** 5  
- **Altitude Datum:** Local Mean Sea Level  
- **Hydrologic Unit:** Maui  
- **Drainage Basin:** N/R  
- **Topographic Setting:** Flat surface  
- **Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
- **Flags for Instruments at Site:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
- **Date of First Construction:** 01/01/1963
NWIS (cont.)

Site Name : 205255156282501
20.87873660, -156.47079030
HI
Database(s) : [NWIS] (cont.)

NWIS

Site Identification Number : 205257156284401
Site Type : Groundwater drain
Station Name : 6-5228.01B -2/20-34B
Agency : U.S. Geological Survey
District : Hawaii
State : HI
County : Maui County
Country : USA
Land Net Location : N/R
Name of Location Map : WAILUKU, HI
Scale of Location Map : 24000
Altitude of Gage/Land Surface : 80.00
Method Altitude Determined : Interpolated from topographic map.
Altitude Accuracy : 5
Map Id: Q64
Direction: SSW
Distance: 0.630 mi.
Actual: 3324.747 ft.
Elevation: 0.014 mi. / 75.965 ft.
Relative: Higher

Site Name : 205257156284401
20.87929215, -156.47606790
HI

Database(s) : [NWIS] (cont.)

NWIS (cont.)

Altitude Datum : Local Mean Sea Level
Hydrologic Unit : Maui
Drainage Basin : N/R
Topographic Setting : N/R
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site : NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction : N/R
Date Site Established or Inventoried: N/R
Drainage Area : N/R
Contributing Drainage Area : N/R
Data Reliability : Unchecked data.
Data-other GW Files : NYYNNNNN
National Aquifer : N/R
Local Aquifer : N/R
Local Aquifer Type : N/R
Well Depth : N/R
Hole Depth : N/R
Source of Depth Data : N/R
Project Number : N/R
Real-Time Data Flag : N/R
Peak-Streamflow Data Begin Date : N/R
Peak-Streamflow Data End Date : N/R
Peak-Streamflow Data Count : N/R
Water-Quality Data Begin Date : N/R
Water-Quality Data End Date : N/R
Water-Quality Data Count : N/R
Field Water-Level Data Begin Date : N/R
Field Water-Level Data End Date : N/R
Field Water-Level Data Count : N/R
Site-Visit Data Begin Date : N/R
Site-Visit Data End Date : N/R
Site-Visit Data Count : N/R
Latitude : 20.87929215
Longitude : -156.47606790
Last Date in Agency List : 11/23/2018

Map Id: 65
Direction: SW
Distance: 0.631 mi.
Actual: 3329.803 ft.
Elevation: 0.007 mi. / 36.089 ft.
Relative: Higher

Site Name : 205303156285401
20.88095868, -156.47884560
HI

Database(s) : [NWIS]

NWIS

Site Identification Number : 205303156285401
Site Type : Well
Station Name : 6-5328-49 HALE MAKUA
Agency : U.S. Geological Survey
District : Hawaii
State : HI
County : Maui County
Site Name: 205303156285401
20.88095868, -156.47884560
HI

Database(s): [NWIS] (cont.)

Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 51.5
Method Altitude Determined: Level or other surveyed method.
Altitude Accuracy: .1
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 08/25/1986
Date Site Established or Inventoried: 01/28/1987
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Data have been checked by the reporting agency.
Data-other GW Files: YYYNYNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 107.
Hole Depth: 107.
Source of Depth Data: D
Project Number: N/R
Real-Time Data Flag: 0
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: 0
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: 0
Field Water-Level Begin Date: 08/27/1986
Field Water-Level End Date: 08/27/1986
Field Water-Level Data Count: 1
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: 0
Latitude: 20.88095868
Longitude: -156.47884560
Last Date in Agency List: 11/23/2018
| **Site Name** : 205305156280101  
|  
| 20.88151412, -156.46412390  
| HI  
| **Database(s)** : [NWIS]  

**NWIS**

- **Site Identification Number** : 205305156280101
- **Site Type** : Groundwater drain
- **Station Name** : 6-5328.04 -23/20-100
- **Agency** : U.S. Geological Survey
- **District** : Hawaii
- **State** : HI
- **County** : Maui County
- **Country** : USA
- **Name of Location Map** : WAILUKU, HI
- **Scale of Location Map** : 24000
- **Altitude of Gage/Land Surface** : 31.00
- **Method Altitude Determined** : Interpolated from topographic map.
- **Altitude Accuracy** : 5
- **Altitude Datum** : Local Mean Sea Level
- **Hydrologic Unit** : Maui
- **Drainage Basin** : N/R
- **Topographic Setting** : N/R
- **Date of First Construction** : 04/01/1969
- **Date Site Established or Inventoried** : N/R
- **Drainage Area** : N/R
- **Contributing Drainage Area** : N/R
- **Data Reliability** : Unchecked data.
- **Data-other GW Files** : NYNNNNNNN
- **National Aquifer** : N/R
- **Local Aquifer** : N/R
- **Local Aquifer Type** : N/R
- **Well Depth** : 120
- **Hole Depth** : 120
- **Source of Depth Data** : N/R
- **Project Number** : N/R
- **Real-Time Data Flag** : N/R
- **Peak-Streamflow Data Begin Date** : N/R
- **Peak-Streamflow Data End Date** : N/R
- **Peak-Streamflow Data Count** : N/R
- **Water-Quality Data Begin Date** : N/R
- **Water-Quality Data End Date** : N/R
- **Water-Quality Data Count** : N/R
- **Field Water-Level Data Begin Date** : N/R
- **Field Water-Level Data End Date** : N/R
- **Site-Visit Data Begin Date** : N/R
- **Site-Visit Data End Date** : N/R
- **Site-Visit Data Count** : N/R
- **Latitude** : 20.88151412
- **Longitude** : -156.46412390
- **Last Date in Agency List** : 11/23/2018
Geological Landscape Section Map Findings 2019

Site Name: 205259156281001
20.87984760, -156.46662380
HI

Database(s): [NWIS]

Envirosite ID: 404016015
EPA ID: N/R

NWIS

Site Identification Number: 205259156281001
Site Type: Well
Station Name: 6-5228-05 W20-88
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA

Latitude: 20.87984760
Longitude: -156.46662380
Last Date in Agency List: 11/23/2018
### NWIS

<table>
<thead>
<tr>
<th>Site Identification Number</th>
<th>205259156284901</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5228-19 Hale Makua, Kahului, Maui, HI</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>59</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Reported method of determination</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>20</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Flat surface</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>1986</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>01/27/1987</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Data have been checked by the reporting agency</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>YYYNNYNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>94</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>94</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>D</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>0</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>01/20/1986</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>01/20/1986</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>1</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.87972222</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.47750000</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2019</td>
</tr>
</tbody>
</table>
Site Name: 205255156284201
20.87873664, -156.47551240
HI
Database(s): [NWIS]

NWIS

Site Identification Number: 205255156284201
Site Type: Groundwater drain
Station Name: 6-5228.01A -1/20-34A
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 70.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 10
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: N/R
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: N/R
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: NYNNNNNN
National Aquifer: N/R
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: N/R
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.87873664
Longitude: -156.47551240
Last Date in Agency List: 11/23/2018
**Geological Landscape Section Map Findings 2019**

**Map Id:** 70  
**Direction:** ENE  
**Distance:** 0.659 mi.  
**Actual:** 3478.333 ft.  
**Elevation:** 0.001 mi. / 3.281 ft.  
**Relative:** Lower

**Site Name:** TOWER  
**Facility Name:** TOWER  
**Facility Address:** KAHULUI, HI  
**Database(s):** [DIGITAL OBSTACLE]

**Elevation:** 0.001 mi. / 3.281 ft.  
**Relative:** Lower

**Envirosite ID:** 350885676  
**EPA ID:** N/R

**Facility Name:** TOWER  
**Facility Address:** KAHULUI, HI  
**Date of Action:** 11/03/2011  
**Action:** Add  
**FAA Study Number:** 2010AWP07032OE  
**OBS Number:** 15-020083  
**Obstacle Type:** TOWER  
**Country Identifier:** US  
**Type of Lighting:** None  
**Verification Status:** Verified  
**Quantity:** 1  
**Mark Indicator:** None  
**Above Ground Level Height (Feet):** 00123  
**Above Mean Sea Level Height (Feet):** 00129  
**Horizontal Accuracy:** +-50'  
**Vertical Accuracy:** +-20'  
**Latitude:** 20 53 39.60N  
**Longitude:** 156 27 45.59W  
**Last Date in Agency List:** 11/08/2018

**Map Id:** 71  
**Direction:** WSW  
**Distance:** 0.669 mi.  
**Actual:** 3531.942 ft.  
**Elevation:** 0.012 mi. / 65.925 ft.  
**Relative:** Higher

**Site Name:** 205309156290201  
**Facility Name:** 205309156290201  
**Facility Address:** 20.88262520, -156.48106770  
**Database(s):** [NWIS]

**Site Identification Number:** 205309156290201  
**Site Type:** Groundwater drain  
**Station Name:** 6-5329.05 -03/W20-22  
**Agency:** U.S. Geological Survey  
**District:** Hawaii  
**State:** HI  
**County:** Maui County  
**Country:** USA  
**Land Net Location:** N/R  
**Name of Location Map:** WAILUKU, HI  
**Scale of Location Map:** 24000  
**Altitude of Gage/Land Surface:** 75.00  
**Method Altitude Determined:** Interpolated from topographic map.  
**Altitude Accuracy:** 5  
**Altitude Datum:** Local Mean Sea Level  
**Hydrologic Unit:** Maui  
**Drainage Basin:** N/R  
**Topographic Setting:** N/R  
**Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
**Flags for Instruments at Site:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
**Date of First Construction:** 01/01/1969

**Envirosite ID:** 404003062  
**EPA ID:** N/R

**Site Identification Number:** 205309156290201  
**Site Type:** Groundwater drain  
**Station Name:** 6-5329.05 -03/W20-22  
**Agency:** U.S. Geological Survey  
**District:** Hawaii  
**State:** HI  
**County:** Maui County  
**Country:** USA  
**Land Net Location:** N/R  
**Name of Location Map:** WAILUKU, HI  
**Scale of Location Map:** 24000  
**Altitude of Gage/Land Surface:** 75.00  
**Method Altitude Determined:** Interpolated from topographic map.  
**Altitude Accuracy:** 5  
**Altitude Datum:** Local Mean Sea Level  
**Hydrologic Unit:** Maui  
**Drainage Basin:** N/R  
**Topographic Setting:** N/R  
**Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
**Flags for Instruments at Site:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
**Date of First Construction:** 01/01/1969
Map Id: 71
Direction: WSW
Distance: 0.669 mi.
Actual: 3531.942 ft.
Elevation: 0.012 mi. / 65.925 ft.
Relative: Higher

Site Name: 205309156290201
20.88262520, -156.48106770
HI
Database(s): [NWIS] (cont.)

NWIS (cont.)

Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: NYNNNNNN
National Aquifer: N/R
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: N/R
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88262520
Longitude: -156.48106770
Last Date in Agency List: 11/23/2018

Map Id: R72
Direction: SE
Distance: 0.686 mi.
Actual: 3622.974 ft.
Elevation: 0.005 mi. / 28.963 ft.
Relative: Higher

Site Name: 205303156275901
20.88095860, -156.46356840
HI
Database(s): [NWIS]

NWIS

Site Identification Number: 205303156275901
Site Type: Well
Station Name: 6-5327-01 W20-101
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 35.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5

Envirosite ID: 404003062
EPA ID: N/R

Envirosite ID: 404016022
EPA ID: N/R
### Geological Landscape Section Map Findings 2019

<table>
<thead>
<tr>
<th>Site Name</th>
<th>205303156275901</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20.88095860, -156.46356840</td>
</tr>
<tr>
<td></td>
<td>HI</td>
</tr>
</tbody>
</table>

**Database(s):** [NWIS](#) (cont.)

---

### NWIS (cont.)

<table>
<thead>
<tr>
<th>Altitude Datum</th>
<th>Local Mean Sea Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Flat surface</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>01/01/1962</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>YYYYYNNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>60.0</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88095860</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.46356840</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
Site Name: 205303156285901
20.88095868, -156.48023440
HI
Database(s): [NWIS] (cont.)

Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 40.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: N/R
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YYNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 125
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88095868
Longitude: -156.48023440
Last Date in Agency List: 11/23/2018
Geological Landscape Section Map Findings 2019

Map Id: 74
Direction: WSW
Distance: 0.698 mi.
Actual: 3684.148 ft.
Elevation: 0.015 mi. / 77.011 ft.
Relative: Higher

Site Name: 205313156290601
20.88373620, -156.48217880
HI
Database(s): [NWIS]

Envirosite ID: 405386161
EPA ID: N/R

NWIS

Site Identification Number: 205313156290601
Site Type: Well
Station Name: 6-5329-09 W20-15
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 80.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Dunes
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1962
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 112
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88373620
Longitude: -156.48217880
Last Date in Agency List: 11/23/2018
Site Name: 205330156291101  
20.88845800,-156.48356760  
HI  
Database(s): [NWIS]
Site Name: HI0000209
305 EAST WAKEA AVENUE, SUITE 100
KAHULUI, HI 96732

Database(s): [PWS, PWS ENF]
Geological Landscape Section Map Findings 2019

Map Id: S76
Direction: E
Distance: 0.702 mi.
Actual: 3704.121 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: HI0000209
305 EAST WAKEA AVENUE, SUITE 100
KAHULUI, HI 96732

Database(s): [PWS, PWS ENF] (cont.)

Envirosite ID: 358009662
EPA ID: N/R

EnviroSite ID: 358009662

PWS ENF (cont.)

PWS ID: HI0000209
PWS Name: OLOWALU
EPA Region: Region 9
Primacy Agency: Hawaii
PWS Type: Community water system
Primacy Type: State
Primary Source: Ground water
Activity Status: Active
Deactivation Date: N/R
Owner Type: Private
Phone Number: 808-877-4202
Last Date in Agency List: 10/18/2018

Violation Details

Details for this site have been truncated due to the large number of available details for this site within this dataset. For the complete details for this site, contact your Envirosite account representative for a complimentary site report containing all of the details available.

RTC Enforcement ID: 3896
Violation ID: 203596
Submission Year: 2018
Violation First Reported Date: 09/04/1996
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 2
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Returned to Compliance
RTC Date: 06/21/1996
Enforcement Action Description: State Public Notif issued
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: 3896
Violation ID: 203696
Submission Year: 2018
Violation First Reported Date: 09/04/1996
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 2
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732

Page 278 of 327
Site Name: HI0000209
305 EAST WAKEA AVENUE, SUITE 100
KAHULUI, HI 96732

Database(s): [PWS, PWS ENF] (cont.)

Address Line 2: N/R
Compliance Status: Returned to Compliance
RTC Date: 06/21/1996
Enforcement Action Description: State Public Notif issued
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: 3896
Violation ID: 203796
Submission Year: 2018
Violation First Reported Date: 09/04/1996
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 2
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Returned to Compliance
RTC Date: 06/21/1996
Enforcement Action Description: State Public Notif issued
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 8398
Submission Year: 2018
Violation First Reported Date: 03/31/1998
Contaminant Name: Coliform (TCR)
Rule Family: Total Coliform Rules
Rule Group: Microbials
Rule Name: Total Coliform Rule
Violation Type: Monitoring, Routine Major (TCR)
Is Health Based: N
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 3
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: State Public Notification requested
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 203897
Submission Year: 2018
Violation First Reported Date: 06/11/1997
Contaminant Name: Surface Water Treatment Rule
Site Name: HI0000209
305 EAST WAKEA AVENUE, SUITE 100
KAHULUI, HI 96732

Database(s): [PWS, PWS ENF] (cont.)

PWS ENF (cont.)

Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 2
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: State Public Notification requested
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 203296
Submission Year: 2018
Violation First Reported Date: 09/04/1996
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 2
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: State Public Notification requested
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 203396
Submission Year: 2018
Violation First Reported Date: 09/04/1996
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 2
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: State Public Notification requested
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com
### Site Name: HI0000209
305 EAST WAKEA AVENUE, SUITE 100
KAHULUI, HI 96732

**Database(s):** [PWS, PWS ENF](cont.)

<table>
<thead>
<tr>
<th>Admin Name</th>
<th>TAMAYOSE, LEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email Address</td>
<td><a href="mailto:lea@westmauiland.com">lea@westmauiland.com</a></td>
</tr>
</tbody>
</table>

**RTC Enforcement ID:** N/R
**Violation ID:** 203496
**Submission Year:** 2018
**Violation First Reported Date:** 09/04/1996
**Contaminant Name:** Surface Water Treatment Rule
**Rule Family:** Surface Water Treatment Rules
**Rule Group:** Microbials
**Rule Name:** Surface Water Treatment Rule
**Violation Type:** Treatment Technique (SWTR and GWR)
**Is Health Based:** Y
**Is Major Violation:** N/R
**Severity Indicator Count:** N/R
**Public Notification Tier:** 2
**Address Line 1:** 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
**Address Line 2:** N/R
**Compliance Status:** Known
**RTC Date:** N/R
Enforcement Action Description: State Public Notification requested

<table>
<thead>
<tr>
<th>Admin Name</th>
<th>TAMAYOSE, LEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email Address</td>
<td><a href="mailto:lea@westmauiland.com">lea@westmauiland.com</a></td>
</tr>
</tbody>
</table>

**RTC Enforcement ID:** N/R
**Violation ID:** 202996
**Submission Year:** 2018
**Violation First Reported Date:** 05/30/1996
**Contaminant Name:** Surface Water Treatment Rule
**Rule Family:** Surface Water Treatment Rules
**Rule Group:** Microbials
**Rule Name:** Surface Water Treatment Rule
**Violation Type:** Treatment Technique (SWTR and GWR)
**Is Health Based:** Y
**Is Major Violation:** N/R
**Severity Indicator Count:** N/R
**Public Notification Tier:** 2
**Address Line 1:** 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
**Address Line 2:** N/R
**Compliance Status:** Known
**RTC Date:** N/R
Enforcement Action Description: State Public Notif issued

<table>
<thead>
<tr>
<th>Admin Name</th>
<th>TAMAYOSE, LEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email Address</td>
<td><a href="mailto:lea@westmauiland.com">lea@westmauiland.com</a></td>
</tr>
</tbody>
</table>

**RTC Enforcement ID:** N/R
**Violation ID:** 203096
**Submission Year:** 2018
**Violation First Reported Date:** 05/30/1996
**Contaminant Name:** Surface Water Treatment Rule
**Rule Family:** Surface Water Treatment Rules
**Rule Group:** Microbials
**Rule Name:** Surface Water Treatment Rule
**Violation Type:** Treatment Technique (SWTR and GWR)
### PWS ENF (cont.)

**Is Health Based:** Y  
**Is Major Violation:** N/R  
**Severity Indicator Count:** N/R  
**Public Notification Tier:** 2  
**Address Line 1:** 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732  
**Address Line 2:** N/R  
**Compliance Status:** Known  
**RTC Date:** N/R  
**Enforcement Action Description:** State Public Notif issued  
**Admin Name:** TAMAYOSE, LEA  
**Email Address:** lea@westmauiland.com

---

**RTC Enforcement ID:** N/R  
**Violation ID:** 203196  
**Submission Year:** 2018  
**Violation First Reported Date:** 05/30/1996  
**Contaminant Name:** Surface Water Treatment Rule  
**Rule Family:** Surface Water Treatment Rules  
**Rule Group:** Microbials  
**Rule Name:** Surface Water Treatment Rule  
**Violation Type:** Treatment Technique (SWTR and GWR)  
**Is Health Based:** Y  
**Is Major Violation:** N/R  
**Severity Indicator Count:** N/R  
**Public Notification Tier:** 2  
**Address Line 1:** 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732  
**Address Line 2:** N/R  
**Compliance Status:** Known  
**RTC Date:** N/R  
**Enforcement Action Description:** State Public Notif issued  
**Admin Name:** TAMAYOSE, LEA  
**Email Address:** lea@westmauiland.com

---

**RTC Enforcement ID:** N/R  
**Violation ID:** 202695  
**Submission Year:** 2018  
**Violation First Reported Date:** 03/23/1996  
**Contaminant Name:** Surface Water Treatment Rule  
**Rule Family:** Surface Water Treatment Rules  
**Rule Group:** Microbials  
**Rule Name:** Surface Water Treatment Rule  
**Violation Type:** Treatment Technique (SWTR and GWR)  
**Is Health Based:** Y  
**Is Major Violation:** N/R  
**Severity Indicator Count:** N/R  
**Public Notification Tier:** 2  
**Address Line 1:** 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732  
**Address Line 2:** N/R  
**Compliance Status:** Known  
**RTC Date:** N/R  
**Enforcement Action Description:** State Public Notif issued  
**Admin Name:** TAMAYOSE, LEA  
**Email Address:** lea@westmauiland.com
### Geological Landscape Section Map Findings

**Site Name:** HI0000209  
305 EAST WAKEA AVENUE, SUITE 100  
KAHULUI, HI 96732  
**Database(s):** [PWS, PWS ENF](cont.)

**Envirosite ID:** 358009662  
**EPA ID:** N/R

---

**PWS ENF (cont.)**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTC Enforcement ID</td>
<td>N/R</td>
</tr>
<tr>
<td>Violation ID</td>
<td>202795</td>
</tr>
<tr>
<td>Submission Year</td>
<td>2018</td>
</tr>
<tr>
<td>Violation First Reported Date</td>
<td>03/23/1996</td>
</tr>
<tr>
<td>Contaminant Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Rule Family</td>
<td>Surface Water Treatment Rules</td>
</tr>
<tr>
<td>Rule Group</td>
<td>Microbials</td>
</tr>
<tr>
<td>Rule Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Violation Type</td>
<td>Treatment Technique (SWTR and GWR)</td>
</tr>
<tr>
<td>Is Health Based</td>
<td>Y</td>
</tr>
<tr>
<td>Is Major Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Severity Indicator Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Public Notification Tier</td>
<td>2</td>
</tr>
<tr>
<td>Address Line 1</td>
<td>305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732</td>
</tr>
<tr>
<td>Address Line 2</td>
<td>N/R</td>
</tr>
<tr>
<td>Compliance Status</td>
<td>Known</td>
</tr>
<tr>
<td>RTC Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Enforcement Action Description</td>
<td>State Public Notif issued</td>
</tr>
<tr>
<td>Admin Name</td>
<td>TAMAYOSE, LEA</td>
</tr>
<tr>
<td>Email Address</td>
<td><a href="mailto:lea@westmauiland.com">lea@westmauiland.com</a></td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTC Enforcement ID</td>
<td>N/R</td>
</tr>
<tr>
<td>Violation ID</td>
<td>202895</td>
</tr>
<tr>
<td>Submission Year</td>
<td>2018</td>
</tr>
<tr>
<td>Violation First Reported Date</td>
<td>03/23/1996</td>
</tr>
<tr>
<td>Contaminant Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Rule Family</td>
<td>Surface Water Treatment Rules</td>
</tr>
<tr>
<td>Rule Group</td>
<td>Microbials</td>
</tr>
<tr>
<td>Rule Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Violation Type</td>
<td>Treatment Technique (SWTR and GWR)</td>
</tr>
<tr>
<td>Is Health Based</td>
<td>Y</td>
</tr>
<tr>
<td>Is Major Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Severity Indicator Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Public Notification Tier</td>
<td>2</td>
</tr>
<tr>
<td>Address Line 1</td>
<td>305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732</td>
</tr>
<tr>
<td>Address Line 2</td>
<td>N/R</td>
</tr>
<tr>
<td>Compliance Status</td>
<td>Known</td>
</tr>
<tr>
<td>RTC Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Enforcement Action Description</td>
<td>State Public Notif issued</td>
</tr>
<tr>
<td>Admin Name</td>
<td>TAMAYOSE, LEA</td>
</tr>
<tr>
<td>Email Address</td>
<td><a href="mailto:lea@westmauiland.com">lea@westmauiland.com</a></td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTC Enforcement ID</td>
<td>N/R</td>
</tr>
<tr>
<td>Violation ID</td>
<td>202395</td>
</tr>
<tr>
<td>Submission Year</td>
<td>2018</td>
</tr>
<tr>
<td>Violation First Reported Date</td>
<td>12/12/1995</td>
</tr>
<tr>
<td>Contaminant Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Rule Family</td>
<td>Surface Water Treatment Rules</td>
</tr>
<tr>
<td>Rule Group</td>
<td>Microbials</td>
</tr>
<tr>
<td>Rule Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Violation Type</td>
<td>Treatment Technique (SWTR and GWR)</td>
</tr>
<tr>
<td>Is Health Based</td>
<td>Y</td>
</tr>
<tr>
<td>Is Major Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Severity Indicator Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Public Notification Tier</td>
<td>2</td>
</tr>
</tbody>
</table>
Site Name: HI0000209
305 EAST WAKEA AVENUE, SUITE 100
KAHULUI, HI 96732

Database(s): [PWS, PWS ENF] (cont.)

Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: N/R
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 202495
Submission Year: 2018
Violation First Reported Date: 12/12/1995
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Severity Indicator Count: N/R
Public Notification Tier: 2
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: N/R
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 202595
Submission Year: 2018
Violation First Reported Date: 12/12/1995
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Severity Indicator Count: N/R
Public Notification Tier: 2
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: State Public Notif issued
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 202095
Submission Year: 2018
Violation First Reported Date: 08/21/1995
Site Name: HI0000209
305 EAST WAKEA AVENUE, SUITE 100
KAHULUI, HI 96732

Database(s): [PWS, PWS ENF] (cont.)

Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: 2
Public Notification Tier: 3

Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: N/R
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 202195
Submission Year: 2018
Violation First Reported Date: 08/21/1995
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: 2
Public Notification Tier: 3

Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: N/R
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 202295
Submission Year: 2018
Violation First Reported Date: 08/21/1995
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: 2
Public Notification Tier: 3

Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: N/R
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com
### Site Name: HI0000209
305 EAST WAKEA AVENUE, SUITE 100
KAHULUI, HI 96732

**Database(s):** [PWS, PWS ENF] *(cont.)*

<table>
<thead>
<tr>
<th>RTC Enforcement ID</th>
<th>N/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violation ID</td>
<td>201795</td>
</tr>
<tr>
<td>Submission Year</td>
<td>2018</td>
</tr>
<tr>
<td>Violation First Reported Date</td>
<td>05/24/1995</td>
</tr>
<tr>
<td>Contaminant Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Rule Family</td>
<td>Surface Water Treatment Rules</td>
</tr>
<tr>
<td>Rule Group</td>
<td>Microbials</td>
</tr>
<tr>
<td>Rule Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Violation Type</td>
<td>Treatment Technique (SWTR and GWR)</td>
</tr>
<tr>
<td>Is Health Based</td>
<td>Y</td>
</tr>
<tr>
<td>Is Major Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Severity Indicator Count</td>
<td>2</td>
</tr>
<tr>
<td>Public Notification Tier</td>
<td>2</td>
</tr>
<tr>
<td>Address Line 1</td>
<td>305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732</td>
</tr>
<tr>
<td>Address Line 2</td>
<td>N/R</td>
</tr>
<tr>
<td>Compliance Status</td>
<td>Known</td>
</tr>
<tr>
<td>RTC Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Enforcement Action Description</td>
<td>State Public Notif issued</td>
</tr>
<tr>
<td>Admin Name</td>
<td>TAMAYOSE, LEA</td>
</tr>
<tr>
<td>Email Address</td>
<td><a href="mailto:lea@westmauiland.com">lea@westmauiland.com</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTC Enforcement ID</th>
<th>N/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violation ID</td>
<td>201895</td>
</tr>
<tr>
<td>Submission Year</td>
<td>2018</td>
</tr>
<tr>
<td>Violation First Reported Date</td>
<td>05/24/1995</td>
</tr>
<tr>
<td>Contaminant Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Rule Family</td>
<td>Surface Water Treatment Rules</td>
</tr>
<tr>
<td>Rule Group</td>
<td>Microbials</td>
</tr>
<tr>
<td>Rule Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Violation Type</td>
<td>Treatment Technique (SWTR and GWR)</td>
</tr>
<tr>
<td>Is Health Based</td>
<td>Y</td>
</tr>
<tr>
<td>Is Major Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Severity Indicator Count</td>
<td>2</td>
</tr>
<tr>
<td>Public Notification Tier</td>
<td>2</td>
</tr>
<tr>
<td>Address Line 1</td>
<td>305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732</td>
</tr>
<tr>
<td>Address Line 2</td>
<td>N/R</td>
</tr>
<tr>
<td>Compliance Status</td>
<td>Known</td>
</tr>
<tr>
<td>RTC Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Enforcement Action Description</td>
<td>State Public Notif issued</td>
</tr>
<tr>
<td>Admin Name</td>
<td>TAMAYOSE, LEA</td>
</tr>
<tr>
<td>Email Address</td>
<td><a href="mailto:lea@westmauiland.com">lea@westmauiland.com</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTC Enforcement ID</th>
<th>N/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violation ID</td>
<td>201995</td>
</tr>
<tr>
<td>Submission Year</td>
<td>2018</td>
</tr>
<tr>
<td>Violation First Reported Date</td>
<td>05/24/1995</td>
</tr>
<tr>
<td>Contaminant Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Rule Family</td>
<td>Surface Water Treatment Rules</td>
</tr>
<tr>
<td>Rule Group</td>
<td>Microbials</td>
</tr>
<tr>
<td>Rule Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
</tbody>
</table>
Site Name: HI0000209  
305 EAST WAKEA AVENUE, SUITE 100  
KAHULUI, HI 96732  

Database(s): [PWS, PWS ENF] (cont.)

Envirosite ID: 358009662  
EPA ID: N/R

PWS ENF (cont.)

Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 2
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: State Public Notif issued
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 201494
Submission Year: 2018
Violation First Reported Date: 03/04/1995
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 2
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: State Public Notif issued
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 201594
Submission Year: 2018
Violation First Reported Date: 03/04/1995
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 2
Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: State Public Notif issued
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com
<table>
<thead>
<tr>
<th>Site Name</th>
<th>HI0000209</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, HI 96732</td>
</tr>
<tr>
<td>Envirosite ID</td>
<td>358009662</td>
</tr>
<tr>
<td>EPA ID</td>
<td>N/R</td>
</tr>
<tr>
<td>Database(s)</td>
<td>[PWS, PWS ENF] (cont.)</td>
</tr>
</tbody>
</table>

PWS ENF (cont.)

<table>
<thead>
<tr>
<th>RTC Enforcement ID</th>
<th>N/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violation ID</td>
<td>201694</td>
</tr>
<tr>
<td>Submission Year</td>
<td>2018</td>
</tr>
<tr>
<td>Violation First Reported Date</td>
<td>03/04/1995</td>
</tr>
<tr>
<td>Contaminant Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Rule Family</td>
<td>Surface Water Treatment Rules</td>
</tr>
<tr>
<td>Rule Group</td>
<td>Microbials</td>
</tr>
<tr>
<td>Rule Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Violation Type</td>
<td>Treatment Technique (SWTR and GWR)</td>
</tr>
<tr>
<td>Is Health Based</td>
<td>Y</td>
</tr>
<tr>
<td>Is Major Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Severity Indicator Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Public Notification Tier</td>
<td>2</td>
</tr>
<tr>
<td>Address Line 1</td>
<td>305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732</td>
</tr>
<tr>
<td>Address Line 2</td>
<td>N/R</td>
</tr>
<tr>
<td>Compliance Status</td>
<td>Known</td>
</tr>
<tr>
<td>RTC Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Enforcement Action Description</td>
<td>State Public Notif issued</td>
</tr>
<tr>
<td>Admin Name</td>
<td>TAMAYOSE, LEA</td>
</tr>
<tr>
<td>Email Address</td>
<td><a href="mailto:lea@westmauiland.com">lea@westmauiland.com</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTC Enforcement ID</th>
<th>N/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violation ID</td>
<td>200894</td>
</tr>
<tr>
<td>Submission Year</td>
<td>2018</td>
</tr>
<tr>
<td>Violation First Reported Date</td>
<td>12/09/1994</td>
</tr>
<tr>
<td>Contaminant Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Rule Family</td>
<td>Surface Water Treatment Rules</td>
</tr>
<tr>
<td>Rule Group</td>
<td>Microbials</td>
</tr>
<tr>
<td>Rule Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Violation Type</td>
<td>Treatment Technique (SWTR and GWR)</td>
</tr>
<tr>
<td>Is Health Based</td>
<td>Y</td>
</tr>
<tr>
<td>Is Major Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Severity Indicator Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Public Notification Tier</td>
<td>2</td>
</tr>
<tr>
<td>Address Line 1</td>
<td>305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732</td>
</tr>
<tr>
<td>Address Line 2</td>
<td>N/R</td>
</tr>
<tr>
<td>Compliance Status</td>
<td>Known</td>
</tr>
<tr>
<td>RTC Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Enforcement Action Description</td>
<td>State Public Notification requested</td>
</tr>
<tr>
<td>Admin Name</td>
<td>TAMAYOSE, LEA</td>
</tr>
<tr>
<td>Email Address</td>
<td><a href="mailto:lea@westmauiland.com">lea@westmauiland.com</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTC Enforcement ID</th>
<th>N/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violation ID</td>
<td>200994</td>
</tr>
<tr>
<td>Submission Year</td>
<td>2018</td>
</tr>
<tr>
<td>Violation First Reported Date</td>
<td>12/09/1994</td>
</tr>
<tr>
<td>Contaminant Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Rule Family</td>
<td>Surface Water Treatment Rules</td>
</tr>
<tr>
<td>Rule Group</td>
<td>Microbials</td>
</tr>
<tr>
<td>Rule Name</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>Violation Type</td>
<td>Treatment Technique (SWTR and GWR)</td>
</tr>
<tr>
<td>Is Health Based</td>
<td>Y</td>
</tr>
<tr>
<td>Is Major Violation</td>
<td>N/R</td>
</tr>
<tr>
<td>Severity Indicator Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Public Notification Tier</td>
<td>2</td>
</tr>
</tbody>
</table>
Site Name: HI0000209
305 EAST WAKEA AVENUE, SUITE 100
KAHULUI, HI 96732

Database(s): [PWS, PWS ENF]

Envirosite ID: 358009662
EPA ID: N/R

Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: State Public Notification requested
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 201094
Submission Year: 2018
Violation First Reported Date: 12/09/1994
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 2

Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: State Public Notification requested
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com

RTC Enforcement ID: N/R
Violation ID: 201194
Submission Year: 2018
Violation First Reported Date: 12/09/1994
Contaminant Name: Surface Water Treatment Rule
Rule Family: Surface Water Treatment Rules
Rule Group: Microbials
Rule Name: Surface Water Treatment Rule
Violation Type: Treatment Technique (SWTR and GWR)
Is Health Based: Y
Is Major Violation: N/R
Severity Indicator Count: N/R
Public Notification Tier: 2

Address Line 1: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, 96732
Address Line 2: N/R
Compliance Status: Known
RTC Date: N/R
Enforcement Action Description: State Public Notif issued
Admin Name: TAMAYOSE, LEA
Email Address: lea@westmauiland.com
Facility Address: 305 EAST WAKEA AVENUE, SUITE 100, KAHULUI, HI 96732

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWS ID</td>
<td>HI0000251</td>
</tr>
<tr>
<td>PWS Type</td>
<td>Community water system</td>
</tr>
<tr>
<td>PWS Name</td>
<td>MAHANALUA NUI SUBDIVISION</td>
</tr>
<tr>
<td>Activity Status</td>
<td>Active</td>
</tr>
<tr>
<td>Primary Source</td>
<td>Ground water</td>
</tr>
<tr>
<td>Submission Year</td>
<td>2018</td>
</tr>
<tr>
<td>Submission Year Quarter</td>
<td>2018Q3</td>
</tr>
<tr>
<td>Population Served Count</td>
<td>606</td>
</tr>
<tr>
<td>Service Connections Count</td>
<td>303</td>
</tr>
<tr>
<td>Population Category 2</td>
<td>&lt;10,000</td>
</tr>
<tr>
<td>Population Category 3</td>
<td>&lt;=3300</td>
</tr>
<tr>
<td>Population Category 4</td>
<td>&lt;10K</td>
</tr>
<tr>
<td>Population Category 5</td>
<td>501-3,300</td>
</tr>
<tr>
<td>Population Category 11</td>
<td>501-1,000</td>
</tr>
<tr>
<td>Submission Quarter</td>
<td>3</td>
</tr>
<tr>
<td>Submission Status Code</td>
<td>Y</td>
</tr>
<tr>
<td>First Reported Date</td>
<td>06/30/2004</td>
</tr>
<tr>
<td>Last Reported Date</td>
<td>08/23/2018</td>
</tr>
<tr>
<td>Deactivation Date</td>
<td>N/R</td>
</tr>
<tr>
<td>GW or SW</td>
<td>Groundwater</td>
</tr>
<tr>
<td>Is Grant Eligible</td>
<td>Y</td>
</tr>
<tr>
<td>Is Outstanding Performer</td>
<td>Y</td>
</tr>
<tr>
<td>Is School or Daycare</td>
<td>N</td>
</tr>
<tr>
<td>Is Source Water Protected</td>
<td>N</td>
</tr>
<tr>
<td>Primacy Agency</td>
<td>Hawaii</td>
</tr>
<tr>
<td>Primacy Type</td>
<td>State</td>
</tr>
<tr>
<td>Org Name</td>
<td>TAMAYOSE, LEA</td>
</tr>
<tr>
<td>EPA Region</td>
<td>Region 9</td>
</tr>
<tr>
<td>Admin Name</td>
<td>TAMAYOSE, LEA</td>
</tr>
<tr>
<td>Owner Type</td>
<td>Private</td>
</tr>
<tr>
<td>Phone Number</td>
<td>808-877-4202</td>
</tr>
<tr>
<td>Phone Ext Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Alt Phone Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Email Address</td>
<td><a href="mailto:lea@westmauiland.com">lea@westmauiland.com</a></td>
</tr>
<tr>
<td>Fax Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Is Wholesaler</td>
<td>N</td>
</tr>
<tr>
<td>LT2 Schedule Category</td>
<td>N/R</td>
</tr>
<tr>
<td>NPM Candidate</td>
<td>Y</td>
</tr>
<tr>
<td>CDS ID</td>
<td>N/R</td>
</tr>
<tr>
<td>DBPR Schedule Category</td>
<td>N/R</td>
</tr>
<tr>
<td>Outstanding Performer Date</td>
<td>01/01/2011</td>
</tr>
<tr>
<td>Season Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Season End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Source Water Protection Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Seasonal Startup System</td>
<td>N/R</td>
</tr>
<tr>
<td>Reduced Monitoring Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Reduced Monitoring End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Reduced RTCR Monitoring</td>
<td>N/R</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>10/18/2018</td>
</tr>
</tbody>
</table>
### Site Name: 205254156281201

- **Site Type:** Well
- **Station Name:** 6-5228-04 W20-86
- **Agency:** U.S. Geological Survey
- **District:** Hawaii
- **State:** HI
- **County:** Maui County
- **Country:** USA
- **Land Net Location:** N/R
- **Name of Location Map:** WAILUKU, HI
- **Scale of Location Map:** 24000
- **Altitude of Gage/Land Surface:** 40.00
- **Method Altitude Determined:** Interpolated from topographic map.
- **Altitude Accuracy:** 5
- **Hydrologic Unit:** Flat surface
- **Drainage Basin:** N/R
- **Topographic Setting:** NNNNNNNNNNNNNNNNNNNNNNNNNNN
- **Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNN
- **Date of First Construction:** N/R
- **Date Site Established or Inventoried:** N/R
- **Drainage Area:** N/R
- **Contributing Drainage Area:** N/R
- **Well Depth:** 70.0
- **Hole Depth:** N/R
- **Source of Depth Data:** N/R
- **Project Number:** N/R
- **Real-Time Data Flag:** N/R
- **Peak-Streamflow Data Begin Date:** N/R
- **Peak-Streamflow Data End Date:** N/R
- **Peak-Streamflow Data Count:** N/R
- **Water-Quality Data Begin Date:** N/R
- **Water-Quality Data End Date:** N/R
- **Water-Quality Data Count:** N/R
- **Field Water-Level Data Begin Date:** N/R
- **Field Water-Level Data End Date:** N/R
- **Field Water-Level Data Count:** N/R
- **Site-Visit Data Begin Date:** N/R
- **Site-Visit Data End Date:** N/R
- **Site-Visit Data Count:** N/R
- **Latitude:** 20.87845885
- **Longitude:** -156.46717930
- **Last Date in Agency List:** 11/23/2018

### Database(s): [NWIS]

### Envirosite ID: 404012547
- **EPA ID:** N/R
Site Name: 205259156280101
20.87984760, -156.46412390
HI
Database(s): [NWIS]

NWIS

Site Identification Number: 205259156280101
Site Type: Well
Station Name: 6-5228-09 W20-99
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 40.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1962
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YYNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 85.0
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.87984760
Longitude: -156.46412390
Last Date in Agency List: 11/23/2018
Site Name: 205310156290601
20.88290296, -156.48217880
HI
Database(s): [NWIS]
### Site Information

**Site Name:** 205254156280901  
**Address:** 20.87845884, -156.46634600  
**State:** HI  
**Database(s):** [NWIS]

### Geographical Information

- **Map Id:** T81  
- **Direction:** SSE  
- **Distance:** 0.732 mi.  
- **Actual Distance:** 3863.692 ft.  
- **Elevation:** 0.008 mi. / 42.651 ft.  
- **Relative:** Higher

### Site Details

- **Envirosite ID:** 403978758  
- **EPA ID:** N/R

### Environmental Information

- **Site Identification Number:** 205254156280901  
- **Site Type:** Groundwater drain  
- **Station Name:** 6-5228.02A -15/20-94  
- **Agency:** U.S. Geological Survey  
- **District:** Hawaii  
- **State:** HI  
- **County:** Maui County  
- **Country:** USA  
- **Scale of Location Map:** 24000  
- **Altitude of Gage/Land Surface:** 39.00  
- **Method Altitude Determined:** Interpolated from topographic map.

### Additional Details

- **Latitude:** 20.87845884  
- **Longitude:** -156.46634600  
- **Last Date in Agency List:** 11/23/2018
Site Name: 205253156281101  
20.87818109, -156.46690160  
HI  
Database(s): [NWIS]

<table>
<thead>
<tr>
<th>Map Id: T82</th>
<th>Direction: SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance: 0.736 mi.</td>
<td>Actual: 3886.483 ft.</td>
</tr>
<tr>
<td>Elevation: 0.008 mi. / 41.043 ft.</td>
<td>Relative: Higher</td>
</tr>
</tbody>
</table>

<p>| Site Identification Number: | 205253156281101 |
| Site Type: | Well |
| Station Name: | 6-5228-08 W20-87 |
| Agency: | U.S. Geological Survey |
| District: | Hawaii |
| State: | HI |
| County: | Maui County |
| Country: | USA |
| Land Net Location: | N/R |
| Name of Location Map: | WAILUKU, HI |
| Scale of Location Map: | 24000 |
| Altitude of Gage/Land Surface: | 40.00 |
| Method Altitude Determined: | Interpolated from topographic map. |
| Altitude Accuracy: | 5 |
| Altitude Datum: | Local Mean Sea Level |
| Hydrologic Unit: | N/R |
| Drainage Basin: | Flat surface |
| Topographic Setting: | Flat surface |
| Flags for the Type of Data Collected: | NNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| Flags for Instruments at Site: | NNNNNNNNNNNNNNNNNNNNNNNNNNNNN |
| Date of First Construction: | 01/01/1962 |
| Date Site Established or Inventoried: | N/R |
| Drainage Area: | N/R |
| Contributing Drainage Area: | N/R |
| Data Reliability: | Unchecked data. |
| Data-other GW Files: | YYNNNNNN |
| National Aquifer: | Hawaii volcanic-rock aquifers |
| Local Aquifer: | N/R |
| Local Aquifer Type: | N/R |
| Well Depth: | 61.0 |
| Hole Depth: | N/R |
| Source of Depth Data: | N/R |
| Project Number: | N/R |
| Real-Time Data Flag: | N/R |
| Peak-Streamflow Data Begin Date: | N/R |
| Peak-Streamflow Data End Date: | N/R |
| Peak-Streamflow Data Count: | N/R |
| Water-Quality Data Begin Date: | N/R |
| Water-Quality Data End Date: | N/R |
| Water-Quality Data Count: | N/R |
| Field Water-Level Data Begin Date: | N/R |
| Field Water-Level Data End Date: | N/R |
| Field Water-Level Data Count: | N/R |
| Site-Visit Data Begin Date: | N/R |
| Site-Visit Data End Date: | N/R |
| Site-Visit Data Count: | N/R |
| Latitude: | 20.87818109 |
| Longitude: | -156.46690160 |
| Last Date in Agency List: | 11/23/2018 |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Name</td>
<td>205249156283701</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.87707010, -156.47412350</td>
</tr>
<tr>
<td>Longitude</td>
<td></td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
<tr>
<td>Envirosite ID</td>
<td>404427789</td>
</tr>
<tr>
<td>EPA ID</td>
<td>N/R</td>
</tr>
<tr>
<td>Site Identification Number</td>
<td>205249156283701</td>
</tr>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5228-14 W20-47</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>60.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Flat surface</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>01/01/1969</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>YYNNNNNNNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Specific Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>90.0</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.87707010</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.47412350</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
### Geological Landscape Section Map Findings 2019

**Map Id:** U84  
**Direction:** NE  
**Distance:** 0.742 mi.  
**Actual:** 3919.239 ft.  
**Elevation:** 0.001 mi. / 3.281 ft.  
**Relative:** Lower

**Digital Obstacle**

- **Site Name:** STACK  
- **Facility Name:** STACK  
- **Facility Address:** KAHULUI, HI  
- **Database(s):** [Digital Obstacle]

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Action</td>
<td>09/20/2010</td>
</tr>
<tr>
<td>Action</td>
<td>Change</td>
</tr>
<tr>
<td>FAA Study Number</td>
<td>N/R</td>
</tr>
<tr>
<td>OBS Number</td>
<td>15-000263</td>
</tr>
<tr>
<td>Obstacle Type</td>
<td>STACK</td>
</tr>
<tr>
<td>Country Identifier</td>
<td>US</td>
</tr>
<tr>
<td>Type of Lighting</td>
<td>Red</td>
</tr>
<tr>
<td>Verification Status</td>
<td>Verified</td>
</tr>
<tr>
<td>Quantity</td>
<td>1</td>
</tr>
<tr>
<td>Mark Indicator</td>
<td>None</td>
</tr>
<tr>
<td>Above Ground Level Height (Feet)</td>
<td>00195</td>
</tr>
<tr>
<td>Above Mean Sea Level Height (Feet)</td>
<td>00198</td>
</tr>
<tr>
<td>Horizontal Accuracy</td>
<td>+20'</td>
</tr>
<tr>
<td>Vertical Accuracy</td>
<td>+3'</td>
</tr>
<tr>
<td>Latitude</td>
<td>20 53 46.71N</td>
</tr>
<tr>
<td>Longitude</td>
<td>156 27 45.06W</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/08/2018</td>
</tr>
</tbody>
</table>

**NWIS**

- **Site Identification Number:** 205254156280601  
- **Site Type:** Well  
- **Station Name:** 6-5228.02B 16/W20-96  
- **Agency:** U.S. Geological Survey  
- **District:** Hawaii  
- **State:** HI  
- **County:** Maui County  
- **Country:** USA  
- **Name of Location Map:** WAILUKU, HI  
- **Scale of Location Map:** 24000  
- **Altitude of Gage/Land Surface:** 39.00  
- **Method Altitude Determined:** Interpolated from topographic map.  
- **Altitude Accuracy:** 5  
- **Altitude Datum:** Local Mean Sea Level  
- **Hydrologic Unit:** Maui  
- **Drainage Basin:** N/R  
- **Topographic Setting:** N/R  
- **Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
- **Flags for Instruments at Site:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN  
- **Date of First Construction:** 04/01/1969
**Geological Landscape Section Map Findings 2019**

**Map Id:** T85  
**Direction:** SSE  
**Distance:** 0.755 mi.  
**Actual:** 3985.332 ft.  
**Elevation:** 0.009 mi. / 45.922 ft.  
**Relative:** Higher

**Site Name:** 205254156280601  
20.87845884, -156.46551270  
HI

**Database(s):** [NWIS](cont.)

**Site Name:** 205337156290101  
20.89361110, -156.48361100  
HI

**Database(s):** [NWIS]

**NWIS (cont.)**

- **Date Site Established or Inventoried:** N/R
- **Drainage Area:** N/R
- **Contributing Drainage Area:** N/R
- **Data Reliability:** Unchecked data.
- **Data-other GW Files:** YNNNNNNN
- **National Aquifer:** Hawaii volcanic-rock aquifers
- **Local Aquifer:** N/R
- **Local Aquifer Type:** N/R
- **Well Depth:** 83.0
- **Hole Depth:** 83.0
- **Source of Depth Data:** N/R
- **Project Number:** N/R
- **Real-Time Data Flag:** N/R
- **Peak-Streamflow Data Begin Date:** N/R
- **Peak-Streamflow Data End Date:** N/R
- **Peak-Streamflow Data Count:** N/R
- **Water-Quality Data Begin Date:** N/R
- **Water-Quality Data End Date:** N/R
- **Water-Quality Data Count:** N/R
- **Field Water-Level Data Begin Date:** N/R
- **Field Water-Level Data End Date:** N/R
- **Field Water-Level Data Count:** N/R
- **Site-Visit Data Begin Date:** N/R
- **Site-Visit Data End Date:** N/R
- **Site-Visit Data Count:** N/R
- **Latitude:** 20.87845884
- **Longitude:** -156.46551270
- **Last Date in Agency List:** 11/23/2018

**Map Id:** V86  
**Direction:** WNW  
**Distance:** 0.760 mi.  
**Actual:** 4013.388 ft.  
**Elevation:** 0.011 mi. / 60.653 ft.  
**Relative:** Higher

**Site Identification Number:** 205337156290101

**Site Type:** Well

**Station Name:** 6-5329-21 Maui Central Park 3, Maui, HI

**Agency:** U.S. Geological Survey

**District:** Hawaii

**State:** HI

**County:** Maui County

**Country:** USA

**Land Net Location:** N/R

**Name of Location Map:** WAILUKU, HI

**Scale of Location Map:** 24000

**Altitude of Gage/Land Surface:** 51.49

**Method Altitude Determined:** Reported method of determination.

**Altitude Accuracy:** 20
## Geological Landscape Section Map Findings

**Map Id:** V86  
**Direction:** WNW  
**Distance:** 0.760 mi.  
**Actual:** 4013.388 ft.  
**Elevation:** 0.011 mi. / 60.653 ft.  
**Relative:** Higher

### Site Name: 205337156290101  
20.89361110, -156.48361100  
HI

**Database(s):** [NWIS](cont.)

### Envirosite ID: 404010248  
**EPA ID:** N/R

---

### NWIS (cont.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>N/R</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>10/16/1997</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>Y Y</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>85</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>85</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>D</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>0</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>05/17/2005</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>05/17/2005</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>2</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.89361110</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.48361100</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>

---

**Map Id:** 87  
**Direction:** SW  
**Distance:** 0.764 mi.  
**Actual:** 4031.907 ft.  
**Elevation:** 0.015 mi. / 77.211 ft.  
**Relative:** Higher

### Site Name: 205303156290401  
20.88095869, -156.48162330  
HI

**Database(s):** [NWIS]

### Envirosite ID: 403994499  
**EPA ID:** N/R

---

### NWIS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Identification Number</td>
<td>205303156290401</td>
</tr>
<tr>
<td>Site Type:</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5329-01 W20-17</td>
</tr>
<tr>
<td>Agency:</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District:</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State:</td>
<td>HI</td>
</tr>
<tr>
<td>County:</td>
<td>Maui County</td>
</tr>
<tr>
<td>Field</td>
<td>Value</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>Site Name</td>
<td>205303156290401</td>
</tr>
<tr>
<td></td>
<td>20.88095869, -156.48162330</td>
</tr>
<tr>
<td></td>
<td>HI</td>
</tr>
<tr>
<td>Database(s)</td>
<td><a href="cont.">NWIS</a></td>
</tr>
<tr>
<td>Envirosite ID</td>
<td>403994499</td>
</tr>
<tr>
<td>EPA ID</td>
<td>N/R</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>80.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Dunes</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>01/01/1962</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>YNNNNNNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>120</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88095869</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.48162330</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
Site Name: 205311156274701
20.88318063, -156.46023500
HI
Database(s): [NWIS]

NWIS

Site Identification Number: 205311156274701
Site Type: Well
Station Name: 6-5327-04 W20-113
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 30.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: N/R
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: NNNNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: N/R
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88318063
Longitude: -156.46023500
Last Date in Agency List: 11/23/2018
Geological Landscape Section Map Findings 2019

Site Name: 205250156281101
20.87734783, -156.46690160
HI
Database(s): [NWIS]

Envirosite ID: 404015980
EPA ID: N/R

NWIS

Site Identification Number: 205250156281101
Site Type: Well
Station Name: 6-5228-11 W20-93
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 40.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1962
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YYNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 58.0
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.87734783
Longitude: -156.46690160
Last Date in Agency List: 11/23/2018
Geological Landscape Section Map Findings 2019

Map Id: U90
Direction: NE
Distance: 0.792 mi.
Actual: 4182.692 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: 205401156275403
20.89706830, -156.46217940
HI

Database(s): [NWIS]

Envirosite ID: 403979941
EPA ID: N/R

NWIS

Site Identification Number: 205401156275403
Site Type: Well
Station Name: 6-5427-03 W25C
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 5.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 2
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1949
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YYNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 237
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.89706830
Longitude: -156.46217940
Last Date in Agency List: 11/23/2018
Map Id: U91
Direction: NE
Distance: 0.792 mi.
Actual: 4182.692 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: 205401156275402
20.89706830, -156.46217940
HI
Database(s): [NWIS]

Envirosite ID: 403989569
EPA ID: N/R

NWIS

Site Identification Number: 205401156275402
Site Type: Well
Station Name: 6-5427-02 W25B
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 5.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 2
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1947
Date Site Established or inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YYNNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 200
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.89706830
Longitude: -156.46217940
Last Date in Agency List: 11/23/2018
Map Id: U92
Direction: NE
Distance: 0.792 mi.
Actual: 4182.692 ft.
Elevation: 0.001 mi. / 3.281 ft.
Relative: Lower

Site Name: 205401156275405
20.89706830, -156.46217940
HI
Database(s): [NWIS]

EWIS

Site Identification Number : 205401156275405
Site Type : Well
Station Name : 6-5427-05 W25E
Agency : U.S. Geological Survey
District : Hawaii
State : HI
County : Maui County
Country : USA
Land Net Location : N/R
Name of Location Map : WAILUKU, HI
Scale of Location Map : 24000
Altitude of Gage/Land Surface : 5.00
Method Altitude Determined : Interpolated from topographic map.
Altitude Accuracy : 2
Altitude Datum : Local Mean Sea Level
Hydrologic Unit : Maui
Drainage Basin : N/R
Topographic Setting : Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site : NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction : 01/01/1953
Date Site Established or Inventoried: N/R
Drainage Area : N/R
Contributing Drainage Area : N/R
Data Reliability : Unchecked data.
Data-other GW Files : YYNNNNNN
National Aquifer : Hawaii volcanic-rock aquifers
Local Aquifer : N/R
Local Aquifer Type : N/R
Well Depth : 257
Hole Depth : N/R
Source of Depth Data : N/R
Project Number : N/R
Real-Time Data Flag : N/R
Peak-Streamflow Data Begin Date : N/R
Peak-Streamflow Data End Date : N/R
Peak-Streamflow Data Count : N/R
Water-Quality Data Begin Date : N/R
Water-Quality Data End Date : N/R
Water-Quality Data Count : N/R
Field Water-Level Data Begin Date : N/R
Field Water-Level Data End Date : N/R
Field Water-Level Data Count : N/R
Site-Visit Data Begin Date : N/R
Site-Visit Data End Date : N/R
Site-Visit Data Count : N/R
Latitude : 20.89706830
Longitude : -156.46217940
Last Date in Agency List : 11/23/2018
Site Name : 205401156275404
20.89706830, -156.46217940
HI
Database(s) : [NWIS]

NWIS

Site Identification Number : 205401156275404
Site Type : Well
Station Name : 6-5427-04 W25D
Agency : U.S. Geological Survey
District : Hawaii
State : HI
County : Maui County
Country : USA
Land Net Location : N/R
Name of Location Map : WAILUKU, HI
Scale of Location Map : 24000
Altitude of Gage/Land Surface : 5.00
Method Altitude Determined : Interpolated from topographic map.
Altitude Accuracy : 2
Altitude Datum : Local Mean Sea Level
Hydrologic Unit : Maui
Drainage Basin : N/R
Topographic Setting : Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site : NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction : 01/01/1949
Date Site Established or Inventoried: N/R
Drainage Area : N/R
Contributing Drainage Area : N/R
Data Reliability : Unchecked data.
Data-other GW Files : YYNNNNNN
National Aquifer : Hawaii volcanic-rock aquifers
Local Aquifer : N/R
Local Aquifer Type : N/R
Well Depth : 245
Hole Depth : N/R
Source of Depth Data : N/R
Project Number : N/R
Real-Time Data Flag : N/R
Peak-Streamflow Data Begin Date : N/R
Peak-Streamflow Data End Date : N/R
Peak-Streamflow Data Count : N/R
Water-Quality Data Begin Date : N/R
Water-Quality Data End Date : N/R
Water-Quality Data Count : N/R
Field Water-Level Data Begin Date : N/R
Field Water-Level Data End Date : N/R
Field Water-Level Data Count : N/R
Site-Visit Data Begin Date : N/R
Site-Visit Data End Date : N/R
Site-Visit Data Count : N/R
Latitude : 20.89706830
Longitude : -156.46217940
Last Date in Agency List : 11/23/2018
### Site Information

**Site Name:** 205401156275407  
**Site Identification Number:** 205401156275407  
**Site Type:** Well  
**Station Name:** 6-5427-07 W25G  
**Agency:** U.S. Geological Survey  
**District:** Hawaii  
**State:** HI  
**County:** Maui County  
**Country:** USA  
**Land Net Location:** N/R  
**Name of Location Map:** WAILUKU, HI  
**Scale of Location Map:** 24000  
**Altitude of Gage/Land Surface:** 5.00  
**Method Altitude Determined:** Interpolated from topographic map.  
**Altitude Accuracy:** 2  
**Hydrologic Unit:** Maui  
**Topographic Setting:** Flat surface  
**Well Depth:** 255  
**Source of Depth Data:** N/R  
**Project Number:** N/R  
**Real-Time Data Flag:** N/R  
**Peak-Streamflow Data Begin Date:** N/R  
**Peak-Streamflow Data End Date:** N/R  
**Peak-Streamflow Data Count:** N/R  
**Water-Quality Data Begin Date:** N/R  
**Water-Quality Data End Date:** N/R  
**Water-Quality Data Count:** N/R  
**Field Water-Level Data Begin Date:** N/R  
**Field Water-Level Data End Date:** N/R  
**Field Water-Level Data Count:** N/R  
**Site-Visit Data Begin Date:** N/R  
**Site-Visit Data End Date:** N/R  
**Site-Visit Data Count:** N/R  
**Latitude:** 20.89706830  
**Longitude:** -156.46217940  
**Last Date in Agency List:** 11/23/2018

### Database Information

- **Database(s):** [NWIS]
<table>
<thead>
<tr>
<th>Site Name</th>
<th>205401156275406</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20.89706830,-156.46217940</td>
</tr>
<tr>
<td></td>
<td>HI</td>
</tr>
<tr>
<td>Database(s)</td>
<td>[NWIS]</td>
</tr>
</tbody>
</table>

### NWIS

<table>
<thead>
<tr>
<th>Site Identification Number</th>
<th>205401156275406</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5427-06 W25F</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>5.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>2</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Flat surface</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>01/01/1953</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>YYNNNNNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>250</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.89706830</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.46217940</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
<tr>
<td><strong>Site Name:</strong> 205401156275401</td>
<td><strong>Database(s):</strong> [NWIS]</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td><strong>Site Identification Number:</strong> 205401156275401</td>
<td>Envirosite ID: 405386167</td>
</tr>
<tr>
<td><strong>Site Type:</strong> Well</td>
<td>EPA ID: N/R</td>
</tr>
<tr>
<td><strong>Station Name:</strong> 6-5427-01 W25A</td>
<td></td>
</tr>
<tr>
<td><strong>Agency:</strong> U.S. Geological Survey</td>
<td></td>
</tr>
<tr>
<td><strong>District:</strong> Hawaii</td>
<td></td>
</tr>
<tr>
<td><strong>State:</strong> HI</td>
<td></td>
</tr>
<tr>
<td><strong>County:</strong> Maui County</td>
<td></td>
</tr>
<tr>
<td><strong>Country:</strong> USA</td>
<td></td>
</tr>
<tr>
<td><strong>Land Net Location:</strong> N/R</td>
<td></td>
</tr>
<tr>
<td><strong>Name of Location Map:</strong> WAILUKU, HI</td>
<td></td>
</tr>
<tr>
<td><strong>Scale of Location Map:</strong> 24000</td>
<td></td>
</tr>
<tr>
<td><strong>Altitude of Gage/Land Surface:</strong> 5.00</td>
<td></td>
</tr>
<tr>
<td><strong>Method Altitude Determined:</strong> Interpolated from topographic map.</td>
<td></td>
</tr>
<tr>
<td><strong>Altitude Accuracy:</strong> 2</td>
<td></td>
</tr>
<tr>
<td><strong>Hydrologic Unit:</strong> Maui</td>
<td></td>
</tr>
<tr>
<td><strong>Well Depth:</strong> 179</td>
<td></td>
</tr>
<tr>
<td><strong>Latitude:</strong> 20.89706830</td>
<td></td>
</tr>
<tr>
<td><strong>Longitude:</strong> -156.46217940</td>
<td></td>
</tr>
<tr>
<td><strong>Last Date in Agency List:</strong> 11/23/2018</td>
<td></td>
</tr>
</tbody>
</table>

**NWIS**

- **Site Identification Number:** 205401156275401
- **Site Type:** Well
- **Station Name:** 6-5427-01 W25A
- **Agency:** U.S. Geological Survey
- **District:** Hawaii
- **State:** HI
- **County:** Maui County
- **Country:** USA
- **Land Net Location:** N/R
- **Name of Location Map:** WAILUKU, HI
- **Scale of Location Map:** 24000
- **Altitude of Gage/Land Surface:** 5.00
- **Method Altitude Determined:** Interpolated from topographic map.
- **Altitude Accuracy:** 2
- **Hydrologic Unit:** Maui
- **Well Depth:** 179
- **Latitude:** 20.89706830
- **Longitude:** -156.46217940
- **Last Date in Agency List:** 11/23/2018
Geological Landscape Section Map Findings

Map Id: V97
Direction: WNW
Distance: 0.793 mi.
Elevation: 0.016 mi. / 82.051 ft.
Relative: Higher

Site Name: 205351156291201
20.89429080, -156.48384540
HI

Database(s): [NWIS]

Envirosite ID: 404006379
EPA ID: N/R

Site Identification Number: 205351156291201
Site Type: Well
Station Name: 6-329-15 W17-2
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 37.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Dunes
Flag for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flag for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1970
Date Site Established or inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YYNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 68.0
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.89429080
Longitude: -156.48384540
Last Date in Agency List: 11/23/2018
Site Name: 205257156275201
  20.87929209,-156.46162400
  HI
Database(s): [NWIS]
### Site Name: 205323156291001

- **Map Id:** 99
- **Direction:** W
- **Distance:** 0.861 mi.
- **Actual:** 4545.846 ft.
- **Elevation:** 0.011 mi. / 55.738 ft.
- **Relative:** Higher

#### NWIS

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Identification Number</td>
<td>205323156291001</td>
</tr>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5329-19 Maui Central Park 1, Maui, HI</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>76.5</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Reported method of determination.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>20</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>N/R</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>1997</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>Y Y</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>110</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>110</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>D</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>0</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>11/18/1997</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>05/17/2005</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>2</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>0</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.88972222</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.48611100</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
Geological Landscape Section Map Findings 2019

Map Id: 100
Direction: W
Distance: 0.866 mi.
Actual: 4572.487 ft.
Elevation: 0.018 mi. / 93.189 ft.
Relative: Higher

**Site Name:** TOWER
**Facility Name:** TOWER
**Facility Address:** WAILUKU, HI

**Database(s):** [DIGITAL OBSTACLE]

**Envirosite ID:** 350739561
**EPA ID:** N/R

**Site Identification Number:** 205259156274901
**Site Type:** Well
**Station Name:** 6-5227-01 W20-106
**Agency:** U.S. Geological Survey
**District:** Hawaii
**State:** HI
**County:** Maui County
**Country:** USA
**Land Net Location:** N/R
**Name of Location Map:** WAILUKU, HI
**Scale of Location Map:** 24000
**Altitude of Gage/Land Surface:** 40.00
**Method Altitude Determined:** Interpolated from topographic map.
**Altitude Accuracy:** 5
**Altitude Datum:** Local Mean Sea Level
**Hydrologic Unit:** Maui
**Drainage Basin:** N/R
**Topographic Setting:** Flat surface
**Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
**Flags for Instruments at Site:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
**Date of First Construction:** N/R

Map Id: W101
Direction: SE
Distance: 0.868 mi.
Actual: 4585.587 ft.
Elevation: 0.006 mi. / 32.808 ft.
Relative: Higher

**Site Name:** 205259156274901
**Facility Name:** TOWER
**Facility Address:** WAILUKU, HI

**Database(s):** [NWIS]

**Envirosite ID:** 404010148
**EPA ID:** N/R

---

**Site Identification Number:** 205259156274901
**Site Type:** Well
**Station Name:** 6-5227-01 W20-106
**Agency:** U.S. Geological Survey
**District:** Hawaii
**State:** HI
**County:** Maui County
**Country:** USA
**Land Net Location:** N/R
**Name of Location Map:** WAILUKU, HI
**Scale of Location Map:** 24000
**Altitude of Gage/Land Surface:** 40.00
**Method Altitude Determined:** Interpolated from topographic map.
**Altitude Accuracy:** 5
**Altitude Datum:** Local Mean Sea Level
**Hydrologic Unit:** Maui
**Drainage Basin:** N/R
**Topographic Setting:** Flat surface
**Flags for the Type of Data Collected:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
**Flags for Instruments at Site:** NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
**Date of First Construction:** N/R
Site Name : 205259156274901
           20.87984759, -156.46079070
           HI

Database(s) : [NWIS] (cont.)

NWIS (cont.)

Date Site Established or Inventoried: N/R
Drainage Area : N/R
Contributing Drainage Area : N/R
Data Reliability : Unchecked data.
Data-other GW Files : YYNNNNN
National Aquifer : Hawaii volcanic-rock aquifers
Local Aquifer : N/R
Local Aquifer Type : N/R
Well Depth : 75.0
Hole Depth : N/R
Source of Depth Data : N/R
Project Number : N/R
Real-Time Data Flag : N/R
Peak-Streamflow Data Begin Date : N/R
Peak-Streamflow Data End Date : N/R
Peak-Streamflow Data Count : N/R
Water-Quality Data Begin Date : N/R
Water-Quality Data End Date : N/R
Water-Quality Data Count : N/R
Field Water-Level Data Begin Date : N/R
Field Water-Level Data End Date : N/R
Field Water-Level Data Count : N/R
Site-Visit Data Begin Date : N/R
Site-Visit Data End Date : N/R
Site-Visit Data Count : N/R
Latitude : 20.87984759
Longitude : -156.46079070
Last Date in Agency List : 11/23/2018

Site Identification Number : 205257156275101
Site Type : Well
Station Name : 6-5227-06 W20-105
Agency : U.S. Geological Survey
District : Hawaii
State : HI
County : Maui County
Country : USA
Land Net Location : N/R
Name of Location Map : WAILUKU, HI
Scale of Location Map : 24000
Altitude of Gage/Land Surface : 40.00
Method Altitude Determined : Interpolated from topographic map.
Altitude Accuracy : 5
Site Name: 205257156275101
20.87929209, -156.46134620
HI
Database(s): [NWIS] (cont.)

NWIS (cont.)

Altitude Datum: Local Mean Sea Level
Hydrologic Unit: Maui
Drainage Basin: N/R
Topographic Setting: Flat surface
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 01/01/1962
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YNNNNNNN
National Aquifer: Hawaii volcanic-rock aquifers
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 58.0
Hole Depth: N/R
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.87929209
Longitude: -156.46134620
Last Date in Agency List: 11/23/2018

Site Name: 205330156291001
20.89166667, -156.48611100
HI
Database(s): [NWIS]
Site Name: 205330156291001
20.89166667, -156.48611100
HI
Database(s): [NWIS](cont.)

**Country**: USA
**Land Net Location**: N/R
**Name of Location Map**: WAILUKU, HI
**Scale of Location Map**: 24000
**Altitude of Gage/Land Surface**: 60
**Method Altitude Determined**: Interpolated from Digital Elevation Model
**Altitude Accuracy**: 20
**Altitude Datum**: Local Mean Sea Level
**Hydrologic Unit**: Maui
**Drainage Basin**: N/R
**Topographic Setting**: N/R
**Flags for the Type of Data Collected**: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
**Flags for Instruments at Site**: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
**Date of First Construction**: N/R
**Date Site Established or Inventoried**: N/R
**Drainage Area**: N/R
**Contributing Drainage Area**: N/R
**Data Reliability**: Unchecked data.
**Data-other GW Files**: Y Y
**National Aquifer**: Hawaii volcanic-rock aquifers
**Local Aquifer**: N/R
**Local Aquifer Type**: N/R
**Well Depth**: 110
**Hole Depth**: N/R
**Source of Depth Data**: A
**Project Number**: N/R
**Real-Time Data Flag**: 0
**Peak-Streamflow Data Begin Date**: N/R
**Peak-Streamflow Data End Date**: N/R
**Peak-Streamflow Data Count**: 0
**Water-Quality Data Begin Date**: N/R
**Water-Quality Data End Date**: N/R
**Water-Quality Data Count**: 0
**Field Water-Level Data Begin Date**: 12/04/1997
**Field Water-Level Data End Date**: 12/04/1997
**Field Water-Level Data Count**: 1
**Site-Visit Data Begin Date**: N/R
**Site-Visit Data End Date**: N/R
**Site-Visit Data Count**: 0
**Latitude**: 20.89166667
**Longitude**: -156.48611100
**Last Date in Agency List**: 11/23/2018
Site Name: 205258156274901
20.87956984, -156.46079070
HI

Database(s): [NWIS]
### NWIS

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Identification Number:</td>
<td>205301156274601</td>
</tr>
<tr>
<td>Site Type:</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name:</td>
<td>6-5327-02 W20-109</td>
</tr>
<tr>
<td>Agency:</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District:</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State:</td>
<td>HI</td>
</tr>
<tr>
<td>County:</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country:</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location:</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map:</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map:</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface:</td>
<td>35.00</td>
</tr>
<tr>
<td>Method Altitude Determined:</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy:</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum:</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit:</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin:</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting:</td>
<td>Flat surface</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site:</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction:</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Site Established or Inventoried:</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area:</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area:</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability:</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files:</td>
<td>NYNNNNNN</td>
</tr>
<tr>
<td>National Aquifer:</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer:</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type:</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth:</td>
<td>N/R</td>
</tr>
<tr>
<td>Hole Depth:</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data:</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number:</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag:</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count:</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count:</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count:</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date:</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count:</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude:</td>
<td>20.88040310</td>
</tr>
<tr>
<td>Longitude:</td>
<td>-156.45995740</td>
</tr>
<tr>
<td>Last Date in Agency List:</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
Site Name: 205318156273701
20.88512490, -156.45745750
HI

Database(s): [NWIS]
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Name</td>
<td>205256156274801</td>
</tr>
<tr>
<td>Site Identification Number</td>
<td>205256156274801</td>
</tr>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5227-02 W20-107</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>40.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Flat surface</td>
</tr>
<tr>
<td>Flags for the Type of Data Collected</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Flags for Instruments at Site</td>
<td>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</td>
</tr>
<tr>
<td>Date of First Construction</td>
<td>N/R</td>
</tr>
<tr>
<td>Date Site Established or Inventoried</td>
<td>N/R</td>
</tr>
<tr>
<td>Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Contributing Drainage Area</td>
<td>N/R</td>
</tr>
<tr>
<td>Data Reliability</td>
<td>Unchecked data.</td>
</tr>
<tr>
<td>Data-other GW Files</td>
<td>NYYNNNNNN</td>
</tr>
<tr>
<td>National Aquifer</td>
<td>Hawaii volcanic-rock aquifers</td>
</tr>
<tr>
<td>Local Aquifer</td>
<td>N/R</td>
</tr>
<tr>
<td>Local Aquifer Type</td>
<td>N/R</td>
</tr>
<tr>
<td>Well Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Hole Depth</td>
<td>N/R</td>
</tr>
<tr>
<td>Source of Depth Data</td>
<td>N/R</td>
</tr>
<tr>
<td>Project Number</td>
<td>N/R</td>
</tr>
<tr>
<td>Real-Time Data Flag</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Peak-Streamflow Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Water-Quality Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Field Water-Level Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Begin Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data End Date</td>
<td>N/R</td>
</tr>
<tr>
<td>Site-Visit Data Count</td>
<td>N/R</td>
</tr>
<tr>
<td>Latitude</td>
<td>20.87901433</td>
</tr>
<tr>
<td>Longitude</td>
<td>-156.46051290</td>
</tr>
<tr>
<td>Last Date in Agency List</td>
<td>11/23/2018</td>
</tr>
</tbody>
</table>
Site Name : 205300156274301
          20.88012534, -156.45912400
          HI
Database(s) : [NWIS]
Site Name: 205312156292101
20.88345848, -156.48634530
HI
Database(s): [NWIS]

NWIS

Site Identification Number: 205312156292101
Site Type: Groundwater drain
Station Name: 6-5329.01 -11/W20-4
Agency: U.S. Geological Survey
District: Hawaii
State: HI
County: Maui County
Country: USA
Land Net Location: N/R
Name of Location Map: WAILUKU, HI
Scale of Location Map: 24000
Altitude of Gage/Land Surface: 93.00
Method Altitude Determined: Interpolated from topographic map.
Altitude Accuracy: 5
Altitude Datum: Local Mean Sea Level
Hydrologic Unit: N/R
Drainage Basin: N/R
Topographic Setting: N/R
Flags for the Type of Data Collected: NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Flags for Instruments at Site: NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
Date of First Construction: 03/01/1969
Date Site Established or Inventoried: N/R
Drainage Area: N/R
Contributing Drainage Area: N/R
Data Reliability: Unchecked data.
Data-other GW Files: YNNNNNNN
National Aquifer: N/R
Local Aquifer: N/R
Local Aquifer Type: N/R
Well Depth: 124
Hole Depth: 124
Source of Depth Data: N/R
Project Number: N/R
Real-Time Data Flag: N/R
Peak-Streamflow Data Begin Date: N/R
Peak-Streamflow Data End Date: N/R
Peak-Streamflow Data Count: N/R
Water-Quality Data Begin Date: N/R
Water-Quality Data End Date: N/R
Water-Quality Data Count: N/R
Field Water-Level Data Begin Date: N/R
Field Water-Level Data End Date: N/R
Field Water-Level Data Count: N/R
Site-Visit Data Begin Date: N/R
Site-Visit Data End Date: N/R
Site-Visit Data Count: N/R
Latitude: 20.88345848
Longitude: -156.48634530
Last Date in Agency List: 11/23/2018
### Site Name: 205302156274001

20.88068084, -156.45829080

**HI**

**Database(s): [NWIS]**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Identification Number</td>
<td>205302156274001</td>
</tr>
<tr>
<td>Site Type</td>
<td>Well</td>
</tr>
<tr>
<td>Station Name</td>
<td>6-5327-03 W20-112</td>
</tr>
<tr>
<td>Agency</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>District</td>
<td>Hawaii</td>
</tr>
<tr>
<td>State</td>
<td>HI</td>
</tr>
<tr>
<td>County</td>
<td>Maui County</td>
</tr>
<tr>
<td>Country</td>
<td>USA</td>
</tr>
<tr>
<td>Land Net Location</td>
<td>N/R</td>
</tr>
<tr>
<td>Name of Location Map</td>
<td>WAILUKU, HI</td>
</tr>
<tr>
<td>Scale of Location Map</td>
<td>24000</td>
</tr>
<tr>
<td>Altitude of Gage/Land Surface</td>
<td>35.00</td>
</tr>
<tr>
<td>Method Altitude Determined</td>
<td>Interpolated from topographic map.</td>
</tr>
<tr>
<td>Altitude Accuracy</td>
<td>5</td>
</tr>
<tr>
<td>Altitude Datum</td>
<td>Local Mean Sea Level</td>
</tr>
<tr>
<td>Hydrologic Unit</td>
<td>Maui</td>
</tr>
<tr>
<td>Drainage Basin</td>
<td>N/R</td>
</tr>
<tr>
<td>Topographic Setting</td>
<td>Flat surface</td>
</tr>
</tbody>
</table>
| Flags for the Type of Data Collected: | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NN
Site Name: 205315156292401
20.88429174, -156.48717860
HI
Database(s): [NWIS]
RADON DATA:

STATE SOURCE: No Available Data

FEDERAL AREA RADON INFORMATION FOR: No Available Data

NUMBER OF SAMPLE SITES: 19

<table>
<thead>
<tr>
<th>Area</th>
<th>Average Activity</th>
<th>% &lt;4 pCi/L:</th>
<th>% 4-20 pCi/L:</th>
<th>% &gt;20 pCi/L:</th>
</tr>
</thead>
<tbody>
<tr>
<td>basement</td>
<td>0.2 pCi/L</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>first floor</td>
<td>-0.2706 pCi/L</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>unknown</td>
<td>-0.8 pCi/L</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
HIST PWS ENF
Historical Public Water Supply locations with Enforcement Violations
Environmental Protection Agency
(800) 426-4791
List of safe drinking water information Systems with enforcement violations that are no longer in current agency list.

NWIS
National Water Information Systems
United States Geological Society
(703) 648-5953
Information on all water resources for the United States. This database contains all current and historical data for the nation.

PWS
Public Water Supply
Environmental Protection Agency
(800) 426-4791
Safe drinking water information Systems

PWS ENF
Public Water Supply locations with Enforcement Violations
Environmental Protection Agency
(800) 426-4791
Safe drinking water information Systems with enforcement violations

FLOOD Q3
Flood data
Environmental Protection Agency
(202) 566-1667
Q3 Flood Data

HYDROLOGIC UNIT
Hydrologic Unit Maps
USGS
The United States Geological Survey created a hierarchical system of hydrologic units originally called regions, subregions, accounting units, and cataloging units. Each unit was assigned a unique Hydrologic Unit Code (HUC). As first implemented the system had 21 regions, 221 subregions, 378 accounting units, and 2,264 cataloging units. Over time the system was changed and expanded. As of 2010 there are six levels in the hierarchy, represented by hydrologic unit codes from 2 to 12 digits long, called regions, subregions, basins, subbasins, watersheds, and subwatersheds. The table below describes the system’s hydrologic unit levels and their characteristics, along with example names and codes.

WETLANDS NWI
National Wetland Inventory
U.S. Fish and Wildlife Service
(703) 358-2171
Wetland Inventory for the United States

SSURGO
Detailed Soil Data Map
Natural Resources Conservation Service: U.S. Department of Agriculture
(202) 690-4985
Detailed Soil Data Map
STATSGO & MUI
General Soil Data Map
Natural Resources Conservation Service: U.S. Department of Agriculture
(202) 690-4985
General Soil Data Map

USGS GEOLOGIC AGE
USGS Digital Data Series DDS
Natural Resources Conservation Service: U.S. Department of Agriculture
(202) 690-4985
USGS Digital Data Series DDS: Geologic Age and Rock Stratigraphic Unit

RADON
National Radon Database
USGS
703-605-6008
A study of the EPA/State Residential Radon Survey and the National Residential Radon Survey.

AIRPORT FACILITIES
Airport landing facilities
Federal Aviation Administration
(866) 835-5322
Airport landing facilities

BASINS
Better Assessment Science Integrating point & Non-point Sources
U.S. Environmental Protection Agency
855-246-3642
Integrated geographical information system national watershed data and environmental assessment known as Better Assessment Science Integrating point & Non-point Sources

DIGITAL OBSTACLE
Obstacles of interest to aviation users
Federal Aviation Administration
855-379-6518
The Digital Obstacle File describes all known obstacles of interest to aviation users in the U.S. with limited coverage of the Pacific the Caribbean Canada and Mexico. The obstacles are assigned unique numerical identifiers; accuracy codes and listed in order of ascending latitude within each state or area by FAA Region.

EPICENTERS
National Geographical Data Center
National Geographical Data Center
303-497-6826
Data on over four million earthquakes dating from 2100 B.C. to 1995 A.D.

FLOOD DFRM
National Flood Hazard Layer Database
Federal Emergency Management Agency
The National Flood Hazard Layer Database (NFHL) is a computer database that contains the flood hazard map information from FEMA’s Flood Map Modernization program. These map data are from Digital Flood Insurance Rate Map (DFIRM) databases and Letters of Map Revision.
RECORDS OF
COMMUNICATION/INTERVIEW
Phase I Environmental Site Assessment Property Questionnaire

Circle all that apply:  User  •  Owner  •  Key Site Manager

Please complete ALL sections of this questionnaire and return a signed and dated copy to ENPRO Environmental via FAX at 808-262-4449 or e-mail at info@enproenvironmental.com as soon as possible.

Communication with:  Name:  Jeffrey H. Overton  
Company:  670  
Phone Number:  808-351-4200  
Date:  5/7/2019  
Amount of Time Familiar With Site:  n/a  
Relationship to Site:  Project Consultant

PROJECT NO.:  1902-00083-PH1  
PROJECT NAME/ADDRESS:  153 West Kaahumanu Avenue

Prior to answering the questions supplied in the table below, please provide ENPRO with the following information:

A.  What is your purpose/reason for requesting a Phase I Environmental Site Assessment of the above referenced property?

B.  Can you supply a floor plan diagram and list of tenants for the structures at the property? If so, please attach copies with your questionnaire responses or send separately prior to the site visit.

DIRECTIONS: Please answer all questions to the best of your knowledge and in good faith. Mark the appropriate response with an "X". (Note: U/NR indicates "Unknown" or "No Response").

If you do not know the answer, please check the U/NR box rather than the No box. Please also elaborate on ALL Yes responses in the Comment box (for example, if the response to "Is the adjoining property used for an industrial use?" is Yes, please explain, e.g., "The building next door is used for canning tomatoes"). You may also provide additional information to U/NR and No responses as necessary. If you have any questions while completing the questionnaire, please contact us.

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
<th>U/</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Are you aware of any pending, threatened, or past litigation</td>
<td>Yes</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>relevant to hazardous substances or petroleum products in, on, or from</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Are you aware of any pending, threatened, or past administrative</td>
<td>Yes</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>proceedings relevant to hazardous substances or petroleum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>products in, on, or from the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Are you aware of any notices from any governmental entity</td>
<td>Yes</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>regarding any possible violation(s) of environmental laws or possible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liability relating to hazardous substances or petroleum products in, on,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or from the property?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase I ESA Questionnaire  

Page 1 of 7  

151 Hekili Street • Suite 210 • Kailua, HI 96734  
Telephone 808.262.0909 • Fax 808.262.4449 • www.enproenvironmental.com
<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you aware of any <em>environmental cleanup liens</em> against the property that are filed or recorded under federal, tribal, state, or local law?</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Are you aware of any <em>Activity and Use Limitations (AULs)</em>, including engineering controls, land use restrictions, or institutional controls that are in place at the property and/or have been filed or recorded in a registry under federal, tribal, state, or local law?</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Do you have any <em>specialized knowledge</em> or experience related to possible environmental concerns at the property or nearby properties? (For example, are you involved in the same line of business as the current or former occupants at the property or adjacent/nearby properties such that you would have specialized knowledge of the chemicals and processes used by this type of business?)</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Does the purchase price being paid for this property reasonably reflect the fair market value of the property? If you conclude that there is a difference, have you considered whether the <em>devalued purchase price</em> is because contamination is known or believed to be present at the property? (Please reply in Comment section)</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Are you aware of <em>commonly known or reasonably ascertainable information</em> about the property or nearby properties that would help ENPRO to identify conditions indicative of releases or threatened releases? (For example, neighboring property is known to have once been a vehicle junk yard)</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Do you know any <em>past uses</em> of the property which may have contributed to potential contaminant releases?</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Do you know of any <em>specific chemicals</em> that are present or once were present at the property?</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Do you know of any <em>spills or other chemical releases</em> that have taken place at the property?</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Do you know of any <em>environmental cleanups</em> that have taken place at the property?</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Based on your knowledge and experience related to the property, are there any <em>obvious indicators</em> that point to the presence or likely presence of contamination at the property?</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>a.) Is the <em>property</em> used for an industrial use?</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>b.) Are any <em>adjacent properties</em> used for an industrial use?</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>a.) Has the <em>property been</em> used for an industrial use <em>in the past</em>?</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>b.) Have any of the <em>adjacent properties been</em> used for an industrial use <em>in the past</em>?</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

Phase I ESA Questionnaire
<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. a.) Is the <strong>property</strong> used as a gasoline station, motor repair facility, commercial printing facility, dry cleaners, photo developing laboratory, junkyard or landfill, or as a waste treatment, storage, disposal, processing, or recycling facility?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b.) Are any of the <strong>adjacent properties</strong> used as a gasoline station, motor repair facility, commercial printing facility, dry cleaners, photo developing laboratory, junkyard or landfill, or as a waste treatment, storage, disposal, processing, or recycling facility?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>17. a.) Has the <strong>property</strong> been used <strong>in the past</strong> as a gasoline station, motor repair facility, commercial printing facility, dry cleaners, photo developing laboratory, junkyard or landfill, or as a waste treatment, storage, disposal, processing, or recycling facility?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b.) Have any of the <strong>adjacent properties</strong> been used <strong>in the past</strong> as a gasoline station, motor repair facility, commercial printing facility, dry cleaners, photo developing laboratory, junkyard or landfill, or as a waste treatment, storage, disposal, processing, or recycling facility?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>18. a.) Are there currently any automotive or industrial batteries damaged or discarded, or pesticides, paints, or other chemicals in individual containers of greater than five gallons in volume or fifty gallons in the aggregate, stored on, or used at the <strong>property</strong> or at the <strong>facility</strong>?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b.) Have there been previously any automotive or industrial batteries damaged or discarded, or pesticides, paints, or other chemicals in individual containers of greater than five gallons in volume or fifty gallons in the aggregate, stored on or used at the <strong>property</strong> or at the <strong>facility</strong>?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>19. a.) Are there currently any industrial drums (typically 55-gallon) or sacks of chemical located on the <strong>property</strong>?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b.) Have there been previously any industrial drums (typically 55-gallon) or sacks of chemical located on the <strong>property</strong>?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>20. a.) Are there currently any ground water monitoring wells or other ground water wells (e.g., drinking water wells) located on the <strong>property</strong>?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b.) Have there been previously any ground water monitoring wells or other ground water wells (e.g., drinking water wells) located on the <strong>property</strong>?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>21. a.) Are there currently any ground water monitoring wells or other ground water wells (e.g., drinking water wells) located on any of the <strong>adjacent properties</strong>?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b.) Have there been previously any ground water monitoring wells or other ground water wells (e.g., drinking water wells) located on any of the <strong>adjacent properties</strong>?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Response</td>
<td>Comment</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>22.</strong> a.) Has fill dirt been brought onto the property which originated from a contaminated site?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>b.) Has fill dirt been brought onto the property which is of unknown origin?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td><strong>23.</strong> a.) Are there currently any pits, ponds or lagoons on the property in connection with waste treatment or waste disposal?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>b.) Have there been previously any pits, ponds or lagoons on the property in connection with waste treatment or waste disposal?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td><strong>24.</strong> a.) Is there currently any stained soil on the property?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>b.) Has there been previously any stained soil on the property?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td><strong>25.</strong> a.) Are there currently any registered or unregistered storage tanks (above ground or underground) located on the property?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>a.) Have there been previously any registered or unregistered storage tanks (above ground or underground) located on the property?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td><strong>26.</strong> a.) Are there currently any vent pipes, fill pipes, or access ways indicating a fill pipe protruding from the ground on the property or adjacent to any structures on the property?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>b.) Have there been previously any vent pipes, fill pipes, or access ways indicating a fill pipe protruding from the ground on the property or adjacent to any structures on the property?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td><strong>27.</strong> a.) Are there currently any flooring, drains, or walls located within the structure(s) on the property that are stained by substances other than water or are emitting foul odors?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>b.) Have there been previously any flooring, drains, or walls located within the structure(s) on the property that are stained by substances other than water or are emitting foul odors?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td><strong>28.</strong> a.) If the property is served by a private well or non-public water system, have contaminants been identified in the well or system that exceed guidelines applicable to the water system?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>b.) If the property is served by a private well or non-public water system, has the well been designated as contaminated by any government environmental/health agency?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td><strong>29.</strong> a.) Are there any environmental liens or government notifications relating to current violations of environmental laws with respect to the property or any facility located on the property?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>b.) Are you aware of the past existence of any environmental violations of environmental laws with respect to the property or any facility located on the property?</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Question</td>
<td>Response</td>
<td>Comment</td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>30. a.) Have you been informed of the existence of any <em>hazardous substances or petroleum products</em> which are <em>currently</em> used or stored on the property?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>b.) Have you been informed of the <em>past</em> existence of any <em>hazardous substances or petroleum products</em> used or stored on the property?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>31. a.) Are you aware of any <em>previous Environmental Site Assessments</em> of the property or facility which indicated the presence of <em>hazardous materials or petroleum products</em>?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>b.) Are you aware of any <em>previous Environmental Site Assessments</em> which indicated the <em>contamination of the property or facility</em>?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>c.) Are you aware of any <em>previous Environmental Site Assessments</em> which recommended <em>further assessment</em> of the property or facility?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>32. a.) Are you aware of any <em>pending, threatened, or past litigation</em> relevant to <em>hazardous substances or petroleum products</em> involving the property?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>b.) Are you aware of any <em>pending, threatened, or past administrative proceedings</em> relevant to <em>hazardous substances or petroleum products</em> involving the property?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>c.) Are you aware of any notices from any government entity regarding any <em>possible violations</em> of environmental laws or <em>possible liability</em> relevant to <em>hazardous substances or petroleum products</em> involving the property?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>33. a.) Does the property <em>discharge waste water</em> on or adjacent to the property, other than storm water, into a <em>storm water sewer system</em>?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>b.) Does the property <em>discharge waste water</em> on or adjacent to the property, other than storm water, into a <em>sanitary sewer system</em>?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>34. Have any hazardous substances or petroleum products, unidentified waste materials, tires, automotive or industrial batteries, or any other waste materials been <em>dumped above grade, buried, and/or burned on the property</em>?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>35. Is there any <em>transformer, capacitor, or any hydraulic equipment</em> on the property for which there are any records of the presence of <em>PCBs</em>?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>36. a.) Is there now, or have there ever been any <em>asbestos-containing materials (ACM)</em> in any application on the property?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>b.) Has there ever been any <em>testing for ACM</em> conducted on the property?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Response</td>
<td>Comment</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>36. c.) Is there an <em>asbestos Operations and Maintenance</em> (O &amp; M) program in place at the property?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>37. a.) Is there now, or have there ever been any <em>Lead-Based Paint (LBP)</em> in any application on the property?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>b.) Has there ever been any <em>testing for LBP</em> conducted on the property?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>c.) Is there a <em>LBP O &amp; M</em> program in place at the property?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>38. Has the <em>water</em> at the property ever been tested for <em>lead</em>?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>39. Has <em>radon testing</em> ever been conducted at the property?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>40. Is the property, or any portion of the property, located or involved in any <em>Ecologically Sensitive Areas</em> (i.e., wetlands, coastal barrier resource areas, coastal barrier improvement act areas, flood plain, endangered species, etc.)?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>41. a.) Is the property, or any property within 1.0 mile of the property, listed on the Federal <em>National Priorities List (NPL)</em>?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>b.) Is the property, or any property within 0.5 miles of the property, listed on the Federal <em>CERCLIS List</em>?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>c.) Is the property, or any property within 1.0 mile of the property, listed by the Federal government as a <em>RCRA TSD Facility</em>?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>42. a.) Is the property, or any property within 1.0 mile of the property, listed by the State government as a <em>Hazardous Waste site</em>?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>b.) Is the property, or any property within 0.5 miles of the property, listed by the State government as a <em>CERCLIS-equivalent site</em>?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>c.) Is the property, or any property within 0.5 miles of the property, listed by the State as a <em>Leaking Underground Storage Tank (LUST) site</em>?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>c.) Is the property, or any property within 0.5 miles of the property, listed by the State as a <em>Solid Waste/Landfill facility</em>?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
PROJECT NO.: 1902-00083-PH1
PROJECT NAME/ADDRESS: 153 West Kaahumanu Avenue

Respondent Affirmation:

Respondent represents that to the best of the respondent's knowledge the above statements and facts are true and correct and to the best of the respondent's actual knowledge, no material facts have been suppressed or misstated.

Signature ____________________ Date 5/8/19
(For oral communications, the word "Affirmed" appears on the signature line)

or

Answers to this questionnaire have been orally communicated to a representative of Environmental Professionals, completed by:

Name __________ Signature ______________ Date _____
ENPRO Environmental  
Attn: Rob Lothringer  
151 Hekili Street, Suite 210  
Kailua, HI 96734

SUBJECT:  
153 W. Kaahumanu Ave.; TMK: 3-7-004 : 003

Greetings Mr. Lothringer,

In response to your letter requesting information regarding any fires, complaints, permits, violations involving hazardous materials use, underground storage tank records (active and removed tanks), leaking underground storage tank records, or aboveground storage tank records for the abovementioned properties – we have found the following:

- Fire Incident February 17, 2013 - RFS #13-00000346 – electrical panel

If there are any questions or comments, please feel free to contact our office at (808) 876-4690 or by email at fire.prevention@mauicounty.gov.

Thank You  
Misty Cordeiro – Secretary
Hi Roberta-

Please see transformer info request attached. Meters would not have any PCBs. Maui Electric may own the meter only, but the cabinet assembly would belong to the customer, and Maui Electric would not have any knowledge of the cabinet contents. The electrical panel fire in 2013 involved equipment owned by the customer, and did not involve Maui Electric equipment. Please let me know if you have any further questions.

-Brittani

[This email is coming from an EXTERNAL source. Please use caution when opening attachments or links in suspicious email.]

Hello Brittany,

See the attached request for information and pictures.

Thank you,

Roberta Bitzer
Senior Environmental Professional

151 Hekili Street Suite 210 Kailua HI 96734
Direct Line: 808-748-2111
Ph: 808-262-0909 Fx: 808-262-4449
www.enproenvironmental.com

CONFIDENTIALITY NOTICE: This e-mail message, including any attachments, is for the sole use of the intended recipient(s) and may contain confidential and/or privileged information. Any unauthorized review, use, copying, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender immediately by reply e-mail and destroy the original message and all copies.
April 26, 2019

Roberta Bitzer
ENPRO Environmental
151 Hekili Street, Suite 210
Kailua, HI 96734

Transmitted via email: rbitzer@enproenvironmental.com

Dear Ms. Bitzer:

Subject: Transformer Information
Vevau Street & School Street
Kahului, Maui, Hawaii

In response to your request for information regarding Maui Electric transformers at the above referenced location, we are providing the following information:

<table>
<thead>
<tr>
<th>Pole / Vault Number</th>
<th>Transformer Number</th>
<th>Type</th>
<th>Date Purchased</th>
<th>PCB Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>17495</td>
<td>Pad-Mount</td>
<td>February 2006</td>
<td>Non-PCB</td>
</tr>
</tbody>
</table>

If you have any other questions, please contact me at (808) 872-3548 or brittani.capps@mauielectric.com.

Sincerely,

Brittani Capps-Balinbin
Environmental Compliance Engineer
QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS
CAREER HISTORY

More than twenty-five years of professional environmental project development and management. Strong emphasis on risk evaluation, risk ranking and environmental hazard assessment. Experienced in portfolio-wide environmental management and prioritizing resource allocation to address environmental liabilities in a cost effective manner. Has developed thousands of project budgets for planning and implementation purposes. Performed numerous RCRA hazardous waste characterization investigations, Phase I and II environmental investigations, remediation of soil and groundwater and environmental management of large construction projects. Projects have included urban renewal, remediation management at petroleum refineries, best management practices, storm water management, solid waste management, construction-related permitting, indoor air quality evaluations, closure of RCRA Treatment Storage and Disposal (TSD) facilities, remediation management for fungal contamination, evaluation of environmental issues related to lease disputes and commercial property transactions. Has performed and managed thousands of mold and moisture investigations ranging from single-family residential properties to high-rise commercial and resort properties.

PROFESSIONAL AFFILIATIONS

Registered Environmental Assessor (California)
Past President, Hawaii Chapter of the Institute of Hazardous Materials Managers
Registered Geologist (California)
Certified Professional Geologist (American Institute of Professional Geologists)
American Indoor Air Quality Council (Board of Directors, Hawaii Chapter)
Certified Indoor Environmentalist (Indoor Air Quality Association)
Certified in Mold Loss Prevention (Indoor Air Quality Association)
American Industrial Hygiene Association

EDUCATION

MBA, Hawaii Pacific University, 2001
M.S., Geology and Geophysics, University of Hawaii, 1987
B.A., Geology, University of California at Santa Barbara, 1984

GEOGRAPHIC EXPERIENCE

Successfully completed projects throughout the major Hawaiian Islands, Guam, Saipan, CNMI, Puerto Rico, Japan, and throughout the United States

ENVIRONMENTAL INVESTIGATION/REMEDIATION EXPERIENCE

Projects have included wood treatment facilities, petroleum refineries, underground storage tank (UST) sites, agricultural facilities, urban renewal projects, petroleum bulk storage terminals impacted with free floating petroleum hydrocarbons, dry cleaners, and a variety of commercial/industrial facilities. Received No Further Action status at multiple sites from the State of Hawaii Department of Health. Successful experience with investigation and remediation projects for real property transfers and redevelopment. Design of corrective measures for indoor air quality complaints. Mold and moisture training, prevention and response planning.
SPECIALIZED TRAINING
Mold Loss Prevention, Indoor Air Quality Association
Groundwater Flow through Porous and Fractured Media, University of Wisconsin-Madison
Corrective Action for Containing and Controlling Ground Water Contamination, National Water Well Association
Basic Ground Water Modeling, National Water Well Association
Project Management, University of Hawaii
Clean Air Act Amendment 112®, U.S. EPA
Management & Supervision of Hazardous Waste Operations, Unitek Environmental Consultants
AHERA Asbestos Management Planner
AHERA Asbestos Inspector
HVAC and the Indoor Environment, American Indoor Air Quality Council
IICRC S520 Mold Remediation Guideline, American Indoor Air Quality Council
Case Studies in Environmental Mold, American Industrial Hygiene Association
Health Effects of Mold, American Indoor Air Quality Council
40-hour Hazwoper Training and Refreshers, Various
Understanding Environmental Sampling and Data Analysis
Managing Uncertainty with Systematic Planning

PROFESSIONAL PRESENTATIONS
Building Operator Certification, Indoor Environmental Quality, University of Hawaii
Environmental Game Changers, Honolulu, Hawaii
Indoor Air Quality in Commercial Buildings, American Society of Heating and Refrigeration Engineers
Environmental Solutions for Real Estate Transactions, Honolulu Board of Realtors
Storm Water Monitoring, Law Seminars International, Honolulu
Mold Remediation Boot Camp, Las Vegas
Mold University™, Honolulu and Houston
Indoor Air Quality for Property Managers, San Francisco, Honolulu, Las Vegas, Los Angeles
Mold Report™, San Francisco, Honolulu, Las Vegas, Los Angeles
Mold Awareness, International Executive Housekeepers Association
Advanced Conference on Real Estate, Law Seminars International
Hot Topics in the Mold Industry, American Indoor Air Quality Council, Hawaii
Mold Investigation Training, Pensacola, Fort Lauderdale, Orlando, Tampa, Florida
Environmental Investigation for Emergency Services, Burbank and Long Beach California
Multi-Family Residential Development, Lohrman Education Services, Honolulu
Environmental Law Seminar A to Z, NBI, Inc., Honolulu
Real Estate Development From Beginning to End, Lorman Educations Services, Honolulu
CAREER HISTORY

Over a decade of professional environmental project development, monitoring and management; regulatory compliance inspections, assessments and oversight of multiple abatement projects, including lead based paint, asbestos, mold, particulates and other regulated substances.

Hawaii Department of Health (HDOH) and Environmental Protection Agency (EPA) Certified LBP Risk Assessor experience conducting Housing and Urban Development (HUD) guided LBP inspection utilizing X-Ray Fluorescence (XRF) analysis for large scale multi-family housing developments, preparation of lead abatement and lead disturbance specifications, lead disturbance and abatement work plans, and lead compliance plans, HUD lead risk assessments, OSHA training, as well as monitoring and clearance of LBP abatement projects.

HDOH and EPA Certified Asbestos Inspector, Project Monitor, Management Planner, and Project Designer experienced in conducting inspections for demolition and renovation projects, monitoring and clearance of abatement projects, preparation of asbestos abatement specification and asbestos abatement work plans, as well as Operations and Maintenance (O&M) Plans.

ACAC Certified Indoor Environmental Consultant (CIEC) experienced in the evaluation of indoor environments and microbiological laboratory data to assess the extent of fungal contamination and/or the efficacy of mold remediation projects (post remediation verification, PRV). Experienced in remediation management and remediation planning/design, as well as IAQ assessment, remediation, and design for non-fungal indoor air contaminants such as volatile organic compounds (VOCs), particulates, and combustion products.

Experienced in conducting ASTM Standard Phase I Environmental Site Assessments (ESAs), Phase II Soil, Soil Vapor, and Groundwater Sampling, and Phase III Remediation Activities. ESA sampling activities have included the collection of multi-increment surface and sub-surface soil samples in accordance with HDOH Hazard Evaluation and Emergency Response (HEER) Office Technical Guidance Manual (TGM) guidelines, composite and discrete soil sampling in accordance with TGM guidelines, groundwater sampling in accordance with TGM guidelines, and soil vapor sampling in accordance with TGM guidelines. Remediation activities have included UST removal and oversight of excavation, transport, management and disposal of contaminated soil.

Development of Spill Prevention Control and Countermeasure (SPCC) Plans and Facility Response Plans for multiple installations throughout Hawaii.

Served as project manager for risk evaluation for a large trust estate (>300 properties). Evaluation involved ranking sites by relative risk and establishing recommendations for further investigation and/or remediation. Risk evaluation and site assessment work addressed PCBs, petroleum-related contaminants, pesticides, asbestos, lead and other metals, USTs, and non-point source contaminants. Review of federal, state and county databases and regulatory files pertaining to environmental issues as well as Environmental Impact Statements.

Research experience includes writing, research, and fieldwork in support of the preparation of a dissertation and a thesis; and investigation of the larvicidal activity of plant extracts against mosquito larvae of *Aedes aegypti* and *Culex quinquefasciatus*.

Experience working with public and private special interest groups.
EDUCATION


PUBLICATIONS


PRESENTATIONS

SPECIALIZED TRAINING

Training in EPA All Appropriate Inquiries by the HDOH and USEPA; June 14, 2007

Training in Asbestos and Lead Paint Regulations; September 2007

Training in Managing Multiple Priorities; September 2007

Training in Building Science and Understanding Building Failures; May 2008

CONTINUING EDUCATION
Hawaii Brownfields Redevelopment Forum #3 by HDOH; October 2007

Hawaii Brownfields Redevelopment Forum #4 by HDOH; October 2008

HVAC & Mold Remediation Webinar; November 2008

Workshop to Review and Discuss Updates to the Environmental Hazard Evaluation (EHE) Guidance and Associated Environmental Action Levels (EALs) by HDOH; December 2008

Environmental Compliance for Hawaii Design Professionals by HalfMoon LLC; January 2009

Vapor Intrusion Workshop by HDOH; April 2009
CERTIFICATIONS
HDOH Certified Asbestos Inspector, Project Monitor, Project Designer and Management Planner
HDOH Lead Based Paint Risk Assessor
EPA Certified Lead Renovator
ACAC Certified Indoor Environmental Consultant
HAZWOPER-40 Hours
American Red Cross, Adult and Pediatric First Aid/CPR/AED

LANGUAGE SKILLS
Portuguese and Spanish

AWARDS
FIPSE/CAPES Scholarship; 2004
CNPq Scholarship; 2003/2004
Research Institute for Marine Ecosystems Almirante Paulo Moreira Scholarship; 2002
FAPERJ Scholarship; 2001
Mckenzie Brown
Environmental Technician

CAREER HISTORY
Experienced in conducting ASTM Standard Phase I Environmental Site Assessments (ESA)’s and site assessment work addressing PCBs, petroleum-related contaminants, pesticides, asbestos, metals, underground storage tanks (USTs), volatile organic compounds (VOCs), and non-point source contaminants and review of federal, state and county databases and regulatory files.

Experienced in conducting hazardous materials surveys and environmental site assessments for asbestos containing building materials.

Experienced in conducting fungal inspection surveys for moisture intrusion, visible suspect mold and indoor air quality investigations.

Experienced in conducting post remediation verification (PRV) for mold and moisture intrusion remediation and hygienic indoor surfaces.

Experienced in environmental research and report preparation.

Experienced in ecological fieldwork.

EDUCATION
B.S. Environmental Science – 2018 Hawaii Pacific University.

SPECIALIZED TRAINING
AHERA Asbestos Building Inspector Certification, No. HIASB-4662
CPR/AED for Pro Rescuers; Responding to Emergencies; First Aid Certified, Certification ID: GVS5E5 (Exp. 11/27/2020)
Appendix G

Hazardous Materials Survey
Hazardous Materials Survey

No. 1902-00082-HAZ

153 West Ka‘ahumanu Avenue
Kahului, Hawaii

Prepared for

G70

111 South King Street Unit 170
Honolulu, Hawaii 96817

July 12, 2019
Hazardous Materials Survey

153 West Ka’ahumanu Avenue
Kahului, Hawaii 96732

Prepared by:
ENPRO Environmental
151 Hekili Street, Suite 210
Kailua, Hawaii 96734
808.262.0909
808.262.4449 (fax)
www.enproenvironmental.com

ENPRO Environmental Contact:
Shawn Champion
Environmental Technician
808.748.2116
schampion@enproenvironmental.com

ENPRO Project Number: 1902-00082-HAZ
Date of Report: July, 12, 2019
On-Site Investigation: May 9, 2019
## Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>1.1 REGULATORY REQUIREMENTS FOR DEMOLITION/RENOVATION</td>
<td>1</td>
</tr>
<tr>
<td>1.2 TASKS</td>
<td>3</td>
</tr>
<tr>
<td>1.3 LIMITATIONS</td>
<td>3</td>
</tr>
<tr>
<td>1.4 RESULTS OF PREVIOUS INVESTIGATIONS</td>
<td>5</td>
</tr>
<tr>
<td>2.0 PROPERTY DESCRIPTION</td>
<td>6</td>
</tr>
<tr>
<td>2.1 GENERAL</td>
<td>6</td>
</tr>
<tr>
<td>2.2 BUILDING MATERIALS</td>
<td>6</td>
</tr>
<tr>
<td>3.0 SAMPLING PROCEDURES</td>
<td>7</td>
</tr>
<tr>
<td>3.1 SUSPECT ASBESTOS-CONTAINING MATERIALS</td>
<td>7</td>
</tr>
<tr>
<td>3.2 PAINTED SURFACES</td>
<td>7</td>
</tr>
<tr>
<td>4.0 OBSERVATIONS AND MATERIALS INVENTORY</td>
<td>8</td>
</tr>
<tr>
<td>4.1 LIGHT BALLASTS CONTAINING PCBS</td>
<td>8</td>
</tr>
<tr>
<td>4.2 LAMPS CONTAINING MERCURY</td>
<td>9</td>
</tr>
<tr>
<td>4.3 HAZARDOUS MATERIALS</td>
<td>10</td>
</tr>
<tr>
<td>5.0 SUSPECT ARSENIC-CONTAINING BUILDING MATERIALS/CANEC</td>
<td>11</td>
</tr>
<tr>
<td>5.1 BUILDING MATERIALS</td>
<td>11</td>
</tr>
<tr>
<td>6.0 ANALYTICAL RESULTS</td>
<td>12</td>
</tr>
<tr>
<td>7.0 CONCLUSIONS AND RECOMMENDATIONS</td>
<td>14</td>
</tr>
<tr>
<td>7.1 ASBESTOS-CONTAINING MATERIALS</td>
<td>14</td>
</tr>
<tr>
<td>7.2 LEAD-BASED AND LEAD-CONTAINING PAINT</td>
<td>14</td>
</tr>
<tr>
<td>7.3 LIGHT BALLAST CONTAINING PCBS</td>
<td>15</td>
</tr>
<tr>
<td>7.4 LAMPS CONTAINING MERCURY</td>
<td>15</td>
</tr>
<tr>
<td>7.5 SUSPECT ARSENIC-CONTAINING MATERIALS/CANEC</td>
<td>16</td>
</tr>
<tr>
<td>7.6 HAZARDOUS MATERIALS</td>
<td>16</td>
</tr>
<tr>
<td>8.0 CERTIFICATIONS</td>
<td>17</td>
</tr>
<tr>
<td>9.0 APPENDICES</td>
<td>18</td>
</tr>
</tbody>
</table>
1.0 BACKGROUND

ENPRO Environmental (ENPRO) was retained by G70 to perform sampling and analysis for hazardous materials at 153 West Ka’ahumanu Avenue, Kahului, Hawaii. The purpose of this project was to assess the presence of readily accessible and identifiable hazardous materials. Hazardous materials included, but were not limited to:

- PCB-containing ballasts/transformers
- mercury-containing lamps
- stored chemicals
- asbestos-containing material
- lead-containing paints

1.1 REGULATORY REQUIREMENTS FOR DEMOLITION/RENOVATION

Mercury

All fluorescent light tubes are considered to be mercury-containing. When lamps are taken out of service and intended to be discarded, they become regulated Universal Waste.

PCB

During removal, identify polychlorinated biphenyl (PCB) vs. non-PCB ballasts per label identification. Leaking PCB ballasts require special handling and disposal. All other ballasts meet the definition of a non-regulated Small Capacitor and therefore do not have specialized disposal requirements.

Asbestos

The removal of regulated asbestos containing material (RACM) is required prior to demolition for all RACM that exceeds the threshold limits as defined in the regulations, National Emission Standards for Hazardous Air Pollutants (NESHAPS).

Notification to the State of Hawaii, Department of Health is required for all demolition projects in Hawaii. Requirements for NESHAPS RACM occur when a cumulative threshold limit of 160 square feet, 260 linear feet of pipe insulation and/or 35 cubic feet is exceeded.
Lead Containing Paints

If the property is to undergo demolition, OSHA regulations apply to abatement workers. Additionally, demolition debris shall need to be sampled and tested (using toxicity characteristic leaching procedure [TCLP] analytical procedures) to meet municipal disposal site acceptance criteria. Other than demolition considerations, no other regulations apply.

United States Environmental Protection Agency (EPA) regulations effective April 2010 require that specialized lead-based paint training is required for all renovators/painters who disturb greater than six square feet of interior painted surfaces per room, or greater than twenty square feet of exterior painted surfaces in target housing and child occupied facilities constructed prior to 1978. If an assessment has not been conducted to determine if lead based paint (LBP) is present in a pre-1978 structure, the paint may be presumed by the contractor to be LBP, and all requirements apply. Affected areas may be sampled and tested by a certified lead inspector and if no LBP is present, these regulations do not apply. This regulation does not apply to commercial structures and non-target housing.

Additional regulations specifically addressing lead-based paint include Housing and Urban Development (HUD) (1995) guidelines and the Consumer Product Safety Act (1977). and the United States Environmental Protection Agency (EPA) Renovation, Repair and Painting (RRP) Final Rule (2008) for Target Housing and Child Occupied Facilities. These regulations are for housing and consumer products and do not apply to most commercial properties or to demolition activities.

United States Department of Labor Occupational Safety and Health Administration (OSHA) regulations apply to worker protection during renovation and demolition activities. At a minimum OSHA requires lead awareness training for all workers who may be exposed to airborne lead concentrations above the OSHA Action Level (AL) of thirty micrograms per cubic meter (30 μg/m3) for an 8-hour time-weighted average (TWA).

Canec

OSHA regulations apply to worker protection during renovation and demolition activities. At a minimum OSHA requires arsenic awareness training for all workers who may be exposed to airborne arsenic concentrations above the OSHA AL of 5 μg/m3 for an 8-hour TWA.

The on-island landfill does not regulate the disposal of canec fiberboard materials which may contain arsenic. In accordance with 40 CFR 261 and HAR 11-261-4(b)(9), wood and wood products with arsenic are exempt from hazardous waste disposal regulations.
Prior to cane removal, the contractor should contact a landfill licensed to accept construction and demolition material solid waste and inquire if a profile (Toxicity Characteristic Leaching Procedure) of the cane waste is required as a prerequisite for disposal. If one is required, the Contractor should prepare the documentation necessary to ensure acceptance and provide the test results and documentation to the Contracting Officer’s Representative (COR).

1.2 TASKS

The tasks of performing the hazardous materials investigation and assessment included:

1) Investigation of accessible areas of the project site for PCB-containing ballasts and mercury-containing lamps
2) Inventory and documentation of stored chemicals located on site
3) Investigation of accessible areas of the project site for suspect arsenic-containing materials, particularly sugarcane pressboard (canec)
4) Investigation of accessible areas of the project site for suspect asbestos-containing materials (ACM)
5) Collection of suspect ACM samples and analysis by polarized light microscopy
6) Investigation of accessible areas of the project site to evaluate the different applications of paint
7) Collection of representative paint samples for laboratory analysis by atomic absorption to determine lead content
8) Preparation of a technical report presenting the data and findings of our assessment

1.3 LIMITATIONS

Only readily accessible areas were inspected. Excluded from detailed observation were the following areas:

- A decommissioned outbuilding with poor structural integrity was not accessed for safety reasons
- The roof was not accessed per G70 personnel request
ENPRO has relied upon the Client or the Client’s representative for access and assumes no liability for areas not identified by the Client or the Client’s representatives. ENPRO is not responsible for inspecting, assessing or otherwise consulting with respect to hidden or inaccessible materials. Areas that may not be sampled are behind walls, above ceilings, inside utility conduits and ventilation ducts, and exterior roofing.

Suspect materials not sampled and analyzed due to limitations or inaccessibility which shall be disturbed during demolition/renovation activities must be sampled and analyzed for asbestos, or assumed to be ACM. Suspect ACM which may be encountered during demolition includes, but is not limited to:

- Thermal system insulation (TSI)
- Surfacing materials including skim coat, paint, texture
- Drywall, tape, and joint compound
- Floor coverings, mastic
- Roofing materials
- Patching materials
- Grout
- Window glaze
- Sealants
- Concrete fillers
- Transite-like materials
- Wallboard
- Ceiling panels

This investigation is limited to the structure and aboveground portions of the subject property only.

This report should be considered in conjunction with any previous hazardous materials investigation reports completed for the project site. This survey report is not an asbestos abatement project specification, all quantifications are estimates and specific layers of homogenous materials identified as asbestos or non-asbestos materials by the laboratory analysis are not segregated in ENPRO’s quantifications. ENPRO recommends that the client retain a certified Asbestos Project Designer to prepare asbestos abatement project specifications and an asbestos abatement work plan to address the removal of ACM at the project site prior to demolition/renovation.
1.4 RESULTS OF PREVIOUS INVESTIGATIONS

ENPRO reviewed a previous Asbestos Containing Materials (ACM) investigation prepared by EnvironMeteo (EMET) Services, Inc. dated March, 22 2007. The report revealed that the vinyl floor tiles found in Annex A consisted of 2-3% Chrysotile.
2.0 PROPERTY DESCRIPTION

2.1 GENERAL

The project site was located in Kahului, on the central northside of the island of Maui.

The project site was a single-story school building occupied by Maui Community School for Adult Education.

2.2 BUILDING MATERIALS

The structures at the project site were composed of wood and concrete masonry unit (CMU) exterior walls, drywall interior walls, and a sloped shingle roof. Suspect materials sampled for lead included interior and exterior paints. Suspect materials sampled for asbestos included:

- canec ceiling
- acoustic ceiling tile
- drop ceiling tile
- textured ceiling tile
- caulking materials
- cove base and associated mastic
- carpet and associated mastic
- canec walls
3.0 SAMPLING PROCEDURES

3.1 SUSPECT ASBESTOS-CONTAINING MATERIALS

During the investigation, suspected asbestos-containing materials, including surfacing material and flooring were sampled, quantified, and assessed for current condition and friability.

The following materials are not considered suspect and do not require sampling when discovered during an investigation:

- Metal
- Cork
- Rubber
- Fiberglass
- Wood
- Ceramic tile (not including grout and mastic)

Representative samples of suspect asbestos containing materials were collected from homogeneous areas, three samples of each homogenous material were sampled in accordance with Environmental Protection Agency (EPA) and State of Hawaii Department of Health (DOH) minimum sampling requirements. A total of twenty-seven bulk samples, representing nine homogenous materials, were submitted for analysis. The bulk samples were analyzed by polarized light microscopy using EPA Method 600/M4-82-020 and/or 600/R-93/116 by a NVLAP (National Voluntary Laboratory Accreditation Program) accredited laboratory.

3.2 PAINTED SURFACES

During the investigation, the investigator located, assessed, and sampled the various painted surfaces of the project site. A representative sampling of interior and exterior painted surfaces was performed.

A total of five samples were collected and analyzed for total lead content using EMC SOP Method #L01/1 and EPA SW-846 Method 7420.
4.0 OBSERVATIONS AND MATERIALS INVENTORY

4.1 LIGHT BALLASTS CONTAINING PCBs

Light Ballasts

A total of eighty-six fluorescent light fixtures were observed on the project site. All ballasts associated with these eighty-six fixtures are assumed to contain PCBs.

PCB ballasts are found in the housing of fluorescent, mercury vapor, and high intensity discharge lighting that were manufactured prior to 1980. Over the years, old fixtures have been decommissioned during demolition, renovation, general maintenance projects, and energy-saving lighting installations. When ballasts are put out of service, they become subject to Federal and State waste regulations. The primary law regulating PCBs is the Toxic Substance Control Act (TSCA).

TSCA regulates the manufacture, sale, use, and disposal of certain chemical substances, and requires testing, tracking, pre-screening, and record keeping of chemical products. TSCA also regulates the disposal of PCBs. In specific situations, ballasts are exempt from TSCA requirements. For instance, TSCA does not regulate the disposal of non-leaking, Small Capacitors. A fluorescent lamp ballast is classified as a Small Capacitor if it contains less than 3 pounds of dielectric fluid and/or has a total volume of less than 100 cubic inches. A lighting ballast is also considered a Small Capacitor if it has a volume between 100 and 200 cubic inches and has a total weight of less than nine pounds. Small Capacitors are subject to TSCA under two conditions:

- If the Small Capacitor is leaking PCB’s, it is regulated as a PCB Article, as defined in 40 CFR 761.3 of the federal PCB regulations. PCB Articles with concentrations at 500 parts per million (ppm) or greater must be disposed of in an incinerator complying with 40 CFR 761.70, or in a chemical waste landfill complying with 40 CFR 761.75. PCB Articles disposed at a chemical waste landfill must be drained of all free flowing PCBs and the drained PCBs greater than 500 ppm must be disposed of by incineration meeting the specifications in 40 CFR 761.70

- In the second condition, Small Capacitors (intact or leaking) owned by any person who manufactures or at any time manufactured PCB-containing capacitors or PCB-containing equipment defined in 40 CFR 761.60(b)(2)(iv), must ensure delivery of the PCB-containing capacitor to a TSCA-permitted incinerator for disposal. PCB-containing ballasts also may be subject to regulation under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). CERCLA has many features including establishing reportable levels for certain substances and a notification requirement for release of these substances.
PCBs are a hazardous substance under CERCLA reportable quantity requirements and releases exceeding one pound during a 24-hour period must be reported to the National Response Center (NRC), as specified in Section 102 (a) of CERCLA. For information on reporting requirements, contact NRC at 1-800-424-8802.

All light ballasts observed on the project site meet the definition of a non-regulated Small Capacitor and therefore not regulated per disposal requirements, presuming they are not leaking.

### 4.2 LAMPS CONTAINING MERCURY

A total of eighty-six fluorescent light fixtures were observed on the project site. All fluorescent light tubes associated with these eighty-six fixtures are considered to be mercury-containing. These lamps, also referred to as “universal waste lamps” are defined as the bulb or tube portion of an electric lighting device. A lamp is specifically designed to produce radiant energy, most often in the ultraviolet, visible, and infra-red regions of the electromagnetic spectrum. Examples of common universal waste electric lamps include, but are not limited to, fluorescent, high intensity discharge, neon, mercury vapor, high pressure sodium, and metal halide lamps.

Universal Waste Regulations apply to the above lamps only when such lamps are taken out of service intended for disposal. A used lamp becomes a waste on the date it is discarded.

A small quantity handler of universal waste must manage lamps in a way that prevents releases of any universal waste or component of a universal waste to the environment, as follows:

1. A small quantity handler of universal waste must contain any lamp in containers or packages that are structurally sound, adequate to prevent breakage, and compatible with the contents of the lamps. Such containers and packages must remain closed and must lack evidence of leakage, spillage or damage that could cause leakage under reasonably foreseeable conditions.

2. A small quantity handler of universal waste must immediately clean up and place in a container any lamp that is broken and must place in a container any lamp that shows evidence of breakage, leakage, or damage that could cause the release of mercury or other hazardous constituents to the environment. Containers must be closed, structurally sound, compatible with the contents of the lamps and must lack evidence of leakage, spillage or damage that could cause leakage or releases of mercury or other hazardous constituents to the environment under reasonably foreseeable conditions.
4.3 HAZARDOUS MATERIALS

No significant quantities of hazardous materials were observed being stored on the project site.
5.0 SUSPECT ARSENIC-CONTAINING BUILDING MATERIALS/CANEC

5.1 BUILDING MATERIALS

During the investigation, building materials, including ceiling and wall material, were assessed for suspect arsenic-containing canec. Approximately 3,800 ft² of canec ceiling, and 60,000 ft² of canec walls were discovered during the investigation. Canec building materials were discovered in the following areas:

- Annex A
- Principal’s Office
- Men’s Restroom
- Women’s Restroom
- The Learning Center Computer Lab
- Adult Basic Education Resource Room
- Literacy Center
- Family Involvement Trainer Room
- Annex B
- Storage Room
- Clerk Room
- SASA Room
- Annex D
6.0 ANALYTICAL RESULTS

Table 1 presents the results of the asbestos analyses. The table includes the sample number, the location, the material sampled, and the analytical result.

Table 2 presents the results of the total lead analyses. The table includes the sample number, sample location, the material sampled, and the analytical result.

Table 1
Asbestos Sampling Locations and Analytical Results

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>LOCATION</th>
<th>MATERIAL</th>
<th>ASBESTOS DETECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1 (a, b, c)</td>
<td>SASA Room Hall</td>
<td>Ceiling Tile, White/ Tan</td>
<td>No</td>
</tr>
<tr>
<td>A-2 (a, b, c)</td>
<td>Vice Principal Office</td>
<td>Ceiling Tile, White/ Tan</td>
<td>No</td>
</tr>
<tr>
<td>A-3 (a, b, c)</td>
<td>Account Clerk Room</td>
<td>Ceiling Tile, White/ Gr    Gray</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glue, Brown</td>
<td>No</td>
</tr>
<tr>
<td>A-4 (a, b, c)</td>
<td>Annex C</td>
<td>Ceiling Tile, Beige/ Off White</td>
<td>No</td>
</tr>
<tr>
<td>A-5 (a, b, c)</td>
<td>Annex B</td>
<td>Ceiling Tile, Beige/ Off White</td>
<td>No</td>
</tr>
<tr>
<td>A-6 (a, b, c)</td>
<td>Annex D</td>
<td>Cove Base, Gray Mastic, Yellow</td>
<td>No</td>
</tr>
<tr>
<td>A-7 (a, b, c)</td>
<td>Men’s Restroom Women’s Restroom</td>
<td>Caulking, White/ Off White</td>
<td>No</td>
</tr>
<tr>
<td>A-8 (a, b, c)</td>
<td>SASA Room Hall Vice Principal Office</td>
<td>Carpet, Beige/ Brown Mastic, Yellow Carpet, Purple</td>
<td>No</td>
</tr>
<tr>
<td>A-9 (a, b, c)</td>
<td>Annex A Hall Annex B</td>
<td>Canec Walls, White/ Tan</td>
<td>No</td>
</tr>
<tr>
<td>SAMPLE NUMBER</td>
<td>LOCATION</td>
<td>MATERIAL</td>
<td>TOTAL LEAD (% by Weight)</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------------------</td>
<td>-----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>LP-1</td>
<td>Annex D</td>
<td>White Interior Paint</td>
<td>0.047</td>
</tr>
<tr>
<td>LP-2</td>
<td>Annex B</td>
<td>Green Exterior Paint</td>
<td>1.30*</td>
</tr>
<tr>
<td>LP-3</td>
<td>Annex B</td>
<td>Brown Exterior Paint</td>
<td>0.448</td>
</tr>
<tr>
<td>LP-4</td>
<td>Principal Office</td>
<td>Purple Interior Paint</td>
<td>BRL</td>
</tr>
<tr>
<td>LP-5</td>
<td>The Learning Center Computer Lab</td>
<td>Brown Interior Paint</td>
<td>0.020</td>
</tr>
</tbody>
</table>

BRL = Below Reportable Limits, * = Dilution Factor Changed, BOLD = Lead-based paint
7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 ASBESTOS-CONTAINING MATERIALS

Based on the analytical results, none of the twenty-seven analyzed samples were determined to contain asbestos.

**Recommendation**

Based on the analytical results, no recommendations are made.

7.2 LEAD-BASED AND LEAD-CONTAINING PAINT

Of the five samples analyzed for total lead content, three were determined to be lead-containing paint and one was determined to be lead-based paint.

- LP-1, White Interior Paint - Lead-containing
- LP-2, Green Exterior Paint - Lead-based
- LP-3, Brown Exterior Paint - Lead-containing
- LP-5, Brown Interior Paint - Lead-containing

EPA regulations effective April 2010 require that specialized lead-based paint training is required for all renovators/painters who disturb greater than six square feet of interior painted surfaces per room or greater than twenty square feet of exterior painted surfaces in target housing and child-occupied facilities constructed prior to 1978. If an assessment has not been conducted to determine if lead based paint (LBP) is present in a pre-1978 structure, the paint may be presumed by the contractor to be LBP, and all requirements apply. Affected areas may be sampled and tested by a certified lead inspector and if no LBP is present, these regulations do not apply. These regulations do not apply to complete demolition jobs.

Additional regulations specifically addressing lead-based paint include Housing and Urban Development (HUD) (1995) guidelines and the Consumer Product Safety Act (1977). These regulations are for housing and consumer products.

OSHA regulations apply to worker protection during renovation and demolition activities.
Recommendation

If the property is to undergo renovation or demolition, OSHA regulations apply to abatement workers. Additionally, demolition debris shall need to be sampled and tested (per TCLP) to meet municipal disposal site acceptance criteria. Other than renovation or demolition considerations, no other regulations apply.

If the property is to undergo renovation or demolition, OSHA regulations apply to abatement workers. At a minimum OSHA requires lead awareness training for all workers who may be exposed to airborne lead concentrations above the OSHA Action Level (AL) of thirty micrograms per cubic meter (30 μg/m3) for an 8-hour time-weighted average (TWA). Additionally, demolition debris shall need to be sampled and tested (per TCLP) to meet municipal disposal site acceptance criteria. Other than demolition considerations, no other regulations apply.

7.3 LIGHT BALLAST CONTAINING PCBs

PCBs (polychlorinated biphenyl) are regulated under the Toxic Substances Control Act (TSCA), which obligates a property owner to clean up any spills occurring on their property. Fluorescent light fixtures are present at the project site. Fluorescent light fixtures manufactured prior to 1980 may contain ballasts with PCBs.

A total of eighty-six fluorescent light fixtures were observed on the project site. All ballasts associated with the eighty-six light fixtures are assumed to contain PCBs.

Recommendation

During removal, identify polychlorinated biphenyl (PCB) vs. non-PCB ballasts per label identification. Leaking PCB ballasts require special handling and disposal. All other ballasts meet the definition of a non-regulated Small Capacitor and therefore do not have specialized disposal requirements.

7.4 LAMPS CONTAINING MERCURY

A total of eighty-six fluorescent light fixtures were observed on the project site. All fluorescent light tubes associated with these fixtures are considered to be mercury-containing.

Recommendation

All fluorescent light lamps associated with these fixtures are considered to be mercury-containing. When lamps are taken out of service and intended to be discarded, they must be disposed of as regulated universal waste.
7.5 SUSPECT ARSENIC-CONTAINING MATERIALS/CANEC

Approximately 3,800 ft² of canec ceiling, and 60,000 ft² of canec walls were discovered during the investigation.

**Recommendation**

OSHA regulations apply to workers. All workers exposed to airborne arsenic concentrations greater than the AL shall require specialized training per OSHA regulations and may require respiratory protection if potential exposure may exceed the PEL.

The on-island landfill does not regulate the disposal of canec fiberboard materials which may contain arsenic. In accordance with HAR 11-261-4(b)(9), wood and wood products with arsenic are exempt from hazardous waste disposal regulations. However, the contractor shall contact the landfill and prepare the documentation necessary to ensure acceptance. Moreover, the canec material shall be segregated from other demolition debris and properly wrapped in polyethylene sheeting in order to meet the on-island landfill acceptance requirements.

Other than OSHA worker protection and disposal considerations, no other regulations apply.

7.6 HAZARDOUS MATERIALS

No significant quantities of hazardous materials were observed being stored on the project site.

**Recommendation**

As there were no significant quantities of hazardous materials observed, no recommendations are made.
ENPRO Environmental (ENPRO) has completed a Hazardous Materials Survey at 153 West Ka‘ahumanu Avenue, Kahului, Hawaii (project site). The survey followed the methods and procedures consistent with good commercial or customary practice designed to conform to acceptable industry standards. This report is exclusively for the use and benefit of the Client identified on the title page of the report and is not for the use or benefit of, nor may it be relied upon by, any other person or entity. The contents of this report may not be quoted in whole or in part or distributed to any person or entity other than the Client hereof without, in each case, the written consent of the undersigned or the Client.

Investigated By: Daisy Finch, Environmental Professional
HIASB Certification Number: 4262

Prepared By: Shawn Champion, Environmental Technition

Reviewed By: Randy Herold, President
9.0 APPENDICES

Photographs

Figures

Analytical Results
SITE PHOTOGRAPHS
Photo 1
153 West Ka’ahumanu Avenue, Kahului, Hawaii

Project Number: 1905-00082-HAZ
153 West Ka’ahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 2
Sample A-1a Canec Ceiling, SASA Room

Project Number: 1905-00082-HAZ
153 West Ka‘ahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 3
Sample A-2a Rectangle Glued Acoustic Ceiling Tile, Vice Principal Office

Project Number: 1905-00082-HAZ
153 West Ka‘ahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 4

Sample A-3a 12”x12” Glued Acoustic Ceiling Tile, Account Clerk Room

Project Number: 1905-00082-HAZ
153 West Ka’ahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 5
Sample A-4a Drop Ceiling Tile, Annex C

Project Number: 1905-00082-HAZ
153 West Ka‘ahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 6
Sample A-5a Textured Ceiling Tile, Annex B

Project Number: 1905-00082-HAZ
153 West Ka‘ahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 7
Sample A-6a Cove Base, Annex D

Project Number: 1905-00082-HAZ
153 West Ka‘ahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 8

Sample A-7a Caulking, Women’s Restroom

Project Number: 1905-00082-HAZ
153 West Ka’ahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 9

Sample A-8a Carpet/Mastic, SASA Room

Project Number: 1905-00082-HAZ
153 West Kaʻahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 10
Sample A-9a Canec Walls, Annex A

Project Number: 1905-00082-HAZ
153 West Kaʻahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 11

Paint Sample 1 White Interior Paint, Annex D

Project Number: 1905-00082-HAZ
153 West Ka’ahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 12
Paint Sample 2 Green Exterior Paint, Annex B

Project Number: 1905-00082-HAZ
153 West Ka‘ahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 13

Paint Sample 3 Brown Exterior Paint, Annex B

Project Number: 1905-00082-HAZ
153 West Ka`ahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
Photo 15

Paint Sample 5 Brown Interior Paint, The Learning Center Computer Lab

Project Number: 1905-00082-HAZ

153 West Kaʻahumanu Ave, Kahului, Hawaii
Date of Photos: May 9 2019
FIGURES
153 West Ka‘ahumanu Avenue, Kahului, Hawaii
Standardized Floor Plan Graphics

- Paint Sample
- Asbestos Sample
- Canec Material Observed

Key

Project Number 1902-00082-HAZ
153 West Ka’ahumanu Avenue
ANALYTICAL RESULTS
# Bulk Asbestos Analysis by Polarized Light Microscopy

**Laboratory Report**
0220059

---

**Client:** ENPRO  
**Address:** 151 HEKILI ST, STE 210  
KAILUA, HI 96734

**Collected:** 05/09/2019  
**Project Name:** 153 W. KA’AHUMANU AVE

**Address:** KAHULUI, MAUI

---

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample Location</th>
<th>Layer Name / Sample Description</th>
<th>Asbestos Detected</th>
<th>Asbestos Type (%)</th>
<th>Non-Asbestos Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0220059-001</td>
<td></td>
<td>Ceiling Tile, White/ Tan</td>
<td>No</td>
<td>None Detected</td>
<td>Cellulose Fiber 85%</td>
</tr>
<tr>
<td></td>
<td>A-1a</td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler 15%</td>
</tr>
<tr>
<td>0220059-002</td>
<td></td>
<td>Ceiling Tile, White/ Tan</td>
<td>No</td>
<td>None Detected</td>
<td>Cellulose Fiber 85%</td>
</tr>
<tr>
<td></td>
<td>A-1b</td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler 15%</td>
</tr>
<tr>
<td>0220059-003</td>
<td></td>
<td>Ceiling Tile, White/ Tan</td>
<td>No</td>
<td>None Detected</td>
<td>Cellulose Fiber 85%</td>
</tr>
<tr>
<td></td>
<td>A-1c</td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler 15%</td>
</tr>
<tr>
<td>0220059-004</td>
<td></td>
<td>LAYER 1 Ceiling Tile, White/ Tan</td>
<td>No</td>
<td>None Detected</td>
<td>Cellulose Fiber 85%</td>
</tr>
<tr>
<td></td>
<td>A-2a</td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler 15%</td>
</tr>
<tr>
<td></td>
<td>LAYER 2 Ceiling Tile, White/ Gray</td>
<td>No</td>
<td>None Detected</td>
<td>Mineral Wool 45%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cellulose Fiber 35%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perlite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler 20%</td>
</tr>
</tbody>
</table>
**Bulk Asbestos Analysis by Polarized Light Microscopy**

**NVLAP#101926-0**

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample Location</th>
<th>Layer Name / Sample Description</th>
<th>Asbestos Detected</th>
<th>Asbestos Type (%)</th>
<th>Non-Asbestos Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0220059-005</td>
<td></td>
<td>LAYER 1 Ceiling Tile, White/ Tan</td>
<td>No None Detected</td>
<td>Cellulose Fiber</td>
<td>85%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAYER 2 Ceiling Tile, White/ Gray</td>
<td>No None Detected</td>
<td>Mineral Wool</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cellulose Fiber</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quartz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perlite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler</td>
<td>20%</td>
</tr>
<tr>
<td>0220059-006</td>
<td></td>
<td>LAYER 1 Ceiling Tile, White/ Tan</td>
<td>No None Detected</td>
<td>Cellulose Fiber</td>
<td>85%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAYER 2 Ceiling Tile, White/ Gray</td>
<td>No None Detected</td>
<td>Mineral Wool</td>
<td>45%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cellulose Fiber</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quartz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perlite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler</td>
<td>20%</td>
</tr>
<tr>
<td>0220059-007</td>
<td></td>
<td>Ceiling Tile, White/ Tan</td>
<td>No None Detected</td>
<td>Cellulose Fiber</td>
<td>85%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler</td>
<td>15%</td>
</tr>
<tr>
<td>0220059-008</td>
<td></td>
<td>LAYER 1 Ceiling Tile, White/ Tan</td>
<td>No None Detected</td>
<td>Cellulose Fiber</td>
<td>85%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAYER 2 Glue, Brown</td>
<td>No None Detected</td>
<td>Cellulose Fiber</td>
<td>&lt;1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quartz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler</td>
<td>99%</td>
</tr>
<tr>
<td>Lab ID</td>
<td>Sample Location</td>
<td>Layer Name / Sample Description</td>
<td>Asbestos Type</td>
<td>Asbestos (%)</td>
<td>Non-Asbestos Constituents</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>0220059-009</td>
<td></td>
<td>LAYER 1 Ceiling Tile, White/Tan</td>
<td>None Detected</td>
<td>85%</td>
<td>Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler</td>
</tr>
<tr>
<td>0220059-009</td>
<td></td>
<td>LAYER 2 Glue, Brown</td>
<td>None Detected</td>
<td>1%</td>
<td>Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
</tr>
<tr>
<td>0220059-010</td>
<td></td>
<td>Ceiling Tile, Beige/Off White</td>
<td>None Detected</td>
<td>75%</td>
<td>Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mineral Wool</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perlite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler</td>
</tr>
<tr>
<td>0220059-011</td>
<td></td>
<td>Ceiling Tile, Beige/Off White</td>
<td>None Detected</td>
<td>75%</td>
<td>Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mineral Wool</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perlite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler</td>
</tr>
<tr>
<td>0220059-012</td>
<td></td>
<td>Ceiling Tile, Beige/Off White</td>
<td>None Detected</td>
<td>75%</td>
<td>Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mineral Wool</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carbonates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gypsum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Perlite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Binder/Filler</td>
</tr>
</tbody>
</table>
## Asbestos Detection

### Layer Name / Sample Description

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample Location</th>
<th>Layer Name / Sample Description</th>
<th>Asbestos Detected</th>
<th>Asbestos Type (%)</th>
<th>Non-Asbestos Constituents</th>
</tr>
</thead>
</table>
| 0220059-013 | A-5a | Ceiling Tile, Beige/ Off White | No | None Detected | Mineral Wool 55%
Cellulose Fiber 25%
Carbonates
Gypsum
Quartz
Perlite
Binder/Filler 20% |
| 0220059-014 | A-5b | Ceiling Tile, Beige/ Off White | No | None Detected | Mineral Wool 55%
Cellulose Fiber 25%
Carbonates
Gypsum
Quartz
Perlite
Binder/Filler 20% |
| 0220059-015 | A-5c | Ceiling Tile, Beige/ Off White | No | None Detected | Mineral Wool 60%
Cellulose Fiber 20%
Carbonates
Gypsum
Quartz
Perlite
Binder/Filler 20% |
| 0220059-016 | A-6a | LAYER 1 Cove Base, Gray | No | None Detected | Carbonates
Quartz
Binder/Filler 100% |
| | | LAYER 2 Mastic, Yellow | No | None Detected | Cellulose Fiber <1%
Carbonates
Quartz
Binder/Filler 99% |
### Bulk Asbestos Analysis by Polarized Light Microscopy

#### Laboratory Report

**NVLAP#101926-0**

**Client:** ENPRO  
**Address:** 151 HEKILI ST, STE 210  
**Location:** KAILUA, HI 96734  
**Collected:** 05/09/2019  
**Project Name:** 153 W. KA‘AHUMANU AVE  
**Address:** KAHULUI, MAUI  
**Date Received:** 05/14/2019  
**Date Analyzed:** 05/17/2019  
**Date Reported:** 05/17/2019  
**EPA Method:** EPA 600/R-93/116  

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Client ID</th>
<th>Sample Location</th>
<th>Layer Name / Sample Description</th>
<th>Asbestos Detected</th>
<th>Asbestos Type (%)</th>
<th>Non-Asbestos Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0220059-017</td>
<td>A-6b</td>
<td>Cove Base, Gray</td>
<td>LAYER 1</td>
<td>No</td>
<td>None Detected</td>
<td>Carbonates Quartz Binder/Filler 100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LAYER 2</td>
<td>No</td>
<td>None Detected</td>
<td>Carbonates Quartz Binder/Filler 100%</td>
</tr>
<tr>
<td>0220059-018</td>
<td>A-6c</td>
<td>Cove Base, Gray</td>
<td>LAYER 1</td>
<td>No</td>
<td>None Detected</td>
<td>Carbonates Quartz Binder/Filler 100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LAYER 2</td>
<td>No</td>
<td>None Detected</td>
<td>Carbonates Quartz Binder/Filler 100%</td>
</tr>
<tr>
<td>0220059-019</td>
<td>A-7a</td>
<td>Caulking, White/ Off White</td>
<td>No</td>
<td>None Detected</td>
<td>Silicone 100%</td>
<td></td>
</tr>
<tr>
<td>0220059-020</td>
<td>A-7b</td>
<td>Caulking, White/ Off White</td>
<td>No</td>
<td>None Detected</td>
<td>Quartz Silicone 100%</td>
<td></td>
</tr>
<tr>
<td>0220059-021</td>
<td>A-7c</td>
<td>Caulking, White/ Off White</td>
<td>No</td>
<td>None Detected</td>
<td>Silicone 100%</td>
<td></td>
</tr>
</tbody>
</table>
## Bulk Asbestos Analysis by Polarized Light Microscopy

**NVLAP#101926-0**

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Client ID</th>
<th>Sample Location</th>
<th>Layer Name / Sample Description</th>
<th>Asbestos Detected</th>
<th>Asbestos Type (%)</th>
<th>Non-Asbestos Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0220059-022</td>
<td>A-8a</td>
<td></td>
<td>LAYER 1 Carpet, Beige/ Brown</td>
<td>No</td>
<td>None Detected</td>
<td>Synthetic Fiber 85% Carbonates 15% Binder/Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LAYER 2 Mastic, Yellow</td>
<td>No</td>
<td>None Detected</td>
<td>Synthetic Fiber 1% Carbonates 1% Cellulose Fiber 98%</td>
</tr>
<tr>
<td>0220059-023</td>
<td>A-8b</td>
<td></td>
<td>LAYER 1 Carpet, Beige/ Brown</td>
<td>No</td>
<td>None Detected</td>
<td>Synthetic Fiber 85% Carbonates 15% Binder/Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LAYER 2 Mastic, Yellow</td>
<td>No</td>
<td>None Detected</td>
<td>Synthetic Fiber 1% Carbonates 1% Cellulose Fiber 98%</td>
</tr>
<tr>
<td>0220059-024</td>
<td>A-8c</td>
<td></td>
<td>LAYER 1 Carpet, Purple</td>
<td>No</td>
<td>None Detected</td>
<td>Synthetic Fiber 85% Carbonates 15% Binder/Filler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LAYER 2 Mastic, Yellow</td>
<td>No</td>
<td>None Detected</td>
<td>Synthetic Fiber &lt;1% Carbonates 99% Quartz Binder/Filler</td>
</tr>
<tr>
<td>0220059-025</td>
<td>A-9a</td>
<td>Canec Walls, White/ Tan</td>
<td>No</td>
<td>None Detected</td>
<td>Cellulose Fiber 85% Carbonates 15% Gypsum 15% Quartz Binder/Filler</td>
<td></td>
</tr>
</tbody>
</table>
Distinctly stratified, easily separable layers of samples are analyzed as subsamples of the whole and are reported separately for each discernible layer. All analyses are derived from calibrated visual estimate and measured in area percent unless otherwise noted. The report applies to the standards or procedures identified and to the sample(s) tested. The test results are not necessarily indicative or representative of the qualities of the lot from which the sample was taken or of apparently identical or similar products, nor do they represent an ongoing quality assurance program unless so noted. These reports are for the exclusive use of the addressed client and that they will not be reproduced wholly or in part for advertising or other purposes over our signature or in connection with our name without special written permission. The report shall not be reproduced except in full, without written approval by our laboratory. The samples not destroyed in testing are retained a maximum of thirty days. The laboratory measurement of uncertainty for the test method is approximately less than 1 by area percent.

Accredited by the National Institute of Standards and Technology, Voluntary Laboratory Accreditation Program for selected test method for asbestos. The accreditation or any reports generated by this laboratory in no way constitutes or implies product certification, approval, or endorsement by the National Institute of Standards and Technology. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Polarized Light Microscopy may not be consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample Location</th>
<th>Layer Name / Sample Description</th>
<th>Asbestos Detected</th>
<th>Asbestos Type (%)</th>
<th>Non-Asbestos Constituents</th>
</tr>
</thead>
</table>
| 0220059-026 | | Canec Walls, White/ Tan | No | None Detected | Cellulose Fiber 85%
Carbonates
Gypsum
Quartz
Binder/Filler 15% |
| 0220059-027 | | Canec Walls, White/ Tan | No | None Detected | Cellulose Fiber 85%
Carbonates
Gypsum
Quartz
Binder/Filler 15% |

Analyst - Octavio Gavarreteayestas
Signatory - Lab Director - Kurt Kettler
## Lead (Pb) in Paint Chip Samples

**EMC SOP Method #L01/1**  
**EPA SW-846 Method 7420**

<table>
<thead>
<tr>
<th>EMC LAB #: L75020</th>
<th>DATE RECEIVED: 05/14/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIENT: ENPRO Environmental</td>
<td>REPORT DATE: 05/17/19</td>
</tr>
<tr>
<td>CLIENT ADDRESS: 151 Kekili Street, Suite 210, Kailua, HI  96734</td>
<td>DATE OF ANALYSIS: 05/15/19</td>
</tr>
<tr>
<td>PROJECT NAME: 153 W. Ka’ahumanu Ave. Kahului Maui</td>
<td>P.O. NO.:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMC #</th>
<th>SAMPLE DATE /19</th>
<th>CLIENT SAMPLE #</th>
<th>DESCRIPTION</th>
<th>REPORTING LIMIT (% Pb by weight)</th>
<th>%Pb BY WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>L75020</td>
<td>1 05/09</td>
<td>LP-1</td>
<td>White Interior Paint</td>
<td>0.010</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>2 05/09</td>
<td>LP-2</td>
<td>Green Exterior Paint</td>
<td>0.10</td>
<td>1.30^</td>
</tr>
<tr>
<td></td>
<td>3 05/09</td>
<td>LP-3</td>
<td>Brown Exterior Paint</td>
<td>0.010</td>
<td>0.448</td>
</tr>
<tr>
<td></td>
<td>4 05/09</td>
<td>LP-4</td>
<td>Purple Interior Paint</td>
<td>0.010</td>
<td>BRL</td>
</tr>
<tr>
<td></td>
<td>5 05/09</td>
<td>LP-5</td>
<td>Brown Interior Paint</td>
<td>0.010</td>
<td>0.020</td>
</tr>
</tbody>
</table>

^ = Dilution Factor Changed  
* = Excessive Substrate May Bias Sample Results  
BRL = Below Reportable Limits  
# = Very Small Amount Of Sample Submitted, May Affect Result

This report applies to the standards or procedures identified and to the samples tested only. The test results are not necessarily indicative or representative of the qualities of the lot from which the sample was taken or of apparently identical or similar products, nor do they represent an ongoing quality assurance program unless so noted. Unless otherwise noted, all quality control analyses for the samples noted above were within acceptable limits.

Where it is noted that a sample with excessive substrate was submitted for laboratory analysis, such analysis may be biased. The lead content of such sample may, in actuality, be greater than reported. EMC makes no warranty, express or implied, as to the accuracy of the analysis of samples noted to have been submitted with excessive substrate. Resampling is recommended in such situations to verify original laboratory results.

These reports are for the exclusive use of the addressed client and are rendered upon the condition that they will not be reproduced wholly or in part for advertising or other purposes over our signature or in connection with our name without special written permission. Samples not destroyed in testing are retained a maximum of sixty (60) days.

---

**ANALYST:** Jason Thompson  
**QA COORDINATOR:** Kurt Kettler

Rev. 11/30/08  
Page 1 of 1
**CHAIN OF CUSTODY**
EMC Laboratories
9830 S. 51st St., Ste B-109
Phoenix, AZ 85044
(800) 362-3373  Fax (480) 893-1726

**COMPANY NAME:** ENPRO Environmental
151 Hekili Street, Suite 210
Kailua, HI 96734

**CONTACT:**
Daisy Finch
Phone/Fax: 866-282-0909 / 808-288-2124
dfinch@enproenvironmental.com

**Now Accepting:**
VISA - MASTER CARD
Price Quoted: $________/Sample $________/Layers

**COMPLETE ITEMS 1-4:** (Failure to complete any item may cause a delay in processing or analyzing your samples)

1. **TURNAROUND TIME:**
   - [4hr rush]
   - [8hr rush]
   - [1-Day]
   - [2-Day]
   - [3-Day]
   - [4-Day]
   - [5-Day]
   - [6-10 Day]
   - _**Standard**_

   *** Prior to confirmation of turnaround time is required.
   *** Additional charges for rush analysis (please call marketing department for pricing details)
   *** Laboratory analysis may be subject to delay if credit terms are not met.

2. **TYPE OF ANALYSIS:**
   - [Bulk-PLM]
   - [Air-PCM]
   - [Lead]
   - [Point Count]
   - [Fungi: AOC, W-C, Bulk, Swab, Tape]

3. **DISPOSAL INSTRUCTIONS:**
   - [Dispose of samples at EMC]
   - [Return samples to me at my expense]
   - (If you do not indicate preference, EMC will dispose of samples 60 days from analysis)

4. **Project Name:** 153 W. Ka'ahumanu Ave. Kahului Maui
   **P.O. Number:**
   **Project Number:** 1902-00082-HAZ

<table>
<thead>
<tr>
<th>EMC SAMPLE #</th>
<th>CLIENT SAMPLE #</th>
<th>DATE &amp; TIME SAMPLED</th>
<th>LOCATION / MATERIAL TYPE</th>
<th>Samples Accepted</th>
<th>AIR SAMPLE INFO / COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A-1a</td>
<td>5/9/19</td>
<td>Cane Ceiling</td>
<td>Y N</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A-2a</td>
<td></td>
<td>Rectangle Acoustic tile ceiling</td>
<td>Y N</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A-3a</td>
<td></td>
<td>12x12 glued ac. tile ceiling</td>
<td>Y N</td>
<td>N</td>
</tr>
<tr>
<td>8</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A-4a</td>
<td></td>
<td>Drop ceiling tile</td>
<td>Y N</td>
<td>N</td>
</tr>
<tr>
<td>11</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>A-5a</td>
<td></td>
<td>Textured ceiling tile</td>
<td>Y N</td>
<td>N</td>
</tr>
<tr>
<td>14</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**SPECIAL INSTRUCTIONS:** Stop at first positive homogeneous layer per sample

**Sample Collector:** (Print) Daisy Finch  **(Signature)**

**Relinquished by:** D. Finch  **Date/Time:** 5/9/19  **Received by:** Fed Ex  **Date/Time:** 5/9/19

**Relinquished by:** Diana Fedorico  **Date/Time:** 4pm  **Received by:** Diana Fedorico  **Date/Time:** 4pm

**Relinquished by:** Diana Fedorico  **Date/Time:** 5/14/19  **Received by:** Diana Fedorico  **Date/Time:** 5/14/19

**In the event of any dispute between the above parties for these services or otherwise, parties agree that jurisdiction and venue will be in Phoenix, Arizona and prevailing party will be entitled to attorney's fees and court costs.**
**CHAIN OF CUSTODY**
EMC Laboratories
9830 S. 51st St., Ste B-109
Phoenix, AZ 85044
(800) 362-3373  Fax (480) 883-1726

**COMPANY NAME:** ENPRO Environmental
151 Heiki Street, Suite 210
Kailua, HI 96734

**CONTACT:**
Daisy Finch
Phone/Fax: 866-282-0909 / 808-288-2124
Email: dfinch@enproenvironmental.com

**Now Accepting:** VISA - MASTERCARD
Price Quoted: $ / Sample $ / Layers

**COMPLETE ITEMS 1-4:** (Failure to complete any items may cause a delay in processing or analyzing your samples)

1. **TURNAROUND TIME:** [4hr rush] [8hr rush] [1-Day] [2-Day] [3-Day] [4-Day] [5-Day] [6-10 Day]

   **Additional charges for rush analysis (please call marketing department for pricing details)
   **Laboratory analysis may be subject to delay if credit terms are not met

2. **TYPE OF ANALYSIS:** (Bulk-PLM) [Air-PCM] (Lead) [Point Count]
   [Fungi: AOC, W-C, Bulk, Swab, Tape]
   [Return samples to me at my expense]

3. **DISPOSAL INSTRUCTIONS:** (Dispose of samples at EMC)

   (if you do not indicate preference, EMC will dispose of samples 80 days from analysis)

4. **Project Name:** 153 W. Ka'ahumanu Ave. Kahului Maui
   **P.O. Number:**
   **Project Number:** 1902-00082-HAZ

<table>
<thead>
<tr>
<th>EMC SAMPLE #</th>
<th>CLIENT SAMPLE #</th>
<th>DATE &amp; TIME SAMPLED</th>
<th>LOCATION / MATERIAL TYPE</th>
<th>Samples Accepted</th>
<th>AIR SAMPLE INFO / COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>A-6a</td>
<td>5/9/19</td>
<td>Cove base</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>b</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>c</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>A-7a</td>
<td></td>
<td>Caulking (bathroom)</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>c</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>c</td>
<td></td>
<td>Carpet/mastic</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>A-8a</td>
<td></td>
<td>Carpet/mastic</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>b</td>
<td></td>
<td>Carpet/mastic</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>c</td>
<td></td>
<td>Carpet/mastic</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>A-9a</td>
<td></td>
<td>Canec walls</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>b</td>
<td></td>
<td>Canec walls</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>c</td>
<td></td>
<td>Canec walls</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Up - 1</td>
<td></td>
<td>Green Interior Paint</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td></td>
<td>Green Interior Paint</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>L-2</td>
<td></td>
<td>Brown Exterior Paint</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>L-5</td>
<td></td>
<td>Purple Interior</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

**SPECIAL INSTRUCTIONS:** Stop at first positive homogeneous layer per sample

Sample Collector: (Print) Daisy Finch
(Signature) [Signature]

Relinquished by: Diana Fedele
Date/Time: 5/9/19
Received by: Fed Ex
Date/Time: 5/9/19

Reelinquished by: Diana Fedele
Date/Time: 5/9/19
Received by: Fed Ex
Date/Time: 5/9/19

Reelinquished by: Diana Fedele
Date/Time: 5/9/19
Received by: Fed Ex
Date/Time: 5/9/19

**In the event of any dispute between the above parties for these services or otherwise, parties agree that jurisdiction and venue will be in Phoenix, Arizona and prevailing party will be entitled to attorney's fees and court costs.**
**CHAIN OF CUSTODY**
EMC Laboratories
9830 S. 51st St., Ste B-109
Phoenix, AZ 85044
(800) 362-3373 Fax (480) 893-1726

**Bill To:**

**Company Name:** ENPRO Environmental
151 Hekili Street, Suite 210
Kailua, HI 96734

**Contact:** Daisy Finch
Phone/Fax: 866-262-0909 / 808-265-2124
Email: dfinch@enproenvironmental.com

**Now Accepting:** VISA - MASTERCARD

**Price Quoted:** $ / Sample $ / Layers

**COMPLETE ITEMS 1-4:**
(Failure to complete any items may cause a delay in processing or analyzing your samples)

1. **Turnaround Time:** (4hr rush) (8hr rush) (1-Day) (2-Day) (3-Day) (4-Day) (5-Day) (6-10 Day)
   - **Prior to confirmation of turnaround time is required:**
   - **Additional charges for rush analysis (please consult marketing department for pricing details):**
   - **Laboratory analysis may be subject to delay if credit terms are not met:**
   - **Standard**

2. **Type of Analysis:** [Bulk-PLM] [Air-PCM] [Lead] [Point Count]
   - **Fungi: AOC, W-C, Bulk, Swab, Tape**

3. **Disposal Instructions:** [Disposal of samples at EMC] / [Return samples to me at my expense]
   - (If you do not indicate preference, EMC will dispose of samples 90 days from analysis)

**4. Project Name:** 153 W. Ka‘ahumanu Ave., Kahului, Maui
**P.O. Number:**
**Project Number:** 1902-00082-HAZ

<table>
<thead>
<tr>
<th>EMC SAMPLE</th>
<th>CLIENT</th>
<th>DATE &amp; TIME</th>
<th>LOCATION / MATERIAL</th>
<th>SAMPLES Accepted</th>
<th>AIR SAMPLE INFO / COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE #</td>
<td>SAMPLE #</td>
<td>SAMPLED</td>
<td>TYPE</td>
<td>Y / N</td>
<td>ON</td>
</tr>
<tr>
<td>16</td>
<td>A-2a</td>
<td>5/9/19</td>
<td>cove base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>A-7a</td>
<td>5/9/19</td>
<td>caulking (bathroom)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>A-8a</td>
<td>5/9/19</td>
<td>carpet/mastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>A-9a</td>
<td>5/9/19</td>
<td>concrete walls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>LP-1</td>
<td>5/9/19</td>
<td>white Interior Paint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>LP-2</td>
<td>5/9/19</td>
<td>Green Exterior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>LP-3</td>
<td>5/9/19</td>
<td>Brown Exterior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>LP-4</td>
<td>5/9/19</td>
<td>Purple Interior</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Special Instructions:** Stop at first positive homogeneous layer per sample

**Sample Collector:** Daisy Finch

**Requisition by:**

**Date/Time:** 5/9/19
**Received by:** Fed Ex
**Date/Time:** 5/9/19

**Signature:**

**In the event of any dispute between the above parties for these services or otherwise, parties agree that jurisdiction and venue will be in Phoenix, Arizona and prevailing party will be entitled to attorney’s fees and court costs.**
**CHAIN OF CUSTODY**
EMC Laboratories
9830 S. 51st St., Ste B-109
Phoenix, AZ 85044
(800) 362-3373  Fax (480) 893-1726

**COMPANY NAME:** ENPRO Environmental
151 Hekili Street, Suite 210
Kailua, HI 96734

**CONTACT:**
Daisy Finch
Phone/Fax: 866-262-0909 / 808-268-2124
Email: dfinch@enproenvironmental.com
Now Accepting: VISA - MASTERCARD

**BILL TO:**

Price Quoted: $ / Sample $ / Layers

**COMPLETE ITEMS 1-4:**
(Failure to complete any items may cause a delay in processing or analyzing your samples)

1. **TURNAROUND TIME:**
   - [4hr rush]  [8hr rush]  [1-Day]  [2-Day]  [3-Day]  [4-Day]  [5-Day]  [6-10 Day]
   - Prior to confirmation of turnaround time is required.

2. **TYPE OF ANALYSIS:**
   - [Bulk-PLM]  [Air-PCM]  [Lead]  [Point Count]
   - Fungi: AOC, W-C, Bulk, Swab, Tape

3. **DISPOSAL INSTRUCTIONS:**
   - [Dispose of samples at EMC] / [Return samples to me at my expense]
   - (if you do not indicate preference, EMC will dispose of samples 60 days from analysis)

4. **Project Name:** 153 W. Ka‘ahumanu Ave. Kahului Maui
**P.O. Number:**
**Project Number:** 1902-00082-HAZ

<table>
<thead>
<tr>
<th>EMC SAMPLE #</th>
<th>CLIENT SAMPLE #</th>
<th>DATE &amp; TIME SAMPLED</th>
<th>LOCATION / MATERIAL TYPE</th>
<th>Samples Accepted</th>
<th>AIR SAMPLE INFO / COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>LP-5</td>
<td>5/9/19</td>
<td>Brown Interior Paint</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

**SPECIAL INSTRUCTIONS:** Stop at first positive homogeneous layer per sample

Sample Collector: (Print) Daisy Finch  (Signature) D. Finch

Relinquished by: D. Finch  Date/Time: 5/9/19
Relinquished by: Daisy Finch  Date/Time: 5/9/19
Relinquished by: Daisy Finch  Date/Time: 5/9/19

Received by: Fed Ex  Date/Time: 5/9/19
Received by:  Date/Time: 5/9/19
Received by:  Date/Time: 5/9/19

**In the event of any dispute between the above parties for these services or otherwise, parties agree that jurisdiction and venue will be in Phoenix, Arizona and prevailing party will be entitled to attorney’s fees and court costs.**
Appendix H

Limited Asbestos, TCPL, and Lead-Based Paint Sampling and Analysis
January 21, 2020

Mr. Jeffrey H. Overton
G70
111 South King Street, Suite 170
Honolulu, Hawaii 96817

RE: Limited Asbestos, TCLP, and Lead-Based Paint Sampling and Analysis
153 West Ka’ahumanu Avenue
Kahului, Hawaii
ENPRO Project Number: 1902-00082-HAZ

Dear Mr. Overton,

This letter is in regard to the limited asbestos, Toxicity Characteristic Leaching Procedure (TCLP) and lead-based paint sampling and analysis, conducted on December 27, 2019 at the above referenced property. The purpose of this project was to collect and analyze samples of certain suspect asbestos containing materials (ACM) from the roof of the former education building as well as the collapsed structure adjacent to the former education building, collect a representative sample of building materials for TCLP lead analysis from the collapsed structure, and collect representative paint chip samples for total lead analysis from the collapsed structure. Sampling focused on materials which may be disturbed during demolition activities.

Asbestos

Specific materials for asbestos sampling and analysis included:

- Roofing materials with associated layers from the former education building and collapsed structure
- Canec board from the collapsed structure

Three samples of each suspect material were collected by a State of Hawaii Department of Health (DOH) certified asbestos inspector (HIASB certification # 4262) and submitted to an independent laboratory for asbestos analysis.
The suspect asbestos samples were analyzed by polarized light microscopy using EPA Method 600/M4-82-020 by Hawaii Analytical Laboratory, LLC, a NVLAP (National Voluntary Laboratory Accreditation Program) accredited laboratory. The results for the samples are listed in the following table:

### Table 1

Asbestos Sampling Locations and Analytical Results

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>LOCATION</th>
<th>MATERIAL</th>
<th>ASBESTOS DETECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1 (a, b, c)</td>
<td>Asphalt Roof of Former Education Building</td>
<td>Black felt, Black mastic material, Black shingle, Black shingle (1), Black shingle (2)</td>
<td>No, No, No, No, No</td>
</tr>
<tr>
<td>A-2 (a, b, c)</td>
<td>Thermoplastic Polyolefin Roof of Former Education Building</td>
<td>Off-white/black membrane material, Brown fibrous layer, Yellow foam</td>
<td>No, No, No</td>
</tr>
<tr>
<td>A-3 (a*, b*, c)</td>
<td>Roof of Collapsed Structure</td>
<td>Black roofing tar material, Black shingle, <strong>Black mastic</strong></td>
<td>No, No, Yes</td>
</tr>
<tr>
<td>A-4 (a, b, c)</td>
<td>Collapsed Structure</td>
<td>White/brown canec board</td>
<td>No</td>
</tr>
</tbody>
</table>

Based on the analytical results, the following material from the roof of the collapsed structure contained asbestos:

- Black mastic, 4% chrysotile

National Emission Standards for Hazardous Air Pollutants (NESHAP) states that if asbestos is identified in amounts less than 10%, the owner or operator of the building must elect to assume the amount to be greater than 1% and treat the material as asbestos-containing material or request verification of the amount by point counting. All sampled materials containing <1% asbestos must be further analyzed via point count or assumed and handled as ACM.

To the extent feasible, the roofing material of the collapsed structure should be segregated and disposed as asbestos containing material. Due to the condition of the structure, this work would be expected to require a variance from the DOH. We recommend that an Asbestos Abatement Work Plan be prepared and submitted to the DOH for review, along with a request for a variance to perform this work.
Workers disturbing any quantity of ACM must have minimum United States Occupational Safety and Health Administration (OSHA) asbestos awareness training as specific to the class of disturbance work. A ten-day notification to the DOH is required for the removal of 160 square feet or 260 linear feet or more of Regulated ACM, however a courtesy notification is recommended for smaller quantities of ACM.

TCLP

A composite sample of the components of the waste to be generated during demolition of the collapsed structure adjacent to the former educational building was collected. The sample was assembled to represent each component in proportion to its contribution to the total volume of the waste. The selected increments or each waste material were combined as one composite sample for TCLP lead analysis using EPA Method 1311m/7000Bm. The result of the sample is listed in the table on the following page.

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>LOCATION</th>
<th>MATERIAL</th>
<th>TCLP - LEAD (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLP-1</td>
<td>Collapsed structure adjacent to the former educational building</td>
<td>Bulk</td>
<td>2.4</td>
</tr>
</tbody>
</table>

The composite sample collected for TCLP testing for leachable lead indicated the presence of 2.4 mg/L of leachable lead, which is below the EPA’s regulatory level of 5 mg/L.

Based on the result of the TCLP sampling and analysis, there are no special handling or disposal requirements.

Lead Paint

A total of two paint chip samples were collected from the collapsed structure adjacent to the former educational building. The samples were analyzed for total lead by flame atomic absorption spectrophotometry (FAAS) using the National Institute for Occupational Safety and Health (NIOSH) Method 7082m. The results of the samples are listed in the following table:
Table 3
Building Materials Sampling Locations and Analytical Results
Lead-Based Paint

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>LOCATION</th>
<th>MATERIAL</th>
<th>LEAD (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP-1</td>
<td>Collapsed structure adjacent to the former educational building, exterior</td>
<td>Paint-Green</td>
<td>6,100</td>
</tr>
<tr>
<td>LP-2</td>
<td>Collapsed structure adjacent to the former educational building, exterior</td>
<td>Paint-Brown</td>
<td>19,000</td>
</tr>
</tbody>
</table>

Based on the analytical results, sample LP-1 and sample LP-2 were determined to be lead-based paint. Lead-based paint is classified as any paint containing 5,000 milligrams per kilogram of lead or greater.

EPA regulations effective April 2010 require that specialized lead-based paint training is required for all renovators/painters who disturb greater than six square feet of interior painted surfaces per room or greater than twenty square feet of exterior painted surfaces in target housing and child-occupied facilities constructed prior to 1978.

Additional regulations specifically addressing lead-based paint include Housing and Urban Development (HUD) (1995) guidelines and the Consumer Product Safety Act (1977). These regulations are for housing and consumer products.

If the property is to undergo renovation or demolition, OSHA regulations apply to abatement workers. At a minimum OSHA requires lead awareness training for all workers who may be exposed to airborne lead concentrations above the OSHA Action Level (AL) of thirty micrograms per cubic meter (30 μg/m³) for an 8-hour time-weighted average (TWA). Additionally, demolition must be sampled and tested (per TCLP) to meet municipal disposal site acceptance criteria (see prior section). Following demolition and removal of the building we recommend sampling soil beneath the building footprint for lead and organochlorine termiticides.

It has been a pleasure to be of service to you. Please contact me at 748-2116 if you have any questions regarding this project.

Sincerely,

Shawn Champion
Environmental Professional
HIASB Certification Number 4790

Enclosures: Laboratory Reports
Photographs
LABORATORY REPORT
## Bulk Asbestos Determination

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Your Sample Description</th>
<th>Asbestos Present?</th>
<th>Type</th>
<th>%v/v</th>
<th>Other Fibrous</th>
<th>%v/v</th>
<th>Matrix</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>201965729</td>
<td>A-1a Asphalt roof adult school NE</td>
<td>NONE DETECTED</td>
<td>Cellulose / wood fiber (undulose)</td>
<td>20</td>
<td>Tar</td>
<td></td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Black felt</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965729</td>
<td>A-1a Asphalt roof adult school NE</td>
<td>NONE DETECTED</td>
<td>None detected</td>
<td></td>
<td>Tar</td>
<td></td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Black mastic material</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965729</td>
<td>A-1a Asphalt roof adult school NE</td>
<td>NONE DETECTED</td>
<td>Fibrous glass (amorphous)</td>
<td>10</td>
<td>Tar + aggregate</td>
<td></td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Black shingle</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965730</td>
<td>A-1b Asphalt roof adult school SW</td>
<td>NONE DETECTED</td>
<td>Cellulose / wood fiber (undulose)</td>
<td>20</td>
<td>Tar</td>
<td></td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Black felt</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965730</td>
<td>A-1b Asphalt roof adult school SW</td>
<td>NONE DETECTED</td>
<td>Fibrous glass (amorphous)</td>
<td>10</td>
<td>Tar + aggregate</td>
<td></td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Black shingle (1)</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965730</td>
<td>A-1b Asphalt roof adult school SW</td>
<td>NONE DETECTED</td>
<td>Fibrous glass (amorphous)</td>
<td>10</td>
<td>Tar + aggregate</td>
<td></td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Black shingle (2)</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Bulk Asbestos Determination

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Your Sample Description</th>
<th>Asbestos Present?</th>
<th>%v/v</th>
<th>Other Fibrous</th>
<th>%v/v</th>
<th>Matrix</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>201965731</td>
<td>A-1c Asphalt roof adult school SE</td>
<td>NONE DETECTED</td>
<td>Cellulose / wood fiber (undulose)</td>
<td>20</td>
<td>Tar</td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Black felt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965731</td>
<td>A-1c Asphalt roof adult school SE</td>
<td>NONE DETECTED</td>
<td>None detected</td>
<td>Tar</td>
<td>1/2/2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Black mastic material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965731</td>
<td>A-1c Asphalt roof adult school SE</td>
<td>NONE DETECTED</td>
<td>Fibrous glass (amorphous)</td>
<td>10</td>
<td>Tar + aggregate</td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Black shingle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965732</td>
<td>A-2a TPO roof adult school SW</td>
<td>NONE DETECTED</td>
<td>Synthetic fiber (undulose)</td>
<td>2</td>
<td>Binder + other</td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Off-white/black membrane material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965733</td>
<td>A-2b TPO roof adult school S</td>
<td>NONE DETECTED</td>
<td>Cellulose (undulose) + fibrous glass (amorphous)</td>
<td>85</td>
<td>Binder</td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Brown fibrous layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965733</td>
<td>A-2b TPO roof adult school S</td>
<td>NONE DETECTED</td>
<td>Synthetic fiber (undulose)</td>
<td>5</td>
<td>Binder + other</td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Off-white/black membrane material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965733</td>
<td>A-2b TPO roof adult school S</td>
<td>NONE DETECTED</td>
<td>None detected</td>
<td>Foam</td>
<td>1/2/2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Yellow foam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965734</td>
<td>A-2c TPO roof adult school SE</td>
<td>NONE DETECTED</td>
<td>Synthetic fiber (undulose)</td>
<td>2</td>
<td>Binder + other</td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td>Off-white/black membrane material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Bulk Asbestos Determination

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Your Sample Description</th>
<th>Asbestos Present?</th>
<th>Type</th>
<th>%v/v</th>
<th>Other Fibrous</th>
<th>%v/v</th>
<th>Matrix</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>201965735</td>
<td>A-3a Roofing collapsed building N</td>
<td>NONE DETECTED</td>
<td>Cellulose (undulose)</td>
<td>20</td>
<td>Tar</td>
<td></td>
<td></td>
<td>1/2/2020</td>
</tr>
<tr>
<td>Layer</td>
<td>Black roofing tar material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965735</td>
<td>A-3a Roofing collapsed building N</td>
<td>NONE DETECTED</td>
<td>Fibrous glass (amorphous)</td>
<td>10</td>
<td>Tar + aggregate</td>
<td></td>
<td></td>
<td>1/2/2020</td>
</tr>
<tr>
<td>Layer</td>
<td>Black shingle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965736</td>
<td>A-3b Roofing collapsed building E</td>
<td>NONE DETECTED</td>
<td>Cellulose (undulose)</td>
<td>20</td>
<td>Tar</td>
<td></td>
<td></td>
<td>1/2/2020</td>
</tr>
<tr>
<td>Layer</td>
<td>Black roofing tar material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965736</td>
<td>A-3b Roofing collapsed building E</td>
<td>NONE DETECTED</td>
<td>Fibrous glass (amorphous)</td>
<td>10</td>
<td>Tar + aggregate</td>
<td></td>
<td></td>
<td>1/2/2020</td>
</tr>
<tr>
<td>Layer</td>
<td>Black shingle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965737</td>
<td>A-3c Roofing collapsed building S</td>
<td>Yes</td>
<td>Chrysotile</td>
<td>4</td>
<td>None detected</td>
<td></td>
<td>Tar + aggregate</td>
<td>1/2/2020</td>
</tr>
<tr>
<td>Layer</td>
<td>Black mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965737</td>
<td>A-3c Roofing collapsed building S</td>
<td>NONE DETECTED</td>
<td>Cellulose (undulose)</td>
<td>20</td>
<td>Tar</td>
<td></td>
<td></td>
<td>1/2/2020</td>
</tr>
<tr>
<td>Layer</td>
<td>Black roofing tar material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965737</td>
<td>A-3c Roofing collapsed building S</td>
<td>NONE DETECTED</td>
<td>Fibrous glass (amorphous)</td>
<td>10</td>
<td>Tar + aggregate</td>
<td></td>
<td></td>
<td>1/2/2020</td>
</tr>
<tr>
<td>Layer</td>
<td>Black shingle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965738</td>
<td>A-4a Canec collapsed building N</td>
<td>NONE DETECTED</td>
<td>Cellulose / wood fiber (undulose)</td>
<td>85</td>
<td>Binder + paint</td>
<td></td>
<td></td>
<td>1/2/2020</td>
</tr>
<tr>
<td>Layer</td>
<td>White/brown canec board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENPRO Environmental
151 Hekil Street, Suite 210
Kailua HI 96734

Lab Job No: 201911063
Date Submitted: 12/30/2019
Your Project: 1902-00082-HAZ, 153 W. Kaahumanu Ave Kahului, 12/27/19

---

Bulk Asbestos Determination

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Your Sample Description</th>
<th>Asbestos Present?</th>
<th>Type</th>
<th>%/v</th>
<th>Other Fibrous</th>
<th>%/v</th>
<th>Matrix</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>201965739</td>
<td>A-4b Canec collapsed building E</td>
<td>NONE DETECTED</td>
<td>Cellulose / wood fiber (undulose)</td>
<td>85</td>
<td>Binder + paint</td>
<td></td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965740</td>
<td>A-4c Canec collapsed building S</td>
<td>NONE DETECTED</td>
<td>Cellulose / wood fiber (undulose)</td>
<td>85</td>
<td>Binder + paint</td>
<td></td>
<td>1/2/2020</td>
<td></td>
</tr>
<tr>
<td>Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Comments
The bulk sample[s] analysis subject of this analytical report were conducted in general accordance with the procedures outlined in the United States Environmental Protection Agency’s “Interim Method for the Determination of Asbestos in Bulk Insulation Samples” (EPA-600/M4-82-020, Dec. 1982) and / or “Method for Determination of Asbestos in bulk Building Materials” (EPA-600/R-93-116, July 1993). The analysis of each bulk sample relates only to the material examined, and may or may not represent the overall composition of its original source. Floor tile and other resinously bound materials, when analyzed by the EPA methods referenced above may yield false negative results because of limitations in separating closely bound fibers and in detecting fibers of small length and diameter. Alternative methods of identification, including Transmission Electron Microscopy (TEM) may or may not be applicable. We utilize calibrated visual area estimation on a routine basis and do not conduct point counting unless specifically requested to do so. Estimated error for the visual determinations presented are 50% relative (1 to 5%); 25% relative (6 to 25%) and 20% (>26% v/v). We will not separate layers which in our opinion are not readily discernable. This report is not to be duplicated except in full without the expressed written permission of Hawaii Analytical Laboratory. This report must not be used by the client to claim product certification, approval or endorsement by NVLAP, NIST or any agency of Federal Government. Unless otherwise indicated, the sample condition at the time of receipt was acceptable.

Results and Symbols Definitions
> This testing result is greater than the numerical value listed.
< This testing result is less than the numerical value listed.
None Detected = asbestos was not observed in the sample. If trace amount of asbestos was detected below our quantifiable limits of 1.0%, <1% (trace) would be indicated and the asbestos type listed. Point counting, where applicable, are recommended to improve accuracy.

Jennifer Hsu Liao
Laboratory Manager

Hawaii Analytical Laboratory is a NIST NVLAP accredited laboratory (NVLAP Lab Code 200655-0) and is accredited in accordance with the recognized ISO/IEC 17025:2017. Controlled doc.: Asbestos Report, rev. 2 - 20190622
### Lead, total (paint chips)

NIOSH Method: 7082m LEAD by FAAS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Your Sample Description</th>
<th>Results</th>
<th>Units</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>201965741</td>
<td>LP-1 Green paint collapsed building</td>
<td>6100</td>
<td>mg/kg</td>
<td>12/30/2019</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201965742</td>
<td>LP-2 Brown paint collapsed building</td>
<td>19000</td>
<td>mg/kg</td>
<td>12/30/2019</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### TCLP Lead #

EPA Method: 1311m/7000Bm

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Your Sample Description</th>
<th>Results</th>
<th>Units</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>201965743</td>
<td>TCLP Collapsed building</td>
<td>2.4</td>
<td>mg/L</td>
<td>1/3/2020</td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
All Quality Control data are acceptable unless otherwise noted.
MRL for lead air is 5ug.
MRL for lead wipe is 10ug.
MRL for lead paint or soil is 40 mg/kg for a 0.25g sample.

General Comments
The sample[s] analysis subject of this analytical report were conducted in general accordance with the procedures associated with the "analytical method" referenced above. Modifications to this methodology may have been made based upon the analyst's professional judgment and/or sample matrix effects encountered. The analysis of sample relates only to the sample analyzed, and may or may not be representative of the original source of the material submitted for our analysis. All analysts participate in interlaboratory quality control testing to continuously document proficiency. This report is not to be duplicated except in full without the expressed written permission of Hawaii Analytical Laboratory. This report should not be construed as an endorsement for a product or a service by the AIHA LAP, LLC or any affiliated organizations. Sample and associated sampling/collection data is reported as provided by client. TWA values have been calculated based on information supplied by the client that the laboratory has not independently verified. Results have not been corrected for blank determinations unless noted in remarks. Unless otherwise indicated the sample condition at the time of receipt was acceptable.

Results and Symbols Definitions
> This testing result is greater than the numerical value listed.
< This testing result is less than the numerical value listed.
# = Analytical methods marked with an "#" are not within our AIHA LAP, LLC Scope of Accreditation.
MRL = Method Reporting Limit.

Jennifer Hsu Liao
Laboratory Manager

Hawaii Analytical Laboratory (101812) is accredited by the AIHA LAP, LLC in the EMLAP, IHLAP, and ELLAP programs for the scope of work listed on www.aihaaccreditedlabs.org, in accordance with the recognized ISO/IEC 17025:2005. AIHA is a NLLAP recognized accrediting body. Controlled doc.: Lead Report, rev. 3 – 20181015
<table>
<thead>
<tr>
<th>Sample Identification*</th>
<th>Date Sampled* (mm/dd/yy)</th>
<th>Collection Medium</th>
<th>Sample Area / Air Volume</th>
<th>Analysis Requested*</th>
<th>Method Reference</th>
<th>Lab ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1a asphalt roof adult school</td>
<td>NE 12/27/19</td>
<td>Buck</td>
<td></td>
<td>PLM</td>
<td></td>
<td>201965729</td>
</tr>
<tr>
<td>A-1b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965730</td>
</tr>
<tr>
<td>A-1c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965731</td>
</tr>
<tr>
<td>A-2a tro roof adult school</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965732</td>
</tr>
<tr>
<td>A-2b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965733</td>
</tr>
<tr>
<td>A-2c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965734</td>
</tr>
<tr>
<td>A-2a roofing collapsed building N</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965735</td>
</tr>
<tr>
<td>A-3b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965736</td>
</tr>
<tr>
<td>A-3c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965737</td>
</tr>
<tr>
<td>A-4a canoe collapsed building N</td>
<td>SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965738</td>
</tr>
<tr>
<td>A-4b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965739</td>
</tr>
<tr>
<td>A-4c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965740</td>
</tr>
<tr>
<td>Sample Identification*</td>
<td>Date Sampled* (mm/dd/yyyy)</td>
<td>Collection Medium</td>
<td>Sample Area / Air Volume</td>
<td>Analysis Requested*</td>
<td>Method Reference</td>
<td>Lab ID</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>LP-1 green paint</td>
<td>12/27/19</td>
<td>PAINT</td>
<td></td>
<td>LEAD</td>
<td></td>
<td>201965741</td>
</tr>
<tr>
<td>LP-2 brown paint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>201965742</td>
</tr>
<tr>
<td>TCLP collapsed building</td>
<td></td>
<td>BULK</td>
<td></td>
<td>TCLP LEAD</td>
<td></td>
<td>201965743</td>
</tr>
</tbody>
</table>

**Sample description can be paint chips, concrete, specific sample collection location, etc.**

If matrix is 'cell', please specify if it is a FOREIGN SOIL SAMPLE (outside Hawaii) in the comment section.

All samples submitted are subject to Hawaii Analytical Laboratory terms and conditions.

*Required fields, failure to complete these fields may result in a delay in your samples being processed.

Rev 20140701

Hawaii Analytical Laboratory, Chain of custody, rev 20140701
PHOTOGRAPHS
Photo 1
153 West Kaahumanu Avenue, Former Education Building, Facing Northeast

Project Number: 1902-00082-HAZ
153 West Ka’ahuamnu Avenue
Date of Photos: December 27, 2019
Photo 2
153 West Kaahumanu Avenue, Collapsed Building, Facing East

Project Number: 1902-00082-HAZ
153 West Kaʻahumanu Avenue
Date of Photos: December 27, 2019
Photo 3
Asbestos Sample A1-a, Asphalt Roof, Northeast, Former Education Center Building

Project Number: 1902-00082-HAZ
153 West Ka’ahuamnu Avenue
Date of Photos: December 27, 2019
Photo 4

Asbestos Sample A1-b, Asphalt Roof, Southwest, Former Education Center Building
Photo 5
Asbestos Sample A1-c, Asphalt Roof, Southeast, Former Education Center Building

Project Number: 1902-00082-HAZ
153 West Ka’ahumnu Avenue
Date of Photos: December 27, 2019
Photo 6

Asbestos Sample A2-a, Thermoplastic Polyolefin Roof, Southwest, Former Education Center Building
Photo 7
Asbestos Sample A2-b, Thermoplastic Polyolefin Roof, South, Former Education Center Building

Project Number: 1902-00082-HAZ
153 West Ka’ahumnu Avenue
Date of Photos: December 27, 2019
Photo 8
Asbestos Sample A2-c, Thermoplastic Polyolefin Roof, Southeast, Former Education Center Building

Project Number: 1902-00082-HAZ
153 West Kaʻahuanu Avenue
Date of Photos: December 27, 2019
Photo 9

Asbestos Sample A3-a, Asphalt Roof, North, Collapsed Structure
Photo 10

Asbestos Sample A3-b, Asphalt Roof, East, Collapsed Structure
Photo 11
Asbestos Sample A3-c, Asphalt Roof, South, Collapsed Structure

Project Number: 1902-00082-HAZ
153 West Kaʻahuamnu Avenue
Date of Photos: December 27, 2019
Photo 12
Asbestos Sample A4-a, Canec Board, North, Collapsed Structure

Project Number: 1902-00082-HAZ
153 West Ka’ahumanu Avenue
Date of Photos: December 27, 2019
Photo 13

Asbestos Sample A4-b, Canec Board, East, Collapsed Structure

Project Number: 1902-00082-HAZ
153 West Ka’ahuamnu Avenue
Date of Photos: December 27, 2019
Photo 14

Asbestos Sample A4-c, Canec Board, South, Collapsed Structure

Project Number: 1902-00082-HAZ

153 West Ka’ahumnu Avenue

Date of Photos: December 27, 2019
Photo 15
Lead Paint Chip Sample L-1, Green Paint, Exterior, Collapsed Structure

Project Number: 1902-00082-HAZ
153 West Ka’ahumanu Avenue
Date of Photos: December 27, 2019
Lead Paint Chip Sample L-2, Brown Paint, Exterior, Collapsed Structure
Photo 17
Toxicity Characteristic Leaching Procedure (TCLP) – Lead Sample, Collapsed Structure

Project Number: 1902-00082-HAZ
153 West Ka‘ahuamnu Avenue
Date of Photos: December 27, 2019
Appendix I

Mobility Analysis Report
Mobility Analysis Report (MAR) for the Proposed Kahului Civic Center Mixed-Use Complex

Prepared for: G7o

December 7, 2021 (Final)

SD19-0304

Fehr Peers
# Table of Contents

1. **Executive Summary** ................................................................................................................... 1

2. **Introduction** ............................................................................................................................... 4
   2.1 Project Description .................................................................................................................. 4
   2.2 Study Area ............................................................................................................................. 4
   2.3 Study Scenarios ....................................................................................................................... 7
   2.4 Traffic Analysis Methods ....................................................................................................... 7
      2.4.1 Signalized Intersections ................................................................................................. 8
      2.4.2 Unsignalized Intersections ............................................................................................ 8
      2.4.3 Significant Impact Criteria .......................................................................................... 9

3. **Existing Conditions** ................................................................................................................. 11
   3.1 Existing Site and Transportation Facilities ........................................................................... 11
      3.1.1 Existing Transit Facilities and Services ...................................................................... 11
      3.1.2 Existing Bicycle Activity ........................................................................................... 11
      3.1.3 Existing Pedestrian Activity ....................................................................................... 12
      3.1.4 Collision History ......................................................................................................... 12
      3.1.5 Existing Roadway System .......................................................................................... 13
   3.2 Existing Traffic Volumes/Lane Configurations ....................................................................... 15
   3.3 Existing Intersection Operations ........................................................................................... 16
      3.3.1 Consistency with Previous Analyses ........................................................................... 16
      3.3.2 Warrant Analysis ........................................................................................................ 16

4. **Future (2026) No Project Conditions** .................................................................................... 19
   4.1 Future (2026) No Project Traffic Estimates .......................................................................... 19
      4.1.1 Areawide Growth ......................................................................................................... 19
      4.1.2 Future Transportation Improvements ........................................................................... 20
   4.2 Future (2026) No Project Intersection Levels of Service .................................................. 20

5. **Project Traffic Estimates** .......................................................................................................... 23
   5.1 Project Trip Generation Estimates ........................................................................................ 23
   Project Trip Distribution and Assignment .................................................................................. 25

6. **Future (2026) Plus Project Conditions** .................................................................................. 28
   6.1 Future (2026) Plus Project Intersection Levels of Service ................................................ 28
      Recommended Improvement ................................................................................................. 31
7. Site Access, Circulation, and Parking ................................................................. 32
   7.1 Site Access ........................................................................................................... 32
   7.2 Collision Assessment .......................................................................................... 33
   7.3 On-Site Circulation & Parking ......................................................................... 33
8. Multimodal Assessment ......................................................................................... 35
   8.1 Transit Facilities and Services ........................................................................... 35
   8.2 Bicycle Facilities ............................................................................................... 35
   8.3 Pedestrian Facilities ......................................................................................... 35
   8.4 Future Improvements ....................................................................................... 36

Appendices

Appendix A: Historic Traffic Count Data
Appendix B: Annual Growth Rate Calculation
Appendix C: LOS Worksheets
Appendix D: Intersection Control Warrants
Appendix E: Cumulative Project Trip Generation
List of Figures

Figure 1: Project Location and Study Intersections ................................................................. 5
Figure 2: Project Site Plan ........................................................................................................... 6
Figure 3: Peak Hour Traffic Volumes and Lane Configurations – Existing (2020) Conditions .......... 17
Figure 4: Peak Hour Traffic Volumes and Lane Configurations – Future (2026) No Project Conditions ...... 21
Figure 5: Project Trip Distribution............................................................................................. 26
Figure 6: Project Trip Assignment ............................................................................................ 27
Figure 7: Peak Hour Traffic Volumes and Lane Configurations – Future (2026) Plus Project Conditions.... 29
Figure 8: Conceptual Site Access ............................................................................................... 34
Figure 9: Multimodal Circulation ............................................................................................. 37
- Alternate 1: Install a protected intersection at Kane Street and Vevau Street, with one-way
  protected bicycle lanes and a raised midblock crosswalk between Vevau Street and
  Kamehameha Avenue ............................................................................................................. 38
- Alternate 2: Install a raised intersection at Kane Street and Vevau Street, with a shared-use
  path on the east side of the street and a raised midblock crosswalk between Vevau Street and
  Kamehameha Avenue ............................................................................................................. 38

List of Tables

Table 1: Signalized Intersection LOS Definitions ........................................................................ 8
Table 2: Unsignalized Intersection LOS Definitions ...................................................................... 9
Table 3: Existing Transit Services ............................................................................................... 12
Table 4: Existing (2020) Intersection Levels of Service .............................................................. 18
Table 5: Future (2026) No Project Intersection Levels of Service ............................................... 20
Table 6: Project Vehicle Trip Generation Estimates ..................................................................... 24
Table 7: Future (2026) Without and With Project Intersection Levels of Service ......................... 30
1. Executive Summary

This report documents the assessment of traffic, mobility, and access with the proposed redevelopment of the site located at 153 West Kaahumanu Avenue (Tax Map Key: (2) 3-7-004:003 (por.)) in the community of Kahului, on the island of Maui. The Kahului Civic Center Mixed-Use Complex project (i.e., the “Project”) is proposed by the State of Hawai‘i (State), Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC) and is a collaborative effort with the State Department of Accounting and General Services. The project primarily involves the construction of affordable and market-rate multi-family housing (multi-family housing) and a State Kahului Civic Center (Civic Center) that will replace an existing adult community school building on the site.

Approximately 300 multi-family dwelling units (mixture of 1-, 2- and 3-bedroom units) will be provided in two buildings (both roughly six stories), and approximately 414 parking spaces will be provided in two three-level parking podiums for the multi-family housing. The preliminary program for the Civic Center (roughly four stories) includes space for State offices, the State Department of Education’s (DOE) McKinley Community School for Adults, and the Kahului Public Library. A parking deck built over a surface parking lot will provide approximately 182 parking spaces for the Civic Center. Community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center. For purposes of this analysis the Civic Center is assumed to include: 38,000 sf for State office space, 16,000 sf for the Kahului Public Library, 7,000 sf for the State DOE’s McKinley Community School for Adults, and 5,000 sf for a community-oriented commercial space. The Civic Center program spaces may be adjusted due to the needs and priorities of State agencies and availability of funding. The project is anticipated to be built and fully occupied by 2026. Vehicular access to the site is proposed via two driveways: 1) one on Kane Street approximately 190 feet north of Vevau Street, and 2) one on Vevau Street approximately 150 feet east of Kane Street.

The impacts of the proposed project to mobility and access surrounding the project site were evaluated following guidelines and standards of the affected government agencies, including the County of Maui and the State of Hawaii Department of Transportation (HDOT). A multimodal evaluation of potential mobility effects from the project was conducted to determine potential impacts to walking, biking, transit, and traffic operations. Seven study intersections in the vicinity of the project were evaluated during the weekday morning (AM) and evening (PM) peak hours for Existing (2020) conditions and for Future (2026) conditions without and with the project.

Trip generation for the facility was determined based on standard trip rates published in the Trip Generation Manual (10th Edition, 2017) by the Institute of Transportation Engineers (ITE), as well as appropriate reductions to account for the mix of uses and the travel characteristics of other uses in this part of Kahului. The proposed project is expected to generate 2,378 net new daily vehicle trips, including 151 net new vehicle trips during the AM peak hour (73 inbound/78 outbound) and 223 net new vehicle trips during the PM peak hour (102 inbound/118 outbound).

Key findings of the mobility analysis are summarized below:
• The project will not have a significant impact at any study intersection. However, operations at Kane Street/Vevau Street are expected to be LOS F for the side street approaches in the PM peak hour, both without and with the project. Furthermore, without providing additional capacity or modifying traffic control at Kane Street/Vevau Street, the westbound queues are projected to extend past the project driveway on Vevau Street in the PM peak hour.

• To improve operations at the Kane Street/Vevau Street intersection, the existing traffic control devices would have to be modified to provide additional gaps in traffic on Kane Street. A multi-way stop warrant is projected to be met at the Kane Street/Vevau Street intersection under Existing (2020) conditions, as well as under Future (2026) conditions both without and with the project. This improvement would result in average vehicle delays of 12.5 and 17.8 seconds in the AM and PM peak hours, respectively. An evaluation of volume warrants for a traffic signal shows that a signal is not warranted under any of the study scenarios. Because the all-way stop control (AWSC) is expected to be warranted without the project, the new development would typically be required to contribute its fair share (30.1%) toward the design and installation. If AWSC is not implemented, a rectangular rapid-flashing beacon (RRFB) should be installed to enhance pedestrian access and safety.

• The section of Kane Street between Vevau Street and West Kaahumanu Avenue should be restriped to allow partial access to the project site via a driveway on the east side of Kane Street. Given the proximity of the Kane Street driveway to the Kane Street/Vevau Street intersection and potential safety issues with outbound vehicles crossing a left-turn lane, it is recommended that left turns out of the Kane driveway be prohibited.

• The project will provide a total of 596 parking spaces. Although the unadjusted required parking supply is 774 spaces, the project is centrally located within the community of Kahului, which provides nearby transit, pedestrian, and bicycle access. Furthermore, the live/work mixed uses that make up the project will allow for sharing of the parking deck spaces. Therefore, per the Maui County Code Chapter 19.368.100 reduction criteria (which allows for up to a 50% reduction), the on-site parking at the proposed project is expected to be sufficient, and no substantial parking issues are anticipated. For all project uses combined, the proposed parking supply is 23% less than the unadjusted requirement.

• Short-term bicycle parking (e.g., bicycle racks) should be provided on the project site near the main entrance to the building housing commercial uses, which would allow employees and visitors to secure their bicycles while inside the project. Bicycle storage should be provided in or near the residential buildings to allow for longer-term bicycle storage for residents.

• The following pedestrian enhancements at Kane Street/Vevau Street are recommended:
  o Restripe the southbound Kane Street approach to Vevau Street to be a southbound right-turn lane, a southbound through lane, and a southbound left-turn lane. This improvement would result in average vehicle delays of 13.3 and 19.0 seconds in the AM and PM peak hours, respectively.
- Implement AWSC control to improve intersection operations as noted above. If AWSC is not implemented by the County of Maui, an alternative pedestrian enhancement would be to provide a rectangular rapid flashing beacon (RRFB) for the crosswalk on the north leg of the intersection to improve pedestrian safety.

- Construct a curb extension on the southwest corner of the intersection to shorten the pedestrian crossing distance.

- The County of Maui Department of Public Works is currently preparing plans for Complete Streets improvements on Kane Street from West Kaahumanu Avenue to West Kamehameha Avenue. These improvements include wider sidewalks for pedestrians, separate bicycle facilities for cyclists, and enhancements at the Kane Street/Vevau Street intersection to shorten pedestrian crossings and manage vehicle speeds. While the improvement plans are still being developed and several alternative cross-sections are being considered, the project site plan will be designed to accommodate the County improvements and the recommendations listed above are consistent with Complete Streets guidelines and best practices.
2. Introduction

This mobility analysis report (MAR) presents the study conducted by Fehr & Peers for the proposed redevelopment of the site located at 153 West Kaahumanu Avenue in the community of Kahului on the island of Maui. This MAR was conducted in accordance with the guidelines and standards of the affected government agencies, and it addresses the potential impact of the project on all modes of travel.

The project site encompasses 4.72 acres located on TMK (2) 3-7-004:003 (por.) in Kahului. The parcel is under the jurisdiction of the Hawaiian Housing Finance & Development Corporation (HHFDC). The project site is bounded by Kane Street to the west, Vevau Street to the south, West Kaahumanu Avenue to the north, and a shopping center development and The Waterfront Apartments to the east, as shown on Figure 1. The site currently includes a building that houses the McKinley Community School for Adults and this use is expected to be incorporated into the new project.

2.1 Project Description

The Kahului Civic Center Mixed-Use Complex project (i.e., the “Project”) is proposed by the State of Hawai‘i (State), Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC) and is a collaborative effort with the State Department of Accounting and General Services. The project primarily involves the construction of affordable and market-rate multi-family housing (multi-family housing) and a State Kahului Civic Center (Civic Center) that will replace an existing adult community school building on the site.

Approximately 300 multi-family dwelling units (mixture of 1-, 2- and 3-bedroom units) will be provided in two buildings (both roughly six stories), and approximately 414 parking spaces will be provided in two three-level parking podiums for the multi-family housing. The preliminary program for the Civic Center (roughly four stories) includes space for State offices, the State Department of Education’s (DOE) McKinley Community School for Adults, and the Kahului Public Library. A parking deck built over a surface parking lot will provide approximately 182 parking spaces for the Civic Center. Community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center. For purposes of this analysis the Civic Center is assumed to include: 38,000 sf for State office space, 16,000 sf for the Kahului Public Library, 7,000 sf for the State DOE’s McKinley Community School for Adults, and 5,000 sf for a community-oriented commercial space. The Civic Center program spaces may be adjusted due to the needs and priorities of State agencies and availability of funding. The project is anticipated to be built and fully occupied by 2026. Vehicular access to the site is proposed via two driveways: 1) one on Kane Street approximately 190 feet north of Vevau Street, and 2) one on Vevau Street approximately 150 feet east of Kane Street. The project site plan is shown on Figure 2.

2.2 Study Area

The transportation analysis focused on evaluating the potential project-related transportation impacts at seven existing intersections in the vicinity of the proposed project. The analyzed intersections are listed below and are shown on Figure 1:
**KENNEDY CENTER MIXED-USE PROGRAM**

**LAND AREA AND ZONING INFORMATION**

<table>
<thead>
<tr>
<th>Land</th>
<th>Allowable SF</th>
<th>Setback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parcel</td>
<td>5.572 acre</td>
<td>242,716 sf</td>
</tr>
</tbody>
</table>

- **Total Lot Area**: 5.572 acre
- **Front Setback**: None
- **Side/Rear Setback**: None or adjacent zone
- **Zoning**: Transit Plaza - B-2, MUC - 90-ft, Density - 2 FAR

**KAHULUI CIVIC CENTER MIXED-USE PROGRAM**

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Residential Units</td>
<td>300 du</td>
<td>1.6 FAR</td>
</tr>
<tr>
<td>Residential Subtotal</td>
<td>315,000 gsf</td>
<td>Parking Required by Code*</td>
</tr>
<tr>
<td>Retail or Office</td>
<td>5,000 gsf</td>
<td>Parking Target **</td>
</tr>
<tr>
<td>School</td>
<td>7,000 gsf</td>
<td>** Retail/Office at 1stall/500sf</td>
</tr>
<tr>
<td>Office</td>
<td>38,000 gsf</td>
<td>** Library 40 stalls</td>
</tr>
<tr>
<td>Library</td>
<td>16,000 gsf</td>
<td>** Residential 1stall/1bdrm; 1.5stall/2bdrm; 2stall/3bdrm</td>
</tr>
<tr>
<td>Non-Residential Subtotal</td>
<td>66,000 gsf</td>
<td>** School 8 per classroom</td>
</tr>
<tr>
<td>Total Floor Area</td>
<td>381,000</td>
<td>Parking Provided</td>
</tr>
</tbody>
</table>

- **Parking Required by Code**: 774 stalls
- **Parking Target**: 596 stalls
- **School 8 per classroom**: 56 stalls

**Note:**
Diagrams and tabulations are preliminary and subject to change. Total building floor areas and space counts are not final and will be adjusted as the building design evolves and support / circulation / mechanical areas are identified.
1. Kahului Beach Road-Kane Street/West Kaahumanu Avenue
2. Lono Avenue/West Kaahumanu Avenue
3. Kane Street/Vevau Street
4. Lono Avenue/Vevau Street
5. Kane Street/Kamehameha Avenue
6. Lono Avenue/Kamehameha Avenue
7. Kamehameha Avenue/Wakea Avenue

2.3 Study Scenarios

The operations of the study intersections were evaluated during the weekday AM and PM peak hours for the following scenarios:

• **Existing Conditions** – Given the ongoing COVID-19 pandemic, it was not possible to conduct new traffic counts that reflect typical levels of peak hour volumes. Accordingly, the analysis of existing traffic conditions is based on historic 2017 and 2018 counts collected for the environmental analysis of the nearby Vevau Street Bus Hub and the Kahului Lani senior affordable housing complex. These counts were increased to account for growth in the greater Kahului area through the year 2020 plus traffic generated from recently constructed developments within the study area, representing an existing conditions scenario if the COVID-19 pandemic had not occurred. The analysis of traffic operations under this scenario was conducted for the peak hours and existing intersection configurations. The existing conditions analysis also includes a description of key area roadways and a review of existing transit facilities and services near the site.

• **Future (2026) No Project Conditions** – Existing peak-hour volumes increased to account for forecasted growth in the area at the opening year of the project in 2026. Traffic growth was estimated based on an annual growth factor to account for ambient growth plus traffic generated from approved (but not yet constructed) and pending developments within the study area. This scenario includes future planned roadway improvements and forms the comparison baseline for identifying with-project impacts.

• **Future (2026) Plus Project Conditions** – This traffic scenario includes traffic volumes under Future (2026) No Project conditions plus the addition of forecasted project-generated traffic. The assessment of traffic operations will include any future planned roadway improvements and any mobility infrastructure enhancements proposed by the project.

2.4 Traffic Analysis Methods

The analysis of roadway operations performed for this study is based on procedures presented in the *Highway Capacity Manual 6th Edition* (HCM 6), published by the Transportation Research Board in 2016. The operations of roadway facilities are described with the term level of service (LOS). LOS is a qualitative description of traffic flow based on factors such as speed, travel time, delay, and freedom to maneuver. Six levels are defined, from LOS A, with the least congested operating conditions, to LOS F, with the most
congested operating conditions. LOS E represents “at-capacity” operations. Operations are designated as LOS F when volumes exceed capacity, resulting in stop-and-go conditions.

**2.4.1 Signalized Intersections**

The method described in “Chapter 19: Signalized Intersections” of the *HCM 6* was used to prepare the LOS calculations for the signalized study intersections. This LOS method analyzes a signalized intersection’s operation based on average control delay per vehicle. Control delay alone is used to characterize LOS for the entire intersection or for an approach. Control delay includes the initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. The average control delay for signalized intersections is calculated using Synchro 10.0 analysis software and is correlated to a LOS designation, as shown in *Table 1*.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Description</th>
<th>Delay in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.</td>
<td>≤ 10.0</td>
</tr>
<tr>
<td>B</td>
<td>Progression is good, cycle lengths are short, or both. More vehicles stop than with LOS A, causing higher levels of average delay.</td>
<td>&gt; 10.0 to 20.0</td>
</tr>
<tr>
<td>C</td>
<td>Higher congestion may result from fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level, though many still pass through the intersection without stopping.</td>
<td>&gt; 20.0 to 35.0</td>
</tr>
<tr>
<td>D</td>
<td>The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high V/C ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.</td>
<td>&gt; 35.0 to 55.0</td>
</tr>
<tr>
<td>E</td>
<td>This level is considered by many agencies to be the limit of acceptable delay. These high-delay values generally indicate poor progression, long cycle lengths, and high V/C ratios. Individual cycle failures are frequent occurrences.</td>
<td>&gt; 55.0 to 80.0</td>
</tr>
<tr>
<td>F</td>
<td>This level is considered unacceptable with oversaturation, which is when arrival flow rates exceed the capacity of the intersection. This level may also occur at high V/C ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also be contributing factors to such delay levels.</td>
<td>&gt; 80.0</td>
</tr>
</tbody>
</table>


**2.4.2 Unsignalized Intersections**

The operations of the unsignalized intersections were evaluated using the method contained in “Chapter 20: Two-Way Stop-Controlled Intersections” of the *HCM 6*. LOS ratings for stop-sign-controlled intersections are based on the average control delay expressed in seconds per vehicle. At this two-way- or side-street-stop-controlled (TWSC or SSSC) intersection, the average control delay is calculated for the
minor-street stopped movement and the major-street left turns, not for the intersection as a whole. For approaches composed of a single lane, the control delay is computed as the average of all movements in that lane. For approaches with multiple lanes, the control delay is computed for each movement; the movement with the worst (i.e., longest) delay is presented for TWSC. As shown in Table 2, LOS F is assigned to the movement if the volume-to-capacity (V/C) ratio for the movement exceed 1.0, regardless of control delay. The average control delay for unsignalized intersections is calculated using Synchro 10.0 analysis software and is correlated to a LOS designation, as shown in Table 2.

Table 2: Unsignalized Intersection LOS Definitions

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Description</th>
<th>Delay in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Little or no delay</td>
<td>≤ 10.0</td>
</tr>
<tr>
<td>B</td>
<td>Short traffic delay</td>
<td>&gt; 10.0 to 15.0</td>
</tr>
<tr>
<td>C</td>
<td>Average traffic delays</td>
<td>&gt; 15.0 to 25.0</td>
</tr>
<tr>
<td>D</td>
<td>Long traffic delays</td>
<td>&gt; 25.0 to 35.0</td>
</tr>
<tr>
<td>E</td>
<td>Very long traffic delays</td>
<td>&gt; 35.0 to 50.0</td>
</tr>
<tr>
<td>F</td>
<td>Extreme traffic delays with intersection capacity exceeded</td>
<td>&gt; 50.0</td>
</tr>
</tbody>
</table>


2.4.3 Significant Impact Criteria

The analysis of Future (2026) conditions compares future no-project operations with conditions when the project is fully built out to determine whether project implementation is expected to result in a significant impact on the surrounding roadways. Based on previous studies conducted for the County of Maui, the minimum desired operating standard for a signalized intersection is typically LOS D. Additionally, the State of Hawaii Department of Transportation–Highways Division (HDOT) strives to maintain LOS D intersection operations for state facilities. Both agencies usually define a significant intersection impact as when the operation of an intersection or turning movement (depending on the traffic control device) changes from LOS D or better to LOS E or F. Impacts are also defined to occur when the addition of project traffic exacerbates locations already operating at or projected to operate at LOS E or F. When evaluating intersection operations at any location, other factors are considered in the analysis, such as traffic volumes and potential secondary impacts to pedestrian, bicycle, and transit travel.

Significant impacts are categorized as either a project-specific or cumulative impact. An impact is considered project-specific at a signalized intersection if the addition of project traffic is expected to degrade LOS D or better operations to LOS E or F operations. An impact is considered a cumulative impact at a signalized intersection if the addition of project trips exacerbates LOS E or F operations and increases the intersection delay by more than five (5) seconds.
For unsignalized intersections, the criterion for a project-specific impact is the same as for signalized intersections, as described above. However, the project is determined to have a potentially significant cumulative impact when it adds traffic to a study location that includes a controlled approach operating at an undesirable level (i.e., LOS E or F) and one or more volume-based signal warrants are met. The signal warrants used for this evaluation are those described in Chapter 4C of the *Manual of Uniform Control Devices* (MUTCD, 2009), published by the US Department of Transportation Federal Highways Administration (FHWA).

The County of Maui and HDOT do not publish detailed criteria for significant pedestrian, bicycle, and transit impacts. However, these impacts are generally evaluated based on whether a proposed project would: 1) conflict with existing or planned pedestrian, bicycle, or transit facilities and services, or 2) create substantive walking, bicycling, or transit use demand without providing adequate and appropriate facilities for non-motorized mobility. Existing facilities for pedestrians, bicycles, and transit users were inventoried to evaluate the quality and scope of facilities/services currently in place. The assessments of planned pedestrian, bicycle, and transit facilities were conducted using information in planning documents, such as the *Hele Mai Maui 2040*, the *Wailuku-Kahului Community Plan*, the Hawaii Department of Transportation’s *Bike Plan Hawaii Master Plan*, and the *Central Maui Pedestrian and Bicycle Master Plan for 2030*. For these modes, if the proposed project is expected to conflict with existing or planned improvements to pedestrian and bicycle facilities, or if the project is expected to generate a substantial demand that could warrant additional transit service, then the project would be determined to have a project-specific impact to non-motorized modes of transportation.
3. Existing Conditions

This chapter describes the existing pedestrian, bicycle, and transit facilities, as well as the roadway network located within the project study area. A discussion of the existing intersection LOS operation results is also included in this chapter.

3.1 Existing Site and Transportation Facilities

The existing site contains the Department of Education’s McKinley Community School for Adults, a lawnmower maintenance building, an abandoned building in disrepair, a surface parking lot, and a grass area with trees occupying the makai half of the site. A focused data collection effort was undertaken to identify existing transportation conditions in the vicinity of the proposed site. The assessment of existing conditions relevant to this study includes existing public transit, bicycle, and pedestrian facilities, as well as an inventory of the street system, traffic volumes on these facilities, and operating conditions at key intersections.

3.1.1 Existing Transit Facilities and Services

Maui Bus Service, operated by Roberts Hawaii, provides public transit service around the island with 13 bus routes. Each route typically operates seven days a week, including holidays. It is noted that, due to the COVID-19 pandemic, bus routes 2 and 6 were suspended between April 13 and June 30, 2020, and bus routes 15 and 25 were suspended on April 13 and were not in operation at the time that this report was prepared.

Transit routes 1, 2, 5, 6, 8, 10, 20, 35, 39, and 40 all provide service along study roadways and serve the major transfer center at Queen Kaahumanu Center, located on Kane Street opposite the project site. The existing transit schedules are summarized in Table 3.

The major transfer center is planned to be relocated by 2021 to the Vevau Street Bus Hub immediately adjacent to and south of the proposed project site. At the time of project buildout, this center will provide the closest transit access with six bus bays, providing benches, trash receptacles, and restrooms under a canopy for shade.

3.1.2 Existing Bicycle Activity

According to the Vevau Street Bus Hub Traffic Impact Analysis Report prepared by Austin, Tsutsumi & Associates, Inc. and dated April 17, 2019, “only a few (2-3) cyclists were observed within the project area,” which is generally the same as the study area of this analysis in that it consisted of West Kaahumanu Avenue, Kahului Beach Road, Kane Street, Lono Avenue, and Vevau Street, and only excluded Kamehameha Avenue.
Table 3: Existing Transit Services

<table>
<thead>
<tr>
<th>Route</th>
<th>From</th>
<th>To</th>
<th>Operating Hours</th>
<th>Headway</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 / 2 (opposing directions) – Wailuku Loop</td>
<td>Wailuku</td>
<td>Kahului</td>
<td>6:30 am – 10:00 pm</td>
<td>1 hour</td>
</tr>
<tr>
<td>5 / 6 (opposing directions) – Kahului Loop</td>
<td>Queen Kaahumanu Center</td>
<td>Maui Marketplace</td>
<td>6:30 am – 10:00 pm</td>
<td>1 hour</td>
</tr>
<tr>
<td>8 – Waihee Villager</td>
<td>Kahului</td>
<td>Waihee via Waiehu</td>
<td>7:15 am – 8:00 pm</td>
<td>3 hours</td>
</tr>
<tr>
<td>10 – Kihei Islander</td>
<td>Kahului</td>
<td>Wailea via Kihei</td>
<td>5:30 am – 9:30 pm</td>
<td>1 hour</td>
</tr>
<tr>
<td>20 – Lahaina Islander</td>
<td>Queen Kaahumanu Center</td>
<td>Wharf Cinema Center</td>
<td>5:30 am – 9:30 pm</td>
<td>1 hour</td>
</tr>
<tr>
<td>35 – Haiku Islander</td>
<td>Kahului</td>
<td>Haiku</td>
<td>5:30 am – 10:00 pm</td>
<td>1.5 hours</td>
</tr>
<tr>
<td>39 – Kula Islander</td>
<td>Kahului</td>
<td>Kula via Pukalani</td>
<td>5:56 am – 9:11 pm</td>
<td>3 hours</td>
</tr>
<tr>
<td>40 – Upcountry Islander</td>
<td>Kahului</td>
<td>Makawao via Pukalani and Haliimaile</td>
<td>6:00 am – 10:30 pm</td>
<td>1.5 hours</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, 2021; Maui Bus

3.1.3 Existing Pedestrian Activity

According to the Vevau Street Bus Hub Traffic Impact Analysis Report prepared by Austin, Tsutsumi & Associates, Inc. and dated April 17, 2019, the study area has a minimal amount of pedestrian activity, with counts of two to 23 pedestrians passing through each intersection during the peak hours. The highest pedestrian volumes occur at the intersections along West Kaahumanu Avenue and at the Kane Street/Vevau Street intersection.

3.1.4 Collision History

Available collision information was reviewed to identify the occurrence of collisions by mode in the study area. According to Hele Mai Maui 2040, the study area includes relatively high bicycle and pedestrian crash density based on data from 2010 through 2017, including two fatal collisions near West Kaahumanu Avenue/Lono Avenue. A screenshot from the Hele Mai Maui 2040 report is shown below:
Additionally, according to the US Department of Transportation (USDOT) Fatality Analysis Reporting System (FARS) data for 2017 through 2019, one fatal collision occurred along West Kaahumanu Avenue between Kahului Beach Road-Kane Street and Lono Avenue in 2018, and one fatal collision occurred along Kamehameha Avenue to the south of Kane Street in 2017. A screenshot of the FARS data is shown below.

Source: https://cdan.nhtsa.gov/SASStoredProcess/quest

3.1.5 Existing Roadway System

The key roadways providing access to or in the vicinity of the project site are described below. As noted in Chapter 2, the site is located east of Kane Street between West Kaahumanu Avenue and Vevau Street.

**Kaahumanu Avenue** is a principal arterial under the jurisdiction of HDOT (Route 32). It extends as a three-lane facility from Kinipopo Street to approximately 400 feet west of the Naniloa Drive overcrossing, where it becomes a four-lane facility to Kahului Beach Road-Kane Street (except for a short, five-lane section between the Kanaloa Ave-Mahalani Street and Wahinepio Avenue-South Papa Street intersections). East of Kane Street, it continues as a six-lane facility to Hana Highway east of Wharf Street. The street is designated West Kaahumanu Avenue to the west of Puunene Avenue. Adjacent to the project, the posted speed limit is 30 miles per hour (mph). A continuous sidewalk is provided on the south side of the roadway west of Kahului Beach Road, but no sidewalk or path is provided on the north side of the street between the Queen Kaahumanu Center driveway and Kahului Beach Road. A sidewalk is provided on both sides of the roadway east of Kahului Beach Road-Kane Street immediately fronting the project site. Bike lanes are provided in both directions, and on-street parking is prohibited.

**Kamehameha Avenue** is a two- to four-lane facility under the jurisdiction of the County of Maui. It extends as a local roadway from its western terminus at Meheu Circle to South Papa Avenue, and from there it
continues as a minor collector to Hana Highway. The four-lane section extends between Lono Avenue and Hana Highway. Near the project site, the posted speed limit is 30 mph. A narrow sidewalk is provided on the north/makai side of the street between Kane Street and Lono Street. Kamehameha Avenue is a designated bike route with paved shoulders on both sides of the roadway. On-street parking is not permitted along the entire length of the roadway.

Kahului Beach Road is a four-lane minor arterial that is under the jurisdiction of the County of Maui. It extends from Waiehu Beach Road (where it intersects with Lower Main Street) to West Kaahumanu Avenue, where it connects with Kane Street. Between Kaihee Place and West Kaahumanu Avenue, a third southeast-bound lane is also provided. The posted speed limit is 35 mph. Sidewalks are provided on the west side of the street from Kaihee Place to West Kaahumanu Avenue. Kahului Beach Road is not a designated bike route, but paved shoulders are provided on both sides of the roadway, and on-street parking is prohibited.

Kane Street is a two-lane local roadway under the jurisdiction of the County of Maui. It extends from West Kaahumanu Avenue, where it connects opposite Kahului Beach Road, to an eastern terminus at Kaulawahine Street. Between West Kaahumanu Avenue and Kamehameha Avenue, a second southbound lane is also provided. The posted speed limit is 20 mph. Sidewalks are provided on the west side of the roadway along the project site frontage and are also provided on the east side of the project from Vevau Street to approximately 200 feet west of Kamehameha Avenue. No designated bike facility is provided on Kane Street. On-street parking is provided on the east side of the street for a stretch of approximately 300 feet along the frontage of the King’s Chapel Polynesian, Family Life Center, and Seicho No-Ie Maui developments.

Lono Avenue is a two-lane minor collector that is under the jurisdiction of the County of Maui. It extends from West Kaahumanu Avenue to Makalii Street. The posted speed limit is 20 mph north of Kamehameha Avenue and 30 mph south of Kamehameha Avenue in the vicinity of the project. Sidewalks are provided on both sides of the street between West Kaahumanu Avenue and Kamehameha Avenue, and a sidewalk continues on the west side of the street to the south of Kamehameha Avenue. Bike lanes are provided in both directions near the project, except for a stretch of approximately 230 feet south of Kamehameha Avenue in the southbound direction. Near the project, on-street parking is prohibited.

Vevau Street is a two-lane roadway that extends from Kane Street to Lono Avenue. It is a private roadway between Kane Street and School Street, and under the jurisdiction of the County of Maui between School Street and Lono Avenue. No speed limit is posted, but the assumed speed limit is 20 mph. A sidewalk or path is provided on the north side of Vevau Street east of School Street; however, for approximately 130 feet immediately west of Lono Avenue, the provided path is asphalt, has a steep cross-grade, and is adjacent to perpendicular parking such that vehicles may extend into the pedestrian path. Additional sidewalks have been constructed on both sides of Vevau Street to the west of School Street as part of the Kahului Lani Affordable Senior Housing project. No designated bike facility is provided on Vevau Street, and on-street parking is not provided.
West Wakea Avenue is a two-lane roadway extending from W Kaahumanu Avenue to S Puunene Avenue (with E Wakea Avenue extending further east from S Puunene Avenue to Hana Highway). It is a collector roadway under County of Maui jurisdiction and includes a posted speed limit of 30 mph in the vicinity of W Kamehameha Avenue near the project site. In this area, a sidewalk is provided on the mauka side of the roadway, and bicycle lanes are striped in both directions. Wide grass shoulders are also provided on Wakea Avenue on both sides of the street near Kamehameha Avenue, and these areas are frequently used for parking adjacent to the residential uses that front the street. Commercial establishments and a Maui Electric base yard also front the street west of Kamehameha Avenue on the north side of the street.

### 3.2 Existing Traffic Volumes/Lane Configurations

Given the ongoing COVID-19 pandemic, it was not possible to conduct traffic counts that reflect typical levels of peak hour volumes. Accordingly, the analysis of existing traffic conditions is based on historic 2017 and 2018 counts collected for the environmental analysis of the nearby Vevau Street Bus Hub and the Kahului Lani senior affordable housing complex.

These historic counts were increased to account for growth in the area to Year 2020 plus traffic generated from recently constructed developments in the study area. For this study, the growth factor was derived from historic daily traffic count data and the Maui Travel Demand Forecasting Model (TDFM), which was developed for use in HDOT’s 2035 Federal-Aid Highways Transportation Plan for the District of Maui (July 2014). The model assigns traffic across the roadway network for the base and horizon years generated by land use and socioeconomic data developed by HDOT in consultation with the County of Maui. The 2007 model base year scenario daily traffic volumes were compared to those for the Year 2035 forecast to determine long-term traffic growth estimates.

The comparison demonstrated that expected growth along nearby roadways varies with the size of the facility. Specifically, high-capacity roadways near the project site (Kahului Beach Road, West Kaahumanu Avenue, and Kamehameha Avenue) are forecasted to increase at an annual rate of 0.9%, while lower-capacity roadways (Kane Street, Vevau Street, and Lono Avenue) are forecasted to increase at an annual rate of 3.7% (see Appendix B). However, a regional demand model, such as the Maui TDFM, is not typically accurate for local and/or lower-volume facilities. Furthermore, a growth rate of 3.7% is very high and difficult to sustain over an extended period. Historic counts on Lono Avenue alternatively indicate that growth from 2015 to 2017 averaged 2.8% per year. Accordingly, a 2.5% growth rate is considered a more reasonable estimate of future growth given existing volumes, and this rate was applied to lower-capacity facilities and private driveways in the study area. On higher-capacity facilities, a rounded annual growth rate of 1.0% was applied.

Using these growth rates, historic turning movement counts for the seven key study intersections during the weekday AM and PM peak hours were grown over three years to 2020, representing an existing condition scenario assuming the COVID-19 pandemic had not occurred.

Existing lane configurations and signal controls were obtained through the environmental analysis documents and confirmed using recent Google Maps Street View data. Signal timing data was obtained.
from the Hawaii Department of Transportation for the West Kaahumanu Avenue intersections and from the County of Maui Highways Division for the Kamehameha Avenue intersections. Figure 3 presents the analyzed peak hour turning movement volumes, corresponding lane configurations, and traffic control devices under Existing conditions. Appendix A provides traffic count data sheets.

3.3 Existing Intersection Operations

Peak hour intersection capacity analysis was performed for the study intersections using the methodology described in Section 2.4 and the recently collected peak hour traffic count data. Due to HCM 6 limitations for analyzing signalized intersections, Kane Street has been analyzed as having a speed limit of 25 mph at the intersections with West Kaahumanu Avenue and with Kamehameha Avenue, and Lono Avenue has similarly been analyzed as having a speed limit of 25 mph at the intersection with West Kaahumanu Avenue and the northern leg of the intersection with Kamehameha Avenue. Table 4 summarizes the results of the intersection operations analysis for Existing conditions. Detailed LOS worksheets are provided in Appendix C. As shown in Table 4, overall intersection operations are generally LOS D or better at all locations and in both peak hours. The one exception is Kane Street/Vevau Street, where the eastbound approach (exiting the Queen Kaahumanu Center driveway) is calculated to operate at LOS F conditions in the PM peak hour.

3.3.1 Consistency with Previous Analyses

As stated in Section 3.2, due to the COVID-19 pandemic, it was not possible to conduct field observations for typical peak hour traffic operations, and accordingly the analysis was validated by comparing to previously approved traffic studies. The operations results provided in Table 4 are generally consistent with previous analyses and considerations of additional volume growth to year 2020.

According to the Vevau Street Bus Hub Traffic Impact Analysis Report prepared by Austin, Tsutsumi & Associates, Inc. and dated April 17, 2019, traffic on the study roadways is “generally free-flowing,” and “some queueing occurred at the approaches to the signalized intersections of West Kaahumanu Avenue/Kahului Beach Road-Kane Street and West Kaahumanu Avenue/Lono Avenue but generally cleared within one cycle length.”

3.3.2 Warrant Analysis

When a movement operates at an undesirable LOS (E or F), the need for a traffic signal or other traffic control device modification is typically evaluated based on standard warrant criteria. Both the MUTCD Four-Hour and Eight-Hour Signal Warrant analyses were performed for the Kane Street/Vevau Street intersection because the eastbound approach is calculated to operate at LOS F during the PM peak hour under existing conditions. These analyses take into consideration the vehicles per hour during each of the highest four hours and eight hours, respectively, including the total volume on both major street intersection approaches and the higher-volume minor street intersection approach. The intersection does not meet either traffic signal warrant under existing conditions.
Figure 3

Peak Hour Traffic Volumes and Lane Configurations - Existing (2019) Conditions
### Table 4: Existing (2020) Intersection Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Traffic Control</th>
<th>Peak Hour</th>
<th>Intersection or Worst Movement</th>
<th>Worst Movement (for SSSC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delay (sec/veh)$^1$</td>
<td>LOS</td>
</tr>
<tr>
<td>1. Kahului Beach Rd-Kane St/W Kaahumanu Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>51.9</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>54.3</td>
<td>D</td>
</tr>
<tr>
<td>2. Lono Ave/W Kaahumanu Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>23.0</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>14.0</td>
<td>B</td>
</tr>
<tr>
<td>3. Kane St/Vevau St</td>
<td>SSSC</td>
<td>AM</td>
<td>16.7</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>53.7</td>
<td>F</td>
</tr>
<tr>
<td>4. Lono Ave/Vevau St</td>
<td>SSSC</td>
<td>AM</td>
<td>15.1</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>17.9</td>
<td>C</td>
</tr>
<tr>
<td>5. Kane St/Kamehameha Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>8.8</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>11.3</td>
<td>B</td>
</tr>
<tr>
<td>6. Lono Ave/Kamehameha Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>16.4</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>15.7</td>
<td>B</td>
</tr>
<tr>
<td>7. Kamehameha Ave/Wakea Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>31.6</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>32.0</td>
<td>C</td>
</tr>
</tbody>
</table>


Notes:
- SSSC = Side-Street Stop Controlled
- Whole intersection weighted average stopped delay expressed in seconds per vehicle for signalized intersections. The vehicular delay for the worst movement is reported for side-street stop-controlled intersections.

The MUTCD Multi-Way Stop Warrant was also evaluated for the Kane Street/Vevau Street intersection to determine if all-way stop control (AWSC) would be an appropriate control configuration. This analysis takes into consideration peak hour minor street vehicular delay and multimodal volumes during each of the highest eight hours, including the total vehicle volume on both major street intersection approaches and the total combined vehicle, bicycle, and pedestrian volume on both minor street intersection approaches. The intersection meets the multi-way stop warrant under existing conditions. The signal warrant and multi-way stop warrant worksheets are included in Appendix D.
4. Future (2026) No Project Conditions

To evaluate the potential impacts of traffic generated by the proposed project on the surrounding street system, it was necessary to first develop estimates of future traffic conditions in the area without the project. Future traffic conditions without the project reflect traffic increases due to regional growth and development near the study site at the time the project is expected to be fully built and occupied. This scenario is referred to as baseline or “no project” conditions. The forecasted future traffic volumes were then used as a baseline to identify impacts from the project on the roadway system. This chapter describes the development of this future traffic scenario.

4.1 Future (2026) No Project Traffic Estimates

The following section summarizes the growth assumptions used to estimate the amount of traffic that would be added to existing intersection volumes to develop volume estimates for Future (2026) No Project conditions.

4.1.1 Areawide Growth

A growth factor is typically applied to the baseline traffic volumes to account for future regional growth. As described in Section 3.2, the growth factor derived for this study from historic daily traffic count data was determined to be 2.5% for lower-capacity facilities and private driveways in the study area, and 1.0% for higher-capacity facilities. This forecast does not make any adjustments to account for reductions in traffic due to the ongoing COVID-19 pandemic.

In addition to this ambient growth, specific planned projects in the study area should be accounted for. The relevant planned projects in the immediate vicinity include the planned Vevau Street Bus Hub, which will be located immediately adjacent to the project site along Vevau Street, and the Kahului Lani Affordable Senior Housing project, which will be located south of Vevau Street, across from the project site. The Vevau Street Bus Hub is expected to be completed in late 2021 or early 2022. While phase 1 of Kahului Lani opened in July 2020, the occupancy rate is unknown, and accordingly this project was not included in Existing conditions. Full buildout of the Kahului Lani project is expected in the Spring 2022 before the Kahului Civic Center will be developed. Trip assignments for both projects (as given in the respective Traffic Impact Analysis Reports prepared by Austin, Tsutsumi & Associates) are presented in Appendix E. These trips were added to the forecasted volumes described above to obtain Future (2026) No Project conditions traffic volumes.
4.1.2 Future Transportation Improvements

The Kahului Lani Affordable Senior Housing project has constructed new sidewalks along its frontage on Kane Street and along both sides of Vevau Street west of School Street. No other roadway infrastructure improvements are planned in the immediate study area. Therefore, the intersection lane configurations and traffic control devices are expected to remain the same as under Existing conditions. It is noted that the West Kaahumanu Avenue Community Corridor planning effort began in late 2020 and will include the portion of West Kaahumanu Avenue within the study area, but the specific improvements and implementation schedule of that project were unknown at the time this report was written, and therefore could not be captured in this analysis. Figure 4 illustrates the forecasted peak hour traffic volumes and lane configurations for Future (2026) No Project conditions.

4.2 Future (2026) No Project Intersection Levels of Service

Levels of service (LOS) calculations were conducted to evaluate the operating levels of the study intersections under Future (2026) No Project conditions with the forecasted growth in traffic. The results of the LOS analysis for the study intersections are presented in Table 5. The corresponding LOS calculation sheets are included in Appendix C.

Table 5: Future (2026) No Project Intersection Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Traffic Control</th>
<th>Peak Hour</th>
<th>Intersection Delay (sec/veh)</th>
<th>Intersection LOS</th>
<th>Worst Movement (for SSSC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kahului Beach Rd-Kane St/ W Kaahumanu Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>63.0</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>62.8</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>2. Lono Ave/W Kaahumanu Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>32.2</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>21.0</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>3. Kane St/Vevau St</td>
<td>SSSC</td>
<td>AM</td>
<td>22.9</td>
<td>C</td>
<td>EBL/T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>&gt; 180.0*</td>
<td>F</td>
<td>EBL/T</td>
</tr>
<tr>
<td>4. Lono Ave/Vevau St</td>
<td>SSSC</td>
<td>AM</td>
<td>20.5</td>
<td>C</td>
<td>WBL/T/R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>24.9</td>
<td>C</td>
<td>EBL/T/R</td>
</tr>
<tr>
<td>5. Kane St/Kamehameha Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>9.8</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>14.3</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>6. Lono Ave/Kamehameha Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>18.3</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>17.5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>7. Kamehameha Ave/Wakea Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>45.6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>48.6</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>


Notes:
SSSC=Side-Street Stop Controlled
1 Whole intersection weighted average stopped delay expressed in seconds per vehicle for the signalized intersection. The vehicular delay for the worst movement is reported for the side-street stop-controlled intersection.
* Calculated delays above 180 seconds are not reliable and indicate substantially oversaturated conditions.
### Peak Hour Traffic Volumes and Lane Configurations - Future (2026) No Project Conditions

<table>
<thead>
<tr>
<th>Study Intersection</th>
<th>Project Site</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kahului Beach Rd/Kane St/Kaahumanu Ave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Lono Ave/Kaahumanu Ave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Kane St/Vevau St</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Lono Ave/Vevau St</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Kamehameha Ave/Kane St</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Lono Ave/Kamehameha Ave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Kamehameha Ave/Wakea Ave</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Lane Configuration

- **AM (20)**
- **PM (20)**
- **A-C**
- **D**
- **E**
- **F**

#### LOS:

- **LOS:** A-C D E F

#### AM (XX) PM (XX) Peak Hour Traffic Volume

- Kahului Beach Rd/Kane St/Kaahumanu Ave
  - AM: 50 (70), 130 (190), 20 (100)
  - PM: 70 (100), 120 (120), 20 (20)

- Lono Ave/Kaahumanu Ave
  - AM: 40 (70), 30 (30), 50 (50)
  - PM: 20 (20), 30 (40), 40 (40)

- Kane St/Vevau St
  - AM: 20 (20), 50 (90), 160 (140)
  - PM: 120 (230), 70 (110), 200 (420)

- Lono Ave/Vevau St
  - AM: 60 (130), 40 (60), 170 (260)
  - PM: 120 (180), 40 (20), 20 (30)

- Kamehameha Ave/Kane St
  - AM: 90 (140), 50 (110), 20 (20)
  - PM: 70 (130), 30 (20), 120 (90)

- Lono Ave/Kamehameha Ave
  - AM: 50 (90), 160 (140), 20 (20)
  - PM: 70 (110), 30 (20), 120 (230)

- Kamehameha Ave/Wakea Ave
  - AM: 120 (180), 40 (60), 170 (260)
  - PM: 120 (180), 40 (20), 20 (30)

#### Figure 4

**Peak Hour Traffic Volumes and Lane Configurations - Future (2026) No Project Conditions**
The changes in operations from Existing conditions are the result of the addition of ambient traffic growth. The analysis results indicate that the Kane Street/Vevau Street intersection is forecasted to operate at undesirable levels (LOS F) under Future (2026) No Project conditions in the PM peak hour, as it also did under Existing conditions. The worst critical movement is the eastbound shared left-turn/through lane, which is forecasted to have a demand of 210 vehicles in the PM peak hour. The results also show that Kahului Beach Road-Kane Street/West Kaahumanu Avenue is forecasted to operate at undesirable levels (LOS E) under both peak hours. The movements with the highest demand at this location are the westbound and eastbound through movements in the AM and PM peak hours, respectively, as well as the southbound left-turn movement during both peak hours.

Both a Four-Hour and an Eight-Hour Signal Warrant analysis were performed for the Kane Street/Vevau Street intersection for the Future (2026) No Project scenario because one or more side street movements is/are forecasted to operate at LOS F during the PM peak hour. The intersection does not meet either traffic signal warrant under Future (2026) No Project conditions.

The MUTCD Multi-Way Stop Warrant was also evaluated for the Kane Street/Vevau Street intersection under this scenario. The intersection will satisfy the multi-way stop minimum warrant criteria under Future (2026) No Project conditions, illustrating that an all-way stop would be warranted regardless of project implementation. The signal warrant and the multi-way stop warrant worksheets are included in Appendix D.
5. Project Traffic Estimates

This section describes the anticipated number of vehicle trips and the directionality of those trips that would result from implementation of the proposed project. Future traffic added to the roadway system by the project is estimated using a three-step process: (1) project trip generation, (2) trip distribution, and (3) trip assignment. The first step estimates the amount of project-generated traffic that would be added to the roadway network. The second step estimates the direction of travel to and from the project site. The new trips are assigned to specific street segments and intersection turning movements during the third step. This process is described in more detail in the following sections.

5.1 Project Trip Generation Estimates

The vehicle trip generation for the proposed project was estimated using standard trip rates published in the *Trip Generation Manual (10th Edition, 2017)* by the Institute of Transportation Engineers (ITE). The proposed offices will be leased by DAGS but occupied by various state agencies. Accordingly, the General Office Building land use was considered most appropriate to capture the variety of tenants, as opposed to the Government Office Building land use, which assumes a single tenant. The trip generation for the McKinley Community School for Adults was estimated based on interviews with school staff and engineering judgement. The community-oriented commercial business was assumed to be a day care.

The project trip totals were then adjusted using the Mixed-Use (MXD) Trip Generation Model developed by Fehr & Peers and the Environmental Protection Agency (EPA), which is based on statistically superior data compared to the mixed-use methodology used by ITE alone. This model accounts for the site context and other factors to estimate potential internalization and multimodal trip reductions using published travel survey data.

As shown in Table 6, the proposed project is expected to generate a total of 3,188 gross new daily vehicle trips, including 187 gross new vehicle trips during the AM peak hour (99 inbound/88 outbound) and 312 gross new vehicle trips during the PM peak hour (156 inbound/155 outbound). Additionally, another 128 daily trips will be internal to the project, 186 daily trips are expected to be made by transit, and 865 daily trips are projected to be made via a combination of walking and biking.

Furthermore, the existing site contains the McKinley Community School for Adults, and the trips generated by the existing uses to be replaced by the project can be taken as credit. As shown in Table 6, after accounting for these existing trips, the proposed project is expected to generate 2,378 net new daily vehicle trips, including 151 net new vehicles trips during the AM peak hour (73 inbound/78 outbound) and 223 net new vehicle trips during the PM peak hour (102 inbound/118 outbound).
Table 6: Project Vehicle Trip Generation Estimates

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Quantity</th>
<th>Vehicle Trips Daily</th>
<th>Vehicle Trips AM</th>
<th>Vehicle Trips PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In</td>
<td>Out</td>
<td>Total</td>
</tr>
<tr>
<td>Proposed Project Uses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Family Housing</td>
<td>300 dwelling units</td>
<td>1,633</td>
<td>26</td>
<td>74</td>
</tr>
<tr>
<td>General Office Building</td>
<td>38,000 square feet</td>
<td>415</td>
<td>53</td>
<td>9</td>
</tr>
<tr>
<td>Library</td>
<td>16,000 square feet</td>
<td>1,124</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>McKinley Community School for Adults</td>
<td>7,000 square feet</td>
<td>957</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>Community-Serving Commercial</td>
<td>5,000 square feet</td>
<td>238</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td><strong>Gross New Trips</strong></td>
<td></td>
<td><strong>4,367</strong></td>
<td><strong>147</strong></td>
<td><strong>126</strong></td>
</tr>
<tr>
<td>Internal Capture Reduction</td>
<td></td>
<td>(128)</td>
<td>(10)</td>
<td>(8)</td>
</tr>
<tr>
<td>Transit Reduction</td>
<td></td>
<td>(186)</td>
<td>(6)</td>
<td>(5)</td>
</tr>
<tr>
<td>Walk and Bike Reduction</td>
<td></td>
<td>(865)</td>
<td>(32)</td>
<td>(25)</td>
</tr>
<tr>
<td><strong>Gross New Vehicle Trips (A)</strong></td>
<td></td>
<td><strong>3,188</strong></td>
<td><strong>99</strong></td>
<td><strong>88</strong></td>
</tr>
<tr>
<td><strong>Existing Uses</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McKinley Community School for Adults</td>
<td>7,800 square feet</td>
<td>1,067</td>
<td>33</td>
<td>15</td>
</tr>
<tr>
<td>Internal Capture Reduction</td>
<td></td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>Transit Reduction</td>
<td></td>
<td>(45)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>Walk and Bike Reduction</td>
<td></td>
<td>(211)</td>
<td>(6)</td>
<td>(4)</td>
</tr>
<tr>
<td><strong>Existing Vehicle Trips (B)</strong></td>
<td></td>
<td><strong>810</strong></td>
<td><strong>26</strong></td>
<td><strong>10</strong></td>
</tr>
<tr>
<td><strong>NET NEW VEHICLE TRIPS (A - B)</strong></td>
<td></td>
<td><strong>2,378</strong></td>
<td><strong>73</strong></td>
<td><strong>78</strong></td>
</tr>
</tbody>
</table>


Notes:
1. Trip rates for the multi-family housing based on Land Use Code 221 for mid-rise housing from the Trip Generation Manual
   Daily: $T = 5.45 * X - 1.75$, where $T$ = trips, $X$ = number of dwelling units
   AM Peak Hour: $\ln(T) = 0.98 * \ln(X) - 0.98$, where $T$ = trips, $X$ = number of dwelling units, In 26% / Out 74%;
   PM Peak Hour: $\ln(T) = 0.96 * \ln(X) - 0.63$, where $T$ = trips, $X$ = number of dwelling units, In 61% / Out 39%
2. Trip rates for the state office space based on Land Use Code 710 from the Trip Generation Manual
   Daily: $\ln(T) = 0.97 * \ln(X) + 2.50$, where $T$ = trips, $X$ = 1,000 square feet (sf) gross floor area (GFA)
   AM Peak Hour: $T = 0.94 * X + 26.49$, where $T$ = trips, $X$ = 1,000 sf GFA, In 86% / Out 14%;
   PM Peak Hour: $\ln(T) = 0.95 * \ln(X) + 0.36$, where $T$ = trips, $X$ = 1,000 sf GFA, In 16% / Out 84%
3. Trip rates for the McKinley Community School for Adults is based on interviews with the school staff and engineering judgement.
4. Trip rates for the library based on Land Use Code 590 from the Trip Generation Manual
   Daily: $\ln(T) = 0.99 * \ln(X) + 4.28$, where $T$ = trips, $X$ = 1,000 sf GFA
   AM Peak Hour: $T = 1.75 * X - 14.59$, where $T$ = trips, $X$ = 1,000 sf GFA, In 71% / Out 29%;
   PM Peak Hour: $T = 9.33 * X - 17.13$, where $T$ = trips, $X$ = 1,000 sf GFA, In 48% / Out 52%;
Project Trip Distribution and Assignment

The geographic distribution of trips generated by the proposed project is dependent on characteristics of the street system serving the project site, the level of accessibility of routes to and from the project site, and primary land uses to which project tenants would be drawn (e.g., job centers, residential areas, shopping destinations, services, and schools).

The project’s trip distribution pattern was primarily developed by using Teralytics cell phone data to determine the regional geographic distribution. The more localized distribution was based on available travel paths and Google Maps typical travel times. The resulting overall trip distribution pattern estimates for the peak hour project-generated traffic are as follows:

- 5% to/from North along Kahului Beach Road
- 25% to/from West along Kaahumanu Avenue
- 22% to/from Southwest along Kamehameha Avenue
- 9% to/from South along Lono Avenue
- 31% to/from East along Kaahumanu Avenue
- 8% to/from East along Kamehameha Avenue

Figure 5 illustrates the project trip distribution pattern described above.

Using the estimated trip generation and the distribution patterns discussed above, the traffic generated by the proposed project was assigned to the individual turning movements at intersections within the street network. At the Kane Street project driveway, left turns out of the driveway were assumed to be prohibited based on the site access analysis documented in Chapter 7. Figure 6 details the project’s trip assignment at each study intersection.
Project Trip Distribution

Figure 5

Study Intersection
Project Site
<table>
<thead>
<tr>
<th>Study Intersection</th>
<th>Project Driveway</th>
<th>Project Site</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>XX (XX)</th>
<th>AM (PM) Peak Hour Traffic Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lane Configuration

Signalized

Figure 6

Project Trip Assignment
6. Future (2026) Plus Project Conditions

This section describes the analysis of potential impacts on the roadway system due to projected future increases in traffic, including traffic generated by the project in 2026. The Future (2026) Plus Project roadway network is the same network assumed under the Future No Project scenario. The analysis compares the project levels of service (LOS) at each study intersection with and without the addition of project-generated trips to determine potential impacts to the transportation network.

6.1 Future (2026) Plus Project Intersection Levels of Service

To forecast the peak hour operating conditions at each study intersection, the project trip assignment was superimposed on Future (2026) No Project traffic volumes to yield Future (2026) Plus Project volumes. Figure 7 presents the forecasted Future (2026) Plus Project AM and PM peak hour volumes. The peak hour volumes were used to analyze operations using the LOS methodology described in Section 2.4. The comparative LOS analysis results for the study intersections under Future (2028) Without and With Project conditions are presented in Table 7. Detailed LOS results are included in Appendix C.

The results presented in Table 7 indicate that under Future (2026) Plus Project conditions, operations at the signalized intersections are largely unchanged with the addition of project-generated traffic, with less than three seconds of increased delay at each location and in each peak hour. At the unsignalized intersections, LOS F conditions in the PM peak hour at Kane Street/Vevau Street are exacerbated by project traffic, and operations otherwise remain acceptable (LOS D or better) with the addition of project-generated traffic. While the project does exacerbate LOS E conditions at Kaahumanu Avenue/Kahului Beach Road-Kane Street, it adds at most 2.8 additional seconds of delay. Therefore, the project is not forecasted to cause a significant impact at this location. This is consistent with the fact that the project is adding traffic to movements that have relatively low demand as compared to other movements at the intersection.

Both a Four-Hour and an Eight-Hour Signal Warrant analysis were performed for the Kane Street/Vevau Street intersection for the Future (2026) Plus Project scenario because one or more side street movements is/are forecasted to operate at LOS F during the PM peak hour. The intersection does not meet either traffic signal warrant under Future (2026) Plus Project conditions. Therefore, the project is not determined to have a significant impact at Kane Street/Vevau Street based on the established significance criteria. However, the excessive delay at the intersection could be reduced by modifying the traffic control devices at the intersection, which would also have multimodal benefits, including pedestrian safety enhancements.
Figure 7
Peak Hour Traffic Volumes and Lane Configurations - Future (2026) Plus Project Conditions
## Table 7: Future (2026) Without and With Project Intersection Levels of Service

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Traffic Control</th>
<th>Peak Hour</th>
<th>Future No Project Conditions</th>
<th>Future Plus Project Conditions</th>
<th>Change in Delay (sec/veh)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intersection or Worst Movement</td>
<td>Worst Movement (for SSSC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delay (sec/veh)¹</td>
<td>LOS</td>
<td>Delay (sec/veh)¹</td>
</tr>
<tr>
<td>1. Kahului Beach Rd-</td>
<td>Signalized</td>
<td>AM</td>
<td>63.0</td>
<td>E</td>
<td>64.7</td>
</tr>
<tr>
<td>Kane St/ W Kaahumanu Ave</td>
<td></td>
<td>PM</td>
<td>62.8</td>
<td>E</td>
<td>65.6</td>
</tr>
<tr>
<td>2. Lono Ave/ W Kaahumanu Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>32.2</td>
<td>C</td>
<td>32.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>21.0</td>
<td>C</td>
<td>21.0</td>
</tr>
<tr>
<td>3. Kane St/Vevau St</td>
<td>SSSC</td>
<td>AM</td>
<td>22.9</td>
<td>C</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>&gt; 180.0*</td>
<td>F</td>
<td>EBL/T</td>
</tr>
<tr>
<td>4. Lono Ave/Vevau St</td>
<td>SSSC</td>
<td>AM</td>
<td>20.5</td>
<td>C</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>24.9</td>
<td>C</td>
<td>31.6</td>
</tr>
<tr>
<td>5. Kane St/ Kamehameha Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>9.8</td>
<td>A</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>14.3</td>
<td>B</td>
<td>15.5</td>
</tr>
<tr>
<td>6. Lono Ave/ Kamehameha Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>18.3</td>
<td>B</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>17.5</td>
<td>B</td>
<td>18.0</td>
</tr>
<tr>
<td>7. Kamehameha Ave/Wakea Ave</td>
<td>Signalized</td>
<td>AM</td>
<td>45.6</td>
<td>D</td>
<td>48.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>48.6</td>
<td>D</td>
<td>53.9</td>
</tr>
</tbody>
</table>


Notes:
- SSSC = Side-Street Stop Controlled
- Whole intersection weighted average stopped delay expressed in seconds per vehicle for the signalized intersection. The vehicular delay for the worst movement is reported for the side-street stop-controlled intersection.
- Calculated delays above 180 seconds are not reliable and indicate substantially oversaturated conditions.
Accordingly, the MUTCD Multi-Way Stop Warrant was also evaluated for the Kane Street/Vevau Street intersection. The intersection will meet the multi-way stop warrant under Future (2026) Plus Project conditions, as it also did under No Project conditions. Because the project exacerbates undesirable conditions that are projected to occur under No Project conditions, the project would be expected to contribute its fair share to the cost of any improvement. The signal warrant and multi-way stop warrant worksheets are included in Appendix D.

**Recommended Improvement**

Although the project does not have a significant impact at Kane Street/Vevau Street due to the signal warrant not being met, the delay for selected side-street turning movements at this location is projected to be very high in the PM peak hour, both without and with the project. It is noted that the worst approach at this location is the shopping center driveway located across from the project, although the movements on Vevau Street exiting from the project are also projected to operate at LOS F, both without and with the proposed project.

According to the projected volume data, a multi-way stop is warranted at this location under Future (2026) conditions, both without and with the proposed project. Implementation of this control would result in average vehicle delays of 12.5 and 17.8 seconds in the AM and PM peak hours, respectively. Because the all-way stop control (AWSC) is expected to be warranted without the project, the new development would typically be required to contribute its fair share toward the design and installation. This share is 30.1% based on an average of AM and PM peak hour project traffic volumes as a share of future growth.

It is noted that AWSC would add delay to the northbound and southbound approaches, which currently are uncontrolled movements, but this control is not expected to substantially affect operations at adjacent intersections. The County of Maui will make the final determination on AWSC implementation at the Kane Street/Vevau Street intersection.
7. Site Access, Circulation, and Parking

This chapter includes a review of the site access and on-site circulation for vehicles, bicyclists, and pedestrians, which would also include most transit users. An evaluation of off-site active and transit travel modes is presented in Chapter 8.

7.1 Site Access

As shown in the site plan, vehicle access to the site is provided via two driveways: one on Kane Street located approximately 190 feet north of Vevau Street, and one on Vevau Street located approximately 150 feet east of Kane Street. The Kane Street driveway could be designed as a full-access driveway with an inbound left-turn pocket, and by providing a short refuge lane or permitting outbound left turns to cross the southbound left-turn pocket for Kane Street/Vevau Street. However, the proximity of the Kane Street driveway to the Kane Street/Vevau Street intersection could result in potential safety issues with outbound vehicles crossing a left-turn lane and minimizing the number of vehicles that would be entering the southbound travel lane approaching Vevau Street. Thus, it is recommended that left turns out of the Kane Street driveway be prohibited. A short length of painted median would distinguish between the pocket at the driveway and the pocket at the Kane Street/Vevau Street intersection. It should be noted that if AWSC is implemented at Kane Street/Vevau Street, southbound left-turn queues to Vevau Street are projected to only extend to up 100 feet, which can be accommodated by the proposed pocket length. Project vehicles that are destined for Kane Street south of Vevau Street could simply turn right from the Vevau Street driveway, and then left onto Kane Street.

Another issue associated with introducing the Kane Street driveway is the speed limit on this section of roadway. The existing 20-mph speed limit sign for southbound vehicles on Kane Street is located approximately 200 feet north of Vevau Street, immediately across from the proposed project driveway. Because vehicles continuing south from Kahului Beach Road onto Kane Street could be traveling 35 mph before this point, it is recommended that the 20-mph speed limit sign be moved as close to West Kaahumanu Avenue as possible. This modification would enhance safety for all users on Kane Street and would help to facilitate merging for vehicles making the eastbound right turn at West Kaahumanu Avenue/Kahului Beach Road-Kane Street and desiring to turn left into the project site.

The driveway on Vevau Street will be full access. It is noted that without AWSC at Kane Street/Vevau Street, the westbound queues at the intersection are projected to extend more than 150 feet past the Vevau Street driveway in the PM peak hour. This would result in temporary but regular delays for vehicles entering and exiting the site, as well as blockages of the entrance to the Vevau Street Bus Hub. With AWSC implemented at Kane Street/Vevau Street as recommended in Section 6.1.1, westbound queues
would only extend up to approximately 70 feet, and no substantial vehicle access issues would be anticipated with construction of the proposed project.

Striping for conceptual site access designs along with enhancements for pedestrian safety at the Kane Street/Vevau Street intersection (discussed in Chapter 8) are provided on Figure 8. The southbound left-turn pocket at the Kane Street driveway should be designed to accommodate two vehicles or be approximately 40 to 50 feet long. Overall, on-site access is deemed adequate with the proposed improvements, and no on-site modifications are recommended.

### 7.2 Collision Assessment

The proposed project is not changing the transportation network in the vicinity where fatal crashes occur as discussed in Section 3.1.4. While the project will add a small amount of traffic to these facilities where these crashes occurred, the project is not anticipated to change the crash rate. Given that it is not possible to perfectly predict human behavior and random fluctuations in crash locations or frequency, additional factors and influences may obfuscate the effects of the proposed project. This does not constitute, and is not meant to be, a comprehensive review of safety in the study or surrounding area, which could be much broader in scope (e.g., including a review of individual collision records, human factors considerations, and comparisons of the collision rates and frequencies with similar localities).

### 7.3 On-Site Circulation & Parking

A 182-space parking deck will be provided for the building housing the offices, library, school, and commercial uses. The required non-residential parking supply per the Maui County Code Chapter 19.36B.020 is 174, so the proposed supply will exceed the Code’s minimum requirement for the non-residential building.

A total of 414 parking spaces will be provided in the residential buildings (or 207 spaces per building). Although the unadjusted required residential parking supply is 600 spaces, the project is centrally located within the community of Kahului, which provides nearby transit, pedestrian, and bicycle access. Furthermore, the live/work mixed uses that make up the project will allow for sharing of the parking deck spaces. Specifically, excess overnight residential parking demand can be accommodated by the parking deck while the commercial uses are closed. Therefore, per the Maui County Code Chapter 19.36B.100 reduction criteria (which allows for up to a 50% reduction), the on-site parking at the proposed project is consistent with the County parking policy. For all project uses combined, the proposed parking supply is 23% less than the unadjusted requirement.

Short-term bicycle parking (e.g., bicycle racks) should be provided on the project site near the main entrance to the building housing commercial uses, which would allow employees and visitors to secure their bicycles while inside the project. Bicycle storage should be provided in or near the residential buildings to allow for longer-term bicycle storage for residents.

No substantial circulation or parking issues are anticipated with construction of the proposed project.
Figure 8

Conceptual Site Access

Add Posted Speed Limit

Stop Control or RRFB

Potential Curb Extension

Stop Control

8. Multimodal Assessment

This chapter includes a review of multimodal access to the site and on-site facilities and circulation for buses, other vehicles, pedestrians, and bicyclists surrounding the site.

8.1 Transit Facilities and Services

Sufficient transit service is currently provided to Kahului by Maui Bus. The Vevau Street Bus Hub is currently being constructed immediately adjacent to the project to the southeast, which will be able to serve project residents, commuters, and visitors at the time of project buildout. Some increase in demand to transit is anticipated with implementation of the proposed project, which can be accommodated based on existing service and frequency, as well as planned bus stop amenities. Within the project study area, implementation of the proposed project is not expected to conflict with any existing or planned transit service included in the planning documents listed in Section 2.4.3. No significant impacts to transit are anticipated to occur with buildout of the proposed project.

8.2 Bicycle Facilities

Bicyclists will access the site via the existing roadway network. Along West Kaahumanu Avenue and West Kamehameha Avenue separate bike lanes are provided, while on Kane Street and Vevau Street they must share the road with vehicles. Kane Street and Vevau Street both include posted 20-mph speed limits that help to enhance safety for cyclists by limiting vehicle speeds. The project is not expected to generate a significant amount of bike demand (fewer than 15 bike trips in the peak hour on any single facility in one direction are anticipated), such that the existing facilities can accommodate project-generated bicycle demand.

Implementation of the proposed project is not expected to conflict with any existing bikeways or planned bicycle facilities included in the planning documents listed in Section 2.4.3. Accordingly, no significant impacts to bicyclists are expected to occur with buildout of the proposed project.

8.3 Pedestrian Facilities

Pedestrians will access the site via existing sidewalks along Vevau Street, along the east side of Kane Street to the south of Vevau Street, and along the south side of West Kaahumanu Avenue. The project is expected to construct a sidewalk along the east of Kane Street between West Kaahumanu Avenue and Vevau Street as part of its frontage improvements. The project will also provide a pedestrian path connection to West Kaahumanu Avenue along the north edge of the project. Pedestrian access should be provided on both sides of each project driveway to separate pedestrians from vehicles. All study intersections include high-visibility crosswalks to enhance pedestrian movement.

Given the new development along the east side of Kane Street included the project, the Vevau Street Bus Hub, and the Kahului Lani senior affordable housing complex, as well as the desired improvements to
pedestrian crossing at Kane Street/Vevau Street identified in *Hele Mai Maui 2040* and the *Central Maui Pedestrian and Bicycle Master Plan for 2030*, the following pedestrian enhancements at Kane Street/Vevau Street are recommended:

- Implement AWSC as warranted.
  - As noted in Section 6.1.1, AWSC would add delay to the northbound and southbound approaches that currently are uncontrolled movements, but this control is not expected to substantially affect operations at adjacent intersections. The County of Maui will make the final determination on AWSC implementation at the Kane Street/Vevau Street intersection.
  - If AWSC is not implemented, an alternative pedestrian enhancement would be to provide a rectangular rapid flashing beacon (RRFB) for the crossing on the north leg to improve pedestrian safety. As noted in Section 7.1, without implementation of AWSC, however, vehicle queues and delays on Vevau Street would cause excessive peak hour congestion and queueing.

- Restripe the southbound Kane Street approach to Vevau Street to be a southbound right-turn lane, a southbound through lane, and a southbound left-turn lane. This improvement, in combination with AWSC, would result in average vehicle delays of 13.3 and 19.0 seconds in the AM and PM peak hours, respectively.

- Construct a curb extension on the southwest corner of the intersection to shorten the pedestrian crossing distance. This improvement could be implemented with or without AWSC as part of restriping the southbound approach.

Implementation of the proposed project is not expected to conflict with any existing or planned pedestrian facilities included in the planning documents listed in Section 2.4.3. No significant impacts to pedestrians are forecasted to occur with buildout of the project.

Multimodal circulation, including the identified improvements, is summarized on Figure 9.

### 8.4 Future Improvements

The County of Maui Department of Public Works is currently preparing plans for Complete Streets improvements on Kane Street from West Kaahumanu Avenue to West Kamehameha Avenue. These improvements include wider sidewalks for pedestrians, separate bicycle facilities for cyclists, and enhancements at the Kane Street/Vevau Street intersection to shorten pedestrian crossings and manage vehicle speeds. While the improvement plans are still being developed, several alternative cross-sections are being considered:
Figure 9
Multimodal Circulation


- Add Posted Speed Limit
- Shared-use path along site frontage
- Bicyclists share low-speed street
- Stop Control or RRFB
- Potential Curb Extension
- Low-volume, low-speed street for bicyclists
- Note: Direct access is not provided to 3rd St or Vevau Bus Hub due to respective property owner objections
Alternate 1: Install a protected intersection at Kane Street and Vevau Street, with one-way protected bicycle lanes and a raised midblock crosswalk between Vevau Street and Kamehameha Avenue

Alternate 2: Install a raised intersection at Kane Street and Vevau Street, with a shared-use path on the east side of the street and a raised midblock crosswalk between Vevau Street and Kamehameha Avenue

Alternate 3: Install a 10-foot-wide pedestrian promenade south of Kaahumanu Avenue on the east side of Kane Street, one-way standard bicycle lanes, and raised crosswalk at two locations: 1) across the south leg of the Kane Street at Vevau Street, and 2) midblock between Vevau Street and Kamehameha Avenue

Alternates 1 and 2 are more desirable in that they both provide greater bicycle and pedestrian safety enhancements superior pedestrian facilities compared to those provided in Alternate 3. The project site plan will be designed to accommodate the future County improvements, and the recommendations listed above in Section 6.1 and Sections 8.1 through 8.3 are consistent with the County plans and Complete Streets best practices.
Appendix A: Historic Traffic Count Data
Excerpt from Kahului Lani Affordable Senior Housing Project Draft EA Appendix C: Traffic Impact Analysis Report (prepared by Austin, Tsutsumi & Associates, Inc.)
### Austin Tsutsumi & Associates
501 Sumner Street, Suite 521
Honolulu, HI 96817-5031
Phone: (808) 533-3646 Fax: (808) 526-1267

File Name : AM_Kahului Beach Road_Kane St - Kaahumanu Ave
Site Code : 00000000
Start Date : 3/8/2017
Page No : 1

#### Groups Printed- Unshifted

<table>
<thead>
<tr>
<th>Start Time</th>
<th>KAAHUMANU AVE Eastbound</th>
<th>KAAHUMANU AVE Westbound</th>
<th>KANE ST Northbound</th>
<th>KAHULUI BEACH RD Southbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
<td>Left</td>
</tr>
<tr>
<td>06:45 AM</td>
<td>11</td>
<td>166</td>
<td>17</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>166</td>
<td>17</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>07:00 AM</td>
<td>4</td>
<td>152</td>
<td>9</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>3</td>
<td>167</td>
<td>17</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>9</td>
<td>169</td>
<td>12</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>5</td>
<td>163</td>
<td>26</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>651</td>
<td>64</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>6</td>
<td>160</td>
<td>9</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>08:15 AM</td>
<td>17</td>
<td>118</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>08:30 AM</td>
<td>9</td>
<td>150</td>
<td>1</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Grand Total</td>
<td>64</td>
<td>1245</td>
<td>96</td>
<td>14</td>
<td>46</td>
</tr>
<tr>
<td>Apprch %</td>
<td>4.5</td>
<td>87.7</td>
<td>6.8</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>Total %</td>
<td>0.9</td>
<td>16.9</td>
<td>1.3</td>
<td>0.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>
**Peak Hour Analysis From 06:45 AM to 08:30 AM - Peak 1 of 1**

Peak Hour Data

Peak Hour Begins at 07:15 AM

Unshifted

### Start Time

<table>
<thead>
<tr>
<th>Time</th>
<th>KAAHUMANU AVE Eastbound</th>
<th>KAAHUMANU AVE Westbound</th>
<th>KANE ST Northbound</th>
<th>KAHULUI BEACH RD Southbound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thr</td>
<td>Right</td>
<td>Ped</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>3</td>
<td>167</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>9</td>
<td>169</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>5</td>
<td>163</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>6</td>
<td>160</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

| Volume     | 23   | 659     | 64    | 7   | 753      | 17   | 107     | 1     | 855 | 1944     | 36   | 97      | 2     | 10  | 145       | 971  | 128     | 70    | 3   | 1172      | 4014 |

| % App. Total | 3.1  | 87.5    | 8.5   | 0.9 | 0.9      | 0.9  | 55.1    | 44    | 0.1 | 24.8     | 24.8 | 66.9    | 1.4   | 6.9 | 82.8      | 82.8 | 10.9    | 6     | 0.3 | 304       | 304  |

| PHF        | .639 | .975    | .615  | .438 | .970     | .850 | .920    | .933  | .250 | .926     | .818 | .802    | .500  | .625 | .806      | .956 | .941    | .673  | .375 | .964      | .954  |

**Notes:**
- **PHF** stands for Peak Hour Flow, which is an indicator of traffic volume.
- The data includes volumes for each direction and includes a breakdown of pedestrian flows.
- The diagram illustrates the traffic flow at the intersection, with arrows indicating the movement of vehicles and pedestrians.
- The peak hour data is analyzed from 06:45 AM to 08:30 AM.

**Contact Information:**
- Austin Tsutsumi & Associates
- 501 Sumner Street, Suite 521
- Honolulu, HI 96817-5031
- Phone: (808) 533-3646 Fax: (808) 526-1267
### Groups Printed- Unshifted - Bank 1

<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>KAAHUMANU AVE Westbound</th>
<th>LONO AVE Northbound</th>
<th>KAAHUMANU AVE Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
<td>Left</td>
</tr>
<tr>
<td>06:45 AM</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>07:00 AM</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>10</td>
<td>9</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>08:15 AM</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>08:30 AM</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Grand Total</td>
<td>46</td>
<td>24</td>
<td>17</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>Approch %</td>
<td>52.9</td>
<td>27.6</td>
<td>19.5</td>
<td>0</td>
<td>1.3</td>
</tr>
<tr>
<td>Total %</td>
<td>0.7</td>
<td>0.4</td>
<td>0.2</td>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>Unshifted</td>
<td>46</td>
<td>24</td>
<td>17</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>% Unshifted</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
### Peak Hour Analysis from 06:45 AM to 08:30 AM

**Peak Hour for Entire Intersection Begins at 07:15 AM**

<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>KAAHUMANU AVE Westbound</th>
<th>LONO AVE Northbound</th>
<th>KAAHUMANU AVE Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thr</td>
<td>Right</td>
<td>Ped</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| Total Volume | 22 | 12 | 8 | 42 | 20 | 172 | 6 | 12 | 1 | 1759 | 169 | 14 | 33 | 4 | 220 | 16 | 145 | 5 | 131 | 18 | 1620 | 3641 |
| % App. Total | 52.4 | 28.6 | 19 | 0 | 1.1 | 98.1 | 0.7 | 0.1 | 76.8 | 6.4 | 15 | 1.8 | 1 | 89.8 | 8.1 | 1.1 |

| PHF | 0.688 | 0.600 | 0.400 | 0.000 | 0.808 | 0.714 | 0.920 | 0.600 | 0.250 | 0.922 | 0.828 | 0.500 | 0.825 | 0.500 | 0.821 | 0.781 | 0.198 | 0.500 | 0.985 | 0.943 |

**Peak Hour Begins at 07:15 AM**

**Unshifted Bank 1**

---

**Peak Hour Data**

- **North**
  - Right Thru: 12
  - Left: 10

- **South**
  - Right Thru: 15
  - Left: 5

---

**LONO AVE Out**

- Left: 163
- Thru: 14
- Right: 33
- Peds: 4

**LONO AVE In**

- Left: 163
- Thru: 220
- Right: 383
- Peds: 45

---
### Groups Printed - Unshifted - Bank 1

<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>VEUVA ST Westbound</th>
<th>LONO AVE Northbound</th>
<th>VEUVA ST Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
<td>Left</td>
</tr>
<tr>
<td>06:45 AM</td>
<td>1</td>
<td>44</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>44</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>07:00 AM</td>
<td>0</td>
<td>32</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>5</td>
<td>48</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>3</td>
<td>40</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>2</td>
<td>59</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>179</td>
<td>26</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>3</td>
<td>41</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>08:15 AM</td>
<td>4</td>
<td>26</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>08:30 AM</td>
<td>3</td>
<td>51</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Grand Total</td>
<td>21</td>
<td>341</td>
<td>46</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Apprch %</td>
<td>5.1</td>
<td>83.6</td>
<td>11.3</td>
<td>0</td>
<td>33.3</td>
</tr>
<tr>
<td>Total %</td>
<td>2</td>
<td>32.7</td>
<td>4.4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Unshifted</td>
<td>21</td>
<td>341</td>
<td>46</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>% Unshifted</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Peak Hour Analysis From 06:45 AM to 08:30 AM - Peak 1 of 1

Peak Hour for Entire Intersection Begins at 07:15 AM

<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>VEVAU ST Westbound</th>
<th>LONO AVE Northbound</th>
<th>VEVAU ST Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Left Thr Righ Ped App.</td>
<td>Total</td>
<td>Left Thr Righ Ped App.</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>5 48 7 0 60</td>
<td>1 2 1 0 4</td>
<td>4 61 5 0 70</td>
<td>6 2 6 0 14</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>3 40 8 0 51</td>
<td>0 0 1 0 1</td>
<td>5 66 3 0 74</td>
<td>2 2 11 0 15</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>2 59 6 0 67</td>
<td>1 2 0 0 3</td>
<td>9 56 11 0 76</td>
<td>2 1 16 0 19</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>3 41 5 0 49</td>
<td>5 2 2 0 9</td>
<td>5 53 5 0 63</td>
<td>4 4 10 0 18</td>
</tr>
</tbody>
</table>

| Total Volume | 13 | 188 | 26 | 0 | 227 | 7 | 6 | 4 | 0 | 17 | 23 | 236 | 24 | 0 | 283 | 14 | 9 | 43 | 0 | 66 | 593 |
| % App. Total | 5.7 | 82.8 | 11.5 | 0 | 41.2 | 35.3 | 23.5 | 0 | 8.1 | 83.4 | 8.5 | 0 | 21.2 | 13.6 | 65.2 | 0 | 593 |

PHF: 0.650 .797 .813 .000 .847 .350 .750 .500 .000 .472 .639 .894 .545 .000 .931 .583 .563 .672 .000 .866 .898

Peak Hour Data

North

Peak Hour Begins at 07:15 AM
Unshifted Bank 1
<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>KAMEHAMEHA AVE Westbound</th>
<th>LONO AVE Northbound</th>
<th>KAMEHAMEHA AVE Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
<td>Left</td>
</tr>
<tr>
<td>06:45 AM</td>
<td>18</td>
<td>25</td>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>07:00 AM</td>
<td>17</td>
<td>19</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>14</td>
<td>32</td>
<td>12</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>23</td>
<td>30</td>
<td>5</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>26</td>
<td>30</td>
<td>13</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>111</td>
<td>33</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>24</td>
<td>23</td>
<td>7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>08:15 AM</td>
<td>15</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>08:30 AM</td>
<td>29</td>
<td>21</td>
<td>15</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Grand Total</td>
<td>166</td>
<td>193</td>
<td>71</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>Approach %</td>
<td>38.2</td>
<td>44.5</td>
<td>16.4</td>
<td>0.9</td>
<td>8.3</td>
</tr>
<tr>
<td>Total %</td>
<td>8.2</td>
<td>9.5</td>
<td>3.5</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Unshifted</td>
<td>166</td>
<td>193</td>
<td>71</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>% Unshifted</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Peak Hour Analysis From 06:45 AM to 08:30 AM - Peak 1 of 1

<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>KAMEHAMEHA AVE Westbound</th>
<th>LONO AVE Northbound</th>
<th>KAMEHAMEHA AVE Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thr</td>
<td>Righ</td>
<td>Ped</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>14</td>
<td>32</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>23</td>
<td>30</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>26</td>
<td>30</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>24</td>
<td>23</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Volume

- LONO AVE Southbound: 87
- KAMEHAMEHA AVE Westbound: 115
- LONO AVE Northbound: 37
- KAMEHAMEHA AVE Eastbound: 1

% App. Total

- LONO AVE Southbound: 36.2%
- KAMEHAMEHA AVE Westbound: 47.9%
- LONO AVE Northbound: 15.4%
- KAMEHAMEHA AVE Eastbound: 0.4%

PHF

- LONO AVE Southbound: 0.837
- KAMEHAMEHA AVE Westbound: 0.898
- LONO AVE Northbound: 0.712
- KAMEHAMEHA AVE Eastbound: 0.250

Peak Hour Data

North

Peak Hour Begins at 07:15 AM
Unshifted Bank 1
<table>
<thead>
<tr>
<th>Start Time</th>
<th>KANE ST Southbound</th>
<th>KANE ST Northbound</th>
<th>KAMEHAMEHA AVE Westbound</th>
<th>KAMEHAMEHA AVE Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
<td>Left</td>
</tr>
<tr>
<td>06:45 AM</td>
<td>0</td>
<td>40</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>40</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>07:00 AM</td>
<td>1</td>
<td>25</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>0</td>
<td>34</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>0</td>
<td>40</td>
<td>11</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>0</td>
<td>41</td>
<td>12</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>140</td>
<td>40</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>0</td>
<td>44</td>
<td>23</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>08:15 AM</td>
<td>0</td>
<td>39</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:30 AM</td>
<td>0</td>
<td>44</td>
<td>19</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1</td>
<td>307</td>
<td>106</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Apprch %</td>
<td>0.2</td>
<td>74</td>
<td>25.5</td>
<td>0.2</td>
<td>13.6</td>
</tr>
<tr>
<td>Total %</td>
<td>0.1</td>
<td>18.5</td>
<td>6.4</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Unshifted</td>
<td>1</td>
<td>307</td>
<td>106</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>% Unshifted</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Peak Hour Analysis From 06:45 AM to 08:30 AM - Peak 1 of 1

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Southbound</th>
<th>KAMEHAMEHA AVE</th>
<th>KANE ST</th>
<th>KAMEHAMEHA AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Righ t</td>
<td>Ped s</td>
<td>App. Total</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>53</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>0</td>
<td>44</td>
<td>23</td>
<td>67</td>
</tr>
</tbody>
</table>

Total Volume

| % App. Total | 0.159 | 0.560 | 0.215 | 0.190 | 0.103 | 0.000 | 0.000 | 0.002 | 0.325 | 0.792 | 0.000 | 0.025 | 0.893 | 0.912 | 0.797 | 0.500 | 0.851 | 0.667 | 0.639 | 0.881 | 0.500 | 0.885 | 0.896 |

PHF

| 0.000 | 0.303 | 0.609 | 0.000 | 0.802 | 0.625 | 0.792 | 0.500 | 0.851 | 0.667 | 0.639 | 0.881 | 0.500 | 0.885 | 0.896 |

Peak Hour Begins at 07:15 AM

Unshifted Bank 1

Revised for Fehr & Peers analysis
### Austin Tsutsumi & Associates

501 Sumner Street, Suite 521
Honolulu, HI 96817-5031
Phone: (808) 533-3646 Fax: (808) 526-1267

File Name: AM_Kane St - Kamehameha Ave
Site Code: 00000000
Start Date: 3/8/2017
Page No: 1

<table>
<thead>
<tr>
<th>Groups Printed - Unshifted - Bank 1</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Kamehameha Ave</strong></td>
</tr>
<tr>
<td><strong>Start Time</strong></td>
</tr>
<tr>
<td><strong>Start Time</strong></td>
</tr>
<tr>
<td>06:45 AM</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>07:00 AM</td>
</tr>
<tr>
<td>07:15 AM</td>
</tr>
<tr>
<td>07:30 AM</td>
</tr>
<tr>
<td>07:45 AM</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>08:00 AM</td>
</tr>
<tr>
<td>08:15 AM</td>
</tr>
<tr>
<td>08:30 AM</td>
</tr>
<tr>
<td>Grand Total</td>
</tr>
<tr>
<td>Approach %</td>
</tr>
<tr>
<td>Total %</td>
</tr>
<tr>
<td>Unshifted</td>
</tr>
<tr>
<td>% Unshifted</td>
</tr>
<tr>
<td>Bank 1</td>
</tr>
<tr>
<td>% Bank 1</td>
</tr>
</tbody>
</table>

Fehr & Peers revisions: streets appear to be incorrectly labeled, assumed correct roadway orientation matches PM count (Kane EB/WB and Kamehameha NB/SB)
**Austin Tsutsumi & Associates**  
501 Sumner Street, Suite 521  
Honolulu, HI 96817-5031  
Phone: (808) 533-3646 Fax: (808) 526-1267

File Name: AM_Kane St - Kamehameha Ave  
Site Code: 00000000  
Start Date: 3/8/2017  
Page No: 2

---

### Peak Hour Analysis

From 06:45 AM to 08:30 AM - Peak 1 of 1

Peak Hour for Entire Intersection Begins at 07:15 AM

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Southbound</th>
<th>Kane St</th>
<th>Kamehameha Ave</th>
<th>Kane St</th>
<th>Kamehameha Ave</th>
<th>Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:15 AM</td>
<td>0 34</td>
<td>10 0</td>
<td>44</td>
<td>0</td>
<td>5</td>
<td>34</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>0 40</td>
<td>11 0</td>
<td>51</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>0 41</td>
<td>12 0</td>
<td>53</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>0 44</td>
<td>23 0</td>
<td>67</td>
<td>1</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Volume</th>
<th>% App.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 159</td>
<td>56 0 215</td>
<td></td>
</tr>
<tr>
<td>5 19</td>
<td>0 1 25</td>
<td>124 357 7 2 490</td>
</tr>
<tr>
<td>0 74</td>
<td>26 0</td>
<td>20 76 0 4 25.3 72.9 1.4 0.4 21.5 10.3 66.4 1.8</td>
</tr>
</tbody>
</table>

| PHF | .000 | .903 | .609 | .000 | .000 | .802 | .625 | .792 | .000 | .250 | .893 | .912 | .797 | .500 | .851 | .667 | .639 | .881 | .500 | .885 | .966 |

---

**Fehr & Peers revisions:** streets appear to be incorrectly labeled, assumed correct roadway orientation matches PM count (Kane EB/WB and Kamehameha NB/SB)
**Austin Tsutsumi & Associates**
501 Sumner Street, Suite 521
Honolulu, HI 96817-5031
Phone: (808) 533-3646 Fax: (808) 526-1267

File Name: PM_Kahului Beach Road_Kane St - Kaahumanu Ave
Site Code: 00000000
Start Date: 3/8/2017
Page No.: 1

### Groups Printed - Unshifted

<table>
<thead>
<tr>
<th>Start Time</th>
<th>KA AHUMANU AVE</th>
<th>KA AHUMANU AVE</th>
<th>KANE ST</th>
<th>KA HULUI BEACH RD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eastbound</td>
<td>Westbound</td>
<td>Northbound</td>
<td>Southbound</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
</tr>
<tr>
<td>03:15 PM</td>
<td>9</td>
<td>210</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>14</td>
<td>202</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>03:45 PM</td>
<td>9</td>
<td>220</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>632</td>
<td>82</td>
<td>9</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>6</td>
<td>242</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>10</td>
<td>223</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>9</td>
<td>196</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>04:45 PM</td>
<td>7</td>
<td>239</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>900</td>
<td>102</td>
<td>12</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>6</td>
<td>177</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Grand Total</td>
<td>70</td>
<td>1709</td>
<td>213</td>
<td>21</td>
</tr>
</tbody>
</table>

### Approach %

<table>
<thead>
<tr>
<th>Start Time</th>
<th>KA AHUMANU AVE</th>
<th>KA HULUI BEACH RD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eastbound</td>
<td>Southbound</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
</tr>
<tr>
<td>03:15 PM</td>
<td>3.5</td>
<td>84.9</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>0.8</td>
<td>20.5</td>
</tr>
</tbody>
</table>

Total %
Pea...</p>
### Groups Printed - Unshifted - Bank 1

<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>KAAHUMANU AVE Westbound</th>
<th>LONO AVE Northbound</th>
<th>KAAHUMANU AVE Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
<td>Left</td>
</tr>
<tr>
<td>03:15 PM</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>03:45 PM</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>04:45 PM</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>21</td>
<td>10</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Grand Total</td>
<td>40</td>
<td>29</td>
<td>12</td>
<td>0</td>
<td>105</td>
</tr>
<tr>
<td>Apprch %</td>
<td>49.4</td>
<td>35.8</td>
<td>14.6</td>
<td>0</td>
<td>2.9</td>
</tr>
<tr>
<td>Total %</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>0</td>
<td>1.4</td>
</tr>
<tr>
<td>Unshifted</td>
<td>40</td>
<td>29</td>
<td>12</td>
<td>0</td>
<td>105</td>
</tr>
<tr>
<td>% Unshifted</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Peak Hour Analysis From 03:45 PM to 04:30 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 03:45 PM

<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>KAAHUMANU AVE Westbound</th>
<th>LONO AVE Northbound</th>
<th>KAAHUMANU AVE Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thr</td>
<td>Righ</td>
<td>Ped</td>
</tr>
<tr>
<td>03:45 PM</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Peak Hour Data

North

Peak Hour Begins at 03:45 PM
Unshifted
Bank 1
<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>VEVAV ST Westbound</th>
<th>LONO AVE Northbound</th>
<th>VEVAV ST Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
<td>Left</td>
</tr>
<tr>
<td>03:15 PM</td>
<td>2</td>
<td>42</td>
<td>7</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>0</td>
<td>56</td>
<td>11</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>03:45 PM</td>
<td>3</td>
<td>56</td>
<td>12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>154</td>
<td>30</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>3</td>
<td>55</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>2</td>
<td>51</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>0</td>
<td>55</td>
<td>16</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>04:45 PM</td>
<td>1</td>
<td>41</td>
<td>11</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>202</td>
<td>39</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>0</td>
<td>49</td>
<td>7</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Grand Total</td>
<td>11</td>
<td>405</td>
<td>76</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>Appro %</td>
<td>2.2</td>
<td>82.3</td>
<td>15.4</td>
<td>0</td>
<td>52.8</td>
</tr>
<tr>
<td>Total %</td>
<td>0.8</td>
<td>29.3</td>
<td>5.5</td>
<td>0</td>
<td>2.7</td>
</tr>
<tr>
<td>Unshifted</td>
<td>11</td>
<td>405</td>
<td>76</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>% Unshifted</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
## Austin Tsutsumi & Associates

501 Sumner Street, Suite 521  
Honolulu, HI 96817-5031  
Phone: (808) 533-3646 Fax: (808) 526-1267

File Name : PM_Lono Ave - Vevau St  
Site Code : 00000000  
Start Date : 3/8/2017  
Page No : 2

### Peak Hour Analysis From 03:45 PM to 04:30 PM - Peak 1 of 1

Peak Hour for Entire Intersection Begins at 03:45 PM

<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>VEVAU ST Westbound</th>
<th>LONO AVE Northbound</th>
<th>VEVAU ST Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left Thr Righ Ped App. Total</td>
</tr>
<tr>
<td>03:45 PM</td>
<td>3 56</td>
<td>0 71</td>
<td>1 2</td>
<td>0 0</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>3 55</td>
<td>5 63</td>
<td>1 1</td>
<td>0 0</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>2 51</td>
<td>7 60</td>
<td>7 2</td>
<td>5 0</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>0 55</td>
<td>16 71</td>
<td>6 1</td>
<td>2 0</td>
</tr>
</tbody>
</table>

| Total Volume | 8 217 | 40 0 265 | 15 6 7 0 28 | 47 160 21 0 228 | 32 23 111 0 166 | 687 |
| % App. Total | 3 81.9 | 15.1 0 | 53.6 21.4 25 0 | 20.6 70.2 9.2 0 | 19.3 13.9 66.9 0 |

| PHF | .667 | .969 | .625 | .000 | .933 | .536 | .750 | .350 | .000 | .500 | 839 | .870 | .750 | .000 | .864 | .727 | .719 | .895 | .000 | .902 | .923 |

### Peak Hour Data

Peak Hour Begins at 03:45 PM

Unshifted Bank 1

```
<table>
<thead>
<tr>
<th>LONO AVE</th>
<th>VEVAU ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out 198</td>
<td>In 256</td>
</tr>
<tr>
<td>Total</td>
<td>464</td>
</tr>
<tr>
<td>Right</td>
<td>211</td>
</tr>
<tr>
<td>Thru</td>
<td>32</td>
</tr>
<tr>
<td>Left</td>
<td>0</td>
</tr>
<tr>
<td>Peds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LONO AVE</th>
<th>VEVAU ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out 111</td>
<td>In 866</td>
</tr>
<tr>
<td>Total</td>
<td>297</td>
</tr>
<tr>
<td>Right</td>
<td>23</td>
</tr>
<tr>
<td>Thru</td>
<td>34</td>
</tr>
<tr>
<td>Left</td>
<td>0</td>
</tr>
<tr>
<td>Peds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LONO AVE</th>
<th>VEVAU ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out 47</td>
<td>In 186</td>
</tr>
<tr>
<td>Total</td>
<td>233</td>
</tr>
<tr>
<td>Right</td>
<td>21</td>
</tr>
<tr>
<td>Thru</td>
<td>34</td>
</tr>
<tr>
<td>Left</td>
<td>0</td>
</tr>
<tr>
<td>Peds</td>
<td></td>
</tr>
</tbody>
</table>
```

Unshifted Bank 1

```
<table>
<thead>
<tr>
<th>LONO AVE</th>
<th>VEVAU ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out 161</td>
<td>In 228</td>
</tr>
<tr>
<td>Total</td>
<td>389</td>
</tr>
<tr>
<td>Right</td>
<td>21</td>
</tr>
<tr>
<td>Thru</td>
<td>34</td>
</tr>
<tr>
<td>Left</td>
<td>0</td>
</tr>
<tr>
<td>Peds</td>
<td></td>
</tr>
</tbody>
</table>
```
### Groups Printed - Unshifted - Bank 1

<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>KAMEHAMEHA AVE Westbound</th>
<th>LONO AVE Northbound</th>
<th>KAMEHAMEHA AVE Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
<td>Left</td>
</tr>
<tr>
<td>03:15 PM</td>
<td>43</td>
<td>26</td>
<td>16</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>59</td>
<td>25</td>
<td>16</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>03:45 PM</td>
<td>50</td>
<td>29</td>
<td>16</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>152</td>
<td>80</td>
<td>48</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>42</td>
<td>25</td>
<td>13</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>48</td>
<td>24</td>
<td>15</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>36</td>
<td>31</td>
<td>19</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>04:45 PM</td>
<td>37</td>
<td>28</td>
<td>11</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>163</td>
<td>108</td>
<td>58</td>
<td>2</td>
<td>89</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>36</td>
<td>28</td>
<td>17</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Grand Total</td>
<td>351</td>
<td>216</td>
<td>123</td>
<td>3</td>
<td>150</td>
</tr>
<tr>
<td>Appr %</td>
<td>50.6</td>
<td>31.2</td>
<td>17.7</td>
<td>0.4</td>
<td>14.1</td>
</tr>
<tr>
<td>Total %</td>
<td>11.9</td>
<td>7.3</td>
<td>4.2</td>
<td>0.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Unshifted</td>
<td>351</td>
<td>216</td>
<td>123</td>
<td>3</td>
<td>150</td>
</tr>
<tr>
<td>% Unshifted</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Bank 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Peak Hour Analysis From 03:45 PM to 04:30 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 03:45 PM

<table>
<thead>
<tr>
<th>Start Time</th>
<th>LONO AVE Southbound</th>
<th>KAMEHAMEHA AVE Westbound</th>
<th>LONO AVE Northbound</th>
<th>KAMEHAMEHA AVE Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thr</td>
<td>Righ</td>
<td>Ped</td>
</tr>
<tr>
<td>03:45 PM</td>
<td>50</td>
<td>29</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>42</td>
<td>25</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>48</td>
<td>24</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>38</td>
<td>31</td>
<td>19</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Volume</th>
<th>% App. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>176</td>
<td>50.4</td>
</tr>
<tr>
<td>109</td>
<td>31.2</td>
</tr>
<tr>
<td>63</td>
<td>18.1</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

| PHF | .880 | .879 | .829 | .250 | .918 | .817 | .768 | .875 | .000 | .839 | .500 | .850 | .789 | .000 | .888 | .758 | .828 | .688 | .250 | .821 | .958 |

---

**Peak Hour Data**

- **Peak Hour Begins at 03:45 PM**
- Unshifted
- Bank 1
### Groups Printed - Unshifted - Bank 1

<table>
<thead>
<tr>
<th>Start Time</th>
<th>KAMEHAMEHA AVE Southbound</th>
<th>KANE ST Westbound</th>
<th>KAMEHAMEHA AVE Northbound</th>
<th>KANE ST Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
<td>Left</td>
</tr>
<tr>
<td>03:15 PM</td>
<td>0</td>
<td>67</td>
<td>18</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>2</td>
<td>67</td>
<td>26</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>03:45 PM</td>
<td>1</td>
<td>70</td>
<td>37</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>204</td>
<td>81</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>0</td>
<td>70</td>
<td>24</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>1</td>
<td>100</td>
<td>24</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>3</td>
<td>107</td>
<td>33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>04:45 PM</td>
<td>1</td>
<td>30</td>
<td>22</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>357</td>
<td>103</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>0</td>
<td>86</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grand Total</td>
<td>5</td>
<td>647</td>
<td>216</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Appro %</td>
<td>0.6</td>
<td>74.3</td>
<td>24.8</td>
<td>0.3</td>
<td>18.8</td>
</tr>
<tr>
<td>Total %</td>
<td>0.2</td>
<td>26.2</td>
<td>8.7</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Unshifted</td>
<td>5</td>
<td>647</td>
<td>216</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>% Unshifted</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

- **File Name:** PM.Kane St - Kamehameha Ave
- **Site Code:** 00000000
- **Start Date:** 3/8/2017
- **Page No:** 1

**Austin Tsutsumi & Associates**
501 Sumner Street, Suite 521
Honolulu, HI 96817-5031
Phone: (808) 533-3646 Fax: (808) 526-1267
Peak Hour Analysis From 03:45 PM to 04:30 PM - Peak 1 of 1

Peak Hour Begins at 03:45 PM

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Southbound</th>
<th>Westbound</th>
<th>Northbound</th>
<th>Eastbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>03:45 PM</td>
<td>1 70 37 0 108</td>
<td>1 5 1 0 7</td>
<td>22 93 2 0 117</td>
<td>27 6 58 0 91</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>0 70 24 3 97</td>
<td>0 4 0 0 4</td>
<td>34 75 2 0 111</td>
<td>25 12 56 0 93</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>1 100 24 0 125</td>
<td>2 5 1 2 10</td>
<td>30 68 1 0 99</td>
<td>30 13 60 2 105</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>0 107 33 0 140</td>
<td>1 2 0 0 3</td>
<td>32 51 0 0 83</td>
<td>27 16 53 0 96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Volume</th>
<th>% App. Total</th>
<th>Total Volume</th>
<th>% App. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 347 118 3 470</td>
<td>0.4 73.8 25.1 0.6</td>
<td>4 16 2 2 24</td>
<td>118 287 5 0 410</td>
</tr>
</tbody>
</table>

PHF .917 .951 .797 .250 .839 .500 .800 .500 .250 .800 .868 .772 .625 .000 .876 .908 .734 .946 .250 .917 .951
Excerpt from Transit Hub Relocation at Kahului, Maui, Hawaii Draft EA Appendix E: Traffic Impact Analysis Report (prepared by Austin, Tsutsumi & Associates, Inc.)
<table>
<thead>
<tr>
<th>Start Time</th>
<th>KANE STREET SOUTHBOUND</th>
<th>VEVAU STREET WESTBOUND</th>
<th>KANE STREET NORTHBOUND</th>
<th>QKC DWY EASTBOUND</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
<td>Left</td>
</tr>
<tr>
<td>06:45</td>
<td>5</td>
<td>57</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>07:00</td>
<td>6</td>
<td>46</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>07:15</td>
<td>12</td>
<td>37</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>07:30</td>
<td>8</td>
<td>51</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>07:45</td>
<td>3</td>
<td>47</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>181</td>
<td>18</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>08:00</td>
<td>4</td>
<td>36</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>08:15</td>
<td>6</td>
<td>32</td>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>08:30</td>
<td>4</td>
<td>35</td>
<td>9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Grand Total</td>
<td>48</td>
<td>341</td>
<td>37</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Apprch %</td>
<td>11</td>
<td>78.4</td>
<td>8.5</td>
<td>2.1</td>
<td>18</td>
</tr>
<tr>
<td>Total %</td>
<td>4.7</td>
<td>33.6</td>
<td>3.6</td>
<td>0.9</td>
<td>2</td>
</tr>
<tr>
<td>Motorcycles</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Motorcycles</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buses</td>
<td>46</td>
<td>325</td>
<td>37</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>% Buses</td>
<td>95.8</td>
<td>95.3</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Single-Unit Trucks</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Single-Unit Trucks</td>
<td>21</td>
<td>3.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Articulated Trucks</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Articulated Trucks</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bicycles on Road</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Bicycles on Road</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bicycles on Crosswalk</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Bicycles on Crosswalk</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Pedestrians</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
### Peak Hour Analysis

**File Name:** Kane St - Vevau St  
**Site Code:** 18-550 Maui Bus Hub  
**Start Date:** 10/16/2018  
**Page No:** 2

#### Peak Hour Data

- Peak Hour Begins at 07:15
- Motorcycles
- Cars & Light Goods
- Buses
- Single-Unit Trucks
- Articulated Trucks
- Bicycles on Road
- Bicycles on Crosswalk
- Pedestrians

### File Name: Kane St - Vevau St

**Site Code:** 18-550 Maui Bus Hub  
**Start Date:** 10/16/2018  
**Page No:** 2

#### Peak Hour Analysis From 06:45 to 08:30 - Peak 1 of 1

**Peak Hour for Entire Intersection Begins at 07:15**

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Left</th>
<th>Thru</th>
<th>Right</th>
<th>Peds</th>
<th>Int Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:15</td>
<td>12</td>
<td>37</td>
<td>3</td>
<td>53</td>
<td>19</td>
</tr>
<tr>
<td>07:30</td>
<td>8</td>
<td>51</td>
<td>6</td>
<td>68</td>
<td>15</td>
</tr>
<tr>
<td>07:45</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>58</td>
<td>24</td>
</tr>
<tr>
<td>08:00</td>
<td>4</td>
<td>36</td>
<td>4</td>
<td>44</td>
<td>15</td>
</tr>
</tbody>
</table>

**Total Volume:**
- 27 171 15 8 221

**% App. Total:**
- 12.2 77.4 6.6 3.6

**PHF:**
- .563 .838 .625 .500 .801 .563 .833 .625 .000 .670 .806 .878 .583 .583 .836 .563 .604 .800 .750 .760 .866

---

**Diagram of Intersection:**

- Out 180 In 221 Total 411
- Out 15 In 171 Right 27 Thru 8 Left 1
- Out 32 In 20 Right 44 Left 4
- Out 18 In 151 Right 9 Thru 7 Left 1
- Out 212 In 194 Total 406
<table>
<thead>
<tr>
<th></th>
<th>KANE STREET SOUTHBOUND</th>
<th>VEEAU STREET WESTBOUND</th>
<th>KANE STREET NORTHBOUND</th>
<th>QKC DWY EASTBOUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time</td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
</tr>
<tr>
<td>15:15</td>
<td>15</td>
<td>42</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>15:30</td>
<td>10</td>
<td>45</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>15:45</td>
<td>7</td>
<td>47</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>134</td>
<td>42</td>
<td>8</td>
</tr>
<tr>
<td>16:00</td>
<td>5</td>
<td>45</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>16:15</td>
<td>7</td>
<td>53</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>16:30</td>
<td>10</td>
<td>55</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>16:45</td>
<td>8</td>
<td>52</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>205</td>
<td>40</td>
<td>7</td>
</tr>
<tr>
<td>17:00</td>
<td>6</td>
<td>58</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Grand Total</td>
<td>68</td>
<td>397</td>
<td>93</td>
<td>17</td>
</tr>
<tr>
<td>Approch %</td>
<td>11.6</td>
<td>69</td>
<td>16.2</td>
<td>3</td>
</tr>
<tr>
<td>Total %</td>
<td>4.4</td>
<td>25.4</td>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td>Motorcycles</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Motorcycles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cars &amp; Light Goods</td>
<td>67</td>
<td>389</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>% Cars &amp; Light Goods</td>
<td>98.5</td>
<td>98</td>
<td>98.9</td>
<td>0</td>
</tr>
<tr>
<td>Buses</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Buses</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Single-Unit Trucks</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>% Single-Unit Trucks</td>
<td>1.5</td>
<td>0.8</td>
<td>1.1</td>
<td>0</td>
</tr>
<tr>
<td>Articulated Trucks</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Articulated Trucks</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Bicycles on Road</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Articulated Trucks</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bicycles on Crosswalk</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Bicycles on Crosswalk</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>% Pedestrians</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
### File Name: Kane St - Vevau St

### Site Code: 18-550 Maui Bus Hub

### Start Date: 10/16/2018

### Page No: 2

**KANE STREET SOUTHBOUND**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00</td>
<td>5</td>
<td>45</td>
<td>10</td>
<td>2</td>
<td>62</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>0</td>
<td>21</td>
<td>14</td>
<td>38</td>
<td>3</td>
<td>0</td>
<td>55</td>
<td>12</td>
<td>11</td>
<td>16</td>
<td>3</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:15</td>
<td>7</td>
<td>53</td>
<td>12</td>
<td>3</td>
<td>75</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>25</td>
<td>21</td>
<td>41</td>
<td>3</td>
<td>2</td>
<td>67</td>
<td>15</td>
<td>10</td>
<td>24</td>
<td>0</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>10</td>
<td>55</td>
<td>7</td>
<td>2</td>
<td>74</td>
<td>10</td>
<td>8</td>
<td>11</td>
<td>0</td>
<td>29</td>
<td>20</td>
<td>38</td>
<td>4</td>
<td>3</td>
<td>65</td>
<td>12</td>
<td>14</td>
<td>23</td>
<td>2</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:45</td>
<td>5</td>
<td>52</td>
<td>11</td>
<td>0</td>
<td>71</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>26</td>
<td>14</td>
<td>35</td>
<td>4</td>
<td>1</td>
<td>54</td>
<td>16</td>
<td>12</td>
<td>15</td>
<td>0</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**VEVAU STREET WESTBOUND**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>0</td>
<td>21</td>
<td>14</td>
<td>38</td>
<td>3</td>
<td>0</td>
<td>55</td>
<td>12</td>
<td>11</td>
<td>16</td>
<td>3</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>16:15</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>25</td>
<td>21</td>
<td>41</td>
<td>3</td>
<td>2</td>
<td>67</td>
<td>15</td>
<td>10</td>
<td>24</td>
<td>0</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>10</td>
<td>8</td>
<td>11</td>
<td>0</td>
<td>29</td>
<td>20</td>
<td>38</td>
<td>4</td>
<td>3</td>
<td>65</td>
<td>12</td>
<td>14</td>
<td>23</td>
<td>2</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>16:45</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>26</td>
<td>14</td>
<td>35</td>
<td>4</td>
<td>1</td>
<td>54</td>
<td>16</td>
<td>12</td>
<td>15</td>
<td>0</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

**KANE STREET NORTHBOUND**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00</td>
<td>5</td>
<td>45</td>
<td>10</td>
<td>2</td>
<td>62</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>0</td>
<td>21</td>
<td>14</td>
<td>38</td>
<td>3</td>
<td>0</td>
<td>55</td>
<td>12</td>
<td>11</td>
<td>16</td>
<td>3</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:15</td>
<td>7</td>
<td>53</td>
<td>12</td>
<td>3</td>
<td>75</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>25</td>
<td>21</td>
<td>41</td>
<td>3</td>
<td>2</td>
<td>67</td>
<td>15</td>
<td>10</td>
<td>24</td>
<td>0</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>10</td>
<td>55</td>
<td>7</td>
<td>2</td>
<td>74</td>
<td>10</td>
<td>8</td>
<td>11</td>
<td>0</td>
<td>29</td>
<td>20</td>
<td>38</td>
<td>4</td>
<td>3</td>
<td>65</td>
<td>12</td>
<td>14</td>
<td>23</td>
<td>2</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**OKC DWY EASTBOUND**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00</td>
<td>5</td>
<td>45</td>
<td>10</td>
<td>2</td>
<td>62</td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>0</td>
<td>21</td>
<td>14</td>
<td>38</td>
<td>3</td>
<td>0</td>
<td>55</td>
<td>12</td>
<td>11</td>
<td>16</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>16:15</td>
<td>7</td>
<td>53</td>
<td>12</td>
<td>3</td>
<td>75</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>25</td>
<td>21</td>
<td>41</td>
<td>3</td>
<td>2</td>
<td>67</td>
<td>15</td>
<td>10</td>
<td>24</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>16:30</td>
<td>10</td>
<td>55</td>
<td>7</td>
<td>2</td>
<td>74</td>
<td>10</td>
<td>8</td>
<td>11</td>
<td>0</td>
<td>29</td>
<td>20</td>
<td>38</td>
<td>4</td>
<td>3</td>
<td>65</td>
<td>12</td>
<td>14</td>
<td>23</td>
<td>2</td>
<td>51</td>
</tr>
</tbody>
</table>

**Total Volume**

- 30
- 205
- 40
- 7
- 282

**% App. Total**

- 10.6
- 7.2
- 14.2
- 2.5

**PHF**

- 0.7
- 50.9
- 32.8
- 33.5
- 83.9
- 40.5
- 75.7
- 73.3
- 41.6
- 2.5

**Total**

- 72.7
- 14.2
- 2.5
- 180
- 216
- 219
- 185
- 809

**Peak Hour Data**

- Peak Hour Begins at 16:00
- Peak Hour for Entire Intersection Begins at 16:00
- Motorcycles
- Cars & Light Goods
- Buses
- Single-Unit Trucks
- Articulated Trucks
- Bicycles on Road
- Bicycles on Crosswalk
- Pedestrians

**KANE STREET**

- Out: 249
- In: 282
- Total: 531

- Left: 40
- Thru: 205
- Right: 30
- Total: 7

**VEVAU STREET**

- Out: 183
- In: 206
- Total: 389

- Left: 241
- Thru: 547
- Total: 947

**OKC DWY**

- Out: 146
- In: 273
- Total: 419

- Left: 69
- Thru: 152
- Right: 141
- Total: 6
<table>
<thead>
<tr>
<th>Start Time</th>
<th>KANE STREET Southbound</th>
<th>VEVAU STREET Westbound</th>
<th>KANE STREET Northbound</th>
<th>QMC DWY Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00 AM</td>
<td>4 23 5 0 0 32</td>
<td>0 1 0 0 0 1</td>
<td>2 8 2 0 0 12</td>
<td>1 2 0 0 0 3</td>
<td>48</td>
</tr>
<tr>
<td>6:15 AM</td>
<td>2 23 8 0 0 33</td>
<td>1 4 3 0 0 8</td>
<td>5 12 2 0 0 3 19</td>
<td>3 2 1 0 0 6</td>
<td>95</td>
</tr>
<tr>
<td>6:30 AM</td>
<td>0 34 7 0 0 41</td>
<td>4 0 2 0 0 8</td>
<td>4 18 1 0 0 21</td>
<td>5 1 2 0 0 1</td>
<td>76</td>
</tr>
<tr>
<td>6:45 AM</td>
<td>1 57 8 0 0 63</td>
<td>9 6 4 0 0 18</td>
<td>5 25 6 0 0 5 36</td>
<td>6 5 1 0 0 11</td>
<td>120</td>
</tr>
<tr>
<td>7:00 AM</td>
<td>7 137 25 0 1 189</td>
<td>14 10 9 0 0 33</td>
<td>18 61 13 0 0 690</td>
<td>14 10 4 0 0 28</td>
<td>320</td>
</tr>
<tr>
<td>7:15 AM</td>
<td>7 48 6 0 1 59</td>
<td>7 2 3 0 0 12</td>
<td>2 19 5 0 0 26</td>
<td>4 7 5 0 0 15</td>
<td>113</td>
</tr>
<tr>
<td>7:30 AM</td>
<td>3 37 12 0 1 62</td>
<td>4 3 1 0 0 8</td>
<td>1 32 5 0 0 1 38</td>
<td>10 6 2 0 0 18</td>
<td>118</td>
</tr>
<tr>
<td>7:45 AM</td>
<td>6 51 8 0 0 45</td>
<td>12 6 4 0 0 22</td>
<td>3 38 8 0 0 3 49</td>
<td>9 5 0 0 0 14</td>
<td>150</td>
</tr>
<tr>
<td>8:00 AM</td>
<td>7 47 3 0 0 52</td>
<td>7 6 0 0 0 13</td>
<td>3 43 9 0 0 5 55</td>
<td>8 12 3 0 0 23</td>
<td>143</td>
</tr>
<tr>
<td>8:15 AM</td>
<td>8:15 AM</td>
<td>18:15 AM</td>
<td>18:15 AM</td>
<td>18:15 AM</td>
<td>18:15 AM</td>
</tr>
<tr>
<td>8:30 AM</td>
<td>8:30 AM</td>
<td>18:30 AM</td>
<td>18:30 AM</td>
<td>18:30 AM</td>
<td>18:30 AM</td>
</tr>
<tr>
<td>8:45 AM</td>
<td>8:45 AM</td>
<td>18:45 AM</td>
<td>18:45 AM</td>
<td>18:45 AM</td>
<td>18:45 AM</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>9:00 AM</td>
<td>19:00 AM</td>
<td>19:00 AM</td>
<td>19:00 AM</td>
<td>19:00 AM</td>
</tr>
<tr>
<td>9:30 AM</td>
<td>9:30 AM</td>
<td>21:30 AM</td>
<td>21:30 AM</td>
<td>21:30 AM</td>
<td>21:30 AM</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>10:00 AM</td>
<td>23:00 AM</td>
<td>23:00 AM</td>
<td>23:00 AM</td>
<td>23:00 AM</td>
</tr>
<tr>
<td>10:30 AM</td>
<td>10:30 AM</td>
<td>25:30 AM</td>
<td>25:30 AM</td>
<td>25:30 AM</td>
<td>25:30 AM</td>
</tr>
<tr>
<td>10:45 AM</td>
<td>10:45 AM</td>
<td>26:45 AM</td>
<td>26:45 AM</td>
<td>26:45 AM</td>
<td>26:45 AM</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>11:00 AM</td>
<td>27:59 AM</td>
<td>27:59 AM</td>
<td>27:59 AM</td>
<td>27:59 AM</td>
</tr>
<tr>
<td>11:15 AM</td>
<td>11:15 AM</td>
<td>28:34 AM</td>
<td>28:34 AM</td>
<td>28:34 AM</td>
<td>28:34 AM</td>
</tr>
<tr>
<td>11:30 AM</td>
<td>11:30 AM</td>
<td>29:19 AM</td>
<td>29:19 AM</td>
<td>29:19 AM</td>
<td>29:19 AM</td>
</tr>
<tr>
<td>11:45 AM</td>
<td>11:45 AM</td>
<td>30:04 AM</td>
<td>30:04 AM</td>
<td>30:04 AM</td>
<td>30:04 AM</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>12:00 PM</td>
<td>31:49 AM</td>
<td>31:49 AM</td>
<td>31:49 AM</td>
<td>31:49 AM</td>
</tr>
<tr>
<td>12:15 PM</td>
<td>12:15 PM</td>
<td>32:34 AM</td>
<td>32:34 AM</td>
<td>32:34 AM</td>
<td>32:34 AM</td>
</tr>
<tr>
<td>12:30 PM</td>
<td>12:30 PM</td>
<td>33:19 AM</td>
<td>33:19 AM</td>
<td>33:19 AM</td>
<td>33:19 AM</td>
</tr>
<tr>
<td>12:45 PM</td>
<td>12:45 PM</td>
<td>34:04 AM</td>
<td>34:04 AM</td>
<td>34:04 AM</td>
<td>34:04 AM</td>
</tr>
<tr>
<td>1:00 PM</td>
<td>1:00 PM</td>
<td>35:49 AM</td>
<td>35:49 AM</td>
<td>35:49 AM</td>
<td>35:49 AM</td>
</tr>
<tr>
<td>1:15 PM</td>
<td>1:15 PM</td>
<td>36:34 AM</td>
<td>36:34 AM</td>
<td>36:34 AM</td>
<td>36:34 AM</td>
</tr>
<tr>
<td>1:30 PM</td>
<td>1:30 PM</td>
<td>37:19 AM</td>
<td>37:19 AM</td>
<td>37:19 AM</td>
<td>37:19 AM</td>
</tr>
<tr>
<td>1:45 PM</td>
<td>1:45 PM</td>
<td>38:04 AM</td>
<td>38:04 AM</td>
<td>38:04 AM</td>
<td>38:04 AM</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>2:00 PM</td>
<td>39:49 AM</td>
<td>39:49 AM</td>
<td>39:49 AM</td>
<td>39:49 AM</td>
</tr>
<tr>
<td>2:15 PM</td>
<td>2:15 PM</td>
<td>40:34 AM</td>
<td>40:34 AM</td>
<td>40:34 AM</td>
<td>40:34 AM</td>
</tr>
<tr>
<td>2:30 PM</td>
<td>2:30 PM</td>
<td>41:19 AM</td>
<td>41:19 AM</td>
<td>41:19 AM</td>
<td>41:19 AM</td>
</tr>
<tr>
<td>2:45 PM</td>
<td>2:45 PM</td>
<td>42:04 AM</td>
<td>42:04 AM</td>
<td>42:04 AM</td>
<td>42:04 AM</td>
</tr>
<tr>
<td>3:00 PM</td>
<td>3:00 PM</td>
<td>42:59 AM</td>
<td>42:59 AM</td>
<td>42:59 AM</td>
<td>42:59 AM</td>
</tr>
<tr>
<td>3:15 PM</td>
<td>3:15 PM</td>
<td>43:44 AM</td>
<td>43:44 AM</td>
<td>43:44 AM</td>
<td>43:44 AM</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>3:30 PM</td>
<td>44:29 AM</td>
<td>44:29 AM</td>
<td>44:29 AM</td>
<td>44:29 AM</td>
</tr>
<tr>
<td>3:45 PM</td>
<td>3:45 PM</td>
<td>45:14 AM</td>
<td>45:14 AM</td>
<td>45:14 AM</td>
<td>45:14 AM</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>4:00 PM</td>
<td>45:59 AM</td>
<td>45:59 AM</td>
<td>45:59 AM</td>
<td>45:59 AM</td>
</tr>
<tr>
<td>4:30 PM</td>
<td>4:30 PM</td>
<td>47:29 AM</td>
<td>47:29 AM</td>
<td>47:29 AM</td>
<td>47:29 AM</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>5:00 PM</td>
<td>48:49 AM</td>
<td>48:49 AM</td>
<td>48:49 AM</td>
<td>48:49 AM</td>
</tr>
<tr>
<td>5:15 PM</td>
<td>5:15 PM</td>
<td>49:34 AM</td>
<td>49:34 AM</td>
<td>49:34 AM</td>
<td>49:34 AM</td>
</tr>
<tr>
<td>5:30 PM</td>
<td>5:30 PM</td>
<td>50:19 AM</td>
<td>50:19 AM</td>
<td>50:19 AM</td>
<td>50:19 AM</td>
</tr>
<tr>
<td>5:45 PM</td>
<td>5:45 PM</td>
<td>51:04 AM</td>
<td>51:04 AM</td>
<td>51:04 AM</td>
<td>51:04 AM</td>
</tr>
<tr>
<td>6:00 PM</td>
<td>6:00 PM</td>
<td>51:49 AM</td>
<td>51:49 AM</td>
<td>51:49 AM</td>
<td>51:49 AM</td>
</tr>
<tr>
<td>Time</td>
<td>Pedestrians</td>
<td>Bicycles on Road</td>
<td>Bus, Trucks, &amp; Light Goods</td>
<td>Hourly Total</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2:00 PM</td>
<td>159</td>
<td>42</td>
<td>80</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>2:15 PM</td>
<td>167</td>
<td>48</td>
<td>82</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>2:30 PM</td>
<td>175</td>
<td>50</td>
<td>84</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>2:45 PM</td>
<td>183</td>
<td>52</td>
<td>86</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>Hourly Total</td>
<td>681</td>
<td>186</td>
<td>594</td>
<td>1647</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>3405</td>
<td>930</td>
<td>6345</td>
<td>19090</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrians</th>
<th>Bicycles on Road</th>
<th>Bus, Trucks, &amp; Light Goods</th>
<th>Hourly Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00 PM</td>
<td>163</td>
<td>45</td>
<td>78</td>
<td>286</td>
</tr>
<tr>
<td>4:15 PM</td>
<td>171</td>
<td>50</td>
<td>81</td>
<td>292</td>
</tr>
<tr>
<td>4:30 PM</td>
<td>179</td>
<td>54</td>
<td>85</td>
<td>302</td>
</tr>
<tr>
<td>4:45 PM</td>
<td>187</td>
<td>58</td>
<td>90</td>
<td>306</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>704</td>
<td>187</td>
<td>584</td>
<td>1975</td>
</tr>
<tr>
<td>Grand Total</td>
<td>3418</td>
<td>937</td>
<td>6355</td>
<td>19707</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrians</th>
<th>Bicycles on Road</th>
<th>Bus, Trucks, &amp; Light Goods</th>
<th>Hourly Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00 PM</td>
<td>199</td>
<td>55</td>
<td>95</td>
<td>349</td>
</tr>
<tr>
<td>6:15 PM</td>
<td>207</td>
<td>60</td>
<td>100</td>
<td>367</td>
</tr>
<tr>
<td>6:30 PM</td>
<td>215</td>
<td>65</td>
<td>105</td>
<td>379</td>
</tr>
<tr>
<td>6:45 PM</td>
<td>223</td>
<td>70</td>
<td>110</td>
<td>393</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>856</td>
<td>220</td>
<td>580</td>
<td>1656</td>
</tr>
<tr>
<td>Grand Total</td>
<td>3476</td>
<td>940</td>
<td>6416</td>
<td>19332</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrians</th>
<th>Bicycles on Road</th>
<th>Bus, Trucks, &amp; Light Goods</th>
<th>Hourly Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 PM</td>
<td>241</td>
<td>75</td>
<td>115</td>
<td>431</td>
</tr>
<tr>
<td>8:15 PM</td>
<td>249</td>
<td>80</td>
<td>120</td>
<td>449</td>
</tr>
<tr>
<td>8:30 PM</td>
<td>257</td>
<td>85</td>
<td>125</td>
<td>468</td>
</tr>
<tr>
<td>8:45 PM</td>
<td>265</td>
<td>90</td>
<td>130</td>
<td>485</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>994</td>
<td>250</td>
<td>550</td>
<td>1794</td>
</tr>
<tr>
<td>Grand Total</td>
<td>3586</td>
<td>950</td>
<td>6536</td>
<td>19082</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrians</th>
<th>Bicycles on Road</th>
<th>Bus, Trucks, &amp; Light Goods</th>
<th>Hourly Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 PM</td>
<td>283</td>
<td>93</td>
<td>136</td>
<td>512</td>
</tr>
<tr>
<td>10:15 PM</td>
<td>291</td>
<td>98</td>
<td>141</td>
<td>528</td>
</tr>
<tr>
<td>10:30 PM</td>
<td>299</td>
<td>103</td>
<td>146</td>
<td>546</td>
</tr>
<tr>
<td>10:45 PM</td>
<td>307</td>
<td>108</td>
<td>151</td>
<td>565</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>1131</td>
<td>314</td>
<td>892</td>
<td>2337</td>
</tr>
<tr>
<td>Grand Total</td>
<td>4162</td>
<td>1242</td>
<td>2384</td>
<td>7788</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrians</th>
<th>Bicycles on Road</th>
<th>Bus, Trucks, &amp; Light Goods</th>
<th>Hourly Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 PM</td>
<td>329</td>
<td>112</td>
<td>154</td>
<td>695</td>
</tr>
<tr>
<td>12:15 PM</td>
<td>337</td>
<td>117</td>
<td>159</td>
<td>715</td>
</tr>
<tr>
<td>12:30 PM</td>
<td>345</td>
<td>122</td>
<td>164</td>
<td>733</td>
</tr>
<tr>
<td>12:45 PM</td>
<td>353</td>
<td>127</td>
<td>170</td>
<td>750</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>1347</td>
<td>406</td>
<td>821</td>
<td>2574</td>
</tr>
<tr>
<td>Grand Total</td>
<td>5384</td>
<td>1624</td>
<td>2390</td>
<td>9398</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrians</th>
<th>Bicycles on Road</th>
<th>Bus, Trucks, &amp; Light Goods</th>
<th>Hourly Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 PM</td>
<td>380</td>
<td>104</td>
<td>174</td>
<td>658</td>
</tr>
<tr>
<td>2:15 PM</td>
<td>388</td>
<td>109</td>
<td>180</td>
<td>677</td>
</tr>
<tr>
<td>2:30 PM</td>
<td>396</td>
<td>114</td>
<td>186</td>
<td>696</td>
</tr>
<tr>
<td>2:45 PM</td>
<td>404</td>
<td>119</td>
<td>192</td>
<td>713</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>1554</td>
<td>441</td>
<td>816</td>
<td>2811</td>
</tr>
<tr>
<td>Grand Total</td>
<td>6176</td>
<td>1844</td>
<td>9028</td>
<td>25648</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrians</th>
<th>Bicycles on Road</th>
<th>Bus, Trucks, &amp; Light Goods</th>
<th>Hourly Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00 PM</td>
<td>423</td>
<td>120</td>
<td>192</td>
<td>735</td>
</tr>
<tr>
<td>4:15 PM</td>
<td>431</td>
<td>125</td>
<td>198</td>
<td>756</td>
</tr>
<tr>
<td>4:30 PM</td>
<td>439</td>
<td>130</td>
<td>204</td>
<td>768</td>
</tr>
<tr>
<td>4:45 PM</td>
<td>447</td>
<td>135</td>
<td>210</td>
<td>783</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>1761</td>
<td>500</td>
<td>954</td>
<td>3215</td>
</tr>
<tr>
<td>Grand Total</td>
<td>6844</td>
<td>2004</td>
<td>11528</td>
<td>20376</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrians</th>
<th>Bicycles on Road</th>
<th>Bus, Trucks, &amp; Light Goods</th>
<th>Hourly Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00 PM</td>
<td>470</td>
<td>141</td>
<td>212</td>
<td>823</td>
</tr>
<tr>
<td>6:15 PM</td>
<td>478</td>
<td>146</td>
<td>218</td>
<td>844</td>
</tr>
<tr>
<td>6:30 PM</td>
<td>486</td>
<td>151</td>
<td>224</td>
<td>872</td>
</tr>
<tr>
<td>6:45 PM</td>
<td>494</td>
<td>156</td>
<td>230</td>
<td>899</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>1926</td>
<td>570</td>
<td>1078</td>
<td>3574</td>
</tr>
<tr>
<td>Grand Total</td>
<td>7704</td>
<td>2280</td>
<td>3860</td>
<td>13844</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrians</th>
<th>Bicycles on Road</th>
<th>Bus, Trucks, &amp; Light Goods</th>
<th>Hourly Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 PM</td>
<td>521</td>
<td>163</td>
<td>251</td>
<td>935</td>
</tr>
<tr>
<td>8:15 PM</td>
<td>529</td>
<td>168</td>
<td>256</td>
<td>955</td>
</tr>
<tr>
<td>8:30 PM</td>
<td>537</td>
<td>173</td>
<td>262</td>
<td>978</td>
</tr>
<tr>
<td>8:45 PM</td>
<td>545</td>
<td>178</td>
<td>268</td>
<td>998</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>2148</td>
<td>622</td>
<td>1052</td>
<td>3822</td>
</tr>
<tr>
<td>Grand Total</td>
<td>8592</td>
<td>2704</td>
<td>3304</td>
<td>14600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrians</th>
<th>Bicycles on Road</th>
<th>Bus, Trucks, &amp; Light Goods</th>
<th>Hourly Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 PM</td>
<td>576</td>
<td>191</td>
<td>278</td>
<td>1045</td>
</tr>
<tr>
<td>10:15 PM</td>
<td>584</td>
<td>196</td>
<td>283</td>
<td>1069</td>
</tr>
<tr>
<td>10:30 PM</td>
<td>592</td>
<td>201</td>
<td>288</td>
<td>1087</td>
</tr>
<tr>
<td>10:45 PM</td>
<td>600</td>
<td>206</td>
<td>294</td>
<td>1106</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>2340</td>
<td>708</td>
<td>1146</td>
<td>3194</td>
</tr>
<tr>
<td>Grand Total</td>
<td>9360</td>
<td>3024</td>
<td>3512</td>
<td>15896</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Pedestrians</th>
<th>Bicycles on Road</th>
<th>Bus, Trucks, &amp; Light Goods</th>
<th>Hourly Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 PM</td>
<td>621</td>
<td>223</td>
<td>301</td>
<td>1145</td>
</tr>
<tr>
<td>12:15 PM</td>
<td>629</td>
<td>228</td>
<td>306</td>
<td>1173</td>
</tr>
<tr>
<td>12:30 PM</td>
<td>637</td>
<td>233</td>
<td>312</td>
<td>1199</td>
</tr>
<tr>
<td>12:45 PM</td>
<td>645</td>
<td>238</td>
<td>317</td>
<td>1225</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>2508</td>
<td>806</td>
<td>1251</td>
<td>3565</td>
</tr>
<tr>
<td>Grand Total</td>
<td>10032</td>
<td>3224</td>
<td>3756</td>
<td>16612</td>
</tr>
</tbody>
</table>
Austin, Tsutsumi & Associates
501 Sumner Street, Suite 521

Count Name: 18-550 Kane St-Vevau St 101318
6am-6pm
Site Code: 18-550 Maui Bus Hub
Start Date: 10/13/2018
Page No: 1

Honolulu, Hawaii, United States 12345
(808) 533-3646 rfukuda@atahawaii.com

Turning Movement Data
Start Time

KANE ST

VEVAU

KANE ST

QKCDWY

Southbound

Westbo1

Northbound

Eastbound

Thru

Left

U-Turn

Peds

App.
Total

Right

Thru

Left

App.
Total

Right

Thru

Left

Li-Turn

Peds

App.
Total

Right

Thru

Left

U-Turn

Peds

App.
Total

Int. Total

6:00AM

2

11

0

0

0

13

0

4

0

1

0

5

1

9

1

0

0

11

2

1

0

0

0

3

32

6:15AM

2

12

1

0

2

15

1

0

1

0

0

2

3

9

0

0

0

12

0

2

1

0

0

3

32

6:30AM

1

17

2

0

1

20

0

3

1

0

0

4

0

6

1

0

0

7

1

3

1

0

0

5

36

6:45AM

3

16

1

0

0

20

1

4

1

0

0

6

0

10

4

0

0

14

2

1

2

0

0

5

45

Hourly Total

8

56

4

0

3

68

2

11

3

1

0

17
g

4

34

6

0

0

44

5

7

4

0

0

16

145

4

16

3

0

0

23

2

3

2

0

0

7

78

10
g

2

26

4

0

0

32

3

3

4

0

1

10

86

0

18

5

0

1

23

3

0

5

0

0

8

67

Right

s

I

7:00AM

4

29

6

0

0

39

2

5

2

0

0

7:15AM

3

25

6

0

0

34

7

2

1

0

0

7:30AM

4

21

2

0

0

27

2

5

2

0

0

7:45AM

7

35

6

0

2

48

4

6

0

0

0

10

2

25

10

0

1

37

6

2

4

0

1

12

107

Hourly Total

18

110

20

0

2

148

15

18

5

0

0

38

8

85

22

0

2

115

14

8

15

0

2

37

338

8:00AM

6

25

7

0

1

38

5

3

0

0

0

8

6

0

2

32

8

3

1

12

90

48

5

0

0

61

2

3

1

0

0

6

3

7

0

0

41

0

7

3

0
0

0

8

21
31

5

8:15AM

1

10

118

8:30AM

10

36

5

0

1

51

3

2

3

0

0

8

3

18

3

0

1

24

2

4

5

0

0

11

94

8:45AM

5

41

5

0

1

51

4

4

1

0

0

9

5

27

5

0

2

37

2

7

3

0

2

12

109

Hourly Total

29

150

22

0

3

201

14

12

5

0

0

31

17

97

20

0

5

134

12

21

12

0

3

45

411

9:00AM

3

38

5

0

5

46

2

5

3

0

0

10

2

16

10

0

1

28

5

4

4

0

0

13

97

9:15AM

19

42

8

1

70

7

5

4

0

0

16

4

22

11

0

0

37

8

4

5

0

2

17

140
131

9:30AM

18

30

4

1
0

0

52

4

4

4

0

1

12

5

21

17

0

4

43

11

4

9

0

2

24

9:45AM

13

36

5

0

1

54

6

5

3

0

0

14

2

36

15

0

2

53

13

8

8

0

0

29

150

Hourly Total

53

146

22

1

7

222

19

19

14

0

1

52

13

95

53

0

7

161

37

20

26

0

4

83

518

10:00AM

17

46

7

0

1

70

4

5

5

0

1

14

2

20

11

0

3

33

10

10

9

0

1

29

146

10:15AM

8

43

6

0

1

57

5

4

2

0

0

11

5

29

25

0

1

59

13

14

14

0

2

41

168

10:30 AM

17

54

6

0

3

77

7

7

3

0

0

17

4

27

19

0

4

50

18

6

9

0

1

33

177

10:45AM

22

40

12

0

2

74

4

7

4

0

15

5

23

28

0

1

56

20

9

10

0

2

39

184

Hourly Total

64

183

31

0

7

278

20

23

14

0
0

1

57

16

99

83

0

9

198

61

39

42

0

6

142

675

11:00AM

23

36

6

0

3

65

6

13

1

0

0

20

1

31

32

0

1

64

20

12

18

0

1

50

199

11:15AM

17

43

8

0

1

68

4

10

3

0

1

17

3

31

17

0

1

51

20

10

10

0

0

40

176

11:30AM

19

40

11

0

2

70

5

10

4

0

0

19

5

25

18

0

4

48

23

16

20

0

0

59

196

11:45AM

27

45

7

1

1

80

8

10

5

0

1

23

2

24

19

0

3

45

18

13

14

0

0

45

193

Hourly Total

86

164

32

1

283

23

43

13

0

2

79

11

111

86

0

9

208

81

51

62

0

1

194

764

12:00 PM

17

36

6

0

7
2

59

4

3

4

0

0

11

6

32

25

0

0

63

24

7

10

1

0

42

175

12:15 PM

17

31

5

0

3

53

4

11

4

0

0

19

4

18

24

0

0

46

30

12

21

0

0

63

181

12:30 PM

16

42

6

0

1

64

3

9

2

0

0

14

2

23

30

0

3

55

22

13

11

0

0

46

179

12:45 PM

20

28

4

0

0

52

3

9

1

0

2

13

2

22

27

0

7

51

13

14

20

0

0

47

163

Hourly Total

70

137

21

0

6

228

11

0

2

57

106

0

10

215

89

0

65

14

3

0

0

20

35

16

0

4

56

29

22

0

198
62

698

0

1
0

0

11

46
11

62

34

14
5

95

20

14
3

32

1:00 PM
1:15 PM

25

52

9

0

3

86

4

9

8

0

0

21

3

28

26

0

2

57

21

8

21

0

0

50

214

1:30PM

25

34

5

0

3

64

7

6

6

0

0

19

2

21

14

0

0

37

27

13

16

0

0

56

176

1:45PM

11

39

7

0

2

57

4

9

2

0

0

15

3

30

20

0

2

53

26

5

24

0

0

55

180

Hourly Total

81

159

32

0

8

272

18

38

19

0

0

75

13

114

76

0

8

203

103

37

83

0

0

223

773

203


<table>
<thead>
<tr>
<th>Time</th>
<th>2:00 PM</th>
<th>2:15 PM</th>
<th>2:30 PM</th>
<th>2:45 PM</th>
<th>3:00 PM</th>
<th>3:15 PM</th>
<th>3:30 PM</th>
<th>3:45 PM</th>
<th>4:00 PM</th>
<th>4:15 PM</th>
<th>4:30 PM</th>
<th>4:45 PM</th>
<th>5:00 PM</th>
<th>5:15 PM</th>
<th>5:30 PM</th>
<th>5:45 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cars &amp; Light Goods</td>
<td>18</td>
<td>17</td>
<td>20</td>
<td>16</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>7</td>
<td>4</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Articulated</td>
<td>42</td>
<td>32</td>
<td>30</td>
<td>45</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Buses</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>64</td>
<td>64</td>
<td>58</td>
<td>8</td>
<td>12</td>
<td>17</td>
<td>17</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Hourly Total</td>
<td>1660</td>
<td>1198</td>
<td>1422</td>
<td>1199</td>
<td>158</td>
<td>274</td>
<td>396</td>
<td>418</td>
<td>238</td>
<td>119</td>
<td>218</td>
<td>274</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>% Cars &amp; Light Goods</td>
<td>98.7</td>
<td>97.9</td>
<td>97.3</td>
<td>97.8</td>
<td>95.8</td>
<td>97.3</td>
<td>96.0</td>
<td>96.0</td>
<td>95.7</td>
<td>96.0</td>
<td>95.7</td>
<td>96.0</td>
<td>95.7</td>
<td>96.0</td>
<td>95.7</td>
<td>96.0</td>
</tr>
<tr>
<td>% Buses</td>
<td>4.8</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>% Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

### Hour 2:00 PM
- **Cars & Light Goods:** 18 cars, 42 light goods
- **Articulated:** 1 car
- **Buses:** 9
- **Total:** 70 vehicles
- **Hourly Total:** 1660 vehicles

### Hour 2:15 PM
- **Cars & Light Goods:** 17 cars, 32 light goods
- **Articulated:** 1 car
- **Buses:** 8
- **Total:** 64 vehicles
- **Hourly Total:** 1198 vehicles

### Hour 2:30 PM
- **Cars & Light Goods:** 20 cars, 30 light goods
- **Articulated:** 3 cars
- **Buses:** 8
- **Total:** 64 vehicles
- **Hourly Total:** 1422 vehicles

### Hour 2:45 PM
- **Cars & Light Goods:** 16 cars, 45 light goods
- **Articulated:** 0 cars
- **Buses:** 5
- **Total:** 58 vehicles
- **Hourly Total:** 1199 vehicles

### Hour 3:00 PM
- **Cars & Light Goods:** 4 cars, 15 light goods
- **Articulated:** 1 car
- **Buses:** 0
- **Total:** 23 vehicles
- **Hourly Total:** 158 vehicles

### Hour 3:15 PM
- **Cars & Light Goods:** 8 cars, 14 light goods
- **Articulated:** 0 cars
- **Buses:** 3
- **Total:** 27 vehicles
- **Hourly Total:** 274 vehicles

### Hour 3:30 PM
- **Cars & Light Goods:** 12 cars, 20 light goods
- **Articulated:** 0 cars
- **Buses:** 7
- **Total:** 37 vehicles
- **Hourly Total:** 396 vehicles

### Hour 3:45 PM
- **Cars & Light Goods:** 3 cars, 14 light goods
- **Articulated:** 0 cars
- **Buses:** 3
- **Total:** 17 vehicles
- **Hourly Total:** 418 vehicles

### Hour 4:00 PM
- **Cars & Light Goods:** 2 cars, 5 light goods
- **Articulated:** 0 cars
- **Buses:** 1
- **Total:** 7 vehicles
- **Hourly Total:** 238 vehicles

### Hour 4:15 PM
- **Cars & Light Goods:** 5 cars, 14 light goods
- **Articulated:** 0 cars
- **Buses:** 1
- **Total:** 18 vehicles
- **Hourly Total:** 218 vehicles

### Hour 4:30 PM
- **Cars & Light Goods:** 1 car, 7 light goods
- **Articulated:** 0 cars
- **Buses:** 1
- **Total:** 5 vehicles
- **Hourly Total:** 119 vehicles

### Hour 4:45 PM
- **Cars & Light Goods:** 7 cars, 2 light goods
- **Articulated:** 1 car
- **Buses:** 2
- **Total:** 20 vehicles
- **Hourly Total:** 199 vehicles

### Hour 5:00 PM
- **Cars & Light Goods:** 10 cars, 3 light goods
- **Articulated:** 0 cars
- **Buses:** 0
- **Total:** 8 vehicles
- **Hourly Total:** 88 vehicles

### Hour 5:15 PM
- **Cars & Light Goods:** 3 cars, 8 light goods
- **Articulated:** 1 car
- **Buses:** 0
- **Total:** 4 vehicles
- **Hourly Total:** 46 vehicles

### Hour 5:30 PM
- **Cars & Light Goods:** 3 cars, 3 light goods
- **Articulated:** 0 cars
- **Buses:** 0
- **Total:** 4 vehicles
- **Hourly Total:** 21 vehicles

### Hour 5:45 PM
- **Cars & Light Goods:** 9 cars, 14 light goods
- **Articulated:** 0 cars
- **Buses:** 0
- **Total:** 4 vehicles
- **Hourly Total:** 14 vehicles
### Method for determining peak hour: Total Entering Volume

**LOCATION:** W Kamehameha Ave -- W Wakea Ave  
**CITY/STATE:** Kahului, HI  
**QC JOB #:** 15610105  
**DATE:** Wed, Nov 10 2021

**Peaks:**
- **Intersection Peak**
- **15-Min Count**

**Peak 15-Min:**
- **7:45 AM -- 8:00 AM**

**QC JOB #:** 15610105

**Total Entering Volume**

<table>
<thead>
<tr>
<th>Period</th>
<th>Left</th>
<th>Thru</th>
<th>Right</th>
<th>U</th>
<th>Left</th>
<th>Thru</th>
<th>Right</th>
<th>U</th>
<th>Left</th>
<th>Thru</th>
<th>Right</th>
<th>U</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00 AM</td>
<td>1</td>
<td>22</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>13</td>
<td>7</td>
<td>0</td>
<td>14</td>
<td>30</td>
<td>3</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>6:15 AM</td>
<td>2</td>
<td>30</td>
<td>14</td>
<td>0</td>
<td>6</td>
<td>13</td>
<td>9</td>
<td>0</td>
<td>11</td>
<td>30</td>
<td>1</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>6:30 AM</td>
<td>0</td>
<td>21</td>
<td>16</td>
<td>0</td>
<td>10</td>
<td>27</td>
<td>13</td>
<td>0</td>
<td>18</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>191</td>
</tr>
<tr>
<td>6:45 AM</td>
<td>2</td>
<td>44</td>
<td>18</td>
<td>0</td>
<td>10</td>
<td>34</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>245</td>
</tr>
<tr>
<td>7:00 AM</td>
<td>2</td>
<td>33</td>
<td>27</td>
<td>0</td>
<td>7</td>
<td>30</td>
<td>26</td>
<td>0</td>
<td>20</td>
<td>74</td>
<td>0</td>
<td>0</td>
<td>286</td>
</tr>
<tr>
<td>7:15 AM</td>
<td>3</td>
<td>66</td>
<td>28</td>
<td>0</td>
<td>8</td>
<td>20</td>
<td>25</td>
<td>0</td>
<td>26</td>
<td>70</td>
<td>4</td>
<td>0</td>
<td>326</td>
</tr>
<tr>
<td>7:30 AM</td>
<td>7</td>
<td>66</td>
<td>31</td>
<td>0</td>
<td>14</td>
<td>40</td>
<td>18</td>
<td>0</td>
<td>27</td>
<td>95</td>
<td>2</td>
<td>0</td>
<td>397</td>
</tr>
<tr>
<td>7:45 AM</td>
<td>5</td>
<td>65</td>
<td>18</td>
<td>0</td>
<td>14</td>
<td>38</td>
<td>19</td>
<td>0</td>
<td>30</td>
<td>103</td>
<td>1</td>
<td>0</td>
<td>408</td>
</tr>
<tr>
<td>8:00 AM</td>
<td>3</td>
<td>77</td>
<td>39</td>
<td>0</td>
<td>10</td>
<td>33</td>
<td>19</td>
<td>0</td>
<td>30</td>
<td>87</td>
<td>2</td>
<td>0</td>
<td>387</td>
</tr>
<tr>
<td>8:15 AM</td>
<td>3</td>
<td>58</td>
<td>18</td>
<td>0</td>
<td>15</td>
<td>46</td>
<td>20</td>
<td>0</td>
<td>18</td>
<td>49</td>
<td>1</td>
<td>0</td>
<td>299</td>
</tr>
<tr>
<td>8:30 AM</td>
<td>4</td>
<td>38</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>36</td>
<td>23</td>
<td>0</td>
<td>33</td>
<td>47</td>
<td>4</td>
<td>0</td>
<td>250</td>
</tr>
<tr>
<td>8:45 AM</td>
<td>1</td>
<td>43</td>
<td>21</td>
<td>0</td>
<td>14</td>
<td>31</td>
<td>18</td>
<td>0</td>
<td>26</td>
<td>50</td>
<td>3</td>
<td>0</td>
<td>276</td>
</tr>
</tbody>
</table>

**Hourly Totals:**
- **702**
- **868**
- **1048**
- **1254**

**Comments:**

Report generated on 11/17/2021 10:43 AM  
**SOURCE:** Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212
**Method for determining peak hour: Total Entering Volume**

**LOCATION:** W Kamehameha Ave -- W Wakea Ave  
**CITY/STATE:** Kahului, HI  
**DATE:** Wed, Nov 10 2021

### Peak Hour: 4:15 PM -- 5:15 PM  
**Peak 15-Min: 4:15 PM -- 4:30 PM**

**QC JOB #:** 15610106

**QC JOB #:** N/A

### 15-Min Count Period Beginning At

<table>
<thead>
<tr>
<th>Time</th>
<th>Left</th>
<th>Thru</th>
<th>Right</th>
<th>U</th>
<th>Left</th>
<th>Thru</th>
<th>Right</th>
<th>U</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00 PM</td>
<td>1</td>
<td>47</td>
<td>28</td>
<td>0</td>
<td>19</td>
<td>64</td>
<td>35</td>
<td>0</td>
<td>370</td>
</tr>
<tr>
<td>3:15 PM</td>
<td>4</td>
<td>65</td>
<td>17</td>
<td>0</td>
<td>20</td>
<td>75</td>
<td>43</td>
<td>0</td>
<td>398</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>5</td>
<td>49</td>
<td>20</td>
<td>0</td>
<td>16</td>
<td>61</td>
<td>42</td>
<td>0</td>
<td>378</td>
</tr>
<tr>
<td>3:45 PM</td>
<td>1</td>
<td>46</td>
<td>11</td>
<td>0</td>
<td>15</td>
<td>63</td>
<td>24</td>
<td>0</td>
<td>369</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>2</td>
<td>42</td>
<td>14</td>
<td>0</td>
<td>19</td>
<td>73</td>
<td>37</td>
<td>0</td>
<td>379</td>
</tr>
<tr>
<td>4:15 PM</td>
<td>3</td>
<td>46</td>
<td>11</td>
<td>0</td>
<td>19</td>
<td>83</td>
<td>45</td>
<td>0</td>
<td>417</td>
</tr>
<tr>
<td>4:30 PM</td>
<td>0</td>
<td>40</td>
<td>18</td>
<td>0</td>
<td>16</td>
<td>74</td>
<td>54</td>
<td>0</td>
<td>409</td>
</tr>
<tr>
<td>4:45 PM</td>
<td>2</td>
<td>65</td>
<td>19</td>
<td>0</td>
<td>12</td>
<td>61</td>
<td>32</td>
<td>0</td>
<td>396</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>3</td>
<td>51</td>
<td>11</td>
<td>0</td>
<td>19</td>
<td>64</td>
<td>45</td>
<td>0</td>
<td>387</td>
</tr>
<tr>
<td>5:15 PM</td>
<td>1</td>
<td>50</td>
<td>16</td>
<td>0</td>
<td>14</td>
<td>80</td>
<td>50</td>
<td>0</td>
<td>372</td>
</tr>
<tr>
<td>5:30 PM</td>
<td>1</td>
<td>38</td>
<td>15</td>
<td>0</td>
<td>22</td>
<td>65</td>
<td>30</td>
<td>0</td>
<td>369</td>
</tr>
<tr>
<td>5:45 PM</td>
<td>1</td>
<td>47</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>79</td>
<td>42</td>
<td>0</td>
<td>397</td>
</tr>
</tbody>
</table>

### Hourly Totals

<table>
<thead>
<tr>
<th>Time</th>
<th>Left</th>
<th>Thru</th>
<th>Right</th>
<th>U</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00 PM</td>
<td>1</td>
<td>47</td>
<td>28</td>
<td>0</td>
<td>370</td>
</tr>
<tr>
<td>3:15 PM</td>
<td>4</td>
<td>65</td>
<td>17</td>
<td>0</td>
<td>398</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>5</td>
<td>49</td>
<td>20</td>
<td>0</td>
<td>378</td>
</tr>
<tr>
<td>3:45 PM</td>
<td>1</td>
<td>46</td>
<td>11</td>
<td>0</td>
<td>369</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>2</td>
<td>42</td>
<td>14</td>
<td>0</td>
<td>379</td>
</tr>
<tr>
<td>4:15 PM</td>
<td>3</td>
<td>46</td>
<td>11</td>
<td>0</td>
<td>417</td>
</tr>
<tr>
<td>4:30 PM</td>
<td>0</td>
<td>40</td>
<td>18</td>
<td>0</td>
<td>409</td>
</tr>
<tr>
<td>4:45 PM</td>
<td>2</td>
<td>65</td>
<td>19</td>
<td>0</td>
<td>396</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>3</td>
<td>51</td>
<td>11</td>
<td>0</td>
<td>387</td>
</tr>
<tr>
<td>5:15 PM</td>
<td>1</td>
<td>50</td>
<td>16</td>
<td>0</td>
<td>372</td>
</tr>
<tr>
<td>5:30 PM</td>
<td>1</td>
<td>38</td>
<td>15</td>
<td>0</td>
<td>369</td>
</tr>
<tr>
<td>5:45 PM</td>
<td>1</td>
<td>47</td>
<td>14</td>
<td>0</td>
<td>397</td>
</tr>
</tbody>
</table>

### Peak 15-Min Flowrates

<table>
<thead>
<tr>
<th>Time</th>
<th>Northbound</th>
<th>Southbound</th>
<th>Eastbound</th>
<th>Westbound</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00 PM</td>
<td>176</td>
<td>332</td>
<td>106</td>
<td>0</td>
<td>1668</td>
</tr>
<tr>
<td>3:15 PM</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3:45 PM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>4:15 PM</td>
<td>100</td>
<td>256</td>
<td>8</td>
<td>0</td>
<td>1668</td>
</tr>
<tr>
<td>4:30 PM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4:45 PM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### Comments:

Report generated on 11/17/2021 10:43 AM  
SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Code:</td>
<td>15610105 &amp; 15610106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date:</td>
<td>11/10/2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td>W Kamehameha Ave &amp; W Wakea Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count Times:</td>
<td>6:00AM-9:00AM 3:00PM-6:00PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>0:10</td>
<td>0:17</td>
<td>0:11</td>
<td>0:15</td>
<td>0:16</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0:07</td>
<td>0:14</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PM</td>
<td>0:28</td>
<td>0:53</td>
<td>1:05</td>
<td>0:32</td>
<td>0:44</td>
</tr>
<tr>
<td></td>
<td>0:20</td>
<td>0:38</td>
<td>0:41</td>
<td>0:44</td>
<td>0:41</td>
</tr>
<tr>
<td></td>
<td>0:42</td>
<td>0:44</td>
<td>0:56</td>
<td>0:28</td>
<td>0:30</td>
</tr>
<tr>
<td>Total</td>
<td>1:40</td>
<td>2:39</td>
<td>3:07</td>
<td>1:59</td>
<td>2:11</td>
</tr>
</tbody>
</table>
Appendix B: Annual Growth Rate Calculation
### Maui Travel Demand Forecasting Model Volumes

<table>
<thead>
<tr>
<th>Street</th>
<th>Segment</th>
<th>2007</th>
<th>2030</th>
<th>CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kahului Beach Rd/Kane St</td>
<td>N of Kaahumanu Ave</td>
<td>40,660</td>
<td>50,658</td>
<td>1.0%</td>
</tr>
<tr>
<td></td>
<td>S of Kaahumanu Ave</td>
<td>4,136</td>
<td>9,362</td>
<td>3.6%</td>
</tr>
<tr>
<td></td>
<td>S of Kaahumanu Ave</td>
<td>4,196</td>
<td>7,952</td>
<td>2.8%</td>
</tr>
<tr>
<td>Lono Ave</td>
<td>S of Vevau St</td>
<td>4,491</td>
<td>8,687</td>
<td>2.9%</td>
</tr>
<tr>
<td></td>
<td>S of Kamehameha Ave</td>
<td>2,623</td>
<td>5,898</td>
<td>3.6%</td>
</tr>
<tr>
<td>Kaahumanu Ave</td>
<td>W of Kane St</td>
<td>24,891</td>
<td>34,123</td>
<td>1.4%</td>
</tr>
<tr>
<td></td>
<td>E of Kane St</td>
<td>54,940</td>
<td>67,066</td>
<td>0.9%</td>
</tr>
<tr>
<td></td>
<td>E of Lono Ave</td>
<td>52,253</td>
<td>61,132</td>
<td>0.7%</td>
</tr>
<tr>
<td>Kamehameha Ave</td>
<td>W of Kane St</td>
<td>5,157</td>
<td>8,205</td>
<td>2.0%</td>
</tr>
<tr>
<td></td>
<td>E of Kane St</td>
<td>2,746</td>
<td>10,044</td>
<td>5.8%</td>
</tr>
<tr>
<td></td>
<td>E of Lono Ave</td>
<td>4,078</td>
<td>12,626</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total of High Vol (&gt;20k) Streets</td>
<td>172,743</td>
<td>212,979</td>
</tr>
<tr>
<td>Total of Low Vol (&lt;20k) Streets</td>
<td>27,426</td>
<td>62,774</td>
</tr>
</tbody>
</table>

CAGR = Compound Annual Growth Rate
Appendix C: LOS Worksheets
### 1: Kane St/Kahului Beach Rd & Kaahumanu Ave

**AM Peak Hour**

#### HCM 6th Signalized Intersection Summary

**Existing (2020) Conditions**

#### Lane Configurations

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>30</td>
<td>680</td>
<td>70</td>
<td>20</td>
<td>1110</td>
<td>890</td>
<td>40</td>
<td>110</td>
<td>10</td>
<td>1010</td>
<td>140</td>
<td>80</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>30</td>
<td>680</td>
<td>70</td>
<td>20</td>
<td>1110</td>
<td>890</td>
<td>40</td>
<td>110</td>
<td>10</td>
<td>1010</td>
<td>140</td>
<td>80</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.0</td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.0</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>32</td>
<td>716</td>
<td>0</td>
<td>21</td>
<td>1168</td>
<td>0</td>
<td>42</td>
<td>116</td>
<td>0</td>
<td>1168</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.95</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>40</td>
<td>1376</td>
<td>26</td>
<td>1346</td>
<td>146</td>
<td>153</td>
<td>124</td>
<td>157</td>
<td>124</td>
<td>157</td>
<td>124</td>
<td>157</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.02</td>
<td>0.39</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.00</td>
<td>0.08</td>
<td>0.08</td>
<td>0.00</td>
<td>0.35</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>3526</td>
<td>1572</td>
<td>1767</td>
<td>3526</td>
<td>1572</td>
<td>1767</td>
<td>1856</td>
<td>1572</td>
<td>1767</td>
<td>1856</td>
<td>1572</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>32</td>
<td>716</td>
<td>0</td>
<td>21</td>
<td>1168</td>
<td>0</td>
<td>42</td>
<td>116</td>
<td>0</td>
<td>1168</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1767</td>
<td>1763</td>
<td>1572</td>
<td>1767</td>
<td>1763</td>
<td>1572</td>
<td>1767</td>
<td>1767</td>
<td>1767</td>
<td>1767</td>
<td>1767</td>
<td>0</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>2.3</td>
<td>20.2</td>
<td>0</td>
<td>1.5</td>
<td>42.3</td>
<td>0</td>
<td>2.9</td>
<td>8.0</td>
<td>0</td>
<td>41.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>2.3</td>
<td>20.2</td>
<td>0</td>
<td>1.5</td>
<td>42.3</td>
<td>0</td>
<td>2.9</td>
<td>8.0</td>
<td>0</td>
<td>41.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>40</td>
<td>1376</td>
<td>26</td>
<td>1346</td>
<td>146</td>
<td>153</td>
<td>124</td>
<td>157</td>
<td>124</td>
<td>157</td>
<td>124</td>
<td>0</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.79</td>
<td>0.52</td>
<td>0.82</td>
<td>0.87</td>
<td>0.29</td>
<td>0.76</td>
<td>0.94</td>
<td>0.00</td>
<td>0.94</td>
<td>0.00</td>
<td>0.94</td>
<td>0.00</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>122</td>
<td>1376</td>
<td>122</td>
<td>1346</td>
<td>258</td>
<td>271</td>
<td>1332</td>
<td>0</td>
<td>1332</td>
<td>0</td>
<td>1332</td>
<td>0</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(f)</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.79</td>
<td>0.79</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>63.2</td>
<td>30.3</td>
<td>0.0</td>
<td>64.5</td>
<td>53.6</td>
<td>0.0</td>
<td>56.0</td>
<td>58.3</td>
<td>0.0</td>
<td>40.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>11.9</td>
<td>1.4</td>
<td>0.0</td>
<td>16.7</td>
<td>6.3</td>
<td>0.0</td>
<td>1.3</td>
<td>8.8</td>
<td>0.0</td>
<td>12.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Initial Q Delay(d3), s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>1.2</td>
<td>8.9</td>
<td>0.0</td>
<td>8.2</td>
<td>21.2</td>
<td>0.0</td>
<td>1.4</td>
<td>4.1</td>
<td>0.0</td>
<td>19.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>75.1</td>
<td>31.7</td>
<td>0.0</td>
<td>81.2</td>
<td>59.9</td>
<td>0.0</td>
<td>57.3</td>
<td>67.2</td>
<td>0.0</td>
<td>53.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>E</td>
<td>C</td>
<td>F</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>748</td>
<td>A</td>
<td>1189</td>
<td>A</td>
<td>158</td>
<td>A</td>
<td>1168</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>33.6</td>
<td>60.2</td>
<td>64.5</td>
<td>53.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Approach LOS</td>
<td>C</td>
<td>E</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>6.9</td>
<td>56.7</td>
<td>15.7</td>
<td>8.0</td>
<td>55.6</td>
<td>50.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>5.0</td>
<td>6.0</td>
<td>5.0</td>
<td>5.0</td>
<td>6.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>9.0</td>
<td>32.0</td>
<td>19.0</td>
<td>9.0</td>
<td>32.0</td>
<td>49.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+11), s</td>
<td>3.5</td>
<td>22.2</td>
<td>10.0</td>
<td>4.3</td>
<td>44.3</td>
<td>43.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>0.0</td>
<td>5.2</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Notes

- User approved pedestrian interval to be less than phase max green.
- User approved volume balancing among the lanes for turning movement.
- Unsiganlized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.
<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>20</td>
<td>1500</td>
<td>140</td>
<td>30</td>
<td>1780</td>
<td>20</td>
<td>190</td>
<td>20</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>20</td>
<td>1500</td>
<td>140</td>
<td>30</td>
<td>1780</td>
<td>20</td>
<td>190</td>
<td>20</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj (A_pbT)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.97</td>
<td>0.99</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>21</td>
<td>1596</td>
<td>142</td>
<td>32</td>
<td>1894</td>
<td>20</td>
<td>202</td>
<td>21</td>
<td>9</td>
<td>32</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.94</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>33</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>26</td>
<td>2988</td>
<td>266</td>
<td>40</td>
<td>3304</td>
<td>35</td>
<td>269</td>
<td>22</td>
<td>341</td>
<td>58</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.01</td>
<td>0.42</td>
<td>0.42</td>
<td>0.02</td>
<td>0.64</td>
<td>0.64</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>4736</td>
<td>421</td>
<td>1767</td>
<td>5168</td>
<td>55</td>
<td>970</td>
<td>101</td>
<td>1530</td>
<td>66</td>
<td>137</td>
<td>19</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>21</td>
<td>1138</td>
<td>600</td>
<td>32</td>
<td>1237</td>
<td>677</td>
<td>223</td>
<td>0</td>
<td>341</td>
<td>92</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln1767</td>
<td>1689</td>
<td>1870</td>
<td>1767</td>
<td>1689</td>
<td>1845</td>
<td>1070</td>
<td>0</td>
<td>1530</td>
<td>222</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>1.5</td>
<td>32.6</td>
<td>32.7</td>
<td>2.3</td>
<td>27.1</td>
<td>27.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>2.3</td>
<td>0</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>1.5</td>
<td>32.6</td>
<td>32.7</td>
<td>2.3</td>
<td>27.1</td>
<td>27.1</td>
<td>26.6</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>29.0</td>
<td>0</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>0.24</td>
<td>0.24</td>
<td>0.02</td>
<td>0.24</td>
<td>0.24</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>1.00</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>26</td>
<td>2131</td>
<td>1123</td>
<td>40</td>
<td>2159</td>
<td>1180</td>
<td>292</td>
<td>0</td>
<td>341</td>
<td>92</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.82</td>
<td>0.53</td>
<td>0.53</td>
<td>0.79</td>
<td>0.57</td>
<td>0.57</td>
<td>0.76</td>
<td>0.03</td>
<td>0.63</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>109</td>
<td>2131</td>
<td>1123</td>
<td>109</td>
<td>2159</td>
<td>1180</td>
<td>292</td>
<td>0</td>
<td>341</td>
<td>92</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>64.2</td>
<td>23.3</td>
<td>23.3</td>
<td>63.2</td>
<td>13.3</td>
<td>49.6</td>
<td>0.0</td>
<td>39.5</td>
<td>53.4</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>12.5</td>
<td>0.5</td>
<td>1.0</td>
<td>11.9</td>
<td>1.1</td>
<td>2.0</td>
<td>11.4</td>
<td>0.0</td>
<td>12.7</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/h</td>
<td>14.1</td>
<td>15.0</td>
<td>1.2</td>
<td>10.2</td>
<td>11.5</td>
<td>8.1</td>
<td>0.0</td>
<td>0.2</td>
<td>2.3</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Unsng. Movement Delay, s/veh</td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>76.6</td>
<td>23.8</td>
<td>24.3</td>
<td>75.1</td>
<td>14.5</td>
<td>15.4</td>
<td>61.0</td>
<td>0.0</td>
<td>39.5</td>
<td>66.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>E</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>B</td>
<td>B</td>
<td>E</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>1759</td>
<td>1946</td>
<td>232</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>24.6</td>
<td>15.8</td>
<td>60.2</td>
<td>66.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>C</td>
<td>B</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Timer - Assigned Phs**

| Phs Duration (G+Y+Rc), s | 8.0 | 88.0 | 34.0 | 6.9 | 89.1 | 34.0 |
| Change Period (Y+Rc), s  | 5.0 | 6.0 | 5.0 | 5.0 | 6.0 | 5.0 |
| Max Green Setting (Gmax), s | 77.0 | 29.0 | 8.0 | 77.0 | 29.0 |
| Max Q Clear Time (g_c+I), s | 34.7 | 31.0 | 3.5 | 29.1 | 28.6 |
| Green Ext Time (p_c), s | 0.0 | 31.7 | 0.0 | 38.0 | 0.1 |

**Intersection Summary**

| HCM 6th Ctrl Delay | 23.0 |
| HCM 6th LOS | C |

**Notes**

User approved pedestrian interval to be less than phase max green.
### Intersection

| Int Delay, s/veh | 4.7 |

#### Movement

<table>
<thead>
<tr>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>160</td>
<td>10</td>
<td>30</td>
<td>180</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>160</td>
<td>10</td>
<td>30</td>
<td>180</td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>12</td>
<td>0</td>
<td>11</td>
<td>8</td>
<td>0</td>
<td>9</td>
<td>11</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

#### Lane Configurations

<table>
<thead>
<tr>
<th>RT Channelized</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Length</td>
<td>-</td>
<td>-</td>
<td>130</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>210</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Veh in Median Storage, #</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>8</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Grade, %</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>8</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>87</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>3</td>
</tr>
<tr>
<td>Mvmt Flow</td>
<td>11</td>
<td>46</td>
<td>46</td>
<td>11</td>
<td>34</td>
<td>46</td>
<td>46</td>
<td>184</td>
<td>11</td>
<td>34</td>
<td>207</td>
<td>23</td>
</tr>
</tbody>
</table>

#### Major/Minor

<table>
<thead>
<tr>
<th>Minor2</th>
<th>Minor1</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting Flow All</td>
<td>633</td>
<td>595</td>
<td>138</td>
</tr>
<tr>
<td>Stage 1</td>
<td>299</td>
<td>299</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>334</td>
<td>296</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>6.545</td>
<td>5.545</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>6.145</td>
<td>5.545</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.5285</td>
<td>4.0285</td>
<td>3.3285</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>376</td>
<td>415</td>
<td>883</td>
</tr>
<tr>
<td>Stage 1</td>
<td>683</td>
<td>663</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>676</td>
<td>665</td>
<td>-</td>
</tr>
<tr>
<td>Platoon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>308</td>
<td>383</td>
<td>864</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>308</td>
<td>383</td>
<td>-</td>
</tr>
<tr>
<td>Stage 1</td>
<td>652</td>
<td>639</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>575</td>
<td>636</td>
<td>-</td>
</tr>
</tbody>
</table>

#### Approach

<table>
<thead>
<tr>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>13.5</td>
<td>13.5</td>
<td>1.5</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

#### Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>WBLn1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (veh/h)</td>
<td>1301</td>
<td>-</td>
<td>-</td>
<td>365</td>
<td>864</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.035</td>
<td>-</td>
<td>-</td>
<td>0.157</td>
<td>0.053</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>7.9</td>
<td>-</td>
<td>-</td>
<td>16.7</td>
<td>9.4</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>0.2</td>
</tr>
</tbody>
</table>
### Intersection

**Int Delay, s/veh** 2.8

### Movement

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>260</td>
<td>30</td>
<td>20</td>
<td>210</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>20</td>
<td>10</td>
<td>50</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>260</td>
<td>30</td>
<td>20</td>
<td>210</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>7</td>
<td>0</td>
<td>10</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

### Sign Control

<table>
<thead>
<tr>
<th>RT Channelized</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Length</td>
<td>-</td>
</tr>
</tbody>
</table>

### Veh in Median Storage, #

| -     | 0    | -    | -    | 50   | -    | 50   | -    | -    | 0    | -    | -    |

### Grade, %

| -     | 0    | -    | -    | 0    | -    | 0    | -    | -    | 0    | -    | -    |

### Peak Hour Factor

| 90    | 90   | 90   | 90   | 90   | 90   | 90   |

### Heavy Vehicles, %

| 3     | 3    | 3    | 3    | 3    | 3    | 3    |

### Mvmt Flow

| 22    | 11   | 56   | 11   | 11   | 11   | 33   | 289  | 33   | 22   | 233  | 33   |

### Major/Minor

<table>
<thead>
<tr>
<th>Minor2</th>
<th>Minor1</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>694 699 270</td>
<td>716</td>
<td>699 320 276</td>
<td>0</td>
</tr>
<tr>
<td>304 304</td>
<td>-</td>
<td>79 79</td>
<td>-</td>
</tr>
<tr>
<td>390 395</td>
<td>-</td>
<td>337</td>
<td>337</td>
</tr>
<tr>
<td>6.13 5.53</td>
<td>-</td>
<td>6.13</td>
<td>5.53</td>
</tr>
<tr>
<td>6.13 5.53</td>
<td>-</td>
<td>6.13</td>
<td>5.53</td>
</tr>
<tr>
<td>3.52 4.02 3.32</td>
<td>5.52</td>
<td>3.32</td>
<td>5.52</td>
</tr>
<tr>
<td>356 363 766</td>
<td>344</td>
<td>363</td>
<td>718</td>
</tr>
<tr>
<td>703 661</td>
<td>-</td>
<td>641</td>
<td>613</td>
</tr>
<tr>
<td>632 603</td>
<td>-</td>
<td>675</td>
<td>651</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>325 341 751</td>
<td>295</td>
<td>341</td>
<td>708</td>
</tr>
<tr>
<td>325 341</td>
<td>-</td>
<td>295</td>
<td>341</td>
</tr>
<tr>
<td>678 642</td>
<td>-</td>
<td>620</td>
<td>593</td>
</tr>
<tr>
<td>591 583</td>
<td>-</td>
<td>597</td>
<td>633</td>
</tr>
</tbody>
</table>

### Platoon blocked, %

| - | - | - | - | - | - |

### Mov Cap-1 Maneuver

| 325 341 | 751 | 295 | 341 | 708 | 1269 | - | - | 1217 |
| 325 341 | - | 295 | 341 | - | - - |
| 678 642 | - | 620 | 593 | - | - - |
| 591 583 | - | 597 | 633 | - | - - |

### Mov Cap-2 Maneuver

| 325 341 | 751 | 295 | 341 | 708 | 1269 | - | - | 1217 |
| 325 341 | - | 295 | 341 | - | - - |
| 678 642 | - | 620 | 593 | - | - - |
| 591 583 | - | 597 | 633 | - | - - |

### Approach

<table>
<thead>
<tr>
<th>HCM Control Delay, s</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6</td>
<td>15.1</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

### HCM LOS

| B | C |

### Minor Lane/Major Mvmt

| Capacity (veh/h) | 1269 | - | - | 508 | 388 | 1217 | - | - |
| HCM Lane V/C Ratio | 0.026 | - | - | 0.175 | 0.086 | 0.018 | - | - |
| HCM Control Delay (s) | 7.9 | - | - | 13.6 | 15.1 | 8 | - | - |
| HCM Lane LOS | A | - | B | C | A | - | - |
| HCM 95th %tile Q(veh) | 0.1 | - | - | 0.6 | 0.3 | 0.1 | - | - |
### HCM 6th Signalized Intersection Summary

#### Existing (2020) Conditions

**5: Kamehameha Ave & Kane St**

**AM Peak Hour**

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lane Configurations</strong></td>
<td></td>
</tr>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>50</td>
<td>30</td>
<td>160</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>140</td>
<td>390</td>
<td>10</td>
<td>10</td>
<td>180</td>
<td>70</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>50</td>
<td>30</td>
<td>160</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>140</td>
<td>390</td>
<td>10</td>
<td>10</td>
<td>180</td>
<td>70</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>53</td>
<td>32</td>
<td>30</td>
<td>11</td>
<td>21</td>
<td>2</td>
<td>147</td>
<td>411</td>
<td>10</td>
<td>11</td>
<td>189</td>
<td>59</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.95</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>258</td>
<td>110</td>
<td>214</td>
<td>165</td>
<td>180</td>
<td>10</td>
<td>180</td>
<td>497</td>
<td>20</td>
<td>497</td>
<td>533</td>
<td>164</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.08</td>
<td>0.46</td>
<td>0.46</td>
<td>0.01</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>776</td>
<td>800</td>
<td>1557</td>
<td>303</td>
<td>1309</td>
<td>101</td>
<td>1767</td>
<td>1803</td>
<td>44</td>
<td>1767</td>
<td>1360</td>
<td>417</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>85</td>
<td>0</td>
<td>30</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>147</td>
<td>421</td>
<td>11</td>
<td>0</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1576</td>
<td>0</td>
<td>1557</td>
<td>1713</td>
<td>0</td>
<td>0</td>
<td>1767</td>
<td>1847</td>
<td>1767</td>
<td>0</td>
<td>1777</td>
<td></td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>0.8</td>
<td>0.0</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>6.1</td>
<td>0.1</td>
<td>0.0</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>1.8</td>
<td>0.0</td>
<td>0.7</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>6.1</td>
<td>0.1</td>
<td>0.0</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>0.62</td>
<td>1.00</td>
<td>0.32</td>
<td>0.06</td>
<td>1.00</td>
<td>0.02</td>
<td>1.00</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>368</td>
<td>0</td>
<td>214</td>
<td>359</td>
<td>0</td>
<td>0</td>
<td>661</td>
<td>855</td>
<td>497</td>
<td>0</td>
<td>697</td>
<td></td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.23</td>
<td>0.00</td>
<td>0.14</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.22</td>
<td>0.49</td>
<td>0.02</td>
<td>0.00</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>1140</td>
<td>0</td>
<td>1007</td>
<td>1186</td>
<td>0</td>
<td>0</td>
<td>1202</td>
<td>2390</td>
<td>1163</td>
<td>0</td>
<td>2299</td>
<td></td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>15.1</td>
<td>0.0</td>
<td>14.7</td>
<td>14.6</td>
<td>0.0</td>
<td>0.0</td>
<td>5.7</td>
<td>7.2</td>
<td>7.1</td>
<td>0.0</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>0.6</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>1.7</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>15.2</td>
<td>0.0</td>
<td>14.8</td>
<td>14.7</td>
<td>0.0</td>
<td>0.0</td>
<td>5.8</td>
<td>7.8</td>
<td>7.1</td>
<td>0.0</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>B A</td>
<td>B B</td>
<td>A A</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>115</td>
<td>34</td>
<td>568</td>
<td>258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>15.1</td>
<td>14.7</td>
<td>7.3</td>
<td>8.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>B B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>4.4</td>
<td>23.9</td>
<td>10.3</td>
<td>7.2</td>
<td>21.2</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>4.0</td>
<td>8.0</td>
<td>5.0</td>
<td>4.0</td>
<td>6.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>15.0</td>
<td>50.0</td>
<td>25.0</td>
<td>15.0</td>
<td>50.0</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+11), s</td>
<td>2.1</td>
<td>8.1</td>
<td>3.8</td>
<td>3.8</td>
<td>5.8</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>0.0</td>
<td>4.4</td>
<td>0.3</td>
<td>0.1</td>
<td>2.4</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Intersection Summary

- **HCM 6th Ctrl Delay**: 8.8
- **HCM 6th LOS**: A
## HCM 6th Signalized Intersection Summary

**6: Lono Ave & Kamehameha Ave**

### Existing (2020) Conditions

#### AM Peak Hour

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>60</td>
<td>360</td>
<td>10</td>
<td>30</td>
<td>180</td>
<td>60</td>
<td>20</td>
<td>220</td>
<td>100</td>
<td>100</td>
<td>130</td>
<td>40</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>60</td>
<td>360</td>
<td>10</td>
<td>30</td>
<td>180</td>
<td>60</td>
<td>20</td>
<td>220</td>
<td>100</td>
<td>100</td>
<td>130</td>
<td>40</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>1.00</td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>71</td>
<td>429</td>
<td>4</td>
<td>36</td>
<td>214</td>
<td>22</td>
<td>24</td>
<td>262</td>
<td>0</td>
<td>119</td>
<td>155</td>
<td>41</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.84</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>447</td>
<td>578</td>
<td>488</td>
<td>285</td>
<td>542</td>
<td>458</td>
<td>381</td>
<td>386</td>
<td>364</td>
<td>377</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.04</td>
<td>0.31</td>
<td>0.31</td>
<td>0.02</td>
<td>0.29</td>
<td>0.29</td>
<td>0.02</td>
<td>0.21</td>
<td>0.00</td>
<td>0.08</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>1856</td>
<td>1567</td>
<td>1767</td>
<td>1856</td>
<td>1567</td>
<td>1767</td>
<td>1856</td>
<td>1572</td>
<td>1767</td>
<td>1413</td>
<td>374</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>71</td>
<td>429</td>
<td>4</td>
<td>36</td>
<td>214</td>
<td>22</td>
<td>24</td>
<td>262</td>
<td>0</td>
<td>119</td>
<td>196</td>
<td>196</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.16</td>
<td>0.74</td>
<td>0.01</td>
<td>0.13</td>
<td>0.40</td>
<td>0.05</td>
<td>0.06</td>
<td>0.68</td>
<td>0.33</td>
<td>0.00</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>1009</td>
<td>1676</td>
<td>1415</td>
<td>882</td>
<td>1676</td>
<td>1415</td>
<td>989</td>
<td>1117</td>
<td>869</td>
<td>0</td>
<td>1076</td>
<td>1076</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>11.7</td>
<td>15.4</td>
<td>11.8</td>
<td>12.8</td>
<td>14.1</td>
<td>12.7</td>
<td>15.2</td>
<td>18.2</td>
<td>0.0</td>
<td>13.9</td>
<td>0.0</td>
<td>15.1</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>0.1</td>
<td>1.9</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Initial Q Delay(d3), s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>4.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
<td>1.7</td>
<td>0.2</td>
<td>0.2</td>
<td>2.7</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
<td>1.7</td>
</tr>
<tr>
<td>LnGrp Delay(d), s/veh</td>
<td>11.8</td>
<td>17.3</td>
<td>11.8</td>
<td>12.9</td>
<td>14.6</td>
<td>12.7</td>
<td>15.2</td>
<td>20.3</td>
<td>0.0</td>
<td>14.1</td>
<td>0.0</td>
<td>15.6</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>504</td>
<td>272</td>
<td>286</td>
<td>A</td>
<td>315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>16.4</td>
<td>14.2</td>
<td>19.9</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>20.5</td>
<td>5.3</td>
<td>18.3</td>
<td>6.7</td>
<td>19.6</td>
<td>8.3</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>4.5</td>
<td>5.0</td>
<td>4.5</td>
<td>5.0</td>
<td>4.5</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Green Setting (Gmax),s</td>
<td>45.0</td>
<td>18.0</td>
<td>30.0</td>
<td>18.0</td>
<td>45.0</td>
<td>18.0</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+I2),s</td>
<td>12.3</td>
<td>2.5</td>
<td>6.5</td>
<td>3.4</td>
<td>6.6</td>
<td>4.5</td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>0.0</td>
<td>2.9</td>
<td>0.0</td>
<td>1.2</td>
<td>0.1</td>
<td>1.4</td>
<td>0.1</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Intersection Summary**

- **HCM 6th Ctr Delay**: 16.4
- **HCM 6th LOS**: B

**Notes**

- Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.
## HCM 6th Signalized Intersection Summary

### 7: Wakea Ave & Kamehameha Ave

#### Existing (2020) Conditions

**AM Peak Hour**

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lane Configurations</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Traffic Volume (veh/h)</strong></td>
<td>120</td>
<td>350</td>
<td>10</td>
<td>60</td>
<td>280</td>
<td>40</td>
<td>20</td>
<td>270</td>
<td>120</td>
<td>50</td>
<td>130</td>
</tr>
<tr>
<td><strong>Future Volume (veh/h)</strong></td>
<td>120</td>
<td>350</td>
<td>10</td>
<td>60</td>
<td>280</td>
<td>40</td>
<td>20</td>
<td>270</td>
<td>120</td>
<td>50</td>
<td>130</td>
</tr>
<tr>
<td><strong>Initial Q (Qb), veh</strong></td>
<td>0</td>
</tr>
<tr>
<td><strong>Ped-Bike Adj (A_pbT)</strong></td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>0.97</td>
<td>1.00</td>
<td>0.98</td>
<td>0.97</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td><strong>Parking Bus, Adj</strong></td>
<td>1.00</td>
</tr>
<tr>
<td><strong>Work Zone On Approach</strong></td>
<td>No</td>
</tr>
<tr>
<td><strong>Adj Sat Flow, veh/h</strong></td>
<td>1856</td>
</tr>
<tr>
<td><strong>Adj Flow Rate, veh/h</strong></td>
<td>129</td>
<td>376</td>
<td>10</td>
<td>65</td>
<td>301</td>
<td>40</td>
<td>22</td>
<td>290</td>
<td>121</td>
<td>54</td>
<td>140</td>
</tr>
<tr>
<td><strong>Peak Hour Factor</strong></td>
<td>0.93</td>
</tr>
<tr>
<td><strong>Percent Heavy Veh, %</strong></td>
<td>3</td>
</tr>
<tr>
<td><strong>Cap, veh/h</strong></td>
<td>290</td>
<td>457</td>
<td>12</td>
<td>252</td>
<td>374</td>
<td>50</td>
<td>26</td>
<td>344</td>
<td>144</td>
<td>74</td>
<td>193</td>
</tr>
<tr>
<td><strong>Arrive On Green</strong></td>
<td>0.08</td>
<td>0.25</td>
<td>0.25</td>
<td>0.06</td>
<td>0.23</td>
<td>0.23</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td><strong>Sat Flow, veh/h</strong></td>
<td>1767</td>
<td>1798</td>
<td>48</td>
<td>1767</td>
<td>1599</td>
<td>213</td>
<td>89</td>
<td>1169</td>
<td>488</td>
<td>509</td>
<td>1321</td>
</tr>
<tr>
<td><strong>Grp Volume(v), veh/h</strong></td>
<td>129</td>
<td>0</td>
<td>386</td>
<td>65</td>
<td>0</td>
<td>341</td>
<td>433</td>
<td>0</td>
<td>0</td>
<td>194</td>
<td>0</td>
</tr>
<tr>
<td><strong>Grp Sat Flow(s),veh/h/ln</strong></td>
<td>1767</td>
<td>0</td>
<td>1846</td>
<td>1767</td>
<td>0</td>
<td>1812</td>
<td>1745</td>
<td>0</td>
<td>0</td>
<td>1830</td>
<td>0</td>
</tr>
<tr>
<td><strong>Q Serve(g_s), s</strong></td>
<td>4.4</td>
<td>0.0</td>
<td>16.2</td>
<td>2.2</td>
<td>0.0</td>
<td>14.6</td>
<td>19.1</td>
<td>0.0</td>
<td>0.0</td>
<td>8.3</td>
<td>0.0</td>
</tr>
<tr>
<td><strong>Cycle Q Clear(g_c), s</strong></td>
<td>4.4</td>
<td>0.0</td>
<td>16.2</td>
<td>2.2</td>
<td>0.0</td>
<td>14.6</td>
<td>19.1</td>
<td>0.0</td>
<td>0.0</td>
<td>8.3</td>
<td>0.0</td>
</tr>
<tr>
<td><strong>Prop In Lane</strong></td>
<td>1.00</td>
<td>0.03</td>
<td>1.00</td>
<td>0.12</td>
<td>0.05</td>
<td>0.28</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Lane Grp Cap(c), veh/h</strong></td>
<td>290</td>
<td>0</td>
<td>470</td>
<td>252</td>
<td>0</td>
<td>424</td>
<td>514</td>
<td>0</td>
<td>0</td>
<td>267</td>
<td>0</td>
</tr>
<tr>
<td><strong>V/C Ratio(X)</strong></td>
<td>0.45</td>
<td>0.00</td>
<td>0.82</td>
<td>0.26</td>
<td>0.00</td>
<td>0.80</td>
<td>0.84</td>
<td>0.00</td>
<td>0.00</td>
<td>0.73</td>
<td>0.00</td>
</tr>
<tr>
<td><strong>Avail Cap(c_a), veh/h</strong></td>
<td>577</td>
<td>0</td>
<td>1667</td>
<td>403</td>
<td>0</td>
<td>1459</td>
<td>1086</td>
<td>0</td>
<td>0</td>
<td>871</td>
<td>0</td>
</tr>
<tr>
<td><strong>HCM Platoon Ratio</strong></td>
<td>1.00</td>
</tr>
<tr>
<td><strong>Upstream Filter(l)</strong></td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td><strong>Uniform Delay (d), s/veh</strong></td>
<td>22.2</td>
<td>0.0</td>
<td>28.8</td>
<td>22.5</td>
<td>0.0</td>
<td>29.6</td>
<td>27.1</td>
<td>0.0</td>
<td>0.0</td>
<td>33.4</td>
<td>0.0</td>
</tr>
<tr>
<td><strong>Incr Delay (d2), s/veh</strong></td>
<td>1.1</td>
<td>0.0</td>
<td>3.7</td>
<td>0.5</td>
<td>0.0</td>
<td>3.6</td>
<td>3.8</td>
<td>0.0</td>
<td>0.0</td>
<td>3.8</td>
<td>0.0</td>
</tr>
<tr>
<td><strong>Initial Q Delay(d3), s/veh</strong></td>
<td>0.0</td>
</tr>
<tr>
<td><strong>%ile BackOfQ(50%),veh/ln</strong></td>
<td>1.8</td>
<td>0.0</td>
<td>7.4</td>
<td>0.9</td>
<td>0.0</td>
<td>6.5</td>
<td>8.1</td>
<td>0.0</td>
<td>0.0</td>
<td>3.9</td>
<td>0.0</td>
</tr>
<tr>
<td><strong>Unsig. Movement Delay, s/veh</strong></td>
<td></td>
</tr>
<tr>
<td><strong>LnGrp Delay(d),s/veh</strong></td>
<td>23.3</td>
<td>0.0</td>
<td>32.5</td>
<td>23.0</td>
<td>0.0</td>
<td>33.2</td>
<td>30.9</td>
<td>0.0</td>
<td>0.0</td>
<td>37.2</td>
<td>0.0</td>
</tr>
<tr>
<td><strong>LnGrp LOS</strong></td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td><strong>Approach Vol, veh/h</strong></td>
<td>515</td>
<td>406</td>
<td>433</td>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Approach Delay, s/veh</strong></td>
<td>30.2</td>
<td>31.6</td>
<td>30.9</td>
<td>36.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Approach LOS</strong></td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Timer - Assigned Phs</strong></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Phs Duration (G+Y+Rc), s</strong></td>
<td>29.1</td>
<td>10.0</td>
<td>25.8</td>
<td>17.0</td>
<td>11.7</td>
<td>24.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Change Period (Y+Rc), s</strong></td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Max Green Setting (Gmax), s</strong></td>
<td>51.0</td>
<td>12.0</td>
<td>74.0</td>
<td>39.0</td>
<td>20.0</td>
<td>66.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Max Q Clear Time (g_c+I1), s</strong></td>
<td>21.1</td>
<td>4.2</td>
<td>18.2</td>
<td>10.3</td>
<td>6.4</td>
<td>16.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Green Ext Time (p_c), s</strong></td>
<td>3.1</td>
<td>0.1</td>
<td>2.7</td>
<td>1.2</td>
<td>0.3</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### HCM 6th Ctrl Delay

31.6

### HCM 6th LOS

C
### Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
</table>

### Traffic Volume (veh/h)

| Future Volume (veh/h) | 60 1060 110 50 730 1130 60 160 80 940 140 130 |

### Initial Q (Qb), veh

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

### Ped-Bike Adj(A_pbT)

| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

### Parking Bus, Adj

| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

### Work Zone On Approach

| No |

### Adj Sat Flow, veh/h

| 1856 | 1856 | 1856 | 1856 | 1856 | 1856 | 1856 | 1856 | 1856 | 1856 | 1856 | 1856 | 1856 |

### Adj Flow Rate, veh/h

| 62 | 1093 | 0 | 52 | 753 | 0 | 62 | 165 | 0 | 1072 | 0 | 0 |

### Peak Hour Factor

| 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 |

### Percent Heavy Veh, %

| 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 | 33 |

### Cap, veh/h

| 79 | 1383 | 67 | 1359 | 170 | 179 | 1123 | 0 |

### Arrive On Green

| 0.04 | 0.39 | 0.00 | 0.01 | 0.13 | 0.00 | 0.10 | 0.10 | 0.00 | 0.32 | 0.00 | 0.00 |

### Sat Flow, veh/h

| 1767 | 3526 | 1572 | 1767 | 3526 | 1572 | 1767 | 1856 | 1572 | 3534 | 0 | 1572 |

### Grp Sat Flow(s),veh/h/ln

| 1767 | 1763 | 1572 | 1767 | 1763 | 1572 | 1767 | 1856 | 1572 | 1767 | 0 |

### Q Serve(g_s), s

| 4.7 | 36.9 | 0.0 | 4.0 | 27.1 | 0.0 | 4.4 | 11.9 | 0.0 | 40.1 | 0.0 | 0.0 |

### Cycle Q Clear(g_c), s

| 4.7 | 36.9 | 0.0 | 4.0 | 27.1 | 0.0 | 4.4 | 11.9 | 0.0 | 40.1 | 0.0 | 0.0 |

### Prop In Lane

| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

### Lane Grp Cap(c), veh/h

| 79 | 1383 | 67 | 1359 | 170 | 179 | 1123 | 0 |

### V/C Ratio(X)

| 0.78 | 0.79 | 0.78 | 0.55 | 0.36 | 0.92 | 0.95 | 0.00 |

### Avail Cap(c_a), veh/h

| 157 | 1383 | 157 | 1359 | 170 | 179 | 1152 | 0 |

### HCM Platoon Ratio

| 1.00 | 1.00 | 1.00 | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

### Upstream Filter(I)

| 1.00 | 1.00 | 1.00 | 0.83 | 0.83 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

### Uniform Delay (d), s/veh

| 63.8 | 36.1 | 0.0 | 46.0 | 0.0 | 57.1 | 60.5 | 0.0 | 45.1 | 0.0 | 0.0 |

### Incr Delay (d2), s/veh

| 6.2 | 4.7 | 0.0 | 5.8 | 1.4 | 0.0 | 1.6 | 46.1 | 0.0 | 16.4 | 0.0 | 0.0 |

### Initial Q Delay(d3),s/veh

| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

### 50th BackOfQ(50%),veh/ln

| 2.3 | 16.7 | 0.0 | 1.9 | 13.1 | 0.0 | 2.1 | 7.9 | 0.0 | 19.8 | 0.0 | 0.0 |

### LnGrp Delay(d),s/veh

| 70.0 | 40.8 | 0.0 | 71.9 | 49.4 | 0.0 | 58.7 | 106.6 | 0.0 | 61.5 | 0.0 | 0.0 |

### LnGrp LOS

| E | D | E | D | E | F | E | A |

### Approach Vol, veh/h

| 1155 | A | 805 | A | 227 | A | 1072 | A |

### Approach Delay, s/veh

| 42.4 | 50.8 | 93.5 | 61.5 |

### Approach LOS

| D | D | F | E |

### Timer - Assigned Phs

| 1 | 2 | 4 | 5 | 6 | 8 |

### Phs Duration (G+Y+Rc), s

| 10.1 | 59.0 | 18.0 | 11.0 | 58.0 | 47.9 |

### Change Period (Y+Rc), s

| 5.0 | 6.0 | 5.0 | 5.0 | 6.0 | 5.0 |

### Max Green Setting (Gmax), s

| 12.0 | 45.0 | 13.0 | 12.0 | 45.0 | 44.0 |

### Max Q Clear Time (g_c+I1), s

| 6.0 | 38.9 | 13.9 | 6.7 | 29.1 | 42.1 |

### Green Ext Time (p_c), s

| 0.0 | 4.8 | 0.0 | 0.0 | 7.6 | 0.8 |

### Intersection Summary

| HCM 6th Ctrl Delay | 54.3 |
| HCM 6th LOS | D |

### Notes

- User approved pedestrian interval to be less than phase max green.
- User approved volume balancing among the lanes for turning movement.
- Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.
### Movement Lane Configurations

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>10</td>
<td>1720</td>
<td>140</td>
<td>60</td>
<td>1850</td>
<td>30</td>
<td>180</td>
<td>20</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>10</td>
<td>1720</td>
<td>140</td>
<td>60</td>
<td>1850</td>
<td>30</td>
<td>180</td>
<td>20</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>10</td>
<td>1755</td>
<td>137</td>
<td>61</td>
<td>1888</td>
<td>30</td>
<td>184</td>
<td>20</td>
<td>8</td>
<td>31</td>
<td>31</td>
<td>6</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.98</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>33.33</td>
<td>33.33</td>
<td>33.33</td>
<td>33.33</td>
<td>33.33</td>
<td>33.33</td>
<td>33.33</td>
<td>33.33</td>
<td>33.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>12</td>
<td>2982</td>
<td>232</td>
<td>78</td>
<td>3388</td>
<td>54</td>
<td>224</td>
<td>19</td>
<td>335</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.01</td>
<td>1.00</td>
<td>1.00</td>
<td>0.04</td>
<td>0.66</td>
<td>0.66</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>4791</td>
<td>373</td>
<td>1767</td>
<td>5136</td>
<td>82</td>
<td>809</td>
<td>88</td>
<td>1559</td>
<td>0</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>10</td>
<td>1236</td>
<td>656</td>
<td>61</td>
<td>1241</td>
<td>677</td>
<td>204</td>
<td>0</td>
<td>335</td>
<td>71</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1689</td>
<td>187</td>
<td>61</td>
<td>1888</td>
<td>30</td>
<td>184</td>
<td>20</td>
<td>8</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>4.6</td>
<td>26.7</td>
<td>26.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>4.6</td>
<td>26.7</td>
<td>26.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>29.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>0.21</td>
<td>1.00</td>
<td>0.04</td>
<td>0.90</td>
<td>1.00</td>
<td>0.46</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>12</td>
<td>2102</td>
<td>1112</td>
<td>78</td>
<td>2228</td>
<td>1214</td>
<td>243</td>
<td>0</td>
<td>335</td>
<td>71</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.81</td>
<td>0.59</td>
<td>0.59</td>
<td>0.78</td>
<td>0.56</td>
<td>0.56</td>
<td>0.84</td>
<td>0.00</td>
<td>0.02</td>
<td>0.96</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>144</td>
<td>2102</td>
<td>1112</td>
<td>144</td>
<td>2228</td>
<td>1214</td>
<td>243</td>
<td>0</td>
<td>335</td>
<td>71</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>66.5</td>
<td>0.0</td>
<td>0.0</td>
<td>63.9</td>
<td>124.4</td>
<td>124.4</td>
<td>53.8</td>
<td>0.0</td>
<td>41.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>16.4</td>
<td>0.5</td>
<td>0.9</td>
<td>6.2</td>
<td>1.0</td>
<td>1.9</td>
<td>22.0</td>
<td>0.0</td>
<td>91.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>0.4</td>
<td>0.1</td>
<td>0.3</td>
<td>2.2</td>
<td>10.0</td>
<td>11.2</td>
<td>8.6</td>
<td>0.0</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td>82.9</td>
<td>0.5</td>
<td>0.9</td>
<td>70.1</td>
<td>13.4</td>
<td>14.2</td>
<td>75.8</td>
<td>0.0</td>
<td>41.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>1902</td>
<td>1979</td>
<td>212</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>1.0</td>
<td>15.4</td>
<td>74.5</td>
<td>145.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>1.0</td>
<td>15.4</td>
<td>74.5</td>
<td>145.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>A</td>
<td>B</td>
<td>E</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Intersection Summary

- **HCM 6th Ctrl Delay**: 14.0
- **HCM 6th LOS**: B

### Notes

User approved pedestrian interval to be less than phase max green.
### Intersection

**Int Delay, s/veh**: 13.8

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>70</td>
<td>100</td>
<td>90</td>
<td>20</td>
<td>50</td>
<td>40</td>
<td>90</td>
<td>140</td>
<td>30</td>
<td>70</td>
<td>220</td>
<td>70</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>70</td>
<td>100</td>
<td>90</td>
<td>20</td>
<td>50</td>
<td>40</td>
<td>90</td>
<td>140</td>
<td>30</td>
<td>70</td>
<td>220</td>
<td>70</td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>13</td>
<td>0</td>
<td>12</td>
<td>9</td>
<td>0</td>
<td>10</td>
<td>12</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td><strong>Sign Control</strong></td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td><strong>RT Channelized</strong></td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td>Storage Length</td>
<td>-</td>
<td>-</td>
<td>130</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>210</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Veh in Median Storage, #</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Grade, %</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>97</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>3</td>
</tr>
<tr>
<td><strong>Mvmt Flow</strong></td>
<td>72</td>
<td>103</td>
<td>93</td>
<td>21</td>
<td>52</td>
<td>41</td>
<td>93</td>
<td>144</td>
<td>31</td>
<td>72</td>
<td>227</td>
<td>72</td>
</tr>
</tbody>
</table>

**Lane Configurations**

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>70</td>
<td>100</td>
<td>90</td>
<td>20</td>
<td>50</td>
<td>40</td>
<td>90</td>
<td>140</td>
<td>30</td>
<td>70</td>
<td>220</td>
<td>70</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>70</td>
<td>100</td>
<td>90</td>
<td>20</td>
<td>50</td>
<td>40</td>
<td>90</td>
<td>140</td>
<td>30</td>
<td>70</td>
<td>220</td>
<td>70</td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>13</td>
<td>0</td>
<td>12</td>
<td>9</td>
<td>0</td>
<td>10</td>
<td>12</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td><strong>Sign Control</strong></td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td><strong>RT Channelized</strong></td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td>Storage Length</td>
<td>-</td>
<td>-</td>
<td>130</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>210</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Veh in Median Storage, #</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Grade, %</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>97</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>3</td>
</tr>
<tr>
<td><strong>Mvmt Flow</strong></td>
<td>72</td>
<td>103</td>
<td>93</td>
<td>21</td>
<td>52</td>
<td>41</td>
<td>93</td>
<td>144</td>
<td>31</td>
<td>72</td>
<td>227</td>
<td>72</td>
</tr>
</tbody>
</table>

### Major/Minor

<table>
<thead>
<tr>
<th>Minor/Minor</th>
<th>Minor2</th>
<th>Minor1</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting Flow All</td>
<td>825</td>
<td>791</td>
<td>175</td>
<td>677</td>
</tr>
<tr>
<td>Stage 1</td>
<td>420</td>
<td>420</td>
<td>-</td>
<td>356</td>
</tr>
<tr>
<td>Stage 2</td>
<td>405</td>
<td>371</td>
<td>-</td>
<td>321</td>
</tr>
<tr>
<td>Critical Hdwy</td>
<td>7.345</td>
<td>6.545</td>
<td>6.945</td>
<td>7.345</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>6.545</td>
<td>5.545</td>
<td>-</td>
<td>6.145</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>6.145</td>
<td>5.545</td>
<td>-</td>
<td>6.545</td>
</tr>
<tr>
<td>Follow-up Hdw</td>
<td>3.5285</td>
<td>4.0285</td>
<td>3.3285</td>
<td>4.0285</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>276</td>
<td>320</td>
<td>836</td>
<td>351</td>
</tr>
<tr>
<td>Stage 1</td>
<td>580</td>
<td>587</td>
<td>-</td>
<td>658</td>
</tr>
<tr>
<td>Stage 2</td>
<td>619</td>
<td>617</td>
<td>-</td>
<td>663</td>
</tr>
<tr>
<td>Platoon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>198</td>
<td>274</td>
<td>816</td>
<td>196</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>198</td>
<td>274</td>
<td>-</td>
<td>196</td>
</tr>
<tr>
<td>Stage 1</td>
<td>530</td>
<td>549</td>
<td>-</td>
<td>602</td>
</tr>
<tr>
<td>Stage 2</td>
<td>489</td>
<td>565</td>
<td>-</td>
<td>447</td>
</tr>
</tbody>
</table>

### Approach

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>38.6</td>
<td>21.8</td>
<td>2.8</td>
<td>1.5</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>E</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Minor Lane/Major Mvmt

| Capacity (veh/h) | 1225 | - | - | 237 | 816 | 326 | 1369 | - | - |
| HCM Lane V/C Ratio | 0.076 | - | - | 0.739 | 0.114 | 0.348 | 0.053 | - | - |
| HCM Control Delay (s) | 8.2 | - | - | 53.7 | 10 | 21.8 | 7.8 | - | - |
| HCM Lane LOS | A | - | F | B | C | A | - | - | - |
| HCM 95th %tile Q(veh) | 0.2 | - | - | 5.1 | 0.4 | 1.5 | 0.2 | - | - |
### Intersection

| Int Delay, s/veh | 5.5 |

#### Movement

<table>
<thead>
<tr>
<th></th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Traffic Vol, veh/h</td>
<td>40</td>
<td>30</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>60</td>
<td>180</td>
<td>30</td>
<td>10</td>
<td>240</td>
<td>50</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>40</td>
<td>30</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>60</td>
<td>180</td>
<td>30</td>
<td>10</td>
<td>240</td>
<td>50</td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sign Control</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td>RT Channelized</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td>Storage Length</td>
<td></td>
</tr>
<tr>
<td>Veh in Median Storage, #</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Grade, %</td>
<td>92</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>3</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>33</td>
<td>33</td>
<td>130</td>
<td>22</td>
<td>11</td>
<td>11</td>
<td>65</td>
<td>196</td>
<td>33</td>
<td>11</td>
<td>261</td>
<td>54</td>
</tr>
<tr>
<td>Mvmt Flow</td>
<td>43</td>
<td>33</td>
<td>130</td>
<td>22</td>
<td>11</td>
<td>11</td>
<td>65</td>
<td>196</td>
<td>33</td>
<td>11</td>
<td>261</td>
<td>54</td>
</tr>
</tbody>
</table>

#### Major/Minor

<table>
<thead>
<tr>
<th>Minor2</th>
<th>Minor1</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting Flow All</td>
<td>670</td>
<td>674</td>
<td>294</td>
</tr>
<tr>
<td>Stage 1</td>
<td>313</td>
<td>313</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>357</td>
<td>361</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy</td>
<td>7.13</td>
<td>6.53</td>
<td>6.23</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>6.13</td>
<td>5.53</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>6.13</td>
<td>5.53</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.527</td>
<td>4.027</td>
<td>3.327</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>369</td>
<td>375</td>
<td>743</td>
</tr>
<tr>
<td>Stage 1</td>
<td>686</td>
<td>655</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>659</td>
<td>624</td>
<td>-</td>
</tr>
<tr>
<td>Platoon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>337</td>
<td>351</td>
<td>739</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>337</td>
<td>351</td>
<td>-</td>
</tr>
<tr>
<td>Stage 1</td>
<td>658</td>
<td>648</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>603</td>
<td>590</td>
<td>-</td>
</tr>
</tbody>
</table>

#### Approach

<table>
<thead>
<tr>
<th></th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>16.5</td>
<td>17.9</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th></th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (veh/h)</td>
<td>1232</td>
<td>-</td>
<td>-</td>
<td>518</td>
<td>322</td>
<td>1328</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.053</td>
<td>-</td>
<td>-</td>
<td>0.399</td>
<td>0.135</td>
<td>0.008</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>8.1</td>
<td>-</td>
<td>-</td>
<td>16.5</td>
<td>17.9</td>
<td>7.7</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>1.9</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
# HCM 6th Signalized Intersection Summary

## Existing (2020) Conditions
### 5: Kamehameha Ave & Kane St

**PM Peak Hour**

### Movement Configurations

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>120</td>
<td>50</td>
<td>240</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>130</td>
<td>10</td>
<td>10</td>
<td>380</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>120</td>
<td>50</td>
<td>240</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>130</td>
<td>10</td>
<td>10</td>
<td>380</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>125</td>
<td>52</td>
<td>52</td>
<td>10</td>
<td>21</td>
<td>2</td>
<td>135</td>
<td>9</td>
<td>396</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>326</td>
<td>85</td>
<td>256</td>
<td>143</td>
<td>205</td>
<td>94</td>
<td>451</td>
<td>865</td>
<td>288</td>
<td>567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.07</td>
<td>0.48</td>
<td>0.48</td>
<td>0.01</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1127</td>
<td>517</td>
<td>1553</td>
<td>213</td>
<td>1249</td>
<td>94</td>
<td>1767</td>
<td>1796</td>
<td>50</td>
<td>1767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>177</td>
<td>0</td>
<td>52</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>135</td>
<td>0</td>
<td>332</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1644</td>
<td>0</td>
<td>1553</td>
<td>1556</td>
<td>0</td>
<td>0</td>
<td>1767</td>
<td>0</td>
<td>1846</td>
<td>1778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>0.0</td>
<td>0.0</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
<td>5.0</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>4.1</td>
<td>0.0</td>
<td>1.3</td>
<td>4.1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
<td>5.0</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>0.71</td>
<td>1.00</td>
<td>0.30</td>
<td>0.06</td>
<td>1.00</td>
<td>0.03</td>
<td>1.00</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>411</td>
<td>0</td>
<td>256</td>
<td>363</td>
<td>0</td>
<td>0</td>
<td>451</td>
<td>0</td>
<td>889</td>
<td>565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.43</td>
<td>0.00</td>
<td>0.20</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0.00</td>
<td>0.37</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>1016</td>
<td>0</td>
<td>890</td>
<td>1021</td>
<td>0</td>
<td>0</td>
<td>928</td>
<td>0</td>
<td>2115</td>
<td>1154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCM Plateo Ratio</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>16.9</td>
<td>0.0</td>
<td>15.8</td>
<td>15.5</td>
<td>0.0</td>
<td>0.0</td>
<td>7.4</td>
<td>0.0</td>
<td>7.2</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>0.3</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>1.5</td>
<td>0.0</td>
<td>0.4</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>1.5</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Unsig. Movement Delay, s/veh

| LnGrp Delay(d),s/veh | 17.2 | 0.0  | 15.9 | 15.6 | 0.0  | 0.0  | 7.5  | 0.0  | 7.5  | 7.2  | 0.0  | 12.1 |
| LnGrp LOS             | B    | A    | B    | A    | A    | A    | A    | A    | A    | A    | B    |

### Approach Delay, s/veh

| Approach Vol, veh/h | 229 | 33  | 467 | 529 |
| Approach Delay, s/veh| 16.9| 15.6 | 7.5 | 12.1 |
| Approach LOS        | B    | B    | A    | B    |

### Timer - Assigned Phs

| Phs Duration (G+Y+Rc), s | 4.5 | 27.0 | 12.2 | 7.2 | 24.2 | 12.2 |
| Change Period (Y+Rc), s  | 4.0 | 6.0  | 5.0  | 4.0 | 6.0  | 5.0  |
| Max Green Setting (Gmax), s | 15.0| 50.0 | 25.0 | 15.0| 50.0 | 25.0 |
| Max Q Clear Time (g+c+11), s | 2.1| 7.0  | 6.1  | 3.8 | 12.5 | 6.1  |
| Green Ext Time (p_c), s   | 0.0 | 3.3  | 0.7  | 0.1 | 5.8  | 0.1  |

### Intersection Summary

- HCM 6th Ctrl Delay: 11.3
- HCM 6th LOS: B
### HCM 6th Signalized Intersection Summary

**Existing (2020) Conditions**

**6: Lono Ave & Kamehameha Ave**

#### PM Peak Hour

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lane Configurations</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Traffic Volume (veh/h)</strong></td>
<td>50</td>
<td>380</td>
<td>20</td>
<td>90</td>
<td>390</td>
<td>100</td>
<td>20</td>
<td>110</td>
<td>70</td>
<td>190</td>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td><strong>Future Volume (veh/h)</strong></td>
<td>50</td>
<td>380</td>
<td>20</td>
<td>90</td>
<td>390</td>
<td>100</td>
<td>20</td>
<td>110</td>
<td>70</td>
<td>190</td>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td><strong>Initial Q (Qb), veh</strong></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td><strong>Ped-Bike Adj (A_pbT)</strong></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td><strong>Parking Bus, Adj</strong></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td><strong>Traffic Volume (veh/h)</strong></td>
<td>50</td>
<td>380</td>
<td>20</td>
<td>90</td>
<td>390</td>
<td>100</td>
<td>20</td>
<td>110</td>
<td>70</td>
<td>190</td>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td><strong>Future Volume (veh/h)</strong></td>
<td>50</td>
<td>380</td>
<td>20</td>
<td>90</td>
<td>390</td>
<td>100</td>
<td>20</td>
<td>110</td>
<td>70</td>
<td>190</td>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td><strong>Peak Hour Factor</strong></td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td><strong>Cap, veh/h</strong></td>
<td>330</td>
<td>349</td>
<td>464</td>
<td>354</td>
<td>596</td>
<td>304</td>
<td>322</td>
<td>225</td>
<td>455</td>
<td>278</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td><strong>Arrive On Green</strong></td>
<td>0.03</td>
<td>0.30</td>
<td>0.30</td>
<td>0.06</td>
<td>0.32</td>
<td>0.32</td>
<td>0.02</td>
<td>0.12</td>
<td>0.00</td>
<td>0.13</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td><strong>Sat Flow, veh/h</strong></td>
<td>1767</td>
<td>1856</td>
<td>1567</td>
<td>1767</td>
<td>1856</td>
<td>1568</td>
<td>1767</td>
<td>1856</td>
<td>1572</td>
<td>1767</td>
<td>1197</td>
<td>556</td>
</tr>
<tr>
<td><strong>Grp Volume(v), veh/h</strong></td>
<td>52</td>
<td>396</td>
<td>94</td>
<td>406</td>
<td>34</td>
<td>21</td>
<td>115</td>
<td>0</td>
<td>198</td>
<td>125</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td><strong>Cycle Q Clear(g_c), s</strong></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.7</td>
<td>1.0</td>
<td>0.7</td>
<td>0.5</td>
<td>2.8</td>
<td>0.0</td>
<td>4.3</td>
<td>0.0</td>
</tr>
<tr>
<td><strong>Prop In Lane</strong></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td><strong>Lane Grp Cap(c), veh/h</strong></td>
<td>330</td>
<td>549</td>
<td>464</td>
<td>354</td>
<td>596</td>
<td>304</td>
<td>322</td>
<td>225</td>
<td>455</td>
<td>278</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td><strong>V/C Ratio(X)</strong></td>
<td>0.16</td>
<td>0.72</td>
<td>0.27</td>
<td>0.68</td>
<td>0.07</td>
<td>0.07</td>
<td>0.51</td>
<td>0.44</td>
<td>0.00</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Avail Cap(c_a), veh/h</strong></td>
<td>944</td>
<td>1755</td>
<td>1483</td>
<td>922</td>
<td>1755</td>
<td>1483</td>
<td>964</td>
<td>1170</td>
<td>900</td>
<td>0</td>
<td>1105</td>
<td></td>
</tr>
<tr>
<td><strong>HCM Platoon Ratio</strong></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td><strong>Upstream Filter(I)</strong></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td><strong>Uniform Delay (d), s/veh</strong></td>
<td>11.9</td>
<td>15.0</td>
<td>11.8</td>
<td>11.5</td>
<td>14.0</td>
<td>11.2</td>
<td>17.9</td>
<td>19.6</td>
<td>0.0</td>
<td>13.8</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td><strong>Inc Delay (d2), s/veh</strong></td>
<td>0.1</td>
<td>1.8</td>
<td>0.1</td>
<td>1.7</td>
<td>1.0</td>
<td>0.7</td>
<td>0.5</td>
<td>2.8</td>
<td>0.0</td>
<td>4.3</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td><strong>Initial Q Delay(d3), s/veh</strong></td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td><strong>%ile BackOfQ(50%),veh/ln</strong></td>
<td>3.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.4</td>
<td>0.2</td>
<td>0.2</td>
<td>1.2</td>
<td>0.0</td>
<td>1.5</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td><strong>Unsignalized Delay, s/veh</strong></td>
<td>11.9</td>
<td>16.8</td>
<td>11.9</td>
<td>11.6</td>
<td>15.4</td>
<td>11.3</td>
<td>18.0</td>
<td>21.4</td>
<td>0.0</td>
<td>14.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td><strong>Approach Vol, veh/h</strong></td>
<td>454</td>
<td>534</td>
<td>136</td>
<td>A</td>
<td>381</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Approach Delay, s/veh</strong></td>
<td>16.2</td>
<td>14.5</td>
<td>20.8</td>
<td>15.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Approach LOS</strong></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Timer - Assigned Phs</strong></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Phs Duration (G+Y+Rc), s</strong></td>
<td>19.1</td>
<td>5.2</td>
<td>16.1</td>
<td>6.0</td>
<td>20.3</td>
<td>10.5</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Change Period (Y+Rc), s</strong></td>
<td>4.5</td>
<td>5.0</td>
<td>5.0</td>
<td>4.5</td>
<td>5.0</td>
<td>4.5</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Max Green Setting (Gmax), s</strong></td>
<td>45.0</td>
<td>18.0</td>
<td>30.0</td>
<td>18.0</td>
<td>45.0</td>
<td>18.0</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Max Q Clear Time (g_c+I1), s</strong></td>
<td>11.1</td>
<td>2.5</td>
<td>6.3</td>
<td>3.0</td>
<td>11.0</td>
<td>6.3</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Green Ext Time (p_c), s</strong></td>
<td>0.1</td>
<td>2.7</td>
<td>0.0</td>
<td>1.1</td>
<td>0.0</td>
<td>2.9</td>
<td>0.2</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Intersection Summary**

- **HCM 6th Ctrl Delay**: 15.7
- **HCM 6th LOS**: B

**Notes**

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.
### HCM 6th Signalized Intersection Summary

#### Existing (2020) Conditions

**7: Wakea Ave & Kamehameha Ave**

**PM Peak Hour**

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>110</td>
<td>260</td>
<td>10</td>
<td>110</td>
<td>280</td>
<td>50</td>
<td>10</td>
<td>200</td>
<td>60</td>
<td>70</td>
<td>280</td>
<td>180</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>110</td>
<td>260</td>
<td>10</td>
<td>110</td>
<td>280</td>
<td>50</td>
<td>10</td>
<td>200</td>
<td>60</td>
<td>70</td>
<td>280</td>
<td>180</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>120</td>
<td>283</td>
<td>10</td>
<td>120</td>
<td>304</td>
<td>50</td>
<td>11</td>
<td>217</td>
<td>58</td>
<td>76</td>
<td>304</td>
<td>72</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.92</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>274</td>
<td>426</td>
<td>15</td>
<td>321</td>
<td>370</td>
<td>61</td>
<td>14</td>
<td>270</td>
<td>72</td>
<td>92</td>
<td>367</td>
<td>391</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.08</td>
<td>0.24</td>
<td>0.24</td>
<td>0.08</td>
<td>0.24</td>
<td>0.24</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>1781</td>
<td>63</td>
<td>1767</td>
<td>1554</td>
<td>256</td>
<td>69</td>
<td>1354</td>
<td>362</td>
<td>367</td>
<td>1470</td>
<td>1566</td>
</tr>
<tr>
<td>Gpr Volume(v), veh/h</td>
<td>120</td>
<td>0</td>
<td>293</td>
<td>120</td>
<td>0</td>
<td>354</td>
<td>286</td>
<td>0</td>
<td>0</td>
<td>380</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>Gpr Sat Flow(s),veh/h/ln</td>
<td>1767</td>
<td>0</td>
<td>1844</td>
<td>1767</td>
<td>0</td>
<td>1810</td>
<td>1785</td>
<td>0</td>
<td>0</td>
<td>1837</td>
<td>0</td>
<td>1566</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>4.2</td>
<td>0.0</td>
<td>12.1</td>
<td>4.2</td>
<td>0.0</td>
<td>15.7</td>
<td>12.9</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td>0.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>4.2</td>
<td>0.0</td>
<td>12.1</td>
<td>4.2</td>
<td>0.0</td>
<td>15.7</td>
<td>12.9</td>
<td>0.0</td>
<td>0.0</td>
<td>16.5</td>
<td>0.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>0.03</td>
<td>1.00</td>
<td>0.03</td>
<td>1.00</td>
<td>0.14</td>
<td>0.04</td>
<td>0.20</td>
<td>0.20</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Gpr Cap(c), veh/h</td>
<td>274</td>
<td>0</td>
<td>441</td>
<td>321</td>
<td>0</td>
<td>431</td>
<td>356</td>
<td>0</td>
<td>0</td>
<td>458</td>
<td>0</td>
<td>391</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.44</td>
<td>0.00</td>
<td>0.66</td>
<td>0.37</td>
<td>0.00</td>
<td>0.82</td>
<td>0.80</td>
<td>0.00</td>
<td>0.00</td>
<td>0.83</td>
<td>0.00</td>
<td>0.18</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>557</td>
<td>0</td>
<td>1616</td>
<td>439</td>
<td>0</td>
<td>1414</td>
<td>1078</td>
<td>0</td>
<td>0</td>
<td>848</td>
<td>0</td>
<td>723</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>22.9</td>
<td>0.0</td>
<td>29.1</td>
<td>22.3</td>
<td>0.0</td>
<td>30.5</td>
<td>32.2</td>
<td>0.0</td>
<td>0.0</td>
<td>30.0</td>
<td>0.0</td>
<td>24.9</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>1.1</td>
<td>0.0</td>
<td>1.7</td>
<td>0.7</td>
<td>0.0</td>
<td>4.0</td>
<td>4.3</td>
<td>0.0</td>
<td>0.0</td>
<td>3.9</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Initial Q Delay(d3), s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>1.8</td>
<td>0.0</td>
<td>5.4</td>
<td>1.8</td>
<td>0.0</td>
<td>7.1</td>
<td>5.8</td>
<td>0.0</td>
<td>0.0</td>
<td>7.6</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>24.0</td>
<td>0.0</td>
<td>30.8</td>
<td>23.1</td>
<td>0.0</td>
<td>34.4</td>
<td>36.5</td>
<td>0.0</td>
<td>0.0</td>
<td>33.9</td>
<td>0.0</td>
<td>25.2</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>413</td>
<td>474</td>
<td>286</td>
<td>452</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>28.8</td>
<td>31.6</td>
<td>36.5</td>
<td>32.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>21.8</td>
<td>11.4</td>
<td>25.2</td>
<td>26.1</td>
<td>11.4</td>
<td>25.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>51.0</td>
<td>12.0</td>
<td>74.0</td>
<td>39.0</td>
<td>20.0</td>
<td>66.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+I1), s</td>
<td>14.9</td>
<td>6.2</td>
<td>14.1</td>
<td>18.5</td>
<td>6.2</td>
<td>17.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>1.9</td>
<td>0.1</td>
<td>2.0</td>
<td>2.5</td>
<td>0.2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Intersection Summary**

HCM 6th Ctrl Delay 32.0
HCM 6th LOS C
### Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>40 730 80 30 1180 950 50 130 20 1080 150 90</td>
<td></td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>40 730 80 30 1180 950 50 130 20 1080 150 90</td>
<td></td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td>
<td></td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No  No  No  No  No  No  No  No</td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856 1856 1856 1856 1856 1856 1856 1856 1856 1856 1856 1856</td>
<td></td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>42 768 0 32 1242 0 53 137 0 1250 0 0</td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95</td>
<td></td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3 3 3 3 3 3 3 3 3 3 3 3</td>
<td></td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>54 1241 41 1214 168 176 1303 0</td>
<td></td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.03 0.35 0.00 0.01 0.11 0.00 0.09 0.09 0.00 0.37 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767 3526 1572 1767 3526 1572 1767 1856 1856 1856 1856 1856</td>
<td></td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>42 768 0 32 1242 0 53 137 0 1250 0 0</td>
<td></td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1767 1763 1572 1767 1763 1572 1767 1856 1856 1856 1856 1856</td>
<td></td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>3.1 23.5 0.0 2.4 44.8 0.0 3.6 9.4 0.0 44.9 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>3.1 23.5 0.0 2.4 44.8 0.0 3.6 9.4 0.0 44.9 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>54 1241 41 1214 168 176 1303 0</td>
<td></td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.78 0.62 0.79 1.02 0.32 0.78 0.96 0.00</td>
<td></td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>122 1241 122 1214 258 271 1332 0</td>
<td></td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00 1.00 1.00 0.33 0.33 0.33 0.33 0.10 0.10 0.10 0.10 0.10</td>
<td></td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00 1.00 0.00 0.72 0.72 0.00 1.00 1.00 0.00 1.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>62.6 34.9 0.0 64.2 57.6 0.0 54.9 57.5 0.0 40.1 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>8.7 2.3 0.0 8.8 27.9 0.0 1.3 8.9 0.0 15.7 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>1.5 10.5 0.0 1.2 26.0 0.0 1.7 4.9 0.0 21.9 0.0 0.0</td>
<td></td>
</tr>
</tbody>
</table>

### Intersection Summary

- **HCM 6th Ctrl Delay**: 63.0
- **HCM 6th LOS**: E

### Notes

- User approved pedestrian interval to be less than phase max green.
- User approved volume balancing among the lanes for turning movement.
- Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.
## HCM 6th Signalized Intersection Summary

### Future (2026) No Project Conditions

#### AM Peak Hour

**2: Lono Ave & Kaahumanu Ave**

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lane Configurations</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Traffic Volume (veh/h)</strong></td>
<td>30 1600 150</td>
<td>40 1890</td>
<td>30 230</td>
<td>30 50</td>
<td>40 30</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Future Volume (veh/h)</strong></td>
<td>30 1600 150</td>
<td>40 1890</td>
<td>30 230</td>
<td>30 50</td>
<td>40 30</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Initial Q (Qb), veh</strong></td>
<td>0</td>
</tr>
<tr>
<td><strong>Ped-Bike Adj (A_pbT)</strong></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Parking Bus, Adj</strong></td>
<td>1.00</td>
</tr>
<tr>
<td><strong>Work Zone On Approach</strong></td>
<td>No</td>
</tr>
<tr>
<td><strong>Adj Sat Flow, veh/h/ln</strong></td>
<td>1856</td>
</tr>
<tr>
<td><strong>Adj Flow Rate, veh/h</strong></td>
<td>32 1702</td>
<td>151</td>
<td>43</td>
<td>2011</td>
<td>31</td>
<td>245</td>
<td>32</td>
<td>12</td>
<td>43</td>
<td>32</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td><strong>Peak Hour Factor</strong></td>
<td>0.94</td>
</tr>
<tr>
<td><strong>Percent Heavy Veh, %</strong></td>
<td>33</td>
</tr>
<tr>
<td><strong>Cap, veh/h</strong></td>
<td>41 2950</td>
<td>261</td>
<td>55</td>
<td>3242</td>
<td>50</td>
<td>242</td>
<td>25</td>
<td>339</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>Arrive On Green</strong></td>
<td>0.02</td>
<td>0.42</td>
<td>0.42</td>
<td>0.03</td>
<td>0.63</td>
<td>0.63</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td><strong>Sat Flow, veh/h</strong></td>
<td>1767</td>
<td>4738</td>
<td>419</td>
<td>1767</td>
<td>5139</td>
<td>79</td>
<td>852</td>
<td>111</td>
<td>1522</td>
<td>0</td>
<td>110</td>
<td>18</td>
</tr>
<tr>
<td><strong>Grp Volume(v), veh/h</strong></td>
<td>32 1702</td>
<td>151</td>
<td>43</td>
<td>2011</td>
<td>31</td>
<td>245</td>
<td>32</td>
<td>12</td>
<td>43</td>
<td>32</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td><strong>Grp Flow Rate(v), veh/h</strong></td>
<td>32 1702</td>
<td>151</td>
<td>43</td>
<td>2011</td>
<td>31</td>
<td>245</td>
<td>32</td>
<td>12</td>
<td>43</td>
<td>32</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td><strong>Percent Heavy Veh, %</strong></td>
<td>33</td>
</tr>
<tr>
<td><strong>Cap, veh/h</strong></td>
<td>41 2950</td>
<td>261</td>
<td>55</td>
<td>3242</td>
<td>50</td>
<td>242</td>
<td>25</td>
<td>339</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td><strong>Prop In Lane</strong></td>
<td>0.02</td>
<td>0.42</td>
<td>0.42</td>
<td>0.03</td>
<td>0.63</td>
<td>0.63</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td><strong>Lane Grp Cap(c), veh/h</strong></td>
<td>1767</td>
<td>4738</td>
<td>419</td>
<td>1767</td>
<td>5139</td>
<td>79</td>
<td>852</td>
<td>111</td>
<td>1522</td>
<td>0</td>
<td>110</td>
<td>18</td>
</tr>
<tr>
<td><strong>Upstream Filter(I)</strong></td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td><strong>Uniform Delay (d), s/veh</strong></td>
<td>63.7</td>
<td>24.7</td>
<td>24.8</td>
<td>62.5</td>
<td>14.5</td>
<td>14.6</td>
<td>53.3</td>
<td>0.0</td>
<td>39.5</td>
<td>53.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td><strong>Incr Delay (d2), s/veh</strong></td>
<td>5.7</td>
<td>0.5</td>
<td>1.0</td>
<td>8.5</td>
<td>1.4</td>
<td>2.5</td>
<td>64.9</td>
<td>0.0</td>
<td>0.0</td>
<td>188.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td><strong>%ile BackOfQ(50%),veh/ln</strong></td>
<td>15.4</td>
<td>16.5</td>
<td>1.5</td>
<td>11.7</td>
<td>13.2</td>
<td>13.8</td>
<td>0.0</td>
<td>0.3</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

**Intersection Summary**

- **HCM 6th Ctrl Delay**: 32.2
- **HCM 6th LOS**: C

**Notes**

User approved pedestrian interval to be less than phase max green.
### Intersection

| Int Delay, s/veh | 6.1 |

#### Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
</table>

#### Lane Configurations

<table>
<thead>
<tr>
<th>Traffic Vol, veh/h</th>
<th>20</th>
<th>50</th>
<th>50</th>
<th>20</th>
<th>40</th>
<th>50</th>
<th>50</th>
<th>190</th>
<th>20</th>
<th>40</th>
<th>210</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Vol, veh/h</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>20</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>190</td>
<td>20</td>
<td>40</td>
<td>210</td>
<td>30</td>
</tr>
</tbody>
</table>

#### Conflicting Peds, #/hr

| Conflicting Peds, #/hr | 14 | 0 | 13 | 10 | 0 | 11 | 13 | 0 | 10 | 11 | 0 | 14 |

#### Sign Control

<table>
<thead>
<tr>
<th>RT Channelized</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Length</td>
<td>0</td>
<td>130</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>210</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Veh in Median Storage, #</td>
<td>0</td>
<td>-</td>
<td>13</td>
<td>0</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>210</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Grade, %</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>87</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>3</td>
</tr>
</tbody>
</table>

#### Mvmt Flow

| Mvmt Flow | 23 | 57 | 57 | 23 | 46 | 57 | 57 | 218 | 23 | 46 | 241 | 34 |

#### Major/Minor

<table>
<thead>
<tr>
<th>Minor/Minor</th>
<th>Minor2</th>
<th>Minor1</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting Flow All</td>
<td>773</td>
<td>730</td>
<td>165</td>
<td>609</td>
</tr>
<tr>
<td>Stage 1</td>
<td>364</td>
<td>364</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>409</td>
<td>366</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>6.545</td>
<td>5.545</td>
<td>-</td>
<td>6.145</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>6.145</td>
<td>5.545</td>
<td>-</td>
<td>6.545</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.5285</td>
<td>4.0285</td>
<td>3.3285</td>
<td>3.5285</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>301</td>
<td>347</td>
<td>848</td>
<td>391</td>
</tr>
<tr>
<td>Stage 1</td>
<td>626</td>
<td>621</td>
<td>-</td>
<td>659</td>
</tr>
<tr>
<td>Stage 2</td>
<td>616</td>
<td>620</td>
<td>-</td>
<td>726</td>
</tr>
<tr>
<td>Platoon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>226</td>
<td>312</td>
<td>826</td>
<td>287</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>226</td>
<td>312</td>
<td>-</td>
<td>287</td>
</tr>
<tr>
<td>Stage 1</td>
<td>590</td>
<td>591</td>
<td>-</td>
<td>622</td>
</tr>
<tr>
<td>Stage 2</td>
<td>495</td>
<td>585</td>
<td>-</td>
<td>581</td>
</tr>
</tbody>
</table>

#### Approach

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>17.4</td>
<td>17.4</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th>Minor Lane/Major Mvmt</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>EBLn1</th>
<th>EBLn2WBLn1</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (veh/h)</td>
<td>1248</td>
<td>-</td>
<td>-</td>
<td>281</td>
<td>826</td>
<td>415</td>
<td>1291</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.046</td>
<td>-</td>
<td>-</td>
<td>0.286</td>
<td>0.07</td>
<td>0.305</td>
<td>0.036</td>
<td>-</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>22.9</td>
<td>9.7</td>
<td>17.4</td>
<td>7.9</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>0.2</td>
<td>1.3</td>
<td>0.1</td>
<td>-</td>
</tr>
</tbody>
</table>
### Intersection

**Int Delay, s/veh** 4.4

### Movement

<table>
<thead>
<tr>
<th>Traffic Vol, veh/h</th>
<th>Future Vol, veh/h</th>
<th>Conflicting Peds, #/hr</th>
<th>Sign Control</th>
<th>RT Channelized</th>
<th>Storage Length</th>
<th>Veh in Median Storage, #</th>
<th>Grade, %</th>
<th>Peak Hour Factor</th>
<th>Heavy Vehicles, %</th>
<th>Mvmt Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBL</td>
<td>EBT</td>
<td>EBR</td>
<td>WBL</td>
<td>WBT</td>
<td>NBL</td>
<td>NBT</td>
<td>NBR</td>
<td>SBL</td>
<td>SBT</td>
<td>SBR</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>310</td>
<td>40</td>
<td>30</td>
<td>250</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>310</td>
<td>40</td>
<td>30</td>
<td>250</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>12</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>12</td>
<td>0</td>
<td>9</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
</tbody>
</table>

### Lane Configurations

<table>
<thead>
<tr>
<th>RT Control Delay, s</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB</td>
<td>C</td>
</tr>
<tr>
<td>NB</td>
<td>C</td>
</tr>
<tr>
<td>SB</td>
<td>C</td>
</tr>
</tbody>
</table>

### Capacity (veh/h)

<table>
<thead>
<tr>
<th>Minor Lane/Major Mvmt</th>
<th>Capacity (veh/h)</th>
<th>HCM Lane V/C Ratio</th>
<th>HCM Control Delay (s)</th>
<th>HCM Lane LOS</th>
<th>HCM 95th %tile Q(veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBL</td>
<td>1206</td>
<td>0.037</td>
<td>8.1</td>
<td>A</td>
<td>0.1</td>
</tr>
<tr>
<td>NBT</td>
<td>379</td>
<td>0.322</td>
<td>19</td>
<td>C</td>
<td>1.4</td>
</tr>
<tr>
<td>NBR</td>
<td>298</td>
<td>0.224</td>
<td>20.5</td>
<td>C</td>
<td>0.8</td>
</tr>
<tr>
<td>SBL</td>
<td>1146</td>
<td>0.029</td>
<td>8.2</td>
<td>A</td>
<td>0.1</td>
</tr>
<tr>
<td>SBT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movement</td>
<td>EBL</td>
<td>EBT</td>
<td>EBR</td>
<td>WBL</td>
<td>WBT</td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>60</td>
<td>40</td>
<td>170</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>60</td>
<td>40</td>
<td>170</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>63</td>
<td>42</td>
<td>21</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>258</td>
<td>122</td>
<td>230</td>
<td>175</td>
<td>171</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>764</td>
<td>821</td>
<td>1552</td>
<td>356</td>
<td>1150</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>105</td>
<td>0</td>
<td>21</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1585</td>
<td>0</td>
<td>1552</td>
<td>1676</td>
<td>0</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>0.9</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>2.2</td>
<td>0.0</td>
<td>0.5</td>
<td>1.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>0.60</td>
<td>1.00</td>
<td>0.36</td>
<td>0.10</td>
<td>1.00</td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>379</td>
<td>0</td>
<td>230</td>
<td>371</td>
<td>0</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.28</td>
<td>0.00</td>
<td>0.09</td>
<td>0.16</td>
<td>0.00</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>1101</td>
<td>0</td>
<td>971</td>
<td>1131</td>
<td>0</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>15.4</td>
<td>0.00</td>
<td>14.7</td>
<td>15.0</td>
<td>0.00</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>0.1</td>
<td>0.00</td>
<td>0.1</td>
<td>0.1</td>
<td>0.00</td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>0.8</td>
<td>0.00</td>
<td>0.1</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td>15.5</td>
<td>0.00</td>
<td>14.7</td>
<td>15.0</td>
<td>0.00</td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>15.4</td>
<td>0.00</td>
<td>14.7</td>
<td>15.0</td>
<td>0.00</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>126</td>
<td>59</td>
<td>683</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>15.4</td>
<td>15.0</td>
<td>8.4</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>4.8</td>
<td>24.2</td>
<td>10.9</td>
<td>7.8</td>
<td>21.2</td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>4.0</td>
<td>6.0</td>
<td>5.0</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>15.0</td>
<td>50.0</td>
<td>25.0</td>
<td>15.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+11), s</td>
<td>2.3</td>
<td>10.2</td>
<td>4.2</td>
<td>4.2</td>
<td>7.0</td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>0.0</td>
<td>5.5</td>
<td>0.4</td>
<td>0.2</td>
<td>3.0</td>
</tr>
</tbody>
</table>

**Intersection Summary**

- **HCM 6th Ctrl Delay**: 9.8
- **HCM 6th LOS**: A
### Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>70</td>
<td>390</td>
<td>20</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>30</td>
<td>260</td>
<td>120</td>
<td>120</td>
<td>160</td>
<td>50</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>70</td>
<td>390</td>
<td>20</td>
<td>40</td>
<td>200</td>
<td>70</td>
<td>30</td>
<td>260</td>
<td>120</td>
<td>120</td>
<td>160</td>
<td>50</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj (A_pbT)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>83</td>
<td>464</td>
<td>9</td>
<td>48</td>
<td>238</td>
<td>25</td>
<td>36</td>
<td>310</td>
<td>0</td>
<td>143</td>
<td>190</td>
<td>53</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.84</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>434</td>
<td>599</td>
<td>505</td>
<td>265</td>
<td>560</td>
<td>472</td>
<td>370</td>
<td>427</td>
<td>358</td>
<td>409</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.05</td>
<td>0.32</td>
<td>0.32</td>
<td>0.03</td>
<td>0.30</td>
<td>0.30</td>
<td>0.02</td>
<td>0.23</td>
<td>0.00</td>
<td>0.09</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>1856</td>
<td>1655</td>
<td>1577</td>
<td>1767</td>
<td>1656</td>
<td>1577</td>
<td>1767</td>
<td>1572</td>
<td>1767</td>
<td>1394</td>
<td>389</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>83</td>
<td>464</td>
<td>9</td>
<td>48</td>
<td>238</td>
<td>25</td>
<td>36</td>
<td>310</td>
<td>0</td>
<td>143</td>
<td>190</td>
<td>53</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>1.8</td>
<td>12.9</td>
<td>0.2</td>
<td>1.1</td>
<td>5.9</td>
<td>0.6</td>
<td>0.9</td>
<td>8.8</td>
<td>0.0</td>
<td>3.3</td>
<td>0.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>1.8</td>
<td>12.9</td>
<td>0.2</td>
<td>1.1</td>
<td>5.9</td>
<td>0.6</td>
<td>0.9</td>
<td>8.8</td>
<td>0.0</td>
<td>3.3</td>
<td>0.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>434</td>
<td>599</td>
<td>505</td>
<td>265</td>
<td>560</td>
<td>472</td>
<td>370</td>
<td>427</td>
<td>358</td>
<td>409</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.19</td>
<td>0.77</td>
<td>0.02</td>
<td>0.18</td>
<td>0.43</td>
<td>0.05</td>
<td>0.10</td>
<td>0.73</td>
<td>0.40</td>
<td>0.00</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>902</td>
<td>1460</td>
<td>1232</td>
<td>771</td>
<td>1460</td>
<td>1231</td>
<td>886</td>
<td>973</td>
<td>762</td>
<td>0</td>
<td>935</td>
<td></td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>12.9</td>
<td>17.5</td>
<td>13.2</td>
<td>14.4</td>
<td>16.0</td>
<td>14.2</td>
<td>16.4</td>
<td>20.4</td>
<td>0.0</td>
<td>14.7</td>
<td>0.0</td>
<td>16.5</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>0.1</td>
<td>2.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.0</td>
<td>2.4</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Initial Q Delay(d3), s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%), veh/h</td>
<td>7</td>
<td>5.2</td>
<td>0.1</td>
<td>0.4</td>
<td>2.3</td>
<td>0.2</td>
<td>0.3</td>
<td>3.8</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d), s/veh</td>
<td>13.0</td>
<td>19.7</td>
<td>13.2</td>
<td>14.6</td>
<td>16.5</td>
<td>14.2</td>
<td>16.4</td>
<td>22.7</td>
<td>0.0</td>
<td>15.0</td>
<td>0.0</td>
<td>17.2</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>556</td>
<td>311</td>
<td>346</td>
<td>A</td>
<td>386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>18.6</td>
<td>16.0</td>
<td>22.1</td>
<td>16.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>6.2</td>
<td>23.5</td>
<td>5.8</td>
<td>21.8</td>
<td>7.4</td>
<td>22.3</td>
<td>9.4</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>4.5</td>
<td>5.0</td>
<td>4.5</td>
<td>5.0</td>
<td>4.5</td>
<td>5.0</td>
<td>4.5</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>45.0</td>
<td>18.0</td>
<td>30.0</td>
<td>18.0</td>
<td>45.0</td>
<td>18.0</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+I1), s</td>
<td>14.9</td>
<td>2.9</td>
<td>8.4</td>
<td>3.8</td>
<td>7.9</td>
<td>5.3</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>1.5</td>
<td>0.1</td>
<td>1.6</td>
<td>0.1</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Intersection Summary

| HCM 6th Ctrl Delay | 18.3 |
| HCM 6th LOS | B |

### Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.
### HCM 6th Signalized Intersection Summary

#### Future (2026) No Project Conditions

**AM Peak Hour**

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Lane Configurations</strong></td>
<td></td>
</tr>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>140</td>
<td>410</td>
<td>20</td>
<td>70</td>
<td>330</td>
<td>50</td>
<td>30</td>
<td>320</td>
<td>140</td>
<td>60</td>
<td>160</td>
<td>100</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>140</td>
<td>410</td>
<td>20</td>
<td>70</td>
<td>330</td>
<td>50</td>
<td>30</td>
<td>320</td>
<td>140</td>
<td>60</td>
<td>160</td>
<td>100</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>152</td>
<td>446</td>
<td>21</td>
<td>76</td>
<td>359</td>
<td>51</td>
<td>33</td>
<td>348</td>
<td>152</td>
<td>65</td>
<td>174</td>
<td>17</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.92</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>246</td>
<td>511</td>
<td>24</td>
<td>24</td>
<td>414</td>
<td>58</td>
<td>36</td>
<td>385</td>
<td>159</td>
<td>78</td>
<td>210</td>
<td>242</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.08</td>
<td>0.29</td>
<td>0.29</td>
<td>0.05</td>
<td>0.26</td>
<td>0.26</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>1758</td>
<td>83</td>
<td>1767</td>
<td>1589</td>
<td>226</td>
<td>110</td>
<td>1165</td>
<td>482</td>
<td>498</td>
<td>1333</td>
<td>1538</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>152</td>
<td>0</td>
<td>467</td>
<td>76</td>
<td>0</td>
<td>410</td>
<td>525</td>
<td>0</td>
<td>239</td>
<td>0</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1767</td>
<td>0</td>
<td>1841</td>
<td>1767</td>
<td>0</td>
<td>1815</td>
<td>1575</td>
<td>0</td>
<td>1831</td>
<td>0</td>
<td>1538</td>
<td></td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>7.1</td>
<td>0.0</td>
<td>28.0</td>
<td>3.6</td>
<td>0.0</td>
<td>25.1</td>
<td>33.1</td>
<td>0.0</td>
<td>14.7</td>
<td>0.0</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>7.1</td>
<td>0.0</td>
<td>28.0</td>
<td>3.6</td>
<td>0.0</td>
<td>25.1</td>
<td>33.1</td>
<td>0.0</td>
<td>14.7</td>
<td>0.0</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>0.04</td>
<td>1.00</td>
<td>0.12</td>
<td>0.06</td>
<td>0.27</td>
<td>0.27</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>246</td>
<td>0</td>
<td>535</td>
<td>194</td>
<td>0</td>
<td>469</td>
<td>580</td>
<td>0</td>
<td>289</td>
<td>0</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.62</td>
<td>0.00</td>
<td>0.87</td>
<td>0.39</td>
<td>0.00</td>
<td>0.87</td>
<td>0.90</td>
<td>0.00</td>
<td>0.83</td>
<td>0.00</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>408</td>
<td>0</td>
<td>1175</td>
<td>290</td>
<td>0</td>
<td>1033</td>
<td>773</td>
<td>0</td>
<td>616</td>
<td>0</td>
<td>517</td>
<td></td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>30.5</td>
<td>0.0</td>
<td>39.1</td>
<td>31.8</td>
<td>0.0</td>
<td>41.2</td>
<td>37.1</td>
<td>0.0</td>
<td>47.3</td>
<td>0.0</td>
<td>41.6</td>
<td></td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>2.5</td>
<td>0.0</td>
<td>4.6</td>
<td>1.3</td>
<td>0.0</td>
<td>5.3</td>
<td>11.5</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Initial Q Delay(d3), s/veh</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>3.2</td>
<td>0.0</td>
<td>13.2</td>
<td>1.6</td>
<td>0.0</td>
<td>11.8</td>
<td>15.8</td>
<td>0.0</td>
<td>7.1</td>
<td>0.0</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>33.1</td>
<td>0</td>
<td>43.7</td>
<td>33.1</td>
<td>0.0</td>
<td>46.4</td>
<td>48.6</td>
<td>0.0</td>
<td>53.4</td>
<td>0</td>
<td>41.7</td>
<td></td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>619</td>
<td>486</td>
<td>525</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>41.1</td>
<td>44.4</td>
<td>48.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Intersection Summary**

- HCM 6th Ctrl Delay: 45.6
- HCM 6th LOS: D
## HCM 6th Signalized Intersection Summary

**Future (2026) No Project Conditions**

### PM Peak Hour

### 1: Kane St/Kahului Beach Rd & Kaahumanu Ave

| Movement       | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| **Traffic Volume (veh/h)** | 70  | 1130 | 120 | 60  | 780 | 1200| 70  | 190 | 100 | 1000| 150 | 140 |     |
| **Future Volume (veh/h)**  | 70  | 1130 | 120 | 60  | 780 | 1200| 70  | 190 | 100 | 1000| 150 | 140 |     |
| **Initial Q (Qb), veh**    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |     |
| **Ped-Bike Adj(A_pbT)**    | 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00|     |
| **Parking Bus, Adj**       | 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00|     |
| **Work Zone On Approach**  | No  | No  | No  | No  |     |     |     |     |     |     |     |     |     |
| **Adj Sat Flow, veh/h/ln** | 1856| 1856| 1856| 1856| 1856| 1856| 1856| 1856| 1856| 1856| 1856| 1856| 1856|
| **Adj Flow Rate, veh/h**   | 72  | 1165| 0   | 62  | 804 | 0   | 72  | 196 | 0   | 1142| 0   | 0   | 1.00|
| **Peak Hour Factor**       | 0.97| 0.97| 0.97| 0.97| 0.97| 0.97| 0.97| 0.97| 0.97| 0.97| 0.97| 0.97| 0.97|
| **Percent Heavy Veh, %**   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   | 3   |     |
| **Cap, veh/h**             | 91  | 1330| 80  | 1307| 170 | 179 | 1152| 0   |     |     |     |     |     |
| **Arrive On Green**        | 0.05| 0.38| 0.01| 0.12| 0.00| 0.10| 0.10| 0.00| 0.33| 0.00| 0.00|     |     |
| **Sat Flow, veh/h**        | 1767| 3526| 1572| 1767| 1767| 1572| 1767| 1856| 1572| 1767| 1572| 1572| 1572|
| **Grp Volume(v), veh/h**   | 72  | 1165| 0   | 62  | 804 | 0   | 72  | 196 | 0   | 1142| 0   | 0   | 1.00|
| **Grp Sat Flow(s),veh/h/ln**| 1767| 1763| 1572| 1767| 1763| 1572| 1767| 1856| 1572| 1767| 1572| 1572| 1572|
| **Q Serve(g_s), s**        | 5.4 | 41.5| 0.0  | 4.7 | 29.2| 0.0 | 5.2 | 13.0| 0.0 | 43.4 |0.0 |0.0 |0.0 |
| **Cycle Q Clear(g_c), s**  | 5.4 | 41.5| 0.0  | 4.7 | 29.2| 0.0 | 5.2 | 13.0| 0.0 | 43.4 |0.0 |0.0 |0.0 |
| **Prop In Lane**            | 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00|     |
| **Lane Grp Cap(c), veh/h**  | 91  | 1330| 80  | 1307| 170 | 179 | 1152| 0   |     |     |     |     |     |
| **V/C Ratio(X)**           | 0.79| 0.88| 0.78 |0.62 |0.42 |1.10 |0.99 |0.00 |     |     |     |     |     |
| **Avail Cap(c_a), veh/h**   | 157 | 1330| 157 | 1307| 170 | 179 | 1152| 0   |     |     |     |     |     |
| **HCM Platoon Ratio**       | 1.00| 1.00| 1.00| 0.33| 0.33| 0.33| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00|
| **Upstream Filter(l)**      | 1.00| 1.00| 0.00| 0.74| 0.74| 0.00| 1.00| 1.00| 0.00| 1.00| 0.00| 0.00| 0.00|
| **Uniform Delay (d), s/veh**| 63.3| 39.1| 0.0  |65.8 |50.1 |0.0 |57.5 |61.0 |0.0 |45.3 |0.0 |0.0 |0.0 |
| **Incr Delay (d2), s/veh**  | 5.6 | 8.3 | 0.0  |4.5  |1.6  |0.0 |2.0  |95.6 |0.0 |24.3 |0.0 |0.0 |0.0 |
| **Initial Q Delay(d3),s/veh**| 0.0 | 0.0 | 0.0  |0.0  |0.0  |0.0 |0.0  |0.0  |0.0 |0.0  |0.0 |0.0 |0.0 |
| **%ile BackOfQ(50%),veh/ln**| 2.6 | 19.3| 0.0  |2.3  |14.2 |0.0 |2.4  |10.9 |0.0 |22.6 |0.0 |0.0 |0.0 |
| **Unsig. Movement Delay, s/veh**|     |     |     |     |     |     |     |     |     |     |     |     |     |
| **LnGrp Delay(d),s/veh**    | 69.0| 47.4| 0.0  |70.4 |51.7 |0.0 |59.5 |156.6|0.0 |69.7 |0.0 |0.0 |0.0 |
| **LnGrp LOS**               | E   | D   | E    | D   | E   | F  | E   | A   |     |     |     |     |     |
| **Approach Vol, veh/h**     | 1237| A   | 866  | A   | 268 | A  | 1142| A   |     |     |     |     |     |
| **Approach Delay, s/veh**   | 48.7| 53.1| 130.5|     |     |     |     |     |     |     |     |     |     |
| **Approach LOS**            | D   | D   | F    | E   |     |     |     |     |     |     |     |     |     |
| **Timer - Assigned Phs**    | 1   | 2   | 4    | 5   | 6   | 8  |     |     |     |     |     |     |     |
| **Phs Duration (G+Y+Rc), s**| 11.1| 56.9| 18.0 |12.0 |56.0 |49.0|     |     |     |     |     |     |     |
| **Change Period (Y+Rc), s** | 5.0 | 6.0 | 5.0  |5.0  |6.0  |5.0 |     |     |     |     |     |     |     |
| **Max Green Setting (Gmax), s**| 12.0| 45.0| 13.0 |12.0 |45.0 |44.0|     |     |     |     |     |     |     |
| **Max Q Clear Time (g_c+11), s**| 6.7 | 43.5| 15.0 |7.4  |31.2 |45.4|     |     |     |     |     |     |     |
| **Green Ext Time (p_c), s** | 0.0 | 1.3 | 0.0  |0.0  |7.4  |0.0 |     |     |     |     |     |     |     |

### Intersection Summary

- **HCM 6th Ctrl Delay**: 62.8
- **HCM 6th LOS**: E

### Notes

- User approved pedestrian interval to be less than phase max green.
- User approved volume balancing among the lanes for turning movement.
- Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.
## HCM 6th Signalized Intersection Summary

### 2: Lono Ave & Kaahumanu Ave

**Future (2026) No Project Conditions**

**PM Peak Hour**

### Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>20</td>
<td>1830</td>
<td>150</td>
<td>70</td>
<td>1970</td>
<td>40</td>
<td>210</td>
<td>30</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>20</td>
<td>1830</td>
<td>150</td>
<td>70</td>
<td>1970</td>
<td>40</td>
<td>210</td>
<td>30</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>20</td>
<td>1867</td>
<td>146</td>
<td>71</td>
<td>2010</td>
<td>40</td>
<td>214</td>
<td>31</td>
<td>11</td>
<td>41</td>
<td>41</td>
<td>14</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.98</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td></td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>24</td>
<td>2950</td>
<td>230</td>
<td>90</td>
<td>3338</td>
<td>66</td>
<td>211</td>
<td>23</td>
<td>334</td>
<td>38</td>
<td>31</td>
<td>5</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.03</td>
<td>1.00</td>
<td>1.00</td>
<td>0.05</td>
<td>0.65</td>
<td>0.65</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>4790</td>
<td>373</td>
<td>1767</td>
<td>1689</td>
<td>1837</td>
<td>860</td>
<td>1557</td>
<td>167</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>20</td>
<td>1314</td>
<td>699</td>
<td>71</td>
<td>1327</td>
<td>723</td>
<td>245</td>
<td>0</td>
<td>11</td>
<td>96</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1767</td>
<td>1869</td>
<td>1767</td>
<td>1689</td>
<td>1837</td>
<td>860</td>
<td></td>
<td>1557</td>
<td>167</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>5.4</td>
<td>30.3</td>
<td>30.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>5.4</td>
<td>30.3</td>
<td>30.4</td>
<td>29.0</td>
<td>0.0</td>
<td>0.8</td>
<td>29.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>0.21</td>
<td>1.00</td>
<td>0.06</td>
<td>0.87</td>
<td>1.00</td>
<td>0.43</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>24</td>
<td>2080</td>
<td>1100</td>
<td>90</td>
<td>2205</td>
<td>1199</td>
<td>235</td>
<td>0</td>
<td>334</td>
<td>74</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.82</td>
<td>0.63</td>
<td>0.64</td>
<td>0.79</td>
<td>0.60</td>
<td>0.60</td>
<td>1.04</td>
<td>0.0</td>
<td>0.0</td>
<td>1.30</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>144</td>
<td>2080</td>
<td>1100</td>
<td>144</td>
<td>2205</td>
<td>1199</td>
<td>235</td>
<td>0</td>
<td>334</td>
<td>74</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>2.00</td>
</tr>
<tr>
<td>Upstream Filter(l)</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>65.5</td>
<td>0.0</td>
<td>0.0</td>
<td>63.4</td>
<td>13.4</td>
<td>13.4</td>
<td>56.1</td>
<td>0.0</td>
<td>41.9</td>
<td>54.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>6.6</td>
<td>0.4</td>
<td>0.7</td>
<td>5.7</td>
<td>1.2</td>
<td>22.7</td>
<td>0.0</td>
<td>0.0</td>
<td>204.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>0.7</td>
<td>0.1</td>
<td>0.2</td>
<td>2.6</td>
<td>11.5</td>
<td>12.8</td>
<td>12.8</td>
<td>0.0</td>
<td>0.3</td>
<td>6.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>72.0</td>
<td>0.4</td>
<td>0.7</td>
<td>69.0</td>
<td>14.6</td>
<td>15.7</td>
<td>126.6</td>
<td>0.0</td>
<td>42.0</td>
<td>258.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>E</td>
<td>A</td>
<td>A</td>
<td>E</td>
<td>B</td>
<td>B</td>
<td>F</td>
<td>A</td>
<td>D</td>
<td>F</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>2033</td>
<td>2121</td>
<td>256</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>1.2</td>
<td>16.8</td>
<td>123.2</td>
<td>258.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>A</td>
<td>B</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>1.9</td>
<td>89.1</td>
<td>34.0</td>
<td>6.9</td>
<td>94.1</td>
<td>34.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>5.0</td>
<td>6.0</td>
<td>5.0</td>
<td>5.0</td>
<td>6.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>79.0</td>
<td>29.0</td>
<td>11.0</td>
<td>79.0</td>
<td>29.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+I1), s</td>
<td>2.0</td>
<td>31.0</td>
<td>3.5</td>
<td>32.4</td>
<td>31.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>0.0</td>
<td>57.9</td>
<td>0.0</td>
<td>0.0</td>
<td>39.2</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Intersection Summary

- HCM 6th Ctrl Delay: 21.0
- HCM 6th LOS: C

### Notes

User approved pedestrian interval to be less than phase max green.
### Intersection

**Int Delay, s/veh** 50.9

### Movement

<table>
<thead>
<tr>
<th>Traffic Vol, veh/h</th>
<th>Future Vol, veh/h</th>
<th>Conflicting Peds, #/hr</th>
<th>Sign Control</th>
<th>Storage Length</th>
<th>Veh in Median Storage, #</th>
<th>Grade, %</th>
<th>Peak Hour Factor</th>
<th>Heavy Vehicles, %</th>
<th>Mvmt Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBL</td>
<td>90</td>
<td>0</td>
<td>Stop</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>33</td>
<td>93</td>
</tr>
<tr>
<td>EBT</td>
<td>120</td>
<td>0</td>
<td>Stop</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>EBR</td>
<td>110</td>
<td>16</td>
<td>Stop</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>WBL</td>
<td>30</td>
<td>16</td>
<td>Stop</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>WBT</td>
<td>60</td>
<td>0</td>
<td>Stop</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>WBR</td>
<td>50</td>
<td>0</td>
<td>Stop</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>NBL</td>
<td>110</td>
<td>16</td>
<td>Stop</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>NBT</td>
<td>170</td>
<td>0</td>
<td>Stop</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>NBR</td>
<td>40</td>
<td>0</td>
<td>Stop</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>SBL</td>
<td>90</td>
<td>16</td>
<td>Free</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>SBT</td>
<td>260</td>
<td>0</td>
<td>Free</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>SBR</td>
<td>90</td>
<td>16</td>
<td>Free</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

### Major/Minor

<table>
<thead>
<tr>
<th>Conflicting Flow All</th>
<th>Minor2</th>
<th>Minor1</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>517</td>
<td>517</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>495</td>
<td>454</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

**Critical Hdyw**


**Critical Hdyw Stg 1**

- 6.545 5.545 - 6.145 5.545 - - - - -

**Critical Hdyw Stg 2**

- 6.145 5.545 - 6.545 5.545 - - - - -

**Follow-up Hdyw**


**Pot Cap-1 Maneuver**

- 204 251 792 274 242 812 1173 - - -

**Platoon blocked, %**

- - - - -

**Mov Cap-1 Maneuver**

- 124 205 770 105 197 790 1155 - - 1317

**Mov Cap-2 Maneuver**

- 124 205 - 105 197 - - - - -

### Approach

<table>
<thead>
<tr>
<th>HCM Control Delay, s</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>166.6</td>
<td>50.9</td>
<td>2.9</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

**HCM LOS**

- F

### Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th>Capacity (veh/h)</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>WBLn1</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1155</td>
<td>-</td>
<td>-</td>
<td>160</td>
<td>770</td>
<td>214</td>
<td>1317</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

**HCM Lane V/C Ratio**

- 0.098 - 1.353 0.147 0.674 0.07 -

**HCM Control Delay (s)**

- 8.5 - 248.4 10.5 50.9 7.9 -

**HCM Lane LOS**

- A - F B F A -

**HCM 95th %tile Q(veh)**

- 0.3 - 13.2 0.5 4.2 0.2 -
### Intersection

| Int Delay, s/veh | 8.4 |

### Movement

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Traffic Vol, veh/h</strong></td>
<td>50</td>
<td>40</td>
<td>140</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>70</td>
<td>210</td>
<td>40</td>
<td>20</td>
<td>280</td>
<td>60</td>
</tr>
<tr>
<td><strong>Future Vol, veh/h</strong></td>
<td>50</td>
<td>40</td>
<td>140</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>70</td>
<td>210</td>
<td>40</td>
<td>20</td>
<td>280</td>
<td>60</td>
</tr>
<tr>
<td><strong>Conflicting Peds, #/hr</strong></td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td><strong>Sign Control</strong></td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td><strong>Storage Length</strong></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td><strong>Veh in Median Storage, #</strong></td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Grade, %</strong></td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Peak Hour Factor</strong></td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Heavy Vehicles, %</strong></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mvmt Flow</strong></td>
<td>54</td>
<td>43</td>
<td>152</td>
<td>33</td>
<td>22</td>
<td>22</td>
<td>76</td>
<td>228</td>
<td>43</td>
<td>22</td>
<td>304</td>
<td>65</td>
</tr>
</tbody>
</table>

### Major/Minor

<table>
<thead>
<tr>
<th>Conflicting Flow All</th>
<th>Minor2</th>
<th>Minor1</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>385</td>
<td>385</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>428</td>
<td>426</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdw Stg 1</td>
<td>6.13</td>
<td>5.53</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdw Stg 2</td>
<td>6.13</td>
<td>5.53</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hdw</td>
<td>3.527</td>
<td>4.027</td>
<td>3.327</td>
<td>3.527</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>296</td>
<td>312</td>
<td>696</td>
<td>264</td>
</tr>
<tr>
<td>Stage 1</td>
<td>636</td>
<td>609</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>603</td>
<td>584</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plateon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>252</td>
<td>285</td>
<td>691</td>
<td>170</td>
</tr>
<tr>
<td>Stage 1</td>
<td>593</td>
<td>596</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>525</td>
<td>544</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>252</td>
<td>285</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 1</td>
<td>593</td>
<td>596</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>525</td>
<td>544</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

### Approach

<table>
<thead>
<tr>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.9</td>
<td>24.9</td>
<td>1.8</td>
<td>0.4</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th>Capacity (veh/h)</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR EBLn1WBLn1</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1176</td>
<td>-</td>
<td>-</td>
<td>425</td>
<td>256</td>
<td>1279</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.065</td>
<td>-</td>
<td>0.588</td>
<td>0.297</td>
<td>0.017</td>
<td>-</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>8.3</td>
<td>-</td>
<td>24.9</td>
<td>24.9</td>
<td>7.9</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>-</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0.2</td>
<td>-</td>
<td>3.7</td>
<td>1.2</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>Movement</td>
<td>EBL</td>
<td>EBT</td>
<td>EBR</td>
<td>WBL</td>
<td>WBT</td>
<td>WBR</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>130</td>
<td>60</td>
<td>260</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>130</td>
<td>60</td>
<td>260</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj (A_pbT)</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h-ln</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>135</td>
<td>62</td>
<td>54</td>
<td>21</td>
<td>31</td>
<td>7</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>279</td>
<td>98</td>
<td>322</td>
<td>118</td>
<td>142</td>
<td>23</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>836</td>
<td>474</td>
<td>1554</td>
<td>158</td>
<td>683</td>
<td>113</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>197</td>
<td>0</td>
<td>54</td>
<td>59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h-ln</td>
<td>1310</td>
<td>0</td>
<td>1554</td>
<td>954</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>8.5</td>
<td>0.0</td>
<td>1.6</td>
<td>8.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>0.69</td>
<td>1.00</td>
<td>0.36</td>
<td>0.0</td>
<td>0.12</td>
<td>1.00</td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>377</td>
<td>0</td>
<td>322</td>
<td>283</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.52</td>
<td>0.00</td>
<td>0.17</td>
<td>0.21</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>711</td>
<td>0</td>
<td>674</td>
<td>635</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>21.3</td>
<td>0.0</td>
<td>18.7</td>
<td>18.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>0.4</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>2.4</td>
<td>0.0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>21.8</td>
<td>0.0</td>
<td>18.8</td>
<td>19.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>251</td>
<td>59</td>
<td>561</td>
<td>645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>21.1</td>
<td>19.1</td>
<td>9.5</td>
<td>15.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>5.1</td>
<td>35.5</td>
<td>17.0</td>
<td>8.5</td>
<td>32.2</td>
<td>17.0</td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>4.0</td>
<td>6.0</td>
<td>5.0</td>
<td>4.0</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>15.0</td>
<td>50.0</td>
<td>25.0</td>
<td>15.0</td>
<td>50.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+11), s</td>
<td>2.4</td>
<td>9.7</td>
<td>10.5</td>
<td>4.7</td>
<td>19.1</td>
<td>10.7</td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>0.0</td>
<td>4.0</td>
<td>0.7</td>
<td>0.2</td>
<td>7.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

**Intersection Summary**

- HCM 6th Ctrl Delay: 14.3
- HCM 6th LOS: B
### HCM 6th Signalized Intersection Summary

#### Future (2026) No Project Conditions

**6: Lono Ave & Kamehameha Ave**

PM Peak Hour

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>60</td>
<td>410</td>
<td>30</td>
<td>100</td>
<td>420</td>
<td>110</td>
<td>30</td>
<td>130</td>
<td>90</td>
<td>230</td>
<td>140</td>
<td>90</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>60</td>
<td>410</td>
<td>30</td>
<td>100</td>
<td>420</td>
<td>110</td>
<td>30</td>
<td>130</td>
<td>90</td>
<td>230</td>
<td>140</td>
<td>90</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td></td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>62</td>
<td>427</td>
<td>10</td>
<td>104</td>
<td>438</td>
<td>36</td>
<td>31</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.96</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>62</td>
<td>427</td>
<td>10</td>
<td>104</td>
<td>438</td>
<td>36</td>
<td>31</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.96</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>313</td>
<td>569</td>
<td>479</td>
<td>337</td>
<td>614</td>
<td>518</td>
<td>322</td>
<td>247</td>
<td>472</td>
<td>291</td>
<td>158</td>
<td>115</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.04</td>
<td>0.31</td>
<td>0.31</td>
<td>0.06</td>
<td>0.33</td>
<td>0.33</td>
<td>0.02</td>
<td>0.13</td>
<td>0.00</td>
<td>0.15</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>1856</td>
<td>1565</td>
<td>1767</td>
<td>1856</td>
<td>1565</td>
<td>1767</td>
<td>1856</td>
<td>1572</td>
<td>1767</td>
<td>1130</td>
<td>611</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>62</td>
<td>427</td>
<td>10</td>
<td>104</td>
<td>438</td>
<td>36</td>
<td>31</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grp Sat Flow(s), veh/h</td>
<td>1856</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>1.3</td>
<td>11.2</td>
<td>0.2</td>
<td>2.1</td>
<td>11.1</td>
<td>0.8</td>
<td>0.8</td>
<td>3.7</td>
<td>0.0</td>
<td>5.8</td>
<td>0.0</td>
<td>5.9</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>1.3</td>
<td>11.2</td>
<td>0.2</td>
<td>2.1</td>
<td>11.1</td>
<td>0.8</td>
<td>0.8</td>
<td>3.7</td>
<td>0.0</td>
<td>5.8</td>
<td>0.0</td>
<td>5.9</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.0</td>
<td>1.00</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>313</td>
<td>569</td>
<td>479</td>
<td>337</td>
<td>614</td>
<td>518</td>
<td>322</td>
<td>247</td>
<td>472</td>
<td>0</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.20</td>
<td>0.75</td>
<td>0.02</td>
<td>0.31</td>
<td>0.71</td>
<td>0.07</td>
<td>0.10</td>
<td>0.55</td>
<td>0.51</td>
<td>0.0</td>
<td>0.50</td>
<td>0.0</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>838</td>
<td>1552</td>
<td>1309</td>
<td>818</td>
<td>1552</td>
<td>1309</td>
<td>876</td>
<td>1035</td>
<td>806</td>
<td>0</td>
<td>971</td>
<td></td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.0</td>
<td>1.00</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>13.0</td>
<td>16.8</td>
<td>13.0</td>
<td>12.7</td>
<td>15.8</td>
<td>12.3</td>
<td>19.6</td>
<td>21.8</td>
<td></td>
<td>14.9</td>
<td>0</td>
<td>17.0</td>
</tr>
<tr>
<td>HCM 6th Ctrl Delay</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>HCM 6th LOS</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

**Notes**

Unsignalized Delay for \[\text{NBR}\] is excluded from calculations of the approach delay and intersection delay.
**HCM 6th Signalized Intersection Summary**

**Future (2026) No Project Conditions**

**7: Wakea Ave & Kamehameha Ave**

**PM Peak Hour**

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>130</td>
<td>310</td>
<td>20</td>
<td>130</td>
<td>330</td>
<td>60</td>
<td>20</td>
<td>240</td>
<td>70</td>
<td>90</td>
<td>330</td>
<td>210</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>130</td>
<td>310</td>
<td>20</td>
<td>130</td>
<td>330</td>
<td>60</td>
<td>20</td>
<td>240</td>
<td>70</td>
<td>90</td>
<td>330</td>
<td>210</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>141</td>
<td>337</td>
<td>21</td>
<td>141</td>
<td>359</td>
<td>61</td>
<td>22</td>
<td>261</td>
<td>71</td>
<td>98</td>
<td>359</td>
<td>99</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.92</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>231</td>
<td>457</td>
<td>28</td>
<td>277</td>
<td>407</td>
<td>69</td>
<td>25</td>
<td>298</td>
<td>81</td>
<td>107</td>
<td>393</td>
<td>427</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.08</td>
<td>0.26</td>
<td>0.26</td>
<td>0.07</td>
<td>0.26</td>
<td>0.26</td>
<td>0.23</td>
<td>0.23</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>1728</td>
<td>108</td>
<td>1767</td>
<td>1546</td>
<td>263</td>
<td>111</td>
<td>1314</td>
<td>358</td>
<td>394</td>
<td>1442</td>
<td>1564</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>141</td>
<td>0</td>
<td>358</td>
<td>141</td>
<td>0</td>
<td>420</td>
<td>354</td>
<td>0</td>
<td>0</td>
<td>457</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1767</td>
<td>0</td>
<td>1836</td>
<td>1767</td>
<td>0</td>
<td>1808</td>
<td>1783</td>
<td>0</td>
<td>0</td>
<td>1836</td>
<td>0</td>
<td>1564</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>7.1</td>
<td>0.0</td>
<td>22.0</td>
<td>7.1</td>
<td>0.0</td>
<td>27.5</td>
<td>23.6</td>
<td>0.0</td>
<td>0.0</td>
<td>29.7</td>
<td>0.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>7.1</td>
<td>0.0</td>
<td>22.0</td>
<td>7.1</td>
<td>0.0</td>
<td>27.5</td>
<td>23.6</td>
<td>0.0</td>
<td>0.0</td>
<td>29.7</td>
<td>0.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>0.06</td>
<td>1.00</td>
<td>0.15</td>
<td>0.06</td>
<td>0.20</td>
<td>0.21</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>231</td>
<td>0</td>
<td>485</td>
<td>277</td>
<td>0</td>
<td>476</td>
<td>404</td>
<td>0</td>
<td>0</td>
<td>501</td>
<td>0</td>
<td>427</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.61</td>
<td>0.00</td>
<td>0.74</td>
<td>0.51</td>
<td>0.00</td>
<td>0.88</td>
<td>0.88</td>
<td>0.00</td>
<td>0.00</td>
<td>0.91</td>
<td>0.00</td>
<td>0.23</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>383</td>
<td>0</td>
<td>1102</td>
<td>318</td>
<td>0</td>
<td>968</td>
<td>737</td>
<td>0</td>
<td>0</td>
<td>581</td>
<td>0</td>
<td>495</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>32.9</td>
<td>0.0</td>
<td>41.5</td>
<td>31.7</td>
<td>0.0</td>
<td>43.6</td>
<td>46.1</td>
<td>0.0</td>
<td>0.0</td>
<td>43.4</td>
<td>0.0</td>
<td>34.8</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>2.6</td>
<td>0.0</td>
<td>2.2</td>
<td>1.4</td>
<td>0.0</td>
<td>5.6</td>
<td>6.2</td>
<td>0.0</td>
<td>0.0</td>
<td>17.4</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Initial Q Delay(d3), s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>3.2</td>
<td>0.0</td>
<td>10.2</td>
<td>3.1</td>
<td>0.0</td>
<td>13.0</td>
<td>11.1</td>
<td>0.0</td>
<td>0.0</td>
<td>15.8</td>
<td>0.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>35.5</td>
<td>0</td>
<td>43.7</td>
<td>33.1</td>
<td>0</td>
<td>49.2</td>
<td>52.2</td>
<td>0</td>
<td>0</td>
<td>60.8</td>
<td>0.0</td>
<td>35.1</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>E</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>499</td>
<td>561</td>
<td>354</td>
<td>556</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>41.4</td>
<td>45.1</td>
<td>52.2</td>
<td>56.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Intersection Summary**

- HCM 6th Ctrl Delay: 48.6
- HCM 6th LOS: D
<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>40</td>
<td>730</td>
<td>98</td>
<td>45</td>
<td>1180</td>
<td>950</td>
<td>69</td>
<td>134</td>
<td>38</td>
<td>1080</td>
<td>154</td>
<td>90</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>40</td>
<td>730</td>
<td>98</td>
<td>45</td>
<td>1180</td>
<td>950</td>
<td>69</td>
<td>134</td>
<td>38</td>
<td>1080</td>
<td>154</td>
<td>90</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00</td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>42</td>
<td>768</td>
<td>0</td>
<td>47</td>
<td>1242</td>
<td>0</td>
<td>73</td>
<td>141</td>
<td>0</td>
<td>1253</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.95</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>54</td>
<td>1187</td>
<td>61</td>
<td>1201</td>
<td>173</td>
<td>182</td>
<td>1305</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.03</td>
<td>0.34</td>
<td>0.00</td>
<td>0.01</td>
<td>0.11</td>
<td>0.00</td>
<td>0.10</td>
<td>0.10</td>
<td>0.00</td>
<td>0.37</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>3526</td>
<td>1572</td>
<td>1767</td>
<td>3526</td>
<td>1572</td>
<td>1767</td>
<td>1572</td>
<td>1572</td>
<td>3534</td>
<td>0</td>
<td>1572</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>42</td>
<td>768</td>
<td>0</td>
<td>47</td>
<td>1242</td>
<td>0</td>
<td>73</td>
<td>141</td>
<td>0</td>
<td>1253</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1767</td>
<td>1763</td>
<td>1572</td>
<td>1767</td>
<td>1763</td>
<td>1572</td>
<td>1767</td>
<td>1767</td>
<td>1767</td>
<td>1767</td>
<td>1767</td>
<td>1767</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>3.1</td>
<td>24.0</td>
<td>0.0</td>
<td>3.4</td>
<td>44.3</td>
<td>0.0</td>
<td>5.1</td>
<td>9.6</td>
<td>0.0</td>
<td>45.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>3.1</td>
<td>24.0</td>
<td>0.0</td>
<td>3.4</td>
<td>44.3</td>
<td>0.0</td>
<td>5.1</td>
<td>9.6</td>
<td>0.0</td>
<td>45.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>54</td>
<td>1187</td>
<td>61</td>
<td>1201</td>
<td>173</td>
<td>182</td>
<td>1305</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.78</td>
<td>0.65</td>
<td>0.78</td>
<td>1.03</td>
<td>0.42</td>
<td>0.77</td>
<td>0.96</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>122</td>
<td>1187</td>
<td>122</td>
<td>1201</td>
<td>258</td>
<td>271</td>
<td>1332</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.72</td>
<td>0.72</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>62.6</td>
<td>36.6</td>
<td>0.0</td>
<td>63.8</td>
<td>57.7</td>
<td>0.0</td>
<td>55.1</td>
<td>57.2</td>
<td>0.0</td>
<td>40.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>8.7</td>
<td>2.7</td>
<td>0.0</td>
<td>5.6</td>
<td>31.5</td>
<td>0.0</td>
<td>2.0</td>
<td>9.1</td>
<td>0.0</td>
<td>15.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>1.5</td>
<td>10.8</td>
<td>0.0</td>
<td>1.7</td>
<td>26.3</td>
<td>0.0</td>
<td>2.4</td>
<td>5.0</td>
<td>0.0</td>
<td>21.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Unsиг. Movement Delay, s/veh</td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>71.3</td>
<td>39.3</td>
<td>0.0</td>
<td>69.4</td>
<td>89.1</td>
<td>0.0</td>
<td>57.1</td>
<td>66.3</td>
<td>0.0</td>
<td>55.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>E</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>810</td>
<td>A</td>
<td>1289</td>
<td>A</td>
<td>214</td>
<td>A</td>
<td>1253</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>40.9</td>
<td>88.4</td>
<td>63.1</td>
<td>55.9</td>
<td>55.9</td>
<td>55.9</td>
<td>55.9</td>
<td>55.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>D</td>
<td>F</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>9.5</td>
<td>49.8</td>
<td>17.8</td>
<td>9.0</td>
<td>50.3</td>
<td>53.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>5.0</td>
<td>6.0</td>
<td>5.0</td>
<td>5.0</td>
<td>6.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>9.0</td>
<td>32.0</td>
<td>19.0</td>
<td>9.0</td>
<td>32.0</td>
<td>49.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+I1), s</td>
<td>5.4</td>
<td>26.0</td>
<td>11.6</td>
<td>5.1</td>
<td>46.3</td>
<td>47.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>0.0</td>
<td>3.7</td>
<td>0.6</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Intersection Summary**

<table>
<thead>
<tr>
<th>HCM 6th Ctrl Delay</th>
<th>64.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM 6th LOS</td>
<td>E</td>
</tr>
</tbody>
</table>

**Notes**

User approved pedestrian interval to be less than phase max green.

User approved volume balancing among the lanes for turning movement.

Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.
### Lane Configurations

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>30</td>
<td>1618</td>
<td>150</td>
<td>47</td>
<td>1905</td>
<td>30</td>
<td>230</td>
<td>30</td>
<td>58</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>30</td>
<td>1618</td>
<td>150</td>
<td>47</td>
<td>1905</td>
<td>30</td>
<td>230</td>
<td>30</td>
<td>58</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj (A_pbT)</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>32</td>
<td>1721</td>
<td>151</td>
<td>50</td>
<td>2027</td>
<td>31</td>
<td>245</td>
<td>32</td>
<td>14</td>
<td>43</td>
<td>32</td>
<td>12</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.94</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3.33</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>41</td>
<td>2927</td>
<td>256</td>
<td>64</td>
<td>3243</td>
<td>50</td>
<td>242</td>
<td>25</td>
<td>339</td>
<td>41</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.02</td>
<td>0.41</td>
<td>0.41</td>
<td>0.04</td>
<td>0.63</td>
<td>0.63</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>4740</td>
<td>415</td>
<td>1767</td>
<td>5140</td>
<td>79</td>
<td>852</td>
<td>112</td>
<td>1522</td>
<td>127</td>
<td>110</td>
<td>18</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>32</td>
<td>1225</td>
<td>647</td>
<td>50</td>
<td>1331</td>
<td>727</td>
<td>277</td>
<td>0</td>
<td>14</td>
<td>87</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h</td>
<td>1689</td>
<td>1777</td>
<td>1767</td>
<td>1689</td>
<td>1841</td>
<td>964</td>
<td>0</td>
<td>1522</td>
<td>127</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>2.3</td>
<td>36.5</td>
<td>36.7</td>
<td>3.6</td>
<td>31.2</td>
<td>31.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>2.3</td>
<td>36.5</td>
<td>36.7</td>
<td>3.6</td>
<td>31.2</td>
<td>31.3</td>
<td>29.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>0.23</td>
<td>1.00</td>
<td>0.04</td>
<td>0.88</td>
<td>0.49</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>41</td>
<td>2085</td>
<td>1097</td>
<td>64</td>
<td>2131</td>
<td>1161</td>
<td>267</td>
<td>0</td>
<td>339</td>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.79</td>
<td>0.59</td>
<td>0.59</td>
<td>0.78</td>
<td>0.62</td>
<td>1.04</td>
<td>0.04</td>
<td>1.25</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>109</td>
<td>2085</td>
<td>1097</td>
<td>109</td>
<td>2131</td>
<td>1161</td>
<td>267</td>
<td>0</td>
<td>339</td>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>0.67</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>5.3</td>
<td>0.5</td>
<td>1.0</td>
<td>7.4</td>
<td>1.4</td>
<td>2.6</td>
<td>4.6</td>
<td>3.7</td>
<td>0.0</td>
<td>188.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/lane</td>
<td>15.7</td>
<td>16.8</td>
<td>16.8</td>
<td>11.9</td>
<td>13.4</td>
<td>13.8</td>
<td>0.4</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td>LnGrp Delay(d), s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>0.0</td>
</tr>
</tbody>
</table>

### Phase - Assignment Phs

<table>
<thead>
<tr>
<th>Timer - Assigned Phs</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>86.3</td>
<td>86.3</td>
<td>84.0</td>
<td>88.0</td>
<td>88.0</td>
<td>34.0</td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>6.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>77.0</td>
<td>29.0</td>
<td>8.0</td>
<td>77.0</td>
<td>29.0</td>
<td>29.0</td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+I1),s</td>
<td>38.7</td>
<td>31.0</td>
<td>4.3</td>
<td>33.3</td>
<td>31.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>0.0</td>
<td>31.2</td>
<td>0.0</td>
<td>37.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

### Intersection Summary

| HCM 6th Ctrl Delay | 32.5 |
| HCM 6th LOS | C |

### Notes

User approved pedestrian interval to be less than phase max green.
### Intersection

| Int Delay, s/veh | 7.9 |

#### Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
</table>

#### Lane Configurations

<table>
<thead>
<tr>
<th>Traffic Vol, veh/h</th>
<th>20</th>
<th>50</th>
<th>50</th>
<th>40</th>
<th>40</th>
<th>71</th>
<th>50</th>
<th>197</th>
<th>33</th>
<th>48</th>
<th>210</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Vol, veh/h</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>71</td>
<td>50</td>
<td>197</td>
<td>33</td>
<td>48</td>
<td>210</td>
<td>30</td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>18</td>
<td>0</td>
<td>17</td>
<td>26</td>
<td>0</td>
<td>27</td>
<td>17</td>
<td>0</td>
<td>26</td>
<td>27</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>

#### Sign Control

<table>
<thead>
<tr>
<th>RT Channelized</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Stop</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
<th>Free</th>
</tr>
</thead>
</table>

#### Storage Length

<table>
<thead>
<tr>
<th>Veh in Median Storage, #</th>
<th>-</th>
<th>None</th>
<th>-</th>
<th>None</th>
<th>-</th>
<th>None</th>
<th>-</th>
<th>None</th>
</tr>
</thead>
</table>

#### Grade, %

<table>
<thead>
<tr>
<th>Peak Hour Factor</th>
<th>87</th>
<th>87</th>
<th>87</th>
<th>87</th>
<th>87</th>
<th>87</th>
<th>87</th>
<th>87</th>
<th>87</th>
</tr>
</thead>
</table>

#### Heavy Vehicles, %

<table>
<thead>
<tr>
<th>Mvmt Flow</th>
<th>23</th>
<th>57</th>
<th>57</th>
<th>46</th>
<th>46</th>
<th>82</th>
<th>57</th>
<th>226</th>
<th>38</th>
<th>55</th>
<th>241</th>
<th>34</th>
</tr>
</thead>
</table>

#### Major/Major Minor

<table>
<thead>
<tr>
<th>Conflicting Flow All</th>
<th>Minor2</th>
<th>Minor1</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>836</td>
<td>791</td>
<td>182</td>
<td>671</td>
</tr>
<tr>
<td>Stage 1</td>
<td>386</td>
<td>386</td>
<td>-</td>
<td>386</td>
</tr>
<tr>
<td>Stage 2</td>
<td>450</td>
<td>405</td>
<td>-</td>
<td>285</td>
</tr>
<tr>
<td>Critical Hdwv</td>
<td>7.345</td>
<td>6.545</td>
<td>6.945</td>
<td>7.345</td>
</tr>
<tr>
<td>Critical Hdwv Stg 1</td>
<td>6.545</td>
<td>5.545</td>
<td>-</td>
<td>6.145</td>
</tr>
<tr>
<td>Critical Hdwv Stg 2</td>
<td>6.145</td>
<td>5.545</td>
<td>-</td>
<td>6.545</td>
</tr>
<tr>
<td>Follow-up Hdwv</td>
<td>3.5285</td>
<td>4.0285</td>
<td>3.3285</td>
<td>3.5285</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>272</td>
<td>320</td>
<td>827</td>
<td>354</td>
</tr>
<tr>
<td>Stage 1</td>
<td>607</td>
<td>607</td>
<td>-</td>
<td>634</td>
</tr>
<tr>
<td>Stage 2</td>
<td>585</td>
<td>596</td>
<td>-</td>
<td>697</td>
</tr>
<tr>
<td>Platoon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>188</td>
<td>279</td>
<td>793</td>
<td>245</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>188</td>
<td>279</td>
<td>-</td>
<td>245</td>
</tr>
<tr>
<td>Stage 1</td>
<td>569</td>
<td>570</td>
<td>-</td>
<td>589</td>
</tr>
<tr>
<td>Stage 2</td>
<td>441</td>
<td>554</td>
<td>-</td>
<td>542</td>
</tr>
</tbody>
</table>

#### Approach

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>19.7</td>
<td>23</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th>Capacity (veh/h)</th>
<th>1239</th>
<th>-</th>
<th>245</th>
<th>793</th>
<th>371</th>
<th>1231</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.046</td>
<td>-</td>
<td>0.328</td>
<td>0.072</td>
<td>0.468</td>
<td>0.045</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>8</td>
<td>-</td>
<td>26.7</td>
<td>9.9</td>
<td>23</td>
<td>8.1</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>-</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0.1</td>
<td>-</td>
<td>1.4</td>
<td>0.2</td>
<td>2.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>
## Intersection

### Int Delay, s/veh
- 5

### Movement

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th>Traffic Vol, veh/h</th>
<th>Future Vol, veh/h</th>
<th>Conflicting Peds, #/hr</th>
<th>Sign Control</th>
<th>RT Channelized</th>
<th>Storage Length</th>
<th>Veh in Median Storage, #</th>
<th>Grade, %</th>
<th>Peak Hour Factor</th>
<th>Heavy Vehicles, %</th>
<th>Mvmt Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBL</td>
<td>38</td>
<td>38</td>
<td>12</td>
<td>Stop</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>42</td>
</tr>
<tr>
<td>EBT</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>Stop</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>22</td>
</tr>
<tr>
<td>EBR</td>
<td>66</td>
<td>66</td>
<td>9</td>
<td>Stop</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>73</td>
</tr>
<tr>
<td>WBL</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>Stop</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>22</td>
</tr>
<tr>
<td>WBT</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>Stop</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>22</td>
</tr>
<tr>
<td>WBR</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>Stop</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>22</td>
</tr>
<tr>
<td>NBL</td>
<td>45</td>
<td>45</td>
<td>8</td>
<td>Free</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>NBT</td>
<td>310</td>
<td>310</td>
<td>12</td>
<td>Free</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>344</td>
</tr>
<tr>
<td>NBR</td>
<td>40</td>
<td>40</td>
<td>0</td>
<td>Free</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>SBL</td>
<td>30</td>
<td>30</td>
<td>0</td>
<td>Free</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>SBT</td>
<td>250</td>
<td>250</td>
<td>9</td>
<td>Free</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>250</td>
</tr>
<tr>
<td>SBR</td>
<td>47</td>
<td>47</td>
<td>12</td>
<td>Free</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td>33</td>
<td>52</td>
</tr>
</tbody>
</table>

### Major/Minor

<table>
<thead>
<tr>
<th>Minor2</th>
<th>Minor1</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting Flow All</td>
<td>882</td>
<td>879</td>
<td>328</td>
</tr>
<tr>
<td>Stage 1</td>
<td>382</td>
<td>382</td>
<td>475</td>
</tr>
<tr>
<td>Stage 2</td>
<td>500</td>
<td>497</td>
<td>430</td>
</tr>
<tr>
<td>Critical Hdwy</td>
<td>7.13</td>
<td>6.53</td>
<td>6.23</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>6.13</td>
<td>5.53</td>
<td>-</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>6.13</td>
<td>5.53</td>
<td>-</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.527</td>
<td>4.027</td>
<td>3.327</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>266</td>
<td>285</td>
<td>711</td>
</tr>
<tr>
<td>Stage 1</td>
<td>638</td>
<td>611</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>551</td>
<td>543</td>
<td>-</td>
</tr>
<tr>
<td>Platoon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>222</td>
<td>260</td>
<td>695</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>222</td>
<td>260</td>
<td>-</td>
</tr>
<tr>
<td>Stage 1</td>
<td>604</td>
<td>587</td>
<td>-</td>
</tr>
<tr>
<td>Stage 2</td>
<td>483</td>
<td>515</td>
<td>-</td>
</tr>
</tbody>
</table>

### Approach

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>21</td>
<td>21.2</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Minor Lane/Major Mvmt

| Capacity (veh/h) | 1197 | - | 361 | 288 | 1146 | - |
| HCM Lane V/C Ratio | 0.042 | - | 0.382 | 0.231 | 0.029 | - |
| HCM Control Delay (s) | 8.1 | - | 21 | 21.2 | 8.2 | - |
| HCM Lane LOS | A | - | C | C | A | - |
| HCM 95th %tile Q(veh) | 0.1 | - | 1.7 | 0.9 | 0.1 | - |
### Movement Lane Configurations

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>62</td>
<td>42</td>
<td>186</td>
<td>20</td>
<td>33</td>
<td>20</td>
<td>185</td>
<td>460</td>
<td>20</td>
<td>20</td>
<td>212</td>
<td>92</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>62</td>
<td>42</td>
<td>186</td>
<td>20</td>
<td>33</td>
<td>20</td>
<td>185</td>
<td>460</td>
<td>20</td>
<td>20</td>
<td>212</td>
<td>92</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj (A_pbT)</td>
<td>0.98</td>
<td>0.98</td>
<td>0.99</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>65</td>
<td>44</td>
<td>35</td>
<td>21</td>
<td>35</td>
<td>7</td>
<td>195</td>
<td>484</td>
<td>20</td>
<td>21</td>
<td>223</td>
<td>80</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.95</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>256</td>
<td>132</td>
<td>244</td>
<td>167</td>
<td>285</td>
<td>29</td>
<td>615</td>
<td>806</td>
<td>33</td>
<td>433</td>
<td>486</td>
<td>174</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.10</td>
<td>0.46</td>
<td>0.46</td>
<td>0.02</td>
<td>0.37</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>735</td>
<td>836</td>
<td>1543</td>
<td>320</td>
<td>1172</td>
<td>186</td>
<td>1767</td>
<td>1768</td>
<td>73</td>
<td>1767</td>
<td>1297</td>
<td>465</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>109</td>
<td>0</td>
<td>35</td>
<td>63</td>
<td>0</td>
<td>0</td>
<td>195</td>
<td>504</td>
<td>21</td>
<td>0</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>Grp Sat Flow(v),veh/h/ln</td>
<td>1570</td>
<td>0</td>
<td>1543</td>
<td>1678</td>
<td>0</td>
<td>0</td>
<td>1767</td>
<td>1841</td>
<td>1767</td>
<td>0</td>
<td>1763</td>
<td></td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>1.1</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>8.4</td>
<td>0.3</td>
<td>0.0</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>2.4</td>
<td>0.0</td>
<td>0.8</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>8.4</td>
<td>0.3</td>
<td>0.0</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>0.60</td>
<td>1.00</td>
<td>0.33</td>
<td>0.11</td>
<td>1.00</td>
<td>0.04</td>
<td>1.00</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>388</td>
<td>0</td>
<td>244</td>
<td>382</td>
<td>0</td>
<td>0</td>
<td>615</td>
<td>840</td>
<td>433</td>
<td>0</td>
<td>661</td>
<td></td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.28</td>
<td>0.00</td>
<td>0.14</td>
<td>0.16</td>
<td>0.00</td>
<td>0.00</td>
<td>0.32</td>
<td>0.00</td>
<td>0.60</td>
<td>0.05</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>1066</td>
<td>0</td>
<td>939</td>
<td>1098</td>
<td>0</td>
<td>0</td>
<td>1081</td>
<td>2242</td>
<td>1042</td>
<td>0</td>
<td>2147</td>
<td></td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>15.5</td>
<td>0.0</td>
<td>14.9</td>
<td>15.1</td>
<td>0.0</td>
<td>0.0</td>
<td>6.2</td>
<td>8.4</td>
<td>7.9</td>
<td>0.0</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>0.8</td>
<td>0.0</td>
<td>0.3</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.6</td>
<td>2.5</td>
<td>1.0</td>
<td>0.0</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td>15.7</td>
<td>0.0</td>
<td>15.0</td>
<td>15.2</td>
<td>0.0</td>
<td>0.0</td>
<td>6.3</td>
<td>9.3</td>
<td>7.9</td>
<td>0.0</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>144</td>
<td>63</td>
<td>699</td>
<td>324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>15.5</td>
<td>15.2</td>
<td>8.5</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>70</td>
<td>392</td>
<td>21</td>
<td>40</td>
<td>204</td>
<td>73</td>
<td>32</td>
<td>262</td>
<td>120</td>
<td>123</td>
<td>163</td>
<td>50</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>70</td>
<td>392</td>
<td>21</td>
<td>40</td>
<td>204</td>
<td>73</td>
<td>32</td>
<td>262</td>
<td>120</td>
<td>123</td>
<td>163</td>
<td>50</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>83</td>
<td>467</td>
<td>8</td>
<td>48</td>
<td>243</td>
<td>26</td>
<td>38</td>
<td>312</td>
<td>0</td>
<td>146</td>
<td>194</td>
<td>53</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.84</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>429</td>
<td>603</td>
<td>507</td>
<td>263</td>
<td>564</td>
<td>474</td>
<td>372</td>
<td>436</td>
<td>361</td>
<td>418</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.05</td>
<td>0.33</td>
<td>0.33</td>
<td>0.03</td>
<td>0.30</td>
<td>0.30</td>
<td>0.02</td>
<td>0.23</td>
<td>0.00</td>
<td>0.09</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>1856</td>
<td>1560</td>
<td>1767</td>
<td>1856</td>
<td>1560</td>
<td>1767</td>
<td>1856</td>
<td>1572</td>
<td>1767</td>
<td>1400</td>
<td>383</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>83</td>
<td>467</td>
<td>8</td>
<td>48</td>
<td>243</td>
<td>26</td>
<td>38</td>
<td>312</td>
<td>0</td>
<td>146</td>
<td>194</td>
<td>53</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>1.9</td>
<td>13.3</td>
<td>0.2</td>
<td>1.1</td>
<td>6.1</td>
<td>0.7</td>
<td>1.0</td>
<td>9.1</td>
<td>0.0</td>
<td>3.5</td>
<td>0.0</td>
<td>6.6</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>1.9</td>
<td>13.3</td>
<td>0.2</td>
<td>1.1</td>
<td>6.1</td>
<td>0.7</td>
<td>1.0</td>
<td>9.1</td>
<td>0.0</td>
<td>3.5</td>
<td>0.0</td>
<td>6.6</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.21</td>
<td>1.00</td>
<td>1.00</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>429</td>
<td>603</td>
<td>507</td>
<td>263</td>
<td>564</td>
<td>474</td>
<td>372</td>
<td>436</td>
<td>361</td>
<td>0</td>
<td>532</td>
<td></td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.19</td>
<td>0.77</td>
<td>0.02</td>
<td>0.18</td>
<td>0.43</td>
<td>0.05</td>
<td>0.10</td>
<td>0.72</td>
<td>0.40</td>
<td>0.00</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>884</td>
<td>1424</td>
<td>1198</td>
<td>755</td>
<td>1424</td>
<td>1197</td>
<td>872</td>
<td>950</td>
<td>750</td>
<td>0</td>
<td>912</td>
<td></td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>13.2</td>
<td>17.8</td>
<td>13.4</td>
<td>14.7</td>
<td>16.3</td>
<td>14.4</td>
<td>16.5</td>
<td>20.6</td>
<td>0.0</td>
<td>14.9</td>
<td>0.0</td>
<td>16.8</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>0.1</td>
<td>2.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>2.2</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>0.7</td>
<td>5.4</td>
<td>0.1</td>
<td>0.4</td>
<td>2.4</td>
<td>0.2</td>
<td>0.4</td>
<td>3.9</td>
<td>0.0</td>
<td>1.3</td>
<td>0.0</td>
<td>2.6</td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>13.3</td>
<td>20.0</td>
<td>13.4</td>
<td>14.8</td>
<td>16.8</td>
<td>14.5</td>
<td>16.6</td>
<td>22.8</td>
<td>0.0</td>
<td>15.1</td>
<td>0.0</td>
<td>17.4</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>558</td>
<td>317</td>
<td>350</td>
<td>A</td>
<td>393</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>18.9</td>
<td>16.3</td>
<td>22.2</td>
<td>16.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Intersection Summary

<table>
<thead>
<tr>
<th>Timer - Assigned Phs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>96.2</td>
<td>24.1</td>
<td>5.9</td>
<td>22.5</td>
<td>7.4</td>
<td>22.8</td>
<td>9.6</td>
<td>18.8</td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>4.5</td>
<td>5.0</td>
<td>4.5</td>
<td>5.0</td>
<td>4.5</td>
<td>5.0</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>45.0</td>
<td>18.0</td>
<td>30.0</td>
<td>18.0</td>
<td>45.0</td>
<td>18.0</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+I1), s</td>
<td>15.3</td>
<td>3.0</td>
<td>8.6</td>
<td>3.9</td>
<td>8.1</td>
<td>5.5</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>1.5</td>
<td>0.1</td>
<td>1.6</td>
<td>0.2</td>
<td>1.7</td>
</tr>
</tbody>
</table>

### Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.
### Movement Summary

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>144</td>
<td>410</td>
<td>20</td>
<td>70</td>
<td>330</td>
<td>53</td>
<td>30</td>
<td>328</td>
<td>140</td>
<td>64</td>
<td>170</td>
<td>104</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>144</td>
<td>410</td>
<td>20</td>
<td>70</td>
<td>330</td>
<td>53</td>
<td>30</td>
<td>328</td>
<td>140</td>
<td>64</td>
<td>170</td>
<td>104</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj (A_pbT)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>157</td>
<td>446</td>
<td>21</td>
<td>76</td>
<td>359</td>
<td>55</td>
<td>33</td>
<td>357</td>
<td>144</td>
<td>70</td>
<td>185</td>
<td>20</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>242</td>
<td>515</td>
<td>24</td>
<td>192</td>
<td>407</td>
<td>62</td>
<td>33</td>
<td>357</td>
<td>144</td>
<td>70</td>
<td>217</td>
<td>252</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.08</td>
<td>0.29</td>
<td>0.29</td>
<td>0.05</td>
<td>0.26</td>
<td>0.26</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>1758</td>
<td>83</td>
<td>1767</td>
<td>1571</td>
<td>241</td>
<td>109</td>
<td>1176</td>
<td>474</td>
<td>502</td>
<td>1328</td>
<td>1539</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>157</td>
<td>0</td>
<td>467</td>
<td>76</td>
<td>0</td>
<td>414</td>
<td>534</td>
<td>0</td>
<td>0</td>
<td>255</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1767</td>
<td>0</td>
<td>1841</td>
<td>1767</td>
<td>0</td>
<td>1812</td>
<td>1759</td>
<td>0</td>
<td>0</td>
<td>1830</td>
<td>0</td>
<td>1539</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>7.8</td>
<td>0.0</td>
<td>29.5</td>
<td>3.8</td>
<td>0.0</td>
<td>26.9</td>
<td>35.7</td>
<td>0.0</td>
<td>0.0</td>
<td>16.6</td>
<td>0.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>7.8</td>
<td>0.0</td>
<td>29.5</td>
<td>3.8</td>
<td>0.0</td>
<td>26.9</td>
<td>35.7</td>
<td>0.0</td>
<td>0.0</td>
<td>16.6</td>
<td>0.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>0.04</td>
<td>1.00</td>
<td>0.13</td>
<td>0.06</td>
<td>0.27</td>
<td>0.27</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>242</td>
<td>0</td>
<td>540</td>
<td>192</td>
<td>0</td>
<td>470</td>
<td>584</td>
<td>0</td>
<td>0</td>
<td>300</td>
<td>0</td>
<td>252</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.65</td>
<td>0.00</td>
<td>0.87</td>
<td>0.40</td>
<td>0.00</td>
<td>0.88</td>
<td>0.91</td>
<td>0.00</td>
<td>0.00</td>
<td>0.85</td>
<td>0.00</td>
<td>0.08</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>385</td>
<td>0</td>
<td>1110</td>
<td>280</td>
<td>0</td>
<td>975</td>
<td>731</td>
<td>0</td>
<td>0</td>
<td>582</td>
<td>0</td>
<td>489</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>32.2</td>
<td>0.0</td>
<td>41.1</td>
<td>33.6</td>
<td>0.0</td>
<td>43.6</td>
<td>39.3</td>
<td>0.0</td>
<td>0.0</td>
<td>49.8</td>
<td>0.0</td>
<td>43.5</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>2.9</td>
<td>0.0</td>
<td>4.3</td>
<td>1.3</td>
<td>0.0</td>
<td>5.6</td>
<td>14.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.7</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Initial Q Delay(d3), s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>3.5</td>
<td>0.0</td>
<td>13.9</td>
<td>1.7</td>
<td>0.0</td>
<td>12.7</td>
<td>17.5</td>
<td>0.0</td>
<td>0.0</td>
<td>8.1</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>35.1</td>
<td>0.0</td>
<td>45.4</td>
<td>34.9</td>
<td>0.0</td>
<td>49.2</td>
<td>53.2</td>
<td>0.0</td>
<td>0.0</td>
<td>56.6</td>
<td>0.0</td>
<td>43.6</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>E</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>624</td>
<td>490</td>
<td>534</td>
<td>275</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>42.8</td>
<td>47.0</td>
<td>53.2</td>
<td>55.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>45.7</td>
<td>10.9</td>
<td>41.0</td>
<td>25.1</td>
<td>15.0</td>
<td>36.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>51.0</td>
<td>12.0</td>
<td>74.0</td>
<td>39.0</td>
<td>20.0</td>
<td>66.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+11), s</td>
<td>37.7</td>
<td>5.8</td>
<td>31.5</td>
<td>18.6</td>
<td>9.8</td>
<td>28.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>3.0</td>
<td>0.1</td>
<td>3.4</td>
<td>1.5</td>
<td>0.3</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Intersection Summary

- **HCM 6th Ctrl Delay**: 48.6
- **HCM 6th LOS**: D
### HCM 6th Signalized Intersection Summary

**Future (2026) Plus Project Conditions**

**1: Kane St/Kahului Beach Rd & Kaahumanu Ave**

**PM Peak Hour**

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>70</td>
<td>1130</td>
<td>146</td>
<td>81</td>
<td>780</td>
<td>1200</td>
<td>99</td>
<td>196</td>
<td>127</td>
<td>1000</td>
<td>155</td>
<td>140</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>70</td>
<td>1130</td>
<td>146</td>
<td>81</td>
<td>780</td>
<td>1200</td>
<td>99</td>
<td>196</td>
<td>127</td>
<td>1000</td>
<td>155</td>
<td>140</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00</td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>72</td>
<td>1165</td>
<td>0</td>
<td>84</td>
<td>804</td>
<td>0</td>
<td>102</td>
<td>202</td>
<td>0</td>
<td>1145</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.97</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>91</td>
<td>1278</td>
<td>105</td>
<td>1307</td>
<td>170</td>
<td>179</td>
<td>1152</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.05</td>
<td>0.36</td>
<td>0.00</td>
<td>0.02</td>
<td>0.12</td>
<td>0.00</td>
<td>0.10</td>
<td>0.10</td>
<td>0.00</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>3526</td>
<td>1572</td>
<td>1767</td>
<td>3526</td>
<td>1572</td>
<td>1767</td>
<td>1856</td>
<td>1572</td>
<td>3534</td>
<td>0</td>
<td>1572</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>72</td>
<td>1165</td>
<td>0</td>
<td>84</td>
<td>804</td>
<td>0</td>
<td>102</td>
<td>202</td>
<td>0</td>
<td>1145</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1767</td>
<td>1763</td>
<td>1572</td>
<td>1767</td>
<td>1763</td>
<td>1572</td>
<td>1767</td>
<td>1856</td>
<td>1572</td>
<td>1767</td>
<td>0</td>
<td>1572</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>5.4</td>
<td>42.5</td>
<td>0.0</td>
<td>6.4</td>
<td>29.2</td>
<td>0.0</td>
<td>7.5</td>
<td>13.0</td>
<td>0.0</td>
<td>43.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>5.4</td>
<td>42.5</td>
<td>0.0</td>
<td>6.4</td>
<td>29.2</td>
<td>0.0</td>
<td>7.5</td>
<td>13.0</td>
<td>0.0</td>
<td>43.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>91</td>
<td>1278</td>
<td>105</td>
<td>1307</td>
<td>170</td>
<td>179</td>
<td>1152</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.79</td>
<td>0.91</td>
<td>0.80</td>
<td>0.62</td>
<td>0.60</td>
<td>1.13</td>
<td>0.99</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>157</td>
<td>1278</td>
<td>157</td>
<td>1307</td>
<td>170</td>
<td>179</td>
<td>1152</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.73</td>
<td>0.73</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Uniform Delay(d), s/veh</td>
<td>63.3</td>
<td>41.0</td>
<td>0.0</td>
<td>65.4</td>
<td>50.1</td>
<td>0.0</td>
<td>58.5</td>
<td>61.0</td>
<td>0.0</td>
<td>45.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>5.6</td>
<td>11.3</td>
<td>0.0</td>
<td>6.6</td>
<td>16.1</td>
<td>0.0</td>
<td>6.2</td>
<td>106.7</td>
<td>0.0</td>
<td>25.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>2.6</td>
<td>20.3</td>
<td>0.0</td>
<td>3.2</td>
<td>14.2</td>
<td>0.0</td>
<td>3.7</td>
<td>11.5</td>
<td>0.0</td>
<td>22.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

**Unsig. Movement Delay, s/veh**

| LnGrp Delay(d),s/veh | 69.0 | 52.2 | 0.0 | 72.0 | 51.7 | 0.0 | 64.7 | 167.7 | 0.0 | 70.4 | 0.0 | 0.0 |
| LnGrp LOS | E | D | E | D | E | F | E | A |

**Approach Vol, veh/h**

| 1237 | A | 888 | A | 304 | A | 1145 | A |

**Approach Delay, s/veh**

| 53.2 | 53.6 |

**Approach LOS**

| D | D | F | E |

*Timer - Assigned Phs*  

| 1 | 2 | 4 | 5 | 6 | 8 |

**Phs Duration (G+Y+Rc), s**

| 13.0 | 55.0 | 18.0 | 12.0 | 56.0 | 49.0 |

**Change Period (Y+Rc), s**

| 5.0 | 6.0 | 5.0 | 5.0 | 6.0 | 5.0 |

**Max Green Setting (Gmax), s**

| 12.0 | 45.0 | 13.0 | 12.0 | 45.0 | 44.0 |

**Max Q Clear Time (g_c+11), s**

| 8.4 | 44.5 | 15.0 | 7.4 | 31.2 | 45.6 |

**Green Ext Time (p_c), s**

| 0.0 | 0.5 | 0.0 | 0.0 | 7.4 | 0.0 |

**Intersection Summary**

**HCM 6th Ctrl Delay** 65.6

**HCM 6th LOS** E

**Notes**

- User approved pedestrian interval to be less than phase max green.
- User approved volume balancing among the lanes for turning movement.
- Unsignalized Delay for [NBR, EBR, WBR, SBR] is excluded from calculations of the approach delay and intersection delay.
## Lane Configurations

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>20</td>
<td>1857</td>
<td>150</td>
<td>80</td>
<td>1991</td>
<td>40</td>
<td>210</td>
<td>30</td>
<td>62</td>
<td>40</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>20</td>
<td>1857</td>
<td>150</td>
<td>80</td>
<td>1991</td>
<td>40</td>
<td>210</td>
<td>30</td>
<td>62</td>
<td>40</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td>1856</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>20</td>
<td>1895</td>
<td>147</td>
<td>82</td>
<td>2032</td>
<td>40</td>
<td>214</td>
<td>31</td>
<td>13</td>
<td>41</td>
<td>41</td>
<td>14</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.98</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>24</td>
<td>2916</td>
<td>225</td>
<td>102</td>
<td>3339</td>
<td>66</td>
<td>211</td>
<td>23</td>
<td>13</td>
<td>41</td>
<td>41</td>
<td>14</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.03</td>
<td>1.00</td>
<td>1.00</td>
<td>0.06</td>
<td>0.65</td>
<td>0.65</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>1767</td>
<td>4790</td>
<td>370</td>
<td>1767</td>
<td>5114</td>
<td>101</td>
<td>751</td>
<td>109</td>
<td>1557</td>
<td>0</td>
<td>143</td>
<td>24</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>20</td>
<td>1334</td>
<td>708</td>
<td>82</td>
<td>1341</td>
<td>731</td>
<td>245</td>
<td>0</td>
<td>334</td>
<td>74</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln1767</td>
<td>1689</td>
<td>1783</td>
<td>1767</td>
<td>1698</td>
<td>1837</td>
<td>860</td>
<td>0</td>
<td>1557</td>
<td>167</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>6.2</td>
<td>30.9</td>
<td>31.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>6.2</td>
<td>30.9</td>
<td>31.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>29.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>1.00</td>
<td>0.21</td>
<td>1.00</td>
<td>0.05</td>
<td>0.87</td>
<td>1.00</td>
<td>0.43</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>24</td>
<td>2056</td>
<td>1085</td>
<td>102</td>
<td>2205</td>
<td>1199</td>
<td>235</td>
<td>0</td>
<td>334</td>
<td>74</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.82</td>
<td>0.65</td>
<td>0.65</td>
<td>0.80</td>
<td>0.61</td>
<td>0.61</td>
<td>1.04</td>
<td>0.00</td>
<td>1.30</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>144</td>
<td>2056</td>
<td>1085</td>
<td>144</td>
<td>2205</td>
<td>1199</td>
<td>235</td>
<td>0</td>
<td>334</td>
<td>74</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>65.5</td>
<td>0.0</td>
<td>0.0</td>
<td>62.8</td>
<td>31.5</td>
<td>31.5</td>
<td>56.1</td>
<td>0.0</td>
<td>42.0</td>
<td>54.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>4.6</td>
<td>0.3</td>
<td>0.6</td>
<td>12.8</td>
<td>1.3</td>
<td>2.3</td>
<td>70.7</td>
<td>0.0</td>
<td>0.0</td>
<td>204.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln0.7</td>
<td>0.1</td>
<td>0.2</td>
<td>3.2</td>
<td>11.7</td>
<td>13.1</td>
<td>12.8</td>
<td>0.0</td>
<td>0.4</td>
<td>6.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>70.1</td>
<td>0.3</td>
<td>0.6</td>
<td>75.6</td>
<td>14.7</td>
<td>15.8</td>
<td>126.8</td>
<td>0.0</td>
<td>42.0</td>
<td>258.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>E</td>
<td>A</td>
<td>E</td>
<td>B</td>
<td>B</td>
<td>F</td>
<td>A</td>
<td>D</td>
<td>F</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>2062</td>
<td>2154</td>
<td>258</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>1.1</td>
<td>17.4</td>
<td>122.6</td>
<td>258.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>A</td>
<td>B</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Intersection Summary**

- **HCM 6th Ctrl Delay**: 21.0
- **HCM 6th LOS**: C

**Notes**

User approved pedestrian interval to be less than phase max green.
## Intersection

**Int Delay, s/veh**  100.9

### Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
<td>58</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
<td>58</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>21</td>
<td>0</td>
<td>19</td>
<td>32</td>
<td>0</td>
<td>33</td>
<td>19</td>
<td>0</td>
<td>32</td>
<td>33</td>
<td>0</td>
<td>21</td>
</tr>
</tbody>
</table>

### Lane Configurations

<table>
<thead>
<tr>
<th>Traffic Vol, veh/h</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
<td>58</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
<tr>
<td>120</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
<td>58</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
<tr>
<td>110</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
<td>58</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
<td>58</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
<td>58</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
</tbody>
</table>

### Traffic Volume

<table>
<thead>
<tr>
<th>Movement</th>
<th>PE</th>
<th>PB</th>
<th>NE</th>
<th>NB</th>
<th>SW</th>
<th>NW</th>
<th>SE</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
</tr>
</tbody>
</table>

### Conflicting Pedestrians

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>21</td>
<td>0</td>
<td>19</td>
<td>32</td>
<td>0</td>
<td>33</td>
<td>19</td>
<td>0</td>
<td>32</td>
<td>33</td>
<td>0</td>
<td>21</td>
</tr>
</tbody>
</table>

### Sign Control

<table>
<thead>
<tr>
<th>Movement</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT Channelized</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
</tbody>
</table>

### Storage Length

<table>
<thead>
<tr>
<th>Movement</th>
<th>Storage Length</th>
<th>Veh in Median Storage, #</th>
<th>Grade, %</th>
<th>Peak Hour Factor</th>
<th>Heavy Vehicles, %</th>
<th>Mvmt Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

### Major/Minor

<table>
<thead>
<tr>
<th>Movement</th>
<th>Minor2</th>
<th>Minor1</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflict Flow All</td>
<td>1091</td>
<td>1048</td>
<td>234</td>
<td>910</td>
</tr>
<tr>
<td>Stage 1</td>
<td>544</td>
<td>544</td>
<td>-</td>
<td>474</td>
</tr>
<tr>
<td>Stage 2</td>
<td>547</td>
<td>504</td>
<td>436</td>
<td>590</td>
</tr>
<tr>
<td>Critical Hwy Stg 1</td>
<td>6.545</td>
<td>5.545</td>
<td>-</td>
<td>6.145</td>
</tr>
<tr>
<td>Critical Hwy Stg 2</td>
<td>6.145</td>
<td>5.545</td>
<td>-</td>
<td>6.545</td>
</tr>
<tr>
<td>Follow-up Hwy</td>
<td>3.5285</td>
<td>4.0285</td>
<td>3.3285</td>
<td>3.5285</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>179</td>
<td>226</td>
<td>766</td>
<td>241</td>
</tr>
<tr>
<td>Stage 1</td>
<td>490</td>
<td>516</td>
<td>-</td>
<td>568</td>
</tr>
<tr>
<td>Stage 2</td>
<td>518</td>
<td>538</td>
<td>-</td>
<td>567</td>
</tr>
</tbody>
</table>

### Approach

<table>
<thead>
<tr>
<th>Movement</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>263.7</td>
<td>233.4</td>
<td>2.7</td>
<td>1.8</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Capacity (veh/h)

<table>
<thead>
<tr>
<th>Movement</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>WBLn1</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (veh/h)</td>
<td>1145</td>
<td>-</td>
<td>-</td>
<td>129</td>
<td>728</td>
<td>158</td>
<td>1237</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.099</td>
<td>-</td>
<td>-</td>
<td>1.678</td>
<td>0.156</td>
<td>1.311</td>
<td>0.084</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>8.5</td>
<td>-</td>
<td>-</td>
<td>396.1</td>
<td>10.9</td>
<td>233.4</td>
<td>8.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>F</td>
<td>B</td>
<td>F</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>16.0</td>
<td>0.6</td>
<td>12.4</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

### Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th>Movement</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>WBLn1</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (veh/h)</td>
<td>1145</td>
<td>-</td>
<td>-</td>
<td>129</td>
<td>728</td>
<td>158</td>
<td>1237</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
## Intersection

| Int Delay, s/veh | 10.4 |

### Movement

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>62</td>
<td>40</td>
<td>149</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>78</td>
<td>210</td>
<td>40</td>
<td>20</td>
<td>280</td>
<td>70</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>62</td>
<td>40</td>
<td>149</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>78</td>
<td>210</td>
<td>40</td>
<td>20</td>
<td>280</td>
<td>70</td>
</tr>
<tr>
<td>Conflicting Peds, #/hr</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

### Sign Control

| RT Channelized | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |

### Storage Length

| Storage Length | 50  | 50  | 50  | 50  | 50  | 50  |

### Veh in Median Storage, #

| Veh in Median Storage, # | 0   | 0   | 0   |

### Grade, %

| Grade, % | 0   | 0   |

### Peak Hour Factor

| Peak Hour Factor | 92  | 92  | 92  | 92  | 92  | 92  | 92  | 92  | 92  | 92  | 92  | 92  |

### Heavy Vehicles, %

| Heavy Vehicles, % | 3   | 3   | 3   | 3   |

### Mvmt Flow

| Mvmt Flow | 67  | 43  | 162 | 33  | 22  | 22  | 85  | 228 | 43  | 22  | 304 | 76  |

### Major/Minor

<table>
<thead>
<tr>
<th>Major/Minor</th>
<th>Minor2</th>
<th>Minor1</th>
<th>Major1</th>
<th>Major2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting Flow All</td>
<td>844</td>
<td>842</td>
<td>354</td>
<td>920</td>
</tr>
<tr>
<td>Stage 1</td>
<td>394</td>
<td>394</td>
<td>427</td>
<td>427</td>
</tr>
<tr>
<td>Stage 2</td>
<td>450</td>
<td>448</td>
<td>493</td>
<td>432</td>
</tr>
<tr>
<td>Critical Hdwy</td>
<td>7.13</td>
<td>6.53</td>
<td>6.23</td>
<td>7.13</td>
</tr>
<tr>
<td>Critical Hdwy Stg 1</td>
<td>6.13</td>
<td>5.53</td>
<td>-</td>
<td>6.13</td>
</tr>
<tr>
<td>Critical Hdwy Stg 2</td>
<td>6.13</td>
<td>5.53</td>
<td>-</td>
<td>6.13</td>
</tr>
<tr>
<td>Follow-up Hdwy</td>
<td>3.527</td>
<td>4.027</td>
<td>3.527</td>
<td>4.027</td>
</tr>
<tr>
<td>Pot Cap-1 Maneuver</td>
<td>282</td>
<td>300</td>
<td>688</td>
<td>250</td>
</tr>
<tr>
<td>Stage 1</td>
<td>629</td>
<td>603</td>
<td>604</td>
<td>584</td>
</tr>
<tr>
<td>Stage 2</td>
<td>587</td>
<td>571</td>
<td>556</td>
<td>581</td>
</tr>
<tr>
<td>Platoon blocked, %</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mov Cap-1 Maneuver</td>
<td>236</td>
<td>269</td>
<td>680</td>
<td>154</td>
</tr>
<tr>
<td>Mov Cap-2 Maneuver</td>
<td>236</td>
<td>269</td>
<td>-</td>
<td>154</td>
</tr>
<tr>
<td>Stage 1</td>
<td>578</td>
<td>588</td>
<td>556</td>
<td>537</td>
</tr>
<tr>
<td>Stage 2</td>
<td>503</td>
<td>525</td>
<td>384</td>
<td>566</td>
</tr>
</tbody>
</table>

### Approach

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM Control Delay, s</td>
<td>31.6</td>
<td>27.3</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Minor Lane/Major Mvmt

<table>
<thead>
<tr>
<th>Minor Lane/Major Mvmt</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>EBLn1WBLn1</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (veh/h)</td>
<td>1156</td>
<td>-</td>
<td>-</td>
<td>398</td>
<td>236</td>
<td>1270</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.073</td>
<td>-</td>
<td>-</td>
<td>0.685</td>
<td>0.322</td>
<td>0.017</td>
<td>-</td>
</tr>
<tr>
<td>HCM Control Delay (s)</td>
<td>8.4</td>
<td>-</td>
<td>-</td>
<td>31.6</td>
<td>27.3</td>
<td>7.9</td>
<td>-</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>HCM 95th %tile Q(veh)</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>1.3</td>
<td>0.1</td>
<td>-</td>
</tr>
</tbody>
</table>
### HCM 6th Signalized Intersection Summary

#### 5: Kamehameha Ave & Kane St

**Future (2026) Plus Project Conditions**

**PM Peak Hour**

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>133</td>
<td>63</td>
<td>284</td>
<td>20</td>
<td>33</td>
<td>20</td>
<td>181</td>
<td>360</td>
<td>20</td>
<td>20</td>
<td>453</td>
<td>163</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>133</td>
<td>63</td>
<td>284</td>
<td>20</td>
<td>33</td>
<td>20</td>
<td>181</td>
<td>360</td>
<td>20</td>
<td>20</td>
<td>453</td>
<td>163</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Work Zone On Approach</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj Sat Flow, veh/h/ln</td>
<td>1856</td>
</tr>
<tr>
<td>Adj Flow Rate, veh/h</td>
<td>139</td>
<td>66</td>
<td>60</td>
<td>21</td>
<td>34</td>
<td>7</td>
<td>189</td>
<td>375</td>
<td>19</td>
<td>21</td>
<td>472</td>
<td>158</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.96</td>
</tr>
<tr>
<td>Percent Heavy Veh, %</td>
<td>3</td>
</tr>
<tr>
<td>Cap, veh/h</td>
<td>267</td>
<td>101</td>
<td>350</td>
<td>106</td>
<td>141</td>
<td>22</td>
<td>379</td>
<td>900</td>
<td>46</td>
<td>523</td>
<td>596</td>
<td>200</td>
</tr>
<tr>
<td>Arrive On Green</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.08</td>
<td>0.51</td>
<td>0.51</td>
<td>0.02</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Sat Flow, veh/h</td>
<td>754</td>
<td>448</td>
<td>1555</td>
<td>125</td>
<td>626</td>
<td>96</td>
<td>1767</td>
<td>1790</td>
<td>89</td>
<td>1767</td>
<td>1325</td>
<td>444</td>
</tr>
<tr>
<td>Grp Volume(v), veh/h</td>
<td>205</td>
<td>0</td>
<td>60</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>189</td>
<td>0</td>
<td>394</td>
<td>21</td>
<td>0</td>
<td>630</td>
</tr>
<tr>
<td>Grp Sat Flow(s),veh/h/ln</td>
<td>1202</td>
<td>0</td>
<td>1555</td>
<td>847</td>
<td>0</td>
<td>0</td>
<td>1767</td>
<td>0</td>
<td>1838</td>
<td>1767</td>
<td>0</td>
<td>1769</td>
</tr>
<tr>
<td>Q Serve(g_s), s</td>
<td>0.0</td>
<td>0.0</td>
<td>1.9</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>8.2</td>
<td>0.4</td>
<td>0.0</td>
<td>18.9</td>
</tr>
<tr>
<td>Cycle Q Clear(g_c), s</td>
<td>10.7</td>
<td>0.0</td>
<td>1.9</td>
<td>11.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>8.2</td>
<td>0.4</td>
<td>0.0</td>
<td>18.9</td>
</tr>
<tr>
<td>Prop In Lane</td>
<td>0.68</td>
<td>1.00</td>
<td>0.34</td>
<td>0.11</td>
<td>1.00</td>
<td>0.05</td>
<td>1.00</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Grp Cap(c), veh/h</td>
<td>368</td>
<td>0</td>
<td>350</td>
<td>268</td>
<td>0</td>
<td>0</td>
<td>379</td>
<td>0</td>
<td>945</td>
<td>523</td>
<td>0</td>
<td>796</td>
</tr>
<tr>
<td>V/C Ratio(X)</td>
<td>0.56</td>
<td>0.00</td>
<td>0.17</td>
<td>0.23</td>
<td>0.00</td>
<td>0.00</td>
<td>0.50</td>
<td>0.00</td>
<td>0.42</td>
<td>0.04</td>
<td>0.00</td>
<td>0.79</td>
</tr>
<tr>
<td>Avail Cap(c_a), veh/h</td>
<td>628</td>
<td>0</td>
<td>625</td>
<td>544</td>
<td>0</td>
<td>0</td>
<td>657</td>
<td>0</td>
<td>1477</td>
<td>914</td>
<td>0</td>
<td>1421</td>
</tr>
<tr>
<td>HCM Platoon Ratio</td>
<td>1.00</td>
</tr>
<tr>
<td>Upstream Filter(I)</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Uniform Delay (d), s/veh</td>
<td>22.6</td>
<td>0.0</td>
<td>19.4</td>
<td>19.8</td>
<td>0.0</td>
<td>0.0</td>
<td>11.2</td>
<td>0.0</td>
<td>9.3</td>
<td>9.0</td>
<td>0.0</td>
<td>14.6</td>
</tr>
<tr>
<td>Incr Delay (d2), s/veh</td>
<td>0.5</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Initial Q Delay(d3),s/veh</td>
<td>0.0</td>
</tr>
<tr>
<td>%ile BackOfQ(50%),veh/ln</td>
<td>2.7</td>
<td>0.0</td>
<td>0.7</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>2.9</td>
<td>0.1</td>
<td>0.0</td>
<td>7.1</td>
</tr>
<tr>
<td>Unsig. Movement Delay, s/veh</td>
<td></td>
</tr>
<tr>
<td>LnGrp Delay(d),s/veh</td>
<td>23.1</td>
<td>0.0</td>
<td>19.5</td>
<td>19.9</td>
<td>0.0</td>
<td>0.0</td>
<td>11.6</td>
<td>0.0</td>
<td>9.8</td>
<td>9.0</td>
<td>0.0</td>
<td>17.2</td>
</tr>
<tr>
<td>LnGrp LOS</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Approach Vol, veh/h</td>
<td>265</td>
<td>62</td>
<td>583</td>
<td>651</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay, s/veh</td>
<td>22.3</td>
<td>19.9</td>
<td>10.4</td>
<td>16.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer - Assigned Phs</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phs Duration (G+Y+Rc), s</td>
<td>5.2</td>
<td>38.0</td>
<td>19.0</td>
<td>9.2</td>
<td>34.0</td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Period (Y+Rc), s</td>
<td>4.0</td>
<td>6.0</td>
<td>5.0</td>
<td>4.0</td>
<td>6.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Green Setting (Gmax), s</td>
<td>15.0</td>
<td>50.0</td>
<td>25.0</td>
<td>15.0</td>
<td>50.0</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Q Clear Time (g_c+I1), s</td>
<td>2.4</td>
<td>10.2</td>
<td>12.7</td>
<td>5.2</td>
<td>20.9</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Ext Time (p_c), s</td>
<td>0.0</td>
<td>4.0</td>
<td>0.7</td>
<td>0.2</td>
<td>7.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Intersection Summary

- **HCM 6th Ctrl Delay**: 15.5
- **HCM 6th LOS**: B
## Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR

| Lane Configurations | Traffic Volume (veh/h) | Future Volume (veh/h) | Initial Q (Qb), veh | Ped-Bike Adj (A_pbT) | Parking Bus, Adj | Work Zone On Approach | Adj Sat Flow, veh/h-ln | Adj Flow Rate, veh/h | Peak Hour Factor | Percent Heavy Veh, % | Cap, veh/h | Arrive On Green | Sat Flow, veh/h | Grp Volume (v), veh/h | Grp Sat Flow (s), veh/h-ln | Q Serve (g_s), s | Cycle Q Clear (g_c), s | Prop In Lane | Lane Grp Cap (c), veh/h | V/C Ratio (X) | Avail Cap (c_a), veh/h | HCM Platoon Ratio | Upstream Filter (I) | Incr Delay (d2), s/veh | Initial Q Delay (d3), s/veh | %ile BackOfQ (50%), veh/ln | LnGrp Delay (d), s/veh | LnGrp LOS | Approach Vol, veh/h | Approach Delay, s/veh | Approach LOS | Timer - Assigned Phs | Phs Duration (G+Y+Rc), s | Change Period (Y+Rc), s | Max Green Setting (Gmax), s | Max Q Clear Time (g_c+I1), s | Green Ext Time (p_c), s | Notes |
|------------------|-----------------------|-----------------------|--------------------|---------------------|---------------------|---------------------|-----------------------|-----------------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|-----------------------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|-----------------------|-----------------------|
|                  | 60 413 32 100 426 114 34 134 90 235 144 90 | 60 413 32 100 426 114 34 134 90 235 144 90 | 0 0 0 0 0 0 0 0 0 0 0 0 | 1.00 0.99 1.00 0.99 0.99 1.00 0.99 0.99 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | No No No No | 1856 1856 1856 1856 1856 1856 1856 1856 1856 1856 1856 1856 | 62 430 10 104 444 38 35 140 0 245 150 79 | 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 | 3 3 3 3 3 3 3 3 3 3 3 3 | 304 572 480 330 617 519 334 273 | 1856 1856 1856 1856 1856 1856 1856 1856 1856 1856 1856 1856 | 0.20 0.75 0.02 0.32 0.72 0.07 0.10 0.51 0.51 0.00 0.49 | 804 1484 1248 787 1484 1249 859 990 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 13.5 19.6 13.6 13.3 16.5 12.9 19.8 22.1 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 4.8 0.1 0.8 4.7 0.3 0.4 1.7 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 13.7 19.6 13.6 13.5 18.1 12.9 19.8 23.6 | B B B B B B B | 502 586 | 18.7 18.7 | B B B | 1 2 3 4 5 6 7 8 | 22.3 22.3 5.8 20.2 6.6 23.7 12.7 13.3 | 4.5 5.0 4.5 4.5 4.5 4.5 4.5 | 45.0 18.0 30.0 18.0 45.0 18.0 30.0 | 13.7 2.9 8.2 3.3 13.8 8.1 5.9 | 0.1 2.9 0.0 1.4 0.0 3.2 0.3 0.7 | Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.
### Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Volume (veh/h)</td>
<td>135</td>
<td>310</td>
<td>20</td>
<td>130</td>
<td>330</td>
<td>65</td>
<td>20</td>
<td>251</td>
<td>70</td>
<td>96</td>
<td>345</td>
<td>216</td>
</tr>
<tr>
<td>Future Volume (veh/h)</td>
<td>135</td>
<td>310</td>
<td>20</td>
<td>130</td>
<td>330</td>
<td>65</td>
<td>20</td>
<td>251</td>
<td>70</td>
<td>96</td>
<td>345</td>
<td>216</td>
</tr>
<tr>
<td>Initial Q (Qb), veh</td>
<td>0</td>
</tr>
<tr>
<td>Ped-Bike Adj(A_pbT)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Bus, Adj</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

### Lane Configurations

- **Lane Grp Cap(c), veh/h**: 225
- **Upstream Filter(I)**: 1.00
- **Uniform Delay (d), s/veh**: 35.6
- **Incr Delay (d2), s/veh**: 3.2
- **Initial Q Delay(d3), s/veh**: 0.0
- **%ile BackOfQ(50%),veh/ln**: 3.6
- **LnGrp Delay(d),s/veh**: 38.7
- **LnGrp LOS**: D

### Intersection Summary

- **HCM 6th Ctrl Delay**: 53.9
- **HCM 6th LOS**: D
### Intersection

Intersection Delay, s/veh: 12.5
Intersection LOS: B

### Movement

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>71</td>
<td>50</td>
<td>197</td>
<td>33</td>
<td>48</td>
<td>210</td>
<td>30</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>71</td>
<td>50</td>
<td>197</td>
<td>33</td>
<td>48</td>
<td>210</td>
<td>30</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.87</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>3</td>
</tr>
<tr>
<td>Mvmt Flow</td>
<td>23</td>
<td>57</td>
<td>57</td>
<td>46</td>
<td>46</td>
<td>82</td>
<td>57</td>
<td>226</td>
<td>38</td>
<td>55</td>
<td>241</td>
<td>34</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

### Approach

<table>
<thead>
<tr>
<th>Opposing Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposing Lanes</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Conflicting Approach Left</td>
<td>SB</td>
<td>NB</td>
<td>EB</td>
<td>WB</td>
</tr>
<tr>
<td>Conflicting Lanes Left</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Conflicting Approach Right</td>
<td>NB</td>
<td>SB</td>
<td>WB</td>
<td>EB</td>
</tr>
<tr>
<td>Conflicting Lanes Right</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>10.9</td>
<td>12.9</td>
<td>14.2</td>
<td>11.4</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

### Lane

<table>
<thead>
<tr>
<th>Lane</th>
<th>NBLn1</th>
<th>NBLn2</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>WBLn1</th>
<th>WBLn2</th>
<th>SBLn1</th>
<th>SBLn2</th>
<th>SBLn3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol Left, %</td>
<td>100%</td>
<td>0%</td>
<td>29%</td>
<td>0%</td>
<td>26%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Vol Thru, %</td>
<td>0%</td>
<td>86%</td>
<td>71%</td>
<td>0%</td>
<td>26%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>30%</td>
</tr>
<tr>
<td>Vol Right, %</td>
<td>0%</td>
<td>14%</td>
<td>0%</td>
<td>100%</td>
<td>47%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>30%</td>
</tr>
<tr>
<td>Sign Control</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
</tr>
<tr>
<td>Traffic Vol by Lane</td>
<td>50</td>
<td>230</td>
<td>70</td>
<td>50</td>
<td>151</td>
<td>48</td>
<td>140</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>LT Vol</td>
<td>50</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Through Vol</td>
<td>0</td>
<td>197</td>
<td>50</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>140</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>RT Vol</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>50</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Lane Flow Rate</td>
<td>57</td>
<td>264</td>
<td>80</td>
<td>57</td>
<td>174</td>
<td>55</td>
<td>161</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Geometry Grp</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Degree of Util (X)</td>
<td>0.113</td>
<td>0.474</td>
<td>0.163</td>
<td>0.103</td>
<td>0.328</td>
<td>0.108</td>
<td>0.294</td>
<td>0.203</td>
<td></td>
</tr>
<tr>
<td>Convergence, Y/N</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Cap</td>
<td>504</td>
<td>555</td>
<td>488</td>
<td>552</td>
<td>524</td>
<td>504</td>
<td>544</td>
<td>561</td>
<td></td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.113</td>
<td>0.476</td>
<td>0.164</td>
<td>0.103</td>
<td>0.332</td>
<td>0.109</td>
<td>0.296</td>
<td>0.205</td>
<td></td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>10.8</td>
<td>15</td>
<td>11.5</td>
<td>10</td>
<td>12.9</td>
<td>10.7</td>
<td>12.1</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>HCM 95th-tile Q</td>
<td>0.4</td>
<td>2.5</td>
<td>0.6</td>
<td>0.3</td>
<td>1.4</td>
<td>0.4</td>
<td>1.2</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>
### Intersection

**Intersection Delay, s/veh**: 17.8  
**Intersection LOS**: C  

### Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
<td>58</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
<td>58</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.97</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>3</td>
</tr>
<tr>
<td>Mvmt Flow</td>
<td>93</td>
<td>124</td>
<td>113</td>
<td>62</td>
<td>62</td>
<td>84</td>
<td>113</td>
<td>185</td>
<td>60</td>
<td>104</td>
<td>268</td>
<td>93</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

### Approach

<table>
<thead>
<tr>
<th>Opposing Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposing Lanes</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Conflicting Approach Left</td>
<td>SB</td>
<td>NB</td>
<td>EB</td>
<td>WB</td>
</tr>
<tr>
<td>Conflicting Lanes Left</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Conflicting Approach Right</td>
<td>NB</td>
<td>SB</td>
<td>WB</td>
<td>EB</td>
</tr>
<tr>
<td>Conflicting Lanes Right</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>18.1</td>
<td>19.9</td>
<td>19.2</td>
<td>15.7</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

### Lane

<table>
<thead>
<tr>
<th>Lane</th>
<th>NBLn1</th>
<th>NBLn2</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>WBLn1</th>
<th>WBLn2</th>
<th>SBLn1</th>
<th>SBLn2</th>
<th>SBLn3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol Left, %</td>
<td>100%</td>
<td>0%</td>
<td>43%</td>
<td>0%</td>
<td>30%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Vol Thru, %</td>
<td>0%</td>
<td>76%</td>
<td>57%</td>
<td>0%</td>
<td>30%</td>
<td>0%</td>
<td>100%</td>
<td>49%</td>
<td></td>
</tr>
<tr>
<td>Vol Right, %</td>
<td>0%</td>
<td>24%</td>
<td>0%</td>
<td>100%</td>
<td>40%</td>
<td>0%</td>
<td>0%</td>
<td>51%</td>
<td></td>
</tr>
<tr>
<td>Sign Control</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td></td>
</tr>
<tr>
<td>Traffic Vol by Lane</td>
<td>110</td>
<td>237</td>
<td>210</td>
<td>110</td>
<td>201</td>
<td>101</td>
<td>173</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>LT Vol</td>
<td>110</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>60</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Through Vol</td>
<td>0</td>
<td>179</td>
<td>120</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>173</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>RT Vol</td>
<td>0</td>
<td>58</td>
<td>0</td>
<td>110</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Lane Flow Rate</td>
<td>113</td>
<td>244</td>
<td>216</td>
<td>113</td>
<td>207</td>
<td>104</td>
<td>179</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>Geometry Grp</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Degree of Util (X)</td>
<td>0.282</td>
<td>0.56</td>
<td>0.524</td>
<td>0.245</td>
<td>0.501</td>
<td>0.252</td>
<td>0.407</td>
<td>0.396</td>
<td></td>
</tr>
<tr>
<td>Departure Headway (Hd)</td>
<td>8.949</td>
<td>8.253</td>
<td>8.718</td>
<td>7.78</td>
<td>8.696</td>
<td>8.707</td>
<td>8.191</td>
<td>7.824</td>
<td></td>
</tr>
<tr>
<td>Convergence, Y/N</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Cap</td>
<td>401</td>
<td>437</td>
<td>414</td>
<td>462</td>
<td>414</td>
<td>413</td>
<td>440</td>
<td>461</td>
<td></td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.282</td>
<td>0.558</td>
<td>0.522</td>
<td>0.245</td>
<td>0.5</td>
<td>0.252</td>
<td>0.407</td>
<td>0.395</td>
<td></td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>15.2</td>
<td>21.1</td>
<td>20.7</td>
<td>13.1</td>
<td>19.9</td>
<td>14.4</td>
<td>16.5</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>HCM 95th-tile Q</td>
<td>1.1</td>
<td>3.3</td>
<td>2.9</td>
<td>1</td>
<td>2.7</td>
<td>1</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>
### Intersection Conditions

**Intersection Delay, s/veh**: 13.3
**Intersection LOS**: B

### Movement Configurations

<table>
<thead>
<tr>
<th>Lane Configurations</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Vol, veh/h</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>71</td>
<td>50</td>
<td>197</td>
<td>33</td>
<td>48</td>
<td>210</td>
<td>30</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>71</td>
<td>50</td>
<td>197</td>
<td>33</td>
<td>48</td>
<td>210</td>
<td>30</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.87</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>3</td>
</tr>
<tr>
<td>Mvmt Flow</td>
<td>23</td>
<td>57</td>
<td>57</td>
<td>46</td>
<td>46</td>
<td>82</td>
<td>57</td>
<td>226</td>
<td>38</td>
<td>55</td>
<td>241</td>
<td>34</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

### Approach Configuration

<table>
<thead>
<tr>
<th>Opposing Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposing Lanes</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Conflicting Approach Left</td>
<td>SB</td>
<td>NB</td>
<td>EB</td>
<td>WB</td>
</tr>
<tr>
<td>Conflicting Lanes Left</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Conflicting Approach Right</td>
<td>NB</td>
<td>SB</td>
<td>WB</td>
<td>EB</td>
</tr>
<tr>
<td>Conflicting Lanes Right</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>11</td>
<td>13.1</td>
<td>14.4</td>
<td>13.3</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

### Lane Conditions

<table>
<thead>
<tr>
<th>Lane</th>
<th>NBLn1</th>
<th>NBLn2</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>WBLn1</th>
<th>WBLn2</th>
<th>SBLn1</th>
<th>SBLn2</th>
<th>SBLn3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol Left, %</td>
<td>100%</td>
<td>0%</td>
<td>29%</td>
<td>0%</td>
<td>26%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Vol Thru, %</td>
<td>0%</td>
<td>86%</td>
<td>71%</td>
<td>0%</td>
<td>26%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Vol Right, %</td>
<td>0%</td>
<td>14%</td>
<td>0%</td>
<td>100%</td>
<td>47%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Sign Control</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td></td>
</tr>
<tr>
<td>Traffic Vol by Lane</td>
<td>50</td>
<td>230</td>
<td>70</td>
<td>50</td>
<td>151</td>
<td>48</td>
<td>210</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>LT Vol</td>
<td>50</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>40</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Through Vol</td>
<td>0</td>
<td>197</td>
<td>50</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>210</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RT Vol</td>
<td>0</td>
<td>33</td>
<td>50</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Flow Rate</td>
<td>57</td>
<td>264</td>
<td>80</td>
<td>57</td>
<td>174</td>
<td>55</td>
<td>241</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Geometry Grp</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Degree of Util (X)</td>
<td>0.113</td>
<td>0.477</td>
<td>0.166</td>
<td>0.105</td>
<td>0.335</td>
<td>0.109</td>
<td>0.441</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>Convergence, Y/N</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Cap</td>
<td>501</td>
<td>550</td>
<td>485</td>
<td>548</td>
<td>521</td>
<td>502</td>
<td>543</td>
<td>603</td>
<td></td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.114</td>
<td>0.48</td>
<td>0.165</td>
<td>0.104</td>
<td>0.334</td>
<td>0.11</td>
<td>0.444</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>10.8</td>
<td>15.2</td>
<td>11.6</td>
<td>10.1</td>
<td>13.1</td>
<td>10.8</td>
<td>14.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>HCM 95th-tile Q</td>
<td>0.4</td>
<td>2.6</td>
<td>0.6</td>
<td>0.3</td>
<td>1.5</td>
<td>0.4</td>
<td>2.2</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>
### Intersection

<table>
<thead>
<tr>
<th>Intersection Delay, s/veh</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersection LOS</td>
<td>C</td>
</tr>
</tbody>
</table>

### Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Traffic Vol, veh/h</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
<td>58</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
<tr>
<td>Future Vol, veh/h</td>
<td>90</td>
<td>120</td>
<td>110</td>
<td>60</td>
<td>60</td>
<td>81</td>
<td>110</td>
<td>179</td>
<td>58</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.97</td>
</tr>
<tr>
<td>Heavy Vehicles, %</td>
<td>3</td>
</tr>
<tr>
<td>Mvmt Flow</td>
<td>93</td>
<td>124</td>
<td>113</td>
<td>62</td>
<td>62</td>
<td>84</td>
<td>113</td>
<td>185</td>
<td>60</td>
<td>104</td>
<td>268</td>
<td>93</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

### Approach

<table>
<thead>
<tr>
<th>Approach</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposing Approach</td>
<td>WB</td>
<td>EB</td>
<td>SB</td>
<td>NB</td>
</tr>
<tr>
<td>Opposing Lanes</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Conflicting Approach Left</td>
<td>SB</td>
<td>NB</td>
<td>EB</td>
<td>WB</td>
</tr>
<tr>
<td>Conflicting Lanes Left</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Conflicting Approach Right</td>
<td>NB</td>
<td>SB</td>
<td>WB</td>
<td>EB</td>
</tr>
<tr>
<td>Conflicting Lanes Right</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>18.2</td>
<td>20.1</td>
<td>19.4</td>
<td>18.9</td>
</tr>
<tr>
<td>HCM LOS</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

### Lane

<table>
<thead>
<tr>
<th>Lane</th>
<th>NBLn1</th>
<th>NBLn2</th>
<th>EBLn1</th>
<th>EBLn2</th>
<th>WBLn1</th>
<th>SBLn1</th>
<th>SBLn2</th>
<th>SBLn3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol Left, %</td>
<td>100%</td>
<td>0%</td>
<td>43%</td>
<td>0%</td>
<td>30%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Vol Thru, %</td>
<td>0%</td>
<td>76%</td>
<td>57%</td>
<td>0%</td>
<td>30%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Vol Right, %</td>
<td>0%</td>
<td>24%</td>
<td>0%</td>
<td>100%</td>
<td>40%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Sign Control</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
<td>Stop</td>
</tr>
<tr>
<td>Traffic Vol by Lane</td>
<td>110</td>
<td>237</td>
<td>210</td>
<td>110</td>
<td>201</td>
<td>101</td>
<td>260</td>
<td>90</td>
</tr>
<tr>
<td>LT Vol</td>
<td>110</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>60</td>
<td>101</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Through Vol</td>
<td>0</td>
<td>179</td>
<td>120</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>260</td>
<td>0</td>
</tr>
<tr>
<td>RT Vol</td>
<td>0</td>
<td>58</td>
<td>0</td>
<td>110</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>Lane Flow Rate</td>
<td>113</td>
<td>244</td>
<td>216</td>
<td>113</td>
<td>207</td>
<td>104</td>
<td>268</td>
<td>93</td>
</tr>
<tr>
<td>Geometry Grp</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Degree of Util (X)</td>
<td>0.283</td>
<td>0.563</td>
<td>0.527</td>
<td>0.247</td>
<td>0.503</td>
<td>0.252</td>
<td>0.611</td>
<td>0.193</td>
</tr>
<tr>
<td>Departure Headway (Hd)</td>
<td>8.991</td>
<td>8.295</td>
<td>8.768</td>
<td>7.829</td>
<td>8.747</td>
<td>8.721</td>
<td>8.206</td>
<td>7.484</td>
</tr>
<tr>
<td>Convergence, Y/N</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cap</td>
<td>400</td>
<td>435</td>
<td>411</td>
<td>458</td>
<td>412</td>
<td>412</td>
<td>440</td>
<td>480</td>
</tr>
<tr>
<td>Service Time</td>
<td>6.743</td>
<td>6.045</td>
<td>6.518</td>
<td>5.578</td>
<td>6.5</td>
<td>6.469</td>
<td>5.953</td>
<td>5.231</td>
</tr>
<tr>
<td>HCM Lane V/C Ratio</td>
<td>0.282</td>
<td>0.561</td>
<td>0.526</td>
<td>0.247</td>
<td>0.502</td>
<td>0.252</td>
<td>0.609</td>
<td>0.194</td>
</tr>
<tr>
<td>HCM Control Delay</td>
<td>15.3</td>
<td>21.3</td>
<td>20.9</td>
<td>13.1</td>
<td>20.1</td>
<td>14.4</td>
<td>23.1</td>
<td>12</td>
</tr>
<tr>
<td>HCM Lane LOS</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>HCM 95th-tile Q</td>
<td>1.1</td>
<td>3.4</td>
<td>3</td>
<td>1</td>
<td>2.7</td>
<td>1</td>
<td>4</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Appendix D: Intersection Control

Warrants
## 4-Hour Traffic Signal Warrant

**Major Street Direction**
- S High St (all movements)
- Wells St (all movements)

**Project**
- Wailuku State Office

**Scenario**
- Existing

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Traffic Volume (VPH) *</th>
<th>Number of Approach Lanes</th>
<th>Major Street</th>
<th>Minor Street</th>
<th>Above Threshold?</th>
<th>Warrant Met?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>S High St</td>
<td>Wells St (all movements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 PM - 3:00 PM</td>
<td>1,038</td>
<td>1</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00 PM - 4:00 PM</td>
<td>1,217</td>
<td>2</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 PM - 5:00 PM</td>
<td>1,347</td>
<td>1</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00 PM - 6:00 PM</td>
<td>1,005</td>
<td>2</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Traffic Volume for Major Street is Total Volume of Both Approaches. Traffic Volume for Minor Street is the Volume of High Volume Approach.

* Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.
The need for a traffic control signal shall be considered if an engineering study finds that one of the following conditions exist for each of any 8 hours of an average day:

A. The vehicles per hour given in both of the 100 percent columns of Condition A in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection; or

B. The vehicles per hour given in both of the 100 percent columns of Condition B in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection.

### Table 4C-1. Warrant 1, Eight-Hour Vehicular Volume

#### Condition A—Minimum Vehicular Volume

<table>
<thead>
<tr>
<th>Major Street</th>
<th>Minor Street</th>
<th>Vehicles per hour on major street (total of both approaches)</th>
<th>Vehicles per hour on higher-volume minor-street approach (one direction only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>500, 400, 350, 280</td>
<td>150, 120, 105, 84</td>
</tr>
<tr>
<td>2 or more</td>
<td>1</td>
<td>600, 480, 420, 336</td>
<td>200, 160, 140, 112</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
<td>600, 480, 420, 336</td>
<td>200, 160, 140, 112</td>
</tr>
<tr>
<td>1</td>
<td>2 or more</td>
<td>500, 400, 350, 280</td>
<td>200, 160, 140, 112</td>
</tr>
</tbody>
</table>

#### Condition B—Interruption of Continuous Traffic

<table>
<thead>
<tr>
<th>Major Street</th>
<th>Minor Street</th>
<th>Vehicles per hour on major street (total of both approaches)</th>
<th>Vehicles per hour on higher-volume minor-street approach (one direction only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>750, 600, 525, 420</td>
<td>75, 60, 53, 42</td>
</tr>
<tr>
<td>2 or more</td>
<td>1</td>
<td>900, 720, 630, 504</td>
<td>75, 60, 53, 42</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
<td>900, 720, 630, 504</td>
<td>100, 80, 70, 56</td>
</tr>
<tr>
<td>1</td>
<td>2 or more</td>
<td>750, 600, 525, 420</td>
<td>100, 80, 70, 56</td>
</tr>
</tbody>
</table>

* Basic minimum hourly volume

b Used for combination of Conditions A and B after adequate trial of other remedial measures

c May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

d May be used for combination of Conditions A and B after adequate trial of other remedial measures when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

### Traffic Volume (VPH) *

<table>
<thead>
<tr>
<th>Traffic Volume (VPH)</th>
<th>Major Street</th>
<th>Minor Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00 AM - 7:00 AM</td>
<td>761</td>
<td>53</td>
</tr>
<tr>
<td>7:00 AM - 8:00 AM</td>
<td>1,343</td>
<td>71</td>
</tr>
<tr>
<td>8:00 AM - 9:00 AM</td>
<td>952</td>
<td>75</td>
</tr>
<tr>
<td>3:00 PM - 4:00 PM</td>
<td>1,217</td>
<td>114</td>
</tr>
<tr>
<td>4:00 PM - 5:00 PM</td>
<td>1,347</td>
<td>139</td>
</tr>
<tr>
<td>5:00 PM - 6:00 PM</td>
<td>1,005</td>
<td>121</td>
</tr>
</tbody>
</table>

* Note: Traffic Volume for Major Street is Total Volume of Both Approaches. Traffic Volume for Minor Street is the Volume of High Volume Approach.
# 4-Hour Traffic Signal Warrant

### Major Street Direction
- **S High St**
- **Wells St (left-turn only)**

### Project
- **Wailuku State Office**

### Scenario
- **Existing**

<table>
<thead>
<tr>
<th>Number of Approach Lanes</th>
<th>Major Street</th>
<th>Minor Street</th>
<th>Above Threshold?</th>
<th>Warrant Met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S High St</td>
<td>Wells St (left-turn only)</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traffic Volume (VPH) *</th>
<th>Major Street</th>
<th>Minor Street</th>
<th>Above Threshold?</th>
<th>Warrant Met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 PM - 3:00 PM</td>
<td>1,038</td>
<td>77</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3:00 PM - 4:00 PM</td>
<td>1,217</td>
<td>90</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4:00 PM - 5:00 PM</td>
<td>1,347</td>
<td>115</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5:00 PM - 6:00 PM</td>
<td>1,005</td>
<td>100</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Note: Traffic Volume for Major Street is Total Volume of Both Approaches.
Traffic Volume for Minor Street is the Volume of High Volume Approach.

---

**Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume**

- **2 or more lanes & 2 or more lanes**
- **2 or more lanes & 1 lane**
- **1 lane & 1 lane**

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.
The need for a traffic control signal shall be considered if an engineering study finds that one of the following conditions exist for each of any 8 hours of an average day:

A. The vehicles per hour given in both of the 100 percent columns of Condition A in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection; or

B. The vehicles per hour given in both of the 100 percent columns of Condition B in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection.

### Table 4C-1. Warrant 1, Eight-Hour Vehicular Volume

#### Condition A—Minimum Vehicular Volume

<table>
<thead>
<tr>
<th>Major Street</th>
<th>Minor Street</th>
<th>Vehicles per hour on major street (total of both approaches)</th>
<th>Vehicles per hour on higher-volume minor-street approach (one direction only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>100%&lt;sup&gt;a&lt;/sup&gt;</td>
<td>80%&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>500</td>
<td>400</td>
</tr>
<tr>
<td>2 or more</td>
<td>1</td>
<td>600</td>
<td>480</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
<td>600</td>
<td>480</td>
</tr>
<tr>
<td>1</td>
<td>2 or more</td>
<td>500</td>
<td>400</td>
</tr>
</tbody>
</table>

#### Condition B— Interruption of Continuous Traffic

<table>
<thead>
<tr>
<th>Major Street</th>
<th>Minor Street</th>
<th>Vehicles per hour on major street (total of both approaches)</th>
<th>Vehicles per hour on higher-volume minor-street approach (one direction only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>100%&lt;sup&gt;a&lt;/sup&gt;</td>
<td>80%&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>750</td>
<td>600</td>
</tr>
<tr>
<td>2 or more</td>
<td>1</td>
<td>900</td>
<td>720</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
<td>900</td>
<td>720</td>
</tr>
<tr>
<td>1</td>
<td>2 or more</td>
<td>750</td>
<td>600</td>
</tr>
</tbody>
</table>

*Note:*

- **a** Basic minimum hourly volume
- **b** Used for combination of Conditions A and B after adequate trial of other remedial measures
- **c** May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000
- **d** May be used for combination of Conditions A and B after adequate trial of other remedial measures when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

### Traffic Volume (VPH) *

<table>
<thead>
<tr>
<th>Number of Approach Lanes</th>
<th>Major Street</th>
<th>Minor Street</th>
<th>A Warrant</th>
<th>B Warrant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S High St</td>
<td>Wells St (left-turn only)</td>
<td>Above Threshold?</td>
<td>Warrant Met?</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

*Note: Traffic Volume for Major Street is Total Volume of Both Approaches.
Traffic Volume for Minor Street is the Volume of High Volume Approach.
### 4-Hour Traffic Signal Warrant

**Major Street Direction**
- Major Street: S High St
- Minor Street: Wells St (all movements)

**Project**
- Wailuku State Office

**Scenario**
- Future No Project

<table>
<thead>
<tr>
<th>Time</th>
<th>Traffic Volume (VPH)</th>
<th>Major Street</th>
<th>Minor Street</th>
<th>Above Threshold?</th>
<th>Warrant Met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 PM - 3:00 PM*</td>
<td>1,360</td>
<td>160</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00 PM - 4:00 PM*</td>
<td>1,630</td>
<td>180</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 PM - 5:00 PM*</td>
<td>1,810</td>
<td>210</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00 PM - 6:00 PM*</td>
<td>1,350</td>
<td>190</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Traffic Volume for Major Street is Total Volume of Both Approaches. Traffic Volume for Minor Street is the Volume of High Volume Approach. Shoulder hour intersection volumes were estimated using available 24-hour DOT counts on South High Street.

---

**Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume**

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.*
The need for a traffic control signal shall be considered if an engineering study finds that one of the following conditions exist for each of any 8 hours of an average day:

A. The vehicles per hour given in both of the 100 percent columns of Condition A in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection; or

B. The vehicles per hour given in both of the 100 percent columns of Condition B in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection.

Table 4C-1. Warrant 1, Eight-Hour Vehicular Volume

<table>
<thead>
<tr>
<th>Condition A—Minimum Vehicular Volume</th>
<th>Number of lanes for moving traffic on each approach</th>
<th>Vehicles per hour on major street (total of both approaches)</th>
<th>Vehicles per hour on higher-volume minor-street approach (one direction only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Street</td>
<td>Minor Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>500</td>
<td>150</td>
</tr>
<tr>
<td>2 or more</td>
<td>1</td>
<td>600</td>
<td>150</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>2 or more</td>
<td>500</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition B—Interruption of Continuous Traffic</th>
<th>Number of lanes for moving traffic on each approach</th>
<th>Vehicles per hour on major street (total of both approaches)</th>
<th>Vehicles per hour on higher-volume minor-street approach (one direction only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Street</td>
<td>Minor Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>750</td>
<td>75</td>
</tr>
<tr>
<td>2 or more</td>
<td>1</td>
<td>900</td>
<td>75</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
<td>900</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>2 or more</td>
<td>750</td>
<td>100</td>
</tr>
</tbody>
</table>

* Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

<table>
<thead>
<tr>
<th>Traffic Volume (VPH) *</th>
<th>Number of Approach Lanes</th>
<th>Major Street</th>
<th>Minor Street</th>
<th>A Warrant</th>
<th>B Warrant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S High St</td>
<td>Wells St (all movements)</td>
<td>Above Threshold?</td>
<td>Warrant Met?</td>
</tr>
<tr>
<td>8:00 AM - 9:00 AM</td>
<td>1</td>
<td>1,280</td>
<td>110</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>12:00 PM - 1:00 PM**</td>
<td>1</td>
<td>1,190</td>
<td>140</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>1:00 PM - 2:00 PM**</td>
<td>1</td>
<td>1,200</td>
<td>140</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2:00 PM - 3:00 PM**</td>
<td>1</td>
<td>1,360</td>
<td>160</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3:00 PM - 4:00 PM</td>
<td>1</td>
<td>1,630</td>
<td>180</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>4:00 PM - 5:00 PM</td>
<td>1</td>
<td>1,810</td>
<td>210</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5:00 PM - 6:00 PM</td>
<td>1</td>
<td>1,350</td>
<td>190</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>6:00 PM - 7:00 PM**</td>
<td>1</td>
<td>1,080</td>
<td>130</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

** Off-peak hour intersection volumes were estimated using available 24-hour DOT counts on South High Street.
4-Hour Traffic Signal Warrant

**Major Street Direction**
- S High St
- Wells St (left-turn only)

**Project**
- Wailuku State Office

**Scenario**
- Future No Project

<table>
<thead>
<tr>
<th>Time</th>
<th>Major Street VPH</th>
<th>Minor Street VPH</th>
<th>Above Threshold?</th>
<th>Warrant Met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 PM - 3:00 PM</td>
<td>1,360</td>
<td>130</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3:00 PM - 4:00 PM</td>
<td>1,630</td>
<td>140</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4:00 PM - 5:00 PM</td>
<td>1,810</td>
<td>170</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5:00 PM - 6:00 PM</td>
<td>1,350</td>
<td>150</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Note: Traffic Volume for Major Street is Total Volume of Both Approaches.
Traffic Volume for Minor Street is the Volume of High Volume Approach.

**Shoulder hour intersection volumes were estimated using available 24-hour DOT counts on South High Street.**

---

**Figure 4C.1. Warrant 2, Four-Hour Vehicular Volume**

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.
The need for a traffic control signal shall be considered if an engineering study finds that one of the following conditions exist for each of any 8 hours of an average day:

A. The vehicles per hour given in both of the 100 percent columns of Condition A in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection; or

B. The vehicles per hour given in both of the 100 percent columns of Condition B in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection.

### Table 4C-1. Warrant 1, Eight-Hour Vehicular Volume

#### Condition A—Minimum Vehicular Volume

<table>
<thead>
<tr>
<th>Number of lanes for moving traffic on each approach</th>
<th>Vehicles per hour on major street (total of both approaches)</th>
<th>Vehicles per hour on higher-volume minor-street approach (one direction only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Street</td>
<td>Minor Street</td>
<td>100%&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>2 or more</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
<td>600</td>
</tr>
<tr>
<td>1</td>
<td>2 or more</td>
<td>500</td>
</tr>
</tbody>
</table>

#### Condition B—Interuption of Continuous Traffic

<table>
<thead>
<tr>
<th>Number of lanes for moving traffic on each approach</th>
<th>Vehicles per hour on major street (total of both approaches)</th>
<th>Vehicles per hour on higher-volume minor-street approach (one direction only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Street</td>
<td>Minor Street</td>
<td>100%&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>750</td>
</tr>
<tr>
<td>2 or more</td>
<td>1</td>
<td>900</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
<td>900</td>
</tr>
<tr>
<td>1</td>
<td>2 or more</td>
<td>750</td>
</tr>
</tbody>
</table>

<sup>a</sup> Basic minimum hourly volume  
<sup>b</sup> Used for combination of Conditions A and B after adequate trial of other remedial measures  
<sup>c</sup> May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000  
<sup>d</sup> May be used for combination of Conditions A and B after adequate trial of other remedial measures when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

---

**Note:** Traffic Volume for Major Street is Total Volume of Both Approaches.  
Traffic Volume for Minor Street is the Volume of High Volume Approach.  
**Off-peak hour intersection volumes were estimated using available 24-hour DOT counts on South High Street.
4-Hour Traffic Signal Warrant

Major Street Direction
- **Major Street**: S High St
- **Minor Street**: Wells St (all movements)
- **Project**: Wailuku State Office
- **Scenario**: Future Plus Project

<table>
<thead>
<tr>
<th>Time</th>
<th>Major Street Traffic Volume (VPH)</th>
<th>Minor Street Traffic Volume (VPH)</th>
<th>Above Threshold?</th>
<th>Warrant Met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 PM - 3:00 PM**</td>
<td>1,370</td>
<td>190</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3:00 PM - 4:00 PM</td>
<td>1,640</td>
<td>210</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4:00 PM - 5:00 PM</td>
<td>1,820</td>
<td>250</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5:00 PM - 6:00 PM</td>
<td>1,360</td>
<td>220</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

* Should hour intersection volumes were estimated using available 24-hour DOT counts on South High Street.

---

**Figure 4C.1**. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.
The need for a traffic control signal shall be considered if an engineering study finds that one of the following conditions exist for each of any 8 hours of an average day:

A. The vehicles per hour given in both of the 100 percent columns of Condition A in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection; or

B. The vehicles per hour given in both of the 100 percent columns of Condition B in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection.

Table 4C-1. Warrant 1, Eight-Hour Vehicular Volume

<table>
<thead>
<tr>
<th>Condition A—Minimum Vehicular Volume</th>
<th>Condition B—Interruption of Continuous Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Number of lanes for moving traffic on each approach</strong></td>
<td><strong>Vehicles per hour on major street</strong> (total of both approaches)</td>
</tr>
<tr>
<td>Major Street</td>
<td>Minor Street</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2 or more</td>
<td>1</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
</tr>
<tr>
<td>1</td>
<td>2 or more</td>
</tr>
</tbody>
</table>

* Basic minimum hourly volume

** Used for combination of Conditions A and B after adequate trial of other remedial measures

* May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

** May be used for combination of Conditions A and B after adequate trial of other remedial measures when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

** Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

** Off-peak hour intersection volumes were estimated using available 24-hour DOT counts on South High Street.
4-Hour Traffic Signal Warrant

Major Street Direction
- S High St (North/South)
- Wells St (left-turn only) (East/West)

Project
- Wailuku State Office

Scenario
- Future Plus Project

Traffic Volume (VPH) *

<table>
<thead>
<tr>
<th>Number of Approach Lanes</th>
<th>Major Street</th>
<th>Minor Street</th>
<th>Above Threshold?</th>
<th>Warrant Met?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S High St</td>
<td>Wells St</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

** Shoulder hour intersection volumes were estimated using available 24-hour DOT counts on South High Street.

Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.
The need for a traffic control signal shall be considered if an engineering study finds that one of the following conditions exist for each of any 8 hours of an average day:

A. The vehicles per hour given in both of the 100 percent columns of Condition A in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection; or

B. The vehicles per hour given in both of the 100 percent columns of Condition B in Table 4C-1 exist on the major-street and the higher-volume minor-street approaches, respectively, to the intersection.

Table 4C-1. Warrant 1, Eight-Hour Vehicular Volume

<table>
<thead>
<tr>
<th>Condition A—Minimum Vehicular Volume</th>
<th>Condition B—Interruption of Continuous Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lanes for moving traffic on each approach</td>
<td>Vehicles per hour on major street (total of both approaches)</td>
</tr>
<tr>
<td>Major Street</td>
<td>Minor Street</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2 or more</td>
<td>1</td>
</tr>
<tr>
<td>2 or more</td>
<td>2 or more</td>
</tr>
<tr>
<td>1</td>
<td>2 or more</td>
</tr>
</tbody>
</table>

Note: Traffic Volume for Major Street is Total Volume of Both Approaches.

**Off-peak hour intersection volumes were estimated using available 24-hour DOT counts on South High Street.
Appendix E: Cumulative Project Trip Generation
NOTE:
THIS DRAWING IS FOR ILLUSTRATIVE PURPOSES ONLY. DO NOT USE FOR CONSTRUCTION.

LEGEND
#(H) - AM(PM) PEAK HOUR OF TRAFFIC VOLUMES
NOTE:
THIS DRAWING IS FOR ILLUSTRATIVE PURPOSES ONLY. DO NOT USE FOR CONSTRUCTION.

LEGEND

(AM/PM) PEAK HOUR OF VEHICLE VOLUMES

- SIGNALIZED INTERSECTION Y, OVERALL AM/PM LOS

- UNSIGNALIZED INTERSECTION X

VEVAU STREET BUS HUB TIAR

PROJECT-GENERATED TRIPS

FIGURE 5.1
Historical Resource Evaluation Report
HISTORICAL RESOURCE EVALUATION REPORT

KAHULUI CIVIC CENTER AND MIXED-USE COMPLEX PROJECT
WAILUKU AHUPUAʻA, WAILUKU DISTRICT, ISLAND OF MAUI, HAWAIʻI

TMK: (2) 3-7-004:003 (POR.)

Prepared for:

State of Hawaiʻi
Department of Business, Economic Development & Tourism
Hawaiʻi Housing Finance & Development Corporation
677 Queen Street, Suite 300
Honolulu, HI 96813

On behalf of:

G70
111 S. King Street, Suite 170
Honolulu, Hawaii 96813

Prepared by:

Edward Yarbrough, M.S.H.P., Assoc. AIA
Yarbrough Architectural Resources
2150 Silverado Trail North
Saint Helena, CA 94574

Project No: YAR_KPAC-Maui2021

January 2022
# TABLE OF CONTENTS

I. SUMMARY OF FINDINGS .................................................................................................................. 3

II. INTRODUCTION ............................................................................................................................. 4
   Qualifications of Preparer .................................................................................................................. 5

III. PROJECT LOCATION AND DESCRIPTION .................................................................................. 6
   Project Location ............................................................................................................................... 6
   Project Description .......................................................................................................................... 7
   Regulatory Context .......................................................................................................................... 8
   Federal Regulations ......................................................................................................................... 8
   State Regulations ............................................................................................................................ 10

IV. HISTORICAL CONTEXT .................................................................................................................. 13
   Wailuku in Traditional Times .......................................................................................................... 13
   Place Names .................................................................................................................................... 13
   Subsistence and Traditional Land Use ........................................................................................... 14
   War and Conquest in Wailuku ........................................................................................................ 17
   Historic Wailuku: The 19th and 20th Centuries ............................................................................ 18
   Māhele Land Tenure ....................................................................................................................... 20
   Historic Maps ................................................................................................................................... 21
   Kahului School Development .......................................................................................................... 25

V. FIELD METHODS ........................................................................................................................... 28

VI. PHYSICAL DESCRIPTION OF HISTORIC FEATURES ................................................................. 29
   Architectural Resources .................................................................................................................. 29
   Stone and Mortar Wall, Historic Feature No. 1 ............................................................................. 30
   Administration Building, Historic Feature No. 2 .......................................................................... 31
   Cafeteria Building, Historic Feature No. 3 .................................................................................... 32
   Utility Shed, Historic Feature No. 4 ............................................................................................... 32

VII. SIGNIFICANCE EVALUATION ..................................................................................................... 33
   Application of the NRHP Significance Criteria ............................................................................. 33
   Application of the HRHP Significance Criteria ............................................................................. 35
   Historical Integrity Assessment ...................................................................................................... 36

IX. CONCLUSIONS AND RECOMMENDATIONS ........................................................................... 37

X. REFERENCES CITED ...................................................................................................................... 38

ATTACHMENT A. – PREPARATOR’S RESUME .................................................................................. 42

ATTACHMENT B. – PHOTOGRAPHIC RECORD ............................................................................... 45

STONE AND MORTAR WALL, HISTORICAL FEATURE NO. 1 ....................................................... 46
ADMINISTRATION BUILDING, HISTORICAL FEATURES NO. 2 .................................................. 54
CAFETERIA BUILDING RUINS, HISTORICAL FEATURE NO. 3 ................................................. 69
ELECTRICAL SHED, HISTORICAL FEATURE NO. 4 ................................................................. 72
LIST OF FIGURES

FIGURE 1 PROJECT AREA IS THE PARCEL BOUNDARY, TMK: (2) 3-7-004:003. (SOURCE: 7.5-MINUTE WAILUKU QUADRANGLE MAP, USGS 2013, KEALA PONO ARCHAEOLOGICAL CONSULTING, LLC, ARCHAEOLOGICAL INVENTORY SURVEY 2021)........ 6
FIGURE 2 THE 4.72-ACRE PARCEL LIES WITHIN A LARGELY REDEVELOPED AREA. (SOURCE: TMK PLAT MAP, STATE OF HAWAI‘I 1974, KEALA PONO ARCHAEOLOGICAL CONSULTING, LLC, ARCHAEOLOGICAL INVENTORY SURVEY 2021)...................... 7
FIGURE 3 MAJOR SUGARCANE IRRIGATION DITCHES ON THE ISLAND OF MAUI (WILCOX 1996:120 FROM KEALA PONO ARCHAEOLOGICAL CONSULTING 2021). ........................................................................................................ 19
FIGURE 4 PORTION OF A MAP OF WAILUKU AREA, INCLUDING KAHLULUI (ALEXANDER 1881 FROM KEALA PONO ARCHAEOLOGICAL CONSULTING 2021). ........................................................................................................ 22
FIGURE 5 PORTION OF A MAP OF MAUI (DODGE 1885 FROM KEALA PONO ARCHAEOLOGICAL CONSULTING 2021). .............. 23
FIGURE 6 PORTION OF A MAP OF KAHLULUI AND KAHLULUI HARBOR (HOWELL 1896 FROM KEALA PONO ARCHAEOLOGICAL CONSULTING 2021)........................................................................................................ 24
FIGURE 7 PORTION OF A MAP OF THE TOWN OF KAHLULUI WITH A CLOSE UP INSET OF THE SUBJECT PROPERTY (DUNN 1953 FROM KEALA PONO ARCHAEOLOGICAL CONSULTING 2021). ......................................................... 25
FIGURE 8 HISTORIC FEATURES LOCATED WITHIN THE SUBJECT PROPERTY (AERIAL VIEW FROM GOOGLE EARTH 2020). ........... 29
FIGURE 9 STONE AND MORTAR WALL WITH EMBOSSED DATE OF CONSTRUCTION, "WPA 1939." (PHOTOGRAPH COURTESY OF KEALA PONO ARCHAEOLOGICAL CONSULTING 2021)........................................................................ 30
I. SUMMARY OF FINDINGS

This Historic Resource Evaluation Report (HRER or Report) is conducted for the proposed Kahului Civic Center and Mixed-Use Complex Project in Wailuku Ahupua’a, Wailuku District, on the island of Maui. This is located at 153 W. Ka‘ahumanu Avenue on a portion of TMK: (2) 3-7-004:003.

This HRER evaluates the property for historical significance to comply with Hawai‘i Revised Statutes (HRS) 6E-8, Hawai‘i Administrative Rules (HAR) 13-275-6, criteria a through e. This report recommends that the property is significant and, therefore, applies the seven (7) aspects of historical integrity to recommend whether or not it retains sufficient integrity to convey that significance. This HRER meets the standards of an Intensive Level Survey (ILS) assessment and evaluates the property against the criteria of both the National Register of Historic Places (NRHP) and the Hawai‘i Register of Historic Places (HRHP) per HAR 13-275-6.

This work was designed to identify any historic properties that may be located on the parcels in anticipation of the proposed construction. The HRER included a survey recorded by photographs (see Attachment B – Photographic Record) and notes. The property has three buildings and a stone- and-mortar wall and has been affected by a recent demolition and regrading at the northwest portion of a parcel. The Administration Building is in fair to good condition; a Cafeteria Building is in an advanced state of collapse; a utility shed is ubiquitous and of uncertain construction date; and a historic-era wall is in good condition. A preservation plan should be prepared for the wall and mitigation measures developed in the form of documentation and public interpretation programming for the remaining building. See IX. CONCLUSIONS AND RECOMMENDATIONS.
II. INTRODUCTION

YAR was retained as a sub-consultant to Keala Pono Archaeological Consulting, LLC and at the request of G70 on behalf of the Hawai‘i Housing Finance & Development Corporation (HHFDC) to conduct this Historic Resources Evaluation Report for the Kahului Civic Center and Mixed-Use Complex Project (Project). Project planning and design will consider mitigation measures for the entirety or portions of the potential historic property and in preparation for state and possibly federal permitting and funding processes associated with the Project.

This report is drafted to meet the requirements and standards of a state project and state historic preservation law, as set out in Chapter 6E-8 of the Hawai‘i Revised Statutes and Hawai‘i Administrative Rules (HAR) §13–276, the State Historic Preservation Division (SHPD) Architecture Survey Guidelines to comply with HRS 6E-8, HAR 13-275-6, criteria a through e for an Intensive Level Survey (ILS). The report begins with a description of the project area and a historical overview of land use and property development. The next section presents methods used in the fieldwork, followed by results of the survey. Project results are summarized and recommendations are made in the final section. This HRER is a technical study designed to address both State and Federal regulatory standards. For example, if authorization from the U.S. Department of Housing and Urban Development (HUD) for funding, U.S. Army Corps of Engineers (USACE) to fill a Waters of the United States (WOTUS) permit pursuant to Section 404 of the Federal Clean Water Act (CWA) due to potential coastal impacts, or other federal permitting or funding were pursued, the Project may qualify as an “undertaking” and be subject to the National Historic Preservation Act of 1966 (54 USC §306108), commonly known as “Section 106” and Section 106’s implementing regulations (36 CFR 800 et seq.). If more than one federal agency is involved in funding and permitting, then one federal agency must agree to take on the role as lead-agency. The lead-agency role under Section 106 includes the identification of potential historic properties, determination of the presence or absence of a historic property by historical evaluation, and, if one is present, the Project’s proposed effect on the historic property. These processes are routinely completed by technical studies that address State and Federal statues and language and may jointly follow the recommendations of a qualified architectural historian consultant. Therefore, this HRER was conducted to anticipate the requirements to satisfy Section 106, as well as State of Hawai‘i statutes.

A historical field survey and historic property identification effort were completed by YAR on June 7 and 8, 2021 for the purpose of recording the subject property. See Attachment B – Photographic Record.
Qualifications of Preparer

Edward Yarbrough, M.S. Historic Preservation, Principal of Yarbrough Architectural Resources is the Principal Investigator/Senior Architectural Historian for this Report. For over 30-years Yarbrough developed documentation for projects subject to federal and state historic preservation mandates. He is sole proprietor of Yarbrough Architectural Resources. Yarbrough exceeds the Historic Preservation Professional Qualification Standards for Architectural History, as set forth by U.S. Secretary of the Interior. See Attachment A – Preparer’s Resume.
Project Location

The project area is located in Kahului, approximately 300 m (.2 mi.) inland from the coast at Kahului Harbor (Figure 1) on 1.91 ha (4.72 ac.) of TMK: (2) 3-7-004:003 (Figure 2). TMK: (2) 3-7-004:003 is a 2.26-ha (5.572-ac.) property owned by the State of Hawai‘i located at 153 W. Ka‘ahumanu Avenue. The property is bounded by W. Ka‘ahumanu Avenue to the north, Kane Street to the west, Vevau Street to the south, and private parcels to the east.

The property currently houses the Maui Community School for Adults, which includes two buildings that were constructed in 1920 and occupy the southern portion of the parcel. Site topography is relatively flat, and there is little to no vegetation on the properties. The project area lies at roughly 2 m (7 ft.) above mean sea level (amsl), and rainfall averages approximately 42 cm (17 in.) per year (Giambelluca et al. 2013).

Figure 1 Project area is the parcel boundary, TMK: (2) 3-7-004:003. (Source: 7.5-minute Wailuku quadrangle map, USGS 2013, Keala Pono Archaeological Consulting, LLC, Archaeological Inventory Survey 2021)
Figure 2 The 4.72-acre parcel lies within a largely redeveloped area. (Source: TMK plat map, State of Hawai‘i 1974, Keala Pono Archaeological Consulting, LLC, *Archaeological Inventory Survey 2021*)

**Project Description**

The Kahului Civic Center and Mixed-Use Complex Project (Project) is a collaborative effort between HHFDC and the State Department of Accounting and General Services (DAGS).

The Project primarily involves the construction of affordable and market-rate multi-family housing (multi-family housing) and a State Kahului Civic Center (Civic Center). The multi-family housing buildings and Civic Center will provide a total of approximately 381,000 SF of floor area and approximately 596 parking spaces. Approximately 300 multi-family dwelling units (mixture of 1-, 2- and 3-bedroom units) will be provided in two buildings (both roughly six stories); and approximately 414 parking spaces will be provided in two three-level parking podiums for the multi-family housing. The preliminary program for the Civic Center (roughly four stories) includes space for State offices, the State Department of Education’s McKinley Community School for Adults, and the Kahului Public Library. A parking deck built over a surface parking lot will provide approximately 182 parking spaces for the Civic Center. Community-oriented commercial space may be included in either the
multi-family housing building(s) or the Civic Center. The Civic Center program spaces may be adjusted due to the needs and priorities of State agencies and availability of funding.

The County’s new Transit Hub is currently being constructed on the southeast portion (0.85 acres) of the Project parcel along Vevau Street. The County’s new Transit Hub is not a part of this Project. The County’s new Transit Hub will replace the existing Transit Hub, located at the Queen Kaʻahumanu Center.

**Regulatory Context**

This HRER is a technical study that meets the requirements to inform both state and federal regulatory processes pertinent to historic preservation laws. The Hawai‘i SHPD reviews projects for impacts to historic properties in order to lessen or mitigate those impacts. There are three types of historic preservation reviews under HRS 6E: 6E-10, 6E-08, and 6E-42. The proposed Kahului Civic Center and Mixed-Use Complex Project is a 6E-8 project subject to HAR 13-275-6. HAR 13-275 outlines a 6-step review process. As a State-owned property subject to 275-5(b)(5), the SHPD determined an Intensive Level Survey would adequately identify, document, and evaluate the subject property and recommend whether it was historically significant, as measured against the HRHP significance criteria and, then, against the seven (7) aspects of integrity. A property that is found to be historically significant but lacks the integrity to continue to convey that significance, is not a “historic resource” as defined under HRS 6E.

A formal determination of historical significance through evaluation by the SHPD is also necessary for a Project that may require authorization from the USACE, to fill Waters of the United States (WOTUS) pursuant to Section 404 of the Clean Water Act (CWA), for U.S. Housing and Urban Development (USHUD) funding or permitting, or for other federal permitting or funding. For example, authorization by the USACE under the CWA constitutes an “undertaking” by the USACE that is subject to Section 106, 54 USC §306108 and Section 106’s implementing regulations (36 CFR 800 et seq.). Issuance of a permit constitutes an Undertaking, as that term is defined in 36 CFR parts 800.3(a) and 800.16(y). USACE permitting or USHUD funding would constitute a federal nexus for the Project; therefore, compliance with Section 106 of the National Historic Preservation Act would be required.

**Federal Regulations**

The Kahului Civic Center and Mixed-Use Complex Project is not subject to federal regulations. The project seeks neither federal permits nor grants. However, the Federal Regulations are provided to lend this technical study greatest utility in case of unforeseeable changes to project mandates.

*National Historic Preservation Act of 1966*

Section 106 established the federal government’s policy on historic preservation and the programs, including the National Register of Historic Places (NRHP), through which the policy is implemented. Section 106 (16 USC 470f) requires federal agencies, prior to implementing an “undertaking” (e.g., issuing a federal permit or allocating federal funds), to consider the effects of the undertaking on historic properties and to afford the Advisory Council on Historic Preservation (ACHP) a reasonable opportunity to comment on any undertaking that could adversely affect historical properties eligible for listing on the NRHP. As defined in 36 CFR 800.5(a)(1) “Adverse effects occur when an
undertaking may directly or indirectly alter characteristics of a historic property that qualify it for inclusion in the National Register”.

Area of Potential Effects

The APE includes both an Archaeological and a Built Environment APE based on different potentialities by the undertaking for adverse effects posed to either resource type. The Archaeological APE (also referred to as the Area of Direct Impact [ADI] or Direct APE) is established according to the horizontal and vertical extent of disturbance from proposed construction-related activities; refer to the Project’s AIS. The Built Environment APE (also referred to as the Architectural APE, Area of Indirect Impact [AII] or Indirect APE) includes the ADI and indirectly affected properties. The Built Environment APE must consider indirect effects to potential historic properties caused from visual, audio, or atmospheric intrusions, shadow effects, vibrations from construction activities, or changes to access or use. Because the properties surrounding the subject property are contemporary and less than 50 years of age, the Built Environment APE does not extend beyond the parcel boundaries to consider indirect effects.

Under Section 106, the quality of significance in cultural resources is present in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association, and:

A. That are associated with events that have made a significant contribution to the broad patterns of our history; or

B. That are associated with the lives of significant persons in or past; or

C. That embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or

D. That have yielded or may be likely to yield, information important in history or prehistory.

In general, historic sites are evaluated in terms of Criteria A through C, while archaeological and prehistoric sites are most often evaluated in terms of Criterion D, which refers to the research potential of the site (36 CFR 60.4). Whether or not a site is considered important is determined by the capacity of the site to address pertinent local and regional research themes.

This Project is not currently subject to Section 106 and its implementing regulations (16 USC 470 et seq., 36 CFR Part 800, 36 CFR Part 60, and 36 CFR Part 63). However, because projects may run into permitting mandates or funding opportunities requiring the USHUD, USACE or other federal agency administrative approvals, this technical study considers whether the Project would affect historic properties that meet the criteria for listing on the NRHP. The pertinent federal agency would be the lead-agency for purposes of Section 106 compliance, for consultation with the Hawai‘i SHPD, and to inform the ACHP.

The State of Hawai‘i implements Section 106 through its statewide comprehensive cultural resource surveys and preservation programs. The SHPD, as an office of the Hawai‘i Department of Land and Resource Management, is responsible for identifying and evaluating cultural resources within the state, including historic properties that may be eligible for listing in the National Register of Historic Places. The SHPD works closely with local communities and other stakeholders to ensure that cultural resources are protected and preserved.
Natural Resources (DLNR), implements the policies of Section 106 on a statewide level. The SHPD also maintains the Hawai‘i Cultural Resource Information System (HICRIS). The State Historic Preservation Officer (SHPO) is an appointed official who implements historic preservation programs within the state’s jurisdictions.

State Regulations

HRS Chapter 6E-8

This 6E-8 project is subject to HAR 13-275-6. The SHPD guides compliance with HRS Chapter 6E-8 in the following six-step process:

Step 1: Identification and Inventory
13-275-5(b): The agency shall first consult with the SHPD to determine if the area proposed for the project needs to undergo an inventory survey to determine if historic properties are present. The SHPD shall supply a response in writing within 30 days.

- 275-5(b)(1) The response shall justify that no historic properties are present or likely to be present
- 275-5(b)(2) The agency submits information claiming that no significant historic properties are present and SHPD agrees
- issue determination of no historic properties affected within 30 days and historic preservation review ends
- 275-5(b)(4) The agency submits information and SHPD determines an adequate survey exists for which significant historic properties are present
- 275-5(b)(5) The SHPD determines an inventory survey is needed to adequately identify, document, and evaluate historic properties
- Proceed to Step 2

Step 2: Evaluation of Significance
13-275-6(d) Each significant historic property identified shall be assessed for its significance and be submitted to the SHPD in writing. The SHPD shall agree/disagree with the significance evaluations within 45 days.

- 275-6(e) The SHPD agrees with the evaluation that none of the historic properties are significant
- issue determination of no historic properties affected and historic preservation review ends
- 275-6(e) The SHPD agrees that significant historic properties are present – Proceed to Step 3

Step 3: Determining Effects to Significant Historic Properties
13-275-7(a) The agency shall determine the effects of a project on significant historic properties and provide a determination of either “No Historic Properties Affected” or “Effect, with proposed/agreed upon mitigation commitments"
275-7(c) Effect determinations shall be submitted to SHPD for review
275-7(c)(2) The SHPD shall respond to effect determinations within 45 days of receipt

- 275-7(e) The SHPD agrees with the effect determination that no historic properties will be affected by the project
- issue determination of no historic properties affected and historic preservation review ends
- 275-6(e) The SHPD agrees that significant historic properties will be affected by the project
- Proceed to Step 4
Step 4: Mitigation Commitments
275-8(a) If a project will have affect significant historic properties than mitigation commitments must be proposed/agreed to. Mitigation shall be specific to each property affected.
   - 275-8(b) The SHPD shall notify the agency within 45 days if mitigation commitments are not acceptable
   - Consultation shall occur to resolve disagreements and commitments shall be resubmitted to the SHPD
   - 275-8(c) The SHPD shall notify the agency within 45 days if mitigation commitments are acceptable
   - Proceed to Step 5

Step 5: Development of Mitigation Plans
275-8(h) After mitigation commitments are accepted, the agency shall develop detailed mitigation plans and provide them to the SHPD.
   - 275-8(h)(7) The SHPD shall notify the agency within 45 days if mitigation commitments are not acceptable
   - Consultation shall occur to resolve disagreements and commitments shall be resubmitted to the SHPD
   - 275-8(h)(8) The SHPD shall notify the agency within 45 days if mitigation commitments are acceptable
   - Proceed to Step 6

Step 6: Verification of Mitigation Completion
275-9(a) Once mitigation plans are accepted and carried out, the agency shall submit verification reports to the SHPD. The report shall document successful completion of the mitigation tasks.
   - 275-9(b) The SHPD shall notify the agency within 45 days if mitigation commitments are not acceptable
   - Consultation shall occur to resolve disagreements and commitments shall be resubmitted to the SHPD
   - 275-9(c) The SHPD shall notify the agency within 45 days if mitigation commitments are acceptable
   - The historic preservation review process ends
275-9(d) When mitigation commitments involved preservation, data recovery, architectural recordation, an agency may request an accelerated, 2 step verification process. During the accelerated process, SHPD shall supply responses within 30 days.

Hawai‘i Register of Historic Places

The Hawai‘i Register of Historic Places (HRHP) is an official list of properties that have been recognized for their significance to the history, architecture, archaeology, or culture of Hawai‘i communities. Buildings, structures, sites, districts, and objects over 50-years of age are eligible for nomination to the HRHP. Properties that meet any of the criteria of the HRHP and then, found to retain sufficient integrity to convey that significance are “historic resources” pursuant to HRS Chapter 6E-8. Paralleling the four (4) criteria of the NRHP, the HRHP criteria are:

(A) That are associated with events that have made a significant contribution to broad patterns of our American or Hawaiian history;
(B) That are associated with the lives of persons significant in our past;

(C) That embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic value, or that represent a significant and distinguishable entity whose components may lack individual distinction; or

(D) That have yielded, or may be likely to yield, information important in prehistory or history.

(E) That have an important value to the native Hawaiian people or to another ethnic group of the state due to associations with cultural practices once carried out, or still carried out, at the property or due to associations with traditional beliefs, events or oral accounts--these associations being important to the group's history and cultural identity. [HAR 13-275-6(b)]
IV. HISTORICAL CONTEXT

As the significance of cultural resources is best assessed with regard to environmental and cultural contexts, initial descriptions of the natural and cultural setting of the Project region are presented below. The historic context of the Area of Potential Effect (APE) that would be required for the Project is not fully developed herein but general setting and the specific contexts of the two buildings and stone-and-mortar wall are presented.

The historic context is largely adapted from the Cultural Background section of this Project’s Archaeological Inventory Survey (AIS). Windy Keala McElroy, PhD, Principal, Max Pinsonneault, MA, and Leandra Medina, BA of Keala Pono Archaeological Consulting, LLC conducted significant background research for both this Report and the AIS and co-authored the AIS in June 2021. In addition, the Historic American Building Survey (HABS) documentation of Building E, subsequently demolished, on the same property provided reliable historic context for the subject property.

Research for the AIS was conducted at the Hawai‘i State Library, the University of Hawai‘i at Mānoa libraries, the SHPD library, and online on the Office of Hawaiian Affairs website (OHA n.d.) and the Department of Accounting and General Services (DAGS n.d.), Waihona Aina (n.d.), Avakonohiki (n.d.), and Ulukau (n.d.) databases. Archaeological reports, historical reference books, and historic maps were among the materials examined.

Wailuku in Traditional Times

Place names often shed light on traditional views of an area and can provide important contextual information. Wailuku literally means “water of destruction” (Pukui et al. 1974:225) due to the battles that took place there, most notably the battle at ʻĪao Valley between Kamehameha the Great and Kahekili. Wailuku is also referred to as Nā Wai ʻEhā, which translates to “the four waters,” after the four streams that run through its valleys: Waiehu, Waikapū, Wailuku, and Waihe‘e. The old ʻokana (land division) named Nā Wai ʻEhā comprised the four great valleys which cut far back into the slopes of West Maui and drain the eastward watershed of Pu‘u Kukui and the ridges radiating from it.

Place Names

One often overlooked source of history is the information embedded in the Hawaiian landscape. Hawaiian place names “usually have understandable meanings, and the stories illustrating many of the place names are well known and appreciated...The place names provide a living and largely intelligible history” (Pukui et al. 1974:xii).

Place names associated with the study area are listed in the Place Names of Hawai‘i (Pukui et al. 1974), along with the meanings of the names and/or comments about the specific locales:

Halekiʻi...Alternate name for the heiau at Pihana, Maui. Lit., image house. (Pukui et al. 1974:37)

ʻĪao. Stream, valley, peak (2,250 feet high), park, and one-time sacred burying place of chiefs, Wai-luku qd....Maui. Lit., cloud supreme. (Pukui et al. 1974:55)

Kaʻahumanu. Church, Wai-luku, Maui. Named for Queen Kaʻahumanu, favorite wife of Ka-mehameaha I, who was later kuhina nui (executive officer), and who died a Christian in 1832. Lit., the bird [feather] cloak. (Pukui et al. 1974:59)
Kaʻākaupōhaku. Ancient surfing area, Wai-luku qd., Maui. (Finney 1950b:345) Lit., the north (or right-hand) stone. (Pukui et al. 1974:60)

Kahului. Town, elementary school, port, bay, railroad, and surfing area known as Kahului Breakwater (Finney 1959a:108), Maui. Probably Lit., the winning. (Pukui et al. 1974:67)

Kaleholeho. Ancient surfing area, Ka-halui area, Maui. Lit., the callus. (Pukui et al. 1974:76)

Kanahā. Wildlife sanctuary and pond near Ka-halui, Maui, said to have been built by Chief Kiha-Pli'ilani, brother-in-law of ‘Umi (HM387) who lived about A.D. 1500. Nearly 500 native Hawaiian stilts (āeʻo) have been counted here at one time, about a third of the known total. Some 50 kinds of birds have been seen here, including herons, geese, ducks, owls, plovers, sand pipers, tattlers, coots, pheasants, and doves...Lit., the shattered [thing]. (Pukui et al. 1974:83)

Kepaniwai. Park, Wailuku, Maui. Lit., the water dam (Wai-luku Stream was choked with human bodies after the slaughter there). (Pukui et al. 1974:109)


Māniaina. Ditch, Wailuku qd., Maui...Lit., a shuddering sensation. (Pukui et al. 1974:145)


Nehe. Point. Wai-luku qd., Maui...Lit., rustle. (Pukui et al. 1974:164)


Wailuku...land division...city, point, sugar company, and stream, West Maui; site of the battle in the late eighteenth century in which the army of Ka-lani-ʻōpuʻu was nearly annihilated by Ka-hekili of Maui. Lit., water [of] destruction. (Pukui 1974:225)

**Subsistence and Traditional Land Use**

Wailuku was a gathering place and home to important chiefs and their attendants (ʻĪtī 1959:135). Handy et al. (1991:272) assert that there were five centers of population on the island of Maui, one of which was the part of West Maui, “where four deep valley streams watered four areas of taro land spreading fanwise to seaward: the Four Waters (Na-wai-ʻeha) famed in song and story–Waieheʻe, Waiehu, Wailuku, and Waikapu.”

Wailuku is the third of the four streams that flows from the uplands of Puʻu Kukui’s ridges and down through ʻĪao Valley. Portions of the current city of Wailuku were built on old agricultural terraces (Handy et al. 1991:497):

> Along the broad stream bed of ʻĪao Valley, extending several miles up and inland, the carefully leveled and stone-encased terraces may be seen. In the lower section of the valley these broad terraces served, in 1934, as sites for Camps 6 and 10 of Wailuku Sugar Plantation, being utilized for houses, gardens, playgrounds, and roads. A little farther up, near private homes and vegetable and flower gardens covered these old taro terraces; while at their upper limit the terraces were submerged in guava thickets.
Here a few wild taros were found, but we saw no terraces in `Iao or Wailuku being used as flooded taro patches. It is significant that here, as at Waihe'e, the old terraces were adapted to market gardening (Chinese bananas, vegetables, and flowers) by Japanese and Portuguese gardeners. (Handy et al. 1991:497)

The waters of Waikapū Stream were once diverted to feed lo‘i systems, and its overflow was discharged on the dry plains on the isthmus between East and West Maui (Handy et al. 1991:496).

These abundant waters were later tapped for sugarcane irrigation (see Figure 3. and the Historic Wailuku section). Cheever commented on the lo‘i of Wailuku in the mid-19th century:

As you get into the valley and vega of Wailuku, you see numerous remains of old kihapais, or cultivated lots, and divisions of land now waste, showing how much more extensive formerly was the cultivation, and proportionally numerous the people than now...The whole valley of Wailuku, cultivated terrace after terrace, gleaming with running waters and standing pools, is a spectacle of uncommon beauty to one that has a position a little above it. (Cheever 1851 in Sterling 1998:75)

In addition to agricultural cultivation, fishponds were constructed in the region, near Kahului. Two major ponds are thought to have been constructed around AD 1500 during the rule of Kiha-a-Pi‘ilani (Kamakau 1992:42; Pukui et al. 1974:83). The ponds were named Kanahā and Mau‘oni. Kiha-a-Pi‘ilani also built the ala loa, a trail that circled the entire island. Another source states that the fishponds were constructed by Kapiʻihoʻo'okalani, an ali‘i of O‘ahu and Molokaʻi, and that the walls were built by men passing stones from one to another in a line that extended from Makawela to Kanahā (Puea-a-Makakaualii in Sterling 1998:87).

A number of heiau have been identified within the ahupua’a of Wailuku, with Haleki‘i and Pihana located approximately two kilometers northeast of the current study area. An annual publication by T.G. Thrum, the Hawaiian Almanac and Annual for 1909 briefly describes some of the heiau found in Wailuku:

- Pihana- Wailuku, near end of coral and sand ridge, one-half mile from the sea; about 300x120 ft. in size; walls in complete ruins showing foundations massive.
- Halekii- Wailuku, some 300 ft. to N.E. of Pihana and about 100 ft. square in size.
- Kalui-Wailuku, at Puu-o-hala; repaired in time of Kahekili; Kaleopuupuu its priest.
- Malumaluakua-Keahuku-Olokua-Olopio-Malena-Wailuku. No Particulars gathered of these heiaus further than nearly all of the Wailuku temples, with the Kapokea one in Waihee are named among those consecrated by Liho-liho during a year's stay en route to Oahu, preceding the peleleu fleet. (Thrum 1909:38)

Mo‘olelo

The island of Maui was named after the legendary demigod Māui (Pukui et al. 1974), known for his trickiness. Legends tell of how he stole fire, raised the sky and snared the sun, trapped winds, and changed landscapes. Among all of the mo‘olelo, one of his biggest accomplishments was fishing land out of the ocean and creating the Hawaiian Islands. Earlier accounts share that the name of the island was once called Ihikapalaumaewa in ancient times, prior to Papa and Wākea and before their child Māui became famous (Sterling 1998).
The wind name for Wailuku is Makani lawe malie, or “the wind that takes it easy” (Nuuhiwa in Sterling 1998:62). And it is said that the ali‘i of the area spent much time surfing (Kamakau 1992:82).

The plains of Kama‘oma‘o in Wailuku were a place of wandering souls:

There are many who have died and have returned to say that they had no claim to an ‘aumakua {realm} (kuleana‘ole). These are the souls, it is said, who only wander upon the plain of Kama‘oma‘o on Maui or on the plain at Pu‘uokapolei on Oahu. Spiders and moths are their food. (Kamakau 1991:29)

A final mo‘olelo concerns the appearance of foreigners in Wailuku in the mid-13th century, long before the first written record of foreigners arriving in the islands (Fornander 1969 [1878–1885]: 80–82). A chief named Wakalana governed the windward side of Maui and lived in Wailuku. At this time, a ship called Mamala came to Wailuku. The ship’s captain was named Kaluikia Manu, and other men and women on board were named Neleike, Malaea, Haakoa, and Hika. Nelieke later became Wakalana’s wife, and together they bore fair skinned children with bright, shining eyes (Fornander 1969 [1878–1885]:81). Their descendants intermarried with other Hawaiians and many of them lived in Waimalu and Honouliuli on O‘ahu. Fornander posits that the mo‘olelo may refer to a Japanese fishing vessel that was blown off course, as Europeans were not near Hawaiian waters at that time (1969 [1878–1885]:81).

ʻŌlelo No‘eau

Wailuku’s connection with its distinguished coast is preserved in many traditional proverbs and wise sayings. In 1983, Mary Kawena Pukui published a volume of close to 3,000 ʻōlelo no‘eau that she collected throughout the islands. The introductory chapter reminds us that if we know these proverbs and wise sayings well, then we will know Hawai‘i well (Pukui 1983). Four ʻōlelo no‘eau were found that speak of Wailuku. They provide further insight to the traditional landscape and history of the region.

Kei nu aku la paha a‘u ʻĀlapa I ka wai o Wailuku.
My ʻĀlapa warriors must now be drinking the water of Wailuku.

Said when an expected success has turned into failure. This was a remark made by Kalaniōpu‘u to his wife Kalola and son Kiwala‘ō, in the belief that his selected warriors, the ʻĀlapa, were winning in their battle against Kahekili. Instead they were utterly destroyed. (Pukui 1983:184)

Na wai ʻehā.
The four wai.

A poetic term for these places on Maui: Wailuku, Waiehu, Waihe‘e, Waikapū, each of which has a flowing water (wai). (Pukui 1983:251 )

Pili ka hanu o Wailuku.
Wailuku holds its breath.

Said of one who is speechless or petrified with either fear or extreme cold. There is a play on luku (destruction). Refers to Wailuku, Maui. (Pukui 1983:290)

Wailuku I ka malu he kuawa.
Wailuku in the shelter of the valleys.
War and Conquest in Wailuku

Maui’s ahupua’a of Wailuku was wroth with warfare through much of its known history, including what some would term as a 100 years’ war. Many stories and accounts have been passed down. Rev. Cheever, in his book, Life in the Sandwich Islands: or, The Heart of the Pacific, As It Was and Is, wrote of how the various wars had an effect on how each stream in Wailuku was named:

There are in this region four streams in succession from the different gorges of the mountain, significantly named, it is thought, from the events of battles which have transpired upon them.

Waikapu—The water where the conch was blown, and the engagement began.

Waiehu—The water where the combatants smoked with dust and perspiration.

Wailuku—The water of destruction, where the battle began to be fierce and fatal.

Waihee—The water of total rout and defeat, where the army melted away. (Cheever 1851:59)

One of the earliest battles was that between owls and men: “The owls retaliated against an act committed by a cruel man by flocking to Wailuku and descending upon him” (Silva n.d). Another mention of this battle refers to the origin of the ahupua’a’s name: “The cruel man was punished, and the battle place still bears the name Wailuku, Water-of-killing” (Pukui and Curtis 1974:179).

In addition to the battles with owls, many battles were fought between chiefs. In the 16th century, the 15th mō‘ī of Maui, Pi’ilani, united the island’s districts through war, and gave his daughter to marry the current mō‘ī of Hawai‘i Island. Due to this marriage, there was peace between the two kings of each island, until Pi’ilani died and a rivalry sparked between his two sons, Lono-a-Pi’ilani and Kiha-a-Pi’ilani (Speakman 1978). The eldest son, Lono, had inherited Maui and he sought to kill his brother Kiha, who then escaped to Hāna and met a young chiefess, Koleamoku. They fell in love and secretly married, even though she had been promised to Lono. The couple moved to Hawai‘i Island, where Kiha’s sister was still living with ‘Umi, to avoid being captured by Lono. ‘Umi took the side of Kiha and launched a war with Maui. Lono was defeated and ‘Umi took partial control of the island of Maui, in Hāna, and peace was once again observed until the 17th century.

In the early 18th century, Kekaulike united the kingdom of Maui through war. While there were times of peace after this, things got worse for Maui by the end of the century with many wars with Hawai‘i Island’s king, Alapa‘i who was trying to gain control of it. Kekaulike perished when fleeing to Wailuku:

When Ke-kau-like heard that the ruling chief of Hawai‘i was at Kohala on his way to war against Maui, he was afraid and fled to Wailuku in his double war canoe named Ke-aka- milo. He sailed with his wives and children...his officers, war leaders, chiefs, and fightingmen, including warriors, spearmen, and counselors. Some went by canoe and some overland, and the fleet landed at Kapa'ahu at the pit of ‘Ai-hako'ko in Kula. Here on the shore the chiefs prepared a litter for Ke-kau-like and bore him upland to Halekii in Kukahua. There Ke-kau-like died, and sound of lamentation for the dead arose. (Kamakau 1992:69)
In an important battle, Kalaniʻōpuʻu was defeated in Wailuku (Kamakau 1992:85–91). It was in 1776 that Kalaniʻōpuʻu returned to war with Maui and was overthrown by Kahekili’s army. It is said that Kalaniʻōpuʻu’s forces “were slain like fish enclosed in a net,” and the slaughter was known as Ahulau ka Piʻipiʻi Kakanilua, or Slaughter of the Piʻipiʻi at Kakanilua (Kamakau 1992:86). Unthwarted, however, Kalaniʻōpuʻu prepared for another assault. Kahahana, the aliʻi of Oʻahu and Molokaʻi, came to assist Kahekili. This battle was fought in the area between Wailuku and Waikapū. Again, Kalaniʻōpuʻu’s forces were surrounded and killed.

Afflicted by war, Maui became impoverished, and Vancouver mentioned during his visit in 1793 that King Kahekili was having trouble finding enough provisions for his own ship (Speakman 1978). Kahekili was the last king of Maui and was able to rule Molokaʻi, Lanaʻi, and Oʻahu during his reign but was unable to conquer Hawaiʻi Island.

Foreigners increasingly visited Hawaiʻi after Captain Cook arrived at Kahului Bay in the late 18th century, and this was happening as Kamehameha was rising to power. Kamehameha, armed with a cannon he acquired by foreigners, went to battle in Wailuku.

The bay from Kahului to Hopukoa was filled with war canoes. For two days there was constant fighting in which many of the most skillful warriors of Maui took part, but Kamehameha brought up the cannon, Lopaka, with men to haul it and the white men, John Young and Isaac Davis, to handle it; and there was a great slaughter. Had they fought face-to-face and hand-to-hand, as the custom was, they would have been equally matched. But the defensive was drawn up in a narrow pass in 'Iao, and the offensive advanced from below and drew up the cannon as far as far as Kawelowelō'ula and shot from there into 'Iao and the hills about, and the men were routed. The victors pursued them and slew the vanquished as they scrambled up the cliffs. There was a great slaughter, but mostly among the commoners; no important chief was killed in the battle. “Clawed off the cliff” (Ka 'uwa'u-pali) and “The damming of the waters” (Ka-pani-wai) this battle was called.” (Kamakau 1992:148–149)

After winning the battle on Maui, Kamehameha moved on to conquer the remaining islands of Molokaʻi, Oʻahu, and Kauaʻi.

Historic Wailuku: The 19th and 20th Centuries

In 1832, missionaries began arriving in Maui and established a girls’ school in Wailuku. Around that time, the sugar industry was introduced, greatly affecting Wailuku. The Hungtai Sugar Works company, founded in 1828 by two Chinese merchants, was the first location of sugar production on the island. King Kamehameha had a sugar mill built in Wailuku in the 1840s, which much of the initial sugar industry had developed around. The abundance of water supply and accessible land in Wailuku allowed for the sugar industry to develop and become profitable within a short time period. In addition, the mills built in the early 1960s were among the most advanced, being steam powered. The arrival of over 100 foreign laborers to work on the plantations began to greatly change the population composition of the region, along with the decline in native population. The Wailuku Sugar Company was established in 1862 and later took over the Waiheʻe Plantation to the north. By 1867, 2,250 acres of land was planted with sugar in Wailuku. Much of the sugarcane cultivation took place in the western portion of Wailuku until 1876 when industry advancements enabled expansion to other dryer areas (Wilcox 1996, MacLennan 1997:102).

In the second half of the 19th century, the sugar industry in Hawaiʻi greatly expanded as a result of the 1876 Reciprocity Treaty between the U.S. and the Hawaiian Kingdom, which gave
the U.S. market free access to Hawai‘i’s land for sugar and other products. A major player in the Hawaiian sugar industry, Claus Spreckels, a German immigrant to the United States, had first established a major sugar refinery in San Francisco. He initially opposed the 1876 Reciprocity Treaty between the United States and Hawai‘i as he believed it would cause insurmountable competition in the sugar industry. However, in order to keep up with potential competition, Spreckels traveled to Maui in 1878 where he later founded the Hawaiian Commercial & Sugar Company (HC&S). He purchased and leased 40,000 acres of eastern Wailuku, including the Wailuku Commons. After obtaining the Wailuku Commons in 1882, Spreckels gained water and transport rights for his crops, creating a thriving sugar industry and plantation town named for himself—Spreckelsville. HC&S was incorporated in 1884 by Spreckels using $10 million in capital; his sugar empire on Maui included four sugar mills, 35 miles of railway (including equipment), a water reservoir, and a canal system built by a fellow German-American engineer which was highly advanced for its time (Spiekermann 2019:5). Spreckels' Waihe‘e Ditch was the center of conflict at that time, with the Wailuku Sugar Company objecting that Spreckels did not have a right-of-way through their land or rights to the waters of Waihe‘e Stream. Spreckels eventually lost control of HC&S and a new ditch was constructed. By the 1900s, a complicated system of ditches wove its way through both East and West Maui (Figure 4).

Figure 3 Major sugarcane irrigation ditches on the island of Maui (Wilcox 1996:120 from Keala Pono Archaeological Consulting 2021).
With the rise of the sugar industry in Wailuku, Kahului, and continuing on further east to Spreckelsville and Pā‘ia, it was apparent that a railroad was needed to transport sugar to be exported to the U.S. The Kahului Railroad was first organized under the partnership between Thomas H. Hobron, William O. Smith, and William H. Baily. The first section of the railroad that extended from Wailuku to Kahului was completed by 1879. Hobron also operated a general merchandising business on Bay Street in Kahului, which later became the headquarters for the railroad. The railroad became a primary means of transporting all kinds of good and also passengers, including school children, to and from Kahului Harbor to locations from Wailuku in the East to sugar industry settlements growing to the West. Construction began in 1880 of the railroad sections east of Kahului to Pā‘ia and Spreckelsville. The three partners then sold the company to Samuel G. Wilder upon completion of the eastern section in 1884. In 1899, the railroad was then sold to HC&S Company—which by then was owned by Henry P. Baldwin and Associates. By 1913, the railroad extended east to the cannery in Hā‘iku. The main railroad terminal in Kahului was expanded in the 1920s to encompass a 219-acre facility. In 1923, a new railroad general office was constructed (today, the general office is located just northeast of the current Project area). By this time, a total of 34 miles of the main line, nine miles of a secondary line, ten steam locomotives and 265 cars were in service. However, the depression of the 1930s and World War II of the 1940s saw a reduction in general service. The gradual introduction of motor busses starting in 1936 largely replaced locomotive transportation service in Kahului and by the end of the 1960s, the railroad had ended all services (Ramsay 1960).

The burgeoning sugar industry in Wailuku and Kahului also contributed to the increased use of Kahului Harbor as a major trade port. According to Burns (1991:47), by 1840, a small jetty may have been located at what is now the Maui Beach Hotel (formerly the Maui Palms Hotel), just north of the Project area. In the 1870s, T.H. Hobron operated the Ka Moi, a schooner that ran between Kahului and Honolulu (Thomas 1983). A small commercial landing was opened in 1879 for the purposes of the sugar trade. Soon thereafter, Spreckels began operating Oceanic Steamship Lines between Kahului and North America out of the Kahului Harbor, making it the main shipping point for sugar from all of the Maui plantations. Samuel Wilder built the first breakwater wall and had part of the harbor dredged in 1904. The dredging fill was used to fill in the areas where the main business section is now located (Burns 1991:48).

The 20th century saw the project area developed into the Maui Community School, and two historic buildings from this era still stand. This Report addresses those buildings. In addition to the historic buildings, a rock and mortar wall, namely Stone and Mortar Wall, Historical Feature No. 1, is known to be located within the project area. The wall dates to 1939 and was constructed with New Deal funding via the Works Progress Administration (WPA).

Māhele Land Tenure

The change in the traditional land tenure system in Hawai‘i began with the appointment of the Board of Commissioners to Quiet Land Titles by Kamehameha III in 1845. The Great Māhele took place during the first few months of 1848 when Kamehameha III and more than 240 of his chiefs worked out their interests in the lands of the Kingdom. This division of land was recorded in the Māhele Book. The King retained roughly a million acres as his own as Crown Lands, while approximately a million and a half acres were designated as Government Lands. The Konohiki
Awards amounted to about a million and a half acres, however title was not awarded until the konohiki presented the claim before the Land Commission.

In the fall of 1850 legislation was passed allowing citizens to present claims before the Land Commission for parcels that they were cultivating within the Crown, Government, or Konohiki lands. By 1855 the Land Commission made visits to all of the islands and had received testimony for about 12,000 land claims. This testimony is recorded in 50 volumes that have since been rendered on microfilm. Ultimately between 9,000 and 11,000 kuleana land claims were awarded to kamaʻāina totaling only about 30,000 acres and recorded in ten large volumes.

In the mid-1900s, the majority of the Wailuku Ahupua’a was marked as Crown Land. And in 1872, when Kamehameha V died, his sister Princess Ruth Keʻelikōlani inherited the land. She owned part, while 743.4 acres in the ‘ili of Owa in Wailuku was granted to Kamehameha’s steward Kuihelani. Princess Ruth eventually sold half of the Crown Lands in 1882 to Claus Spreckels even though he already held a lease for 16,000 acres in Wailuku.

Historic Maps

Historic maps help to paint a picture of Wailuku in years past and illustrate the many changes that have taken place in the region. This section presents a selection of four maps from the 19th and 20th centuries that provide insight to the project area. Note that names are spelled as they are written on each map.

The first map depicts the lands of Wailuku and Kahului by W.D. Alexander in 1881 (Figure 4). No structures are present within the Wailuku vicinity, but buildings can be seen near Kahului Harbor and the Kahului Railroad interchange and yard. The railway from Kahului, west to Wailuku and east to Spreckelsville and Pā’ia, is depicted just north of the current project area.

The next map, drawn in 1885, shows several interesting features in Wailuku (Figure 5). Sand hills are depicted, extending almost as far inland as Waiale Pond. The project area vicinity appears to be within “GRANT 3433 C. SPRECKELS” and “Hawaiian Commercial and Sugar Co.” which at the time was owned by Claus Spreckels. The Kahului Railroad is depicted to the north and a trail that runs west to Wailuku is located just north of the project area.

A map by Hugh Howell from 1896 depicts the growing town of Kahului, which is based around the Kahului Railroad (Figure 6). The railroad is depicted heading west toward Wailuku from the Kahului town center. Roads are also depicted extending from Kahului toward Wailuku and heading north along the coastline.
The final map by surveyor James M. Dunn offers a closer look at the project area within the town of Kahului from 1953 (Figure 7). This map shows the project area is bound by Main, Kane, School, and Fourth Streets, with Third Street bisecting the subject lot in half. This map depicts the Kahului town site showing various deeds and boundaries, and indicates that most of the project area was deeded to the Territory of Hawai‘i from HC&S Company on December 21, 1925. It also shows that the northeast corner of the subject property was deeded to the Department of Instruction/Correction of the Territory of Hawai‘i on September 17, 1908.

Figure 4 Portion of a map of Wailuku area, including Kahului (Alexander 1881 from Keala Pono Archaeological Consulting 2021).
Figure 5 Portion of a map of Maui (Dodge 1885 from Keala Pono Archaeological Consulting 2021).
Figure 6 Portion of a map of Kahului and Kahului Harbor (Howell 1896 from Keala Pono Archaeological Consulting 2021).
Figure 7 Portion of a map of the town of Kahului with a close up inset of the subject property (Dunn 1953 from Keala Pono Archaeological Consulting 2021).

Kahului School Development

The Kahului School was established in 1900. In 1906 it was a one room school. By the 1922–23 school year it had 275 students that were taught by five teachers. By 1926, elementary schools on Maui were undergoing improvements to their physical plants. That year a concrete schoolhouse was built at Pāia, and it was "the policy of the Maui Supervisors to erect permanent concrete buildings in large centers and to use the old wooden buildings…for reconstruction… in rural sections." (Territory of Hawaii 1928; Maui News 1922; Territory of Hawaii 1926)

In 1927 a concrete, two story, 15 classroom school building was built at the Kahului campus for grades 1–8. The building had classrooms that were 27’ x 30’ and it contained an office and two rest rooms. Construction of the building began in mid-May and the building opened in September, about five days after the start of the new school year. The two-story configuration was chosen over another design, with three single-story wings of five classrooms each arranged around a courtyard. Both designs were submitted to the Department of Public Instruction in January 1927 by architect William d’Esmond. The courtyard design (14,500 square feet) was projected to cost $42,500 and the two-story design (12,500 square feet), which was chosen, was projected to cost $39,000. The
1927 building, of plastered concrete, was built by Robert Sano, and featured maple floors and stairs and was "attractive in appearance from without and should suffice for the needs of the town without addition for a considerable number of years to come." At the start of the 1928 school year, Kahului School had an enrolment of 403 students and there was also a teacher's cottage on the campus. The two-story building would provide the main classrooms for Kahului School for over 30 years, until a new campus was built in 1959 at another location. The building would be demolished ca. 1996. (Maui News 1960; Maui News 1927; Territory of Hawai'i 1928; DAGS 1996)

The 1927 two story building had a center section with a gable roof and side sections at the east and west that were lower, with parapeted gable roofs. Windows were typically paired six-over-six light double-hung sash. Over the front door (facing Main St.) was the inscription "Hale Imi." The English translation of the Hawaiian word "hale" is house or building, and the translation of the verb "imi" is to look, hunt, seek, or search. The design of the 1927 two-story building was very similar to the design of Iao School (date of construction unknown) at Wailuku. (Wright 1974)

The campus of Kahului School in early 1927 (before the two-story classroom building was built) consisted of three small buildings that were sited just northwest of the intersection of School and 3rd streets. The two-story building was built within the 3rd Street right of way, just south of the three buildings. The old classroom building (one of the three), which the 1927 two-story building replaced, was wood frame and at the time stood "between the street [Main St. now Kaahumanu Ave.] and the new concrete structure." The old wood frame classroom building was not slated to stand there long, "it [was] to be demolished and used for the Huelo School [sic], according to county plans." (Maui News 1927)

As of 1945, the Maui Vocational School was located on the same block as Kahului School, adjacent to the southwest. Established in 1932 as the second trade school facility on Maui, the first being Lahainaluna High School, Maui Vocational School began with 5 instructors and 80 students. By 1955 Maui Vocational School had moved off the block to a dedicated campus to the west on Kaahumanu Ave. (Sanborn Fire Insurance Co. Map 1945; Wist 1940)

In the late 1930s the Works Progress Administration (WPA) and Maui County constructed a low stone fence along the Main Street boundary of the campus. In 1939 the campus was landscaped with night blooming cereus and coconut trees, and the construction of concrete walkways between buildings. A young banyan tree was moved from one area of the campus to another. (Maui News 1939)

In 1953 a new, four-room, kindergarten building was built at the Kahului School campus by Y. Yoshimori Contractors for $44,655. The construction included "toilets for each room, an outdoor equipment room, closet, sink, sliding doors, and an outdoor activity lanai" and covered an area of 24' x 176'. (Maui News 1953)

Growing enrollments through the 1930s, post war, and 1950s put increasing pressure on the buildings of the Kahului School campus at Main and South Kane streets. In early 1958, Hawaiian Commercial & Sugar Company (HC&S) gave Maui County 23 acres of land at Lono and Hina avenues for a new school. Groundbreaking for the construction of the new school was held on January 29, 1959 and construction was slated to be completed by the end of the year. Classes opened at the new school in early April 1960; it contained 32 classrooms and could accommodate about 1,000 students. At the time of the new school's construction, the existing campus at Main Street (Kaahumanu St.) had 31 classrooms and handled 989 students. The 1953 kindergarten building (at the Main St. campus) was moved to the new school and had one classroom added to
it. This gave (old) Kahului School 27 classrooms that could accommodate more than 900 students. (Maui News 1957; Maui News 1959)

Although the new school was a replacement for the old campus, the Maui District office of the Department of Public Instruction (DPI) intended to retain the old school and grounds to provide future classroom space. This was because HC&S was scheduled to close some of its plantation villages. The students from these villages, then accommodated at Pā'ia and Kaunoa schools, were expected to move to Kahului with their families. It was anticipated that "several hundred" new students would be registered in the Kahului district for the 1961–62 term, the majority of new students coming from Pā'ia, Pu'unene, and Kaunoa schools. (Maui News 1959; Maui News 1960)

The DPI predictions for the coming years were accurate. In March 1961, enrollment at the new school reached 1,204. On March 20 a new third grade class, taught by Mrs. Helen Hirose, was begun at the old campus. At that time there were 7 classes held at the old campus and 33 at the new campus. The two campuses were still joined under one administration but they would split in April and the old campus would become Lihikai School. (Maui News 1961a; Maui News 1961b)

When Lihikai School (old campus of Kahului School) started the 1961–62 school year it had classes for grades 1–8 and kindergarten, plus instructors for remedial reading and adjustment, and a librarian. The school had undergone renovation of the cafeteria and kitchen, painting, and new fluorescent lighting of the classrooms in the main building. "Although the school plant is undeniably ancient, everything possible has and is being done to see that it is renovated to a point that Lihikai will be a school of pleasant surroundings." (Maui News 1961c)

The 1961 revival of the campus into a grade school did not last for long. In April 1964, ground was broken for another new school campus at Papa Avenue and Ma'alo Street. Reed & Martin International was the contractor for the $987,000 project, which was occupied by early June 1965 and named Lihikai School. Students from the former Lihikai School (old campus of Kahului School at Main St.) were moved into the new facility. Two buildings were moved off the old campus; a four-classroom building was moved to Waihe'e School and an office-library building was moved to Kihei School. (Maui News 1964; Maui News 1965)

In August 1968 the two-story concrete school building (1927) at the old campus was slated to be converted into dormitory space for students of Maui Community College (MCC). The conversion would cost $51,000 and include furnishings and was expected to be completed by the opening of the 1969 Spring Semester to serve students from outlying areas of the county (Lana'i, Moloka'i, Hana) on a priority basis. MCC enrollment for September 1968 was projected to reach 750, up from 565 from the previous year. (Maui News 1968)

The former campus of Kahului School began to be dismantled after 1996 when the 1927 two story classroom building and three small storage buildings were taken down. From about 1970 to the present the former campus was used by Maui Economic Opportunity, Inc. as a base yard for buses. (DAGS 1996)
VI. FIELD METHODS

On June 7 and 8, 2021, Edward Yarbrough, sole proprietor and senior architectural historian for Yarbrough Architectural Resources, conducted a site visit, taking photographs and notes of the former Kahului School property. Yarbrough had access to the stone and mortar wall, Administrative Building’s exterior and limited areas of its interior, to the exterior of the Utility Shed, but very limited access to the Cafeteria Building. The Cafeteria Building is in a state of collapse and is fenced off due to safety and liability concerns. The Cafeteria Building’s access points were limited to the views seen in Attachment B. - Photographic Record. All photography was conducted on June 7, 2021.
VII. PHYSICAL DESCRIPTION OF HISTORIC FEATURES

Architectural Resources

1. STONE AND MORTAR WALL
2. ADMINISTRATION BUILDING
3. CAFETERIA BUILDING
4. UTILITY SHED

Figure 8 Historic Features located within the subject property (Aerial view from Google Earth 2020).
Stone and Mortar Wall, Historic Feature No. 1

The Archaeological Inventory Survey (Keala Pono Archaeological 2021) refers to a rock and mortar wall, also referred to as a stone and mortar wall in this Report, as “Site 1.” Site 1, shown as Historic Feature number 1. in Figure 9, consists of a wall demarcating the northern property boundary that curves around the corner and frontages of W. Ka‘ahumanu Avenue and Kane Street. The wall is composed of rounded basalt cobbles and stones set in mortar [See Attachment B – Photographic Record, Stone and Mortar Wall, Civilian Conservation Corps (CCC)]. The New Deal’s Works Progress Administration (WPA) funded the CCC and other programs to create employment and to improve public infrastructure following the Great Depression. An embossed masonry unit on the outside curve of the wall reads “WPA 1939” (Figure 8).

![Stone and mortar wall with embossed date of construction, "WPA 1939." (Photograph courtesy of Keala Pono Archaeological Consulting 2021)](image)

The longest section of the wall fronts W. Ka‘ahumanu Avenue and measures 140 m long and approximately 70 cm high. See Attachment B – Photographic Record, subsection Stone and Mortar Wall, Civilian Conservation Corps. There are three gaps in the wall, roughly 1 m wide each. The central gap exhibits a cement pad on the ground surface. The west and east ends of this northern section curve so that the wall is extended to the south on both sides. The extension on the west end of the wall runs for 21 m to the south and steps down in height from 100 to 50 cm and then slopes down toward the south from 50 to 30 cm high. There are remnants of a chain-link fence in this section. On the east end of the wall there is a 1.6 m-long extension that runs to the south. Here the wall is approximately 60 cm high.

The wall exhibits two placards indicating a construction date of 1939 with the inscription “W.P.A.,” referring to the Works Progress Administration. The W.P.A. or WPA was a widespread infrastructure and employment program established in 1935 as part of the New Deal, which aimed at restoring the U.S. economy after the Great Depression. The WPA initiated and funded public works and arts projects throughout the U.S., including many in Hawai‘i. Other projects around the State include...
bridges, canals, parks, retaining walls, pavilions, as well as military, school, and airport improvements.

The wall is in good condition, although it has some sections of missing rocks and other segments that have quite clearly undergone significant repairs. The chainlink portion along Kane Street is partially collapsed and has significant oxidation to support poles and fencing matrix. This wall is historic in age and functioned as a partial boundary for the property. It is representative of basalt wall construction during the Territorial era in Hawai‘i and is an important vestige of the effort to restore the economy after the Great Depression.

**Administration Building, Historic Feature No. 2**

The largest building remaining on the property is a school constructed in 1920. See Figure 9 and Attachment B – Photographic Record, Administration Building. Referred to as the Administration Building in this report, the building is an H-plan with a front extension under one complex hip roof. The front extension is separated from the H-plan by a breezeway hall. The wood building clad in clapboard, has broad eaves with prominent rafters.

The building’s foundation is a concrete pad with concrete lower perimeter walls that rise approximately 2 feet above grade. The west wing of the building has a raised loading dock, fewer and smaller windows, and doors comprised of vertically set tongue-and-groove boards for vehicular egress while other elevations have pedestrian doors and fenestration suitable for classrooms. Windows throughout the building are wood-frame but some may be replacements of earlier windows. Window types include tripartite glazing stacked vertically with operable or inoperable central awning sashes and tripartite glazing stacked vertically with similarly fixed top and bottom lights but larger jalousie windows in the center.

The building’s internal breezeway hall is secured by wooden slat bars and secure entry gates at each end, one at either side of the central façade’s extension. Both entry gates face north toward breezes coming off Kahului Harbor. Large classrooms and administrative offices with very high ceilings, approximately 12 feet in height, create interior spaces with ample air circulation that is amplified by the orientation of the internal breezeway. The entry porches are supported by full-height posts with chamfered corners and prominent curved brackets. Each porch has engaged posts at each end and a central post.

The rear elevation of the building is lined with large windows facing a paved parking area and Vevau Street. The rear used to form a courtyard, possibly a playground, between the long wall of the Administration Building and the now-demolished Building E, constructed in 1939.

The character-defining features of the Administration Building are its:

a) Complex plan and commensurate hip and gable-on-hip roofline;
b) Broad eaves with fretted or stepped rafter tails;
c) High single-story edifice and internal breezeway for improved air circulation;
d) Qualify craftsmanship and materials, including prominent entry posts with chamfered corners and shaped brackets;
e) Relieved, sharp-edged clapboard creating texture and shadow; and,
f) Large-scale fenestration for natural lighting of classrooms and administrative offices.
The Administration Building conveys design quality and construction and materials representative of its construction in 1920. The finished carpentry and qualify lumber reflect the importance of the public school to the community that it served and the statewide investment in public education at the time of its construction.

**Cafeteria Building, Historic Feature No. 3**

The Cafeteria Building’s post on concrete footing foundations and roof are in a state of collapse. Many of the walls, both exterior and interior, are partially or completely collapsed as well. The single-story, wood-frame building has a T-plan and is elevated approximately two feet above grade on wood posts supported laterally by brackets tied to joists and seated on concrete masonry unit footings. The walls are comprised of 4 inch wide vertical boards.

A pair of contemporary clerestory black aluminum sliding windows are set on the west elevation. The building’s deterioration is so advanced that it is unable to convey any historical significance that it may have had as a feature or contributed to the property as a whole.

**Utility Shed, Historic Feature No. 4**

The Utility Shed is situated between the Administrative and Cafeteria buildings. Set on three elongated concrete footings rising 2.5 feet above grade, the Utility Shed appears to house electrical panels that can be accessed from both sides through two sets of metal double doors on each side. At the narrow ends, the shed is clad in vertical boards. The utilitarian structure is ubiquitous and of uncertain construction date.
VIII. SIGNIFICANCE EVALUATION

This evaluation of the former Kahului School property, namely TMK: (2) 3-7-004:003 (por.), is designed to comply with HRS Chapter 6E-8 and related administrative rules for an Intensive Level Survey and, if necessary in the future, to satisfy historic property analysis pursuant to Section 106. The recommendations in this evaluation are conducted as an architectural or built-environment consideration of significance but do not reflect archaeological data that may arise at a later time when a Project may require excavation or other activities that may impact buried resources. However, this evaluation addresses the stone and mortar wall and concurs with recommendations from Keala Pono Archaeological Consulting’s Archaeological Inventory Survey drafted in June 2021 as a tandem cultural resources technical study for the same Project’s environmental process. The property includes four (4) above-ground, historic-era features that present differing historical value or significance and different states of historical integrity:

1. Stone and Mortar Wall;
2. Administrative Building;
3. Cafeteria Building;

Under each of the parallel NRHP and HRHP criteria, the property is addressed as a whole. However, each of the four features are analyzed under each criterion as contributing or non-contributing elements. Elements that are found to contribute to the historical significance of the property are recommended as character-defining features that should be afforded historic preservation measures under the limited requirements of a given regulatory framework.

In case federal permitting or funding are elicited by the Project in the future, Section 106 compliance may be required. Therefore, this HRER, a technical study, is designed to inform federal, state, or dual regulatory processes. Section 106 considers properties eligible to the NRHP to be “historic properties,” similar to the HRS Chapter 6E-8 consideration of “historic resources.” Note that the HRHP also has a Criterion E consideration that is addressed without an NRHP-parallel criterion. Historic properties and resources are environmental resources and subject to certain processes and protections under the law. For a property to be a historic property or historic resource it must first qualify as significant under at least one of the NRHP or HRHP criteria and retain the historical integrity to convey that significance. Therefore, the following two sections are divided into application of the first four significance criteria for the NRHP and then for the HRHP including Criterion “e,” and then followed by a consideration of the seven aspects of historical integrity.

Application of the NRHP Significance Criteria

Eligibility of a property under any one or more criteria of the NRHP qualifies the property to limited historic preservation considerations and protections under HRS Chapter 6E-8 and Section 106. The four criteria of the NRHP are recommended below. However, only the lead-federal agency with concurrence from SHPD can make an actual determination of historical significance under Section 106:

NRHP Criterion A – Recommend Eligibility
To qualify for listing under Criterion A of the NRHP, a property must be identified with an important event in history. Based on the review of historical documentation of the significance of the Kahului School, the educational facility was central to community life and development in the early 20th Century for Kahului and central Maui communities connected to it through the Kahului Railroad. The property conveys the local significance of education in early-20th Century Kahului and Maui through the devotion of quality construction and design for the Administration Building and dedication of durable design of the stone and mortar wall. Further, the association with the Kahului Railroad and its local stop for transporting school children to and from Kahului School evidences the property’s importance to community life throughout the 20th Century. The Cafeteria Building shares this significance, however, as discussed in the following section, lacks the historic integrity to continue to convey that significance. The Stone and Mortar Wall with its embossed “WPA 1939” is important evidence of the economic recovery and full employment goals in the United States through New Deal programs funded by the WPA and their efficacy in Maui. The Utility Shed does not contribute to the property’s historical significance. The Administrative Building and Stone and Mortar Wall reflect the importance of the public school to the community and the WPA to economic recovery in Hawaii, lending the property historical significance as a whole. Therefore, this property is recommended as eligible under Criterion A.

NRHP Criterion B – Recommend Ineligibility
To qualify for listing under Criterion B of the NRHP, a property must be significantly identified with a person important in history. The Kahului School does not appear to be associated with any individual who rises to exceptional significance within the community. This recommendation considers the property’s constituent features. Therefore, this property is recommended as ineligible under NRHP Criterion B.

NRHP Criterion C – Recommend Eligibility
To qualify for listing under Criterion C of the NRHP, a resource must be identified with important movements in, or masters of, design and construction or as representative of a historically significant architectural or engineering type. This property’s Administrative Building is illustrative of quality design and construction. The internal breezeway and dedication of shaped and large-scale lumber convey the school’s significance, an architectural representation of the importance of the building’s function to the community it was built to serve. Similarly, the basalt stone, curved wall was built with durability and quality of component parts; it is significant for its construction method and represents a rare and important wall type in the region. Neither the Cafeteria Building nor the Utility Shed contribute to this aspect of the property’s significance. Therefore, this property is recommended as eligible under NRHP Criterion C.

NRHP Criterion D – Recommend Ineligibility with caveat
To qualify for listing under Criterion D of the NRHP, a property must have yielded or be likely to yield information important to prehistory or history. The four historic-era features discussed are not likely to yield further information and represent well-understood construction types. However, the Archaeological Inventory Survey (Keala Pono Archaeological Consulting 2021) addresses the property as a whole and beyond the scope of this report. Therefore, this report simply addresses the property relative to the four aforementioned features and with this consideration recommends the property is ineligible under NRHP Criterion D.
Application of the HRHP Significance Criteria

HRHP Criterion “a” – **Recommend Eligibility**
To qualify for listing under Criterion “a” of the HRHP, a property must be identified with an important event in history. Based on the review of historical documentation of the significance of the Kahului School, the educational facility was central to community life and development in the early 20th Century for Kahului and central Maui communities connected to it through the Kahului Railroad. The property conveys the local significance of education in early-20th Century Kahului and Maui through the devolution of quality construction and design for the Administration Building and dedication of durable design of the stone and mortar wall. Further, the association with the Kahului Railroad and its local stop for transporting school children to and from Kahului School evidences the property’s importance to community life throughout the 20th Century. The Cafeteria Building shares this significance, however, as discussed in the following section, lacks the historic integrity to continue to convey that significance. The Stone and Mortar Wall with its embossed “WPA 1939” is important evidence of the economic recovery and full employment goals in the United States through New Deal programs funded by the WPA and their efficacy in Maui. The Utility Shed does not contribute to the property’s historical significance. The Administrative Building and Stone and Mortar Wall reflect the importance of the public school to the community and the WPA to economic recovery in Hawaii, lending the property historical significance as a whole. Therefore, this property is recommended as eligible under Criterion “a.”

HRHP Criterion “b” – **Recommend Ineligibility**
To qualify for listing under Criterion “b” of the HRHP, a property must be significantly identified with a person important in history. The Kahului School does not appear to be associated with any individual who rises to exceptional significance within the community. This recommendation considers the property’s constituent features. Therefore, this property is recommended as ineligible under HRHP Criterion “b.”

HRHP Criterion “c” – **Recommend Eligibility**
To qualify for listing under Criterion “c” of the HRHP, a resource must be identified with important movements in, or masters of, design and construction or as representative of a historically significant architectural or engineering type. This property’s Administrative Building is illustrative of quality design and construction. The internal breeze way and dedication of shaped and large-scale lumber convey the school’s significance, an architectural representation of the importance of the building’s function to the community it was built to serve. Similarly, the basalt stone, curved wall was built with durability and quality of component parts; its construction method represents a rare and important wall type in the region. Neither the Cafeteria Building nor the Utility Shed contribute to this aspect of the property’s significance. The design and construction of the Administrative Building and Stone and Mortar Wall are character-defining features that lend the property historical significance as a whole. Therefore, this property is recommended as eligible under HRHP Criterion “c.”

HRHP Criterion “d” – **Recommend Ineligibility with caveat**
To qualify for listing under Criterion “d” of the HRHP, a property must have yielded or be likely to yield information important to prehistory or history. The four historic-era features discussed are not likely to yield further information and represent well-understood construction types. However, the *Archaeological Inventory Survey* (Keala Pono Archaeological Consulting 2021) addresses the property as a whole and beyond the scope
of this Report. Therefore, this report simply addresses the property relative to the four aforementioned built features and with this consideration recommends the property is ineligible under HRHP Criterion “d.”

HRHP Criterion “e” – Recommend Ineligibility
The site is not significant under criterion e because it is not important to a specific ethnic group and is not associated with cultural practices. A cultural impact assessment for the property did identify the cultural practice of gathering plumeria from the project area, according to the Archaeological Inventory Survey conducted by Keala Pono Archaeological Consulting under the auspices of the same Project. However, neither the wall nor the buildings on the property are associated with this practice. While portions of the wall will be impacted by construction, parts of the wall will be preserved in place.

Historical Integrity Assessment
The Department of Interior, National Park Service recognizes seven aspects of historical integrity, that of location, setting, design, workmanship, materials, feeling, and association. The subject property as a whole retains sufficient historical integrity in the Administration Building and Stone and Mortar Wall to continue to convey historical significance under criteria A and C of the NRHP and under criteria “a” and “d” of the HRHP. The Cafeteria Building is in too advanced a state of decay and collapse to convey its significance or to contribute to the significance of the property as a whole. The Utility Shed does not have historical significance nor contribute to the property’s significance and, therefore, does not have historical integrity to retain or lose. The Administrative Building and the Stone and Mortar Wall are character-defining features of the Kahului School property and retain historical integrity of location, setting, design, workmanship, materials, feeling, and association. Due to the existing condition of the Administrative Building and the Stone and Mortar Wall, this property as a whole retains sufficient historical integrity to convey its significance.
IX. CONCLUSIONS AND RECOMMENDATIONS

A cultural resources field investigation was conducted of the proposed Project area on June 7 and 8, 2021 by Edward Yarbrough, a qualified architectural historian. As previously discussed in Section IV, this cultural resource inventory was conducted to address the potential historic property in preparation for Project compliance with HRS Chapter 6E-8 and, if required at a later stage, to satisfy Section 106 (36 CFR Part 800.4 Identification of historic properties).

This Report recommends that the former Kahului School, as an architectural resource, is likely to be determined to be a historic resource pursuant to HRS Chapter 6E-8 by the State of Hawai‘i and a historic property for purposes of Section 106 compliance by a potential federal lead-agency.

The subject property appears to convey the historical significance of educational development in 20th Century Kahului and Maui and the role of WPA and New Deal investment in the economically devastated economy of the United States in the 1930s, satisfying the thresholds set by Criterion A of the NRHP/HRHP. Through the Administration Building and Stone and Mortar Wall features, the property retains sufficient historic integrity to continue to convey that significance. In addition, the Administration Building conveys design quality and construction and materials representative of its construction in 1920. The 1939 Stone and Mortar Wall also is representative of the quality of construction typically found in WPA and New Deal infrastructure.

The Project involves the demolition of existing structures and partial removal of the WPA-era Stone and Mortar Wall. The Administrative Building and the Stone and Mortar Wall are character-defining features of the historically significant property. The proposed effect for the Administrative Building and the Stone and Mortar Wall is “Effect, with proposed mitigation commitments” since the work has the potential to affect the significant historic property.

The mitigation agreements shall be made in consultation with the SHPD. The proposed mitigation measure for the Administrative Building would be an architectural recordation. For the Stone and Mortar Wall, design alternatives should be explored to minimize impacts to the extent possible and the remainder of the wall should be preserved.
X. REFERENCES CITED

Alexander, W.D.

Aultman, J., N. Bon-Harper, L. Cooper, J. Galle

Avakonohiki

Burns, I.

Carlquist, S.
1980 Hawai‘i, A Natural History. S.B. Printers, Honolulu

Cheever, Rev. H.T.
1851 Life in the Sandwich Islands: or, The Heart of the Pacific, As It Was and Is. A.S. Barnes, New York.

DAGS (Department of Accounting and General Services, State of Hawai‘i)


Dodge, F.S.

Dunn, J.M.

Finney, B.R.

Fornander, A.  


Handy, E.S., E.G. Handy, and M.K. Pukui  

Howell, H.  
1896 Map of Lands Between Kahului and Wailuku, Maui, HI. RM 1757.

Hunt, J., D. Shefcheck, and M.F. Dega  

‘Ī‘ī, J.P.  

Kamakau, S.M.  


MacLennan, C.A.  

Maui News  
1922 Wells, H.M. “Maui Schools of Yesterday and of the Present.” October 10, 1922.

1927a “Kahului Has Find School Building Now in Occupancy.” September 10, 1927.

1927b “Building Type Kahului School to Department.” January 19, 1927.


1953 “Kindergarten at Kahului School.” April 11, 1953.


1961a “Enrollment at Kahului Hits 1,204.” March 18, 1961.


OHA (Office of Hawaiian Affairs)


Pukui, M.K.


Pukui, M.K. and C. Curtis

1974 The Water of Kane and Other Legends of the Hawaiian Islands. The Kamehameha Schools Press, Honolulu.

Pukui, M.K., S.H. Elbert, and E.T. Mookini


Ramsay, R A.


Sanborn Fire Insurance Co. Map

1945 "Kahului, 1945." Located at Hawai‘i State Library, Honolulu, HI.

Speakman, C.E.


Spiekermann, U.

State of Hawai‘i
   1974 TMK Map, Zone 3 Sec 7 Plat 04. Por. Of Kahului, Maui, File Plan 22. Scale 1 in. = 50 ft. Department of Finance, Property Assessment Division, Honolulu.

Sterling, E.P.

Territory of Hawai‘i
   1928 “Department of Public Instruction, Annual Report, Biennium 1927-1928.”

Thomas, M.

Thrum, T.G.
   1909 Hawaiian Almanac and Annual for 1909. T.G. Thrum, Honolulu.

Ulukau

USGS (United States Geological Survey)

Wilcox, C.

Wist, Benjamin O.

Wright, John C.
ATTACHMENT A. – PREPARER’S RESUME
PROFESSIONAL PROFILE

Edward Yarbrough is an architectural historian with 30-years of experience in historical and architectural evaluation, survey, quality assurance to establish a responsive process, quality control of technical studies (QA/QC), and analysis for environmental documents. Yarbrough’s related skills include survey, National Historic Preservation Act and California Environmental Quality Act evaluations, impact analysis, findings of effect, resolution of adverse effects, treatment plan development and implementation, preservation policy, and agreement document development.

Yarbrough meets the Secretary of the Interior Standards (36 CFR 61) as a Qualified Architectural Historian. He developed regulatory compliance programs, technical and compliance documentation, interpretive text, and plans and agreements for public utilities and planning departments, NPS, USACE, HUD, The Presidio Trust, affordable housing and other developers, school districts, universities, and dozens of other federal, state, territorial, county and civic government agencies.

EDUCATION

M.S., Historic Preservation, School of Architecture
University of Oregon, 1996
B.A., Classical Architecture
University of California, Berkeley, 1989

EXPERIENCE

➢ Downtown Reconnaissance Survey, Town of Fairfax. 2020. Conduct reconnaissance survey to assist Town including development of Objective Design Development Standards with County of Marin in response to recent California Senate Bill 35 objectivity requirements.


➢ Sulphur Creek Fish Passage Improvement, Napa Regional Conservation District & WRA. St. Helena. 2020. Evaluate and develop protection measures for early 20th-C. caste-in-place bridge.

➢ Old Oliver Brothers Salt Works, U-Haul. Hayward. 2020. Bring Army Corps’ Section 106 & City’s CEQA processes into alignment; develop Built Environment Treatment Plan to minimize adverse effect (Section 106) and mitigate significant impact (CEQA).

➢ Berkeley Pier: University, Marina, Spinnaker Improvement Project, City of Berkeley & NCE. 2019. CEQA analysis of Berkeley Pier, led by City of Berkeley Public Works & Dept. of Planning & Development

➢ Golden Gate National Parks Conservancy, Crissy Field Next Project, San Francisco. 2018-2022. Section 106 for highly scrutinized redesign of SF’s iconic Crissy Field at the northern beach of the Presidio of SF, avoiding or resolving adverse effects to the Presidio of SF Natl Hist. Landmark District.

➢ HABS Photography of Opae‘ula 15 Reservoir, Kamehameha Schools, Hale‘iwa, Oahu, Hawai‘i. 2017. Develop Physical Description section and Record of Photography following the Historic American Engineering Record (HAER) guidelines.

➢ Sacramento Housing and Redevelopment Agency & NCE, Arden Way Affordable Housing Project. 2019. Evaluated and considered effects under Section 106 of the National Historic Preservation Act (Section 106), led by HUD, and pursuant to CEQA, led by City of Sacramento.

➢ Los Angeles County Dept. of Public Works (LACDPW), Willow Street Invert Access Ramps. 2019. Evaluation, effects under Section 106 for USACE, and pursuant to CEQA for segment of the LA River.

➢ Placer County Government Center & Mercy Housing Auburn North. 2019. DeWitt Hospital Historic District, Section 106 led by HUD, pursuant to CEQA for Placer Co. Planning Services Division.

California Preservation Foundation
Preservation Design Award for Historical Documentation
Recipient 2016
Yarbrough Architectural Resources, Historic Resources Evaluation Report

- Town of Portola Valley & Thomas Worth, Friedman McCubbin Law Group LLP of San Francisco. 2019. Historic Resource Evaluation for Bill & Jean Lane Estate, founders of Sunset Magazine pursuant to CEQA and local Historic Resources Element (GMP) and related ordinances.
- San Gabriel Mission Historic American Building Survey (HABS) Update & Condition Assessment—Altamont Corridor Express, Los Angeles, California. 2014. Record and prevent damage to the 18th- and early 19th-Century Arcángel San Gabriel Mission.
- US-80/Central Avenue Local Road Improvement Project, City of Richmond. 2019. Caltrans local assistance improvements requiring CEQA and Section 106 review.
- Dunsmuir Trail, Chabot Lake Regional Park, East Bay Regional Park District, Oakland & San Leandro, California. 2018. CEQA/Section 106 analysis of new trail with CCC camp structures.
- San Francisco County Transportation Authority, Presidio Parkway Project. 2014–2016. Project Manager/Section 106 Compliance Panelist: Serving as treatment oversight panel representative for SFCTA overseeing compliance with the cultural resources’ laws.
- San Francisco County Transportation Authority, Doyle Drive Replacement Project. 2008–2014. PM/Architectural Historian for 115-acre Historic American Landscape Survey – HALS-CA-9, six Historic American Building Surveys – HABS, and two Historic American Engineering Records – HAER. Authored 88 Condition Assessments, including Palace of Fine Arts, for Presidio of SF NHL.
- Main Post Cultural Resources Consultation—The Presidio Trust, San Francisco, California. 2011–2012. Wrote two HABS reports for two buildings as mitigation measures at the Main Post Master.
- City and County of San Francisco Public Works & Planning departments, Better Market Street. 2015–2016. Redesign of the City’s grand boulevard CEQA, led by City, and Section 106, led by FTA.
- HABS Photography for Flag Circle Tennis/Basketball Court and Road, Nimitz Hill, U. S. Naval Base, Guam 2016. HALS-format, archival photographs and Architectural History Assessment for Fleet Admiral Chester Nimitz and senior staff of Pacific Fleet, constructed in 1945.
- City of San Mateo, Central Park Improvement Project. 2016. Evaluated key resources in National Register-eligible Central Park as potential contributors to the historic district’s significance under CEQA.
- Rogers Ranch, Pacific Gas & Electric, Point Reyes National Seashore, California. 2016. Assess effects to National Historic Landmark District from new utility development.
- Bridge Demolition over East Canal, Pacific Gas & Electric, Bakersfield, California. 2016. Record canal segment with bridge for a PGE Cultural Resources Constraints Report prior to demolition.
- Evergreen Mabury Project, Pacific Gas & Electric, Milpitas and San Jose, California. 2016. Record and evaluate two substations as potential historic resources.
- Black Butte Dam Erosion Control Project, Section 106 Inventory Report. Orland, California. 2016. With Army Corps of Engineers federal as lead agency, evaluated the 1958 dam complex as a potential historic property.
ATTACHMENT B. – PHOTOGRAPHIC RECORD
(June 7, 2021)
STONE AND MORTAR WALL, HISTORICAL FEATURE NO. 1

87°E (T)  20.889276, -156.472614 ±3 m ▲ 15 m
Kahului Civic Center and Mixed-Use Complex Project, Wailuku Ahupua‘a, Wailuku District, Island of Maui, HI
ADMINISTRATION BUILDING, HISTORICAL FEATURES NO. 2

North West Elevation
West Elevation

118°E (T) 20.888279, -156.47208 ±9 m ▲ 25 m
North Elevation

☉ 212°S (T) ☉ 20.888392, -156.472084 ±5 m ▲ 24 m
East Elevation

298°W (T) • 20.888258, -156.47207 ±11 m ▲ 23 m
East Elevation

299°W (T)  20.888274, -156.472064 ±9 m  ▲ 25 m
CAFETERIA BUILDING RUINS, HISTORICAL FEATURE NO. 3
ELECTRICAL SHED, HISTORICAL FEATURE NO. 4

138°SE (T) 20.888364, -156.472011 ±6 m ▲ 7 m
Appendix K

Archaeological Inventory Survey
REVISED DRAFT—Archaeological Inventory Survey for the Kahului Civic Center Mixed-Use Complex Project, Wailuku Ahupua‘a, Wailuku District, Island of Maui, Hawai‘i

TMK: (2) 3-7-004:003 (por.)

Prepared For:
State of Hawai‘i
Department of Business, Economic Development & Tourism
Hawaii Housing Finance & Development Corporation
677 Queen Street, Suite 300
Honolulu, HI 96813

January 2022
REVISED DRAFT— Archaeological Inventory Survey for the Kahului Civic Center Mixed-Use Complex Project, Wailuku Ahupuaʻa, Wailuku District, Island of Maui, Hawaiʻi

TMK: (2) 3-7-004:003 (por.)

Prepared For:
State of Hawai‘i
Department of Business, Economic Development & Tourism
Hawaii Housing Finance & Development Corporation
677 Queen Street, Suite 300
Honolulu, HI 96813

Prepared By:
Windy Keala McElroy, PhD
Max Pinsonneault, MA
and
Leandra Medina, BA

January 2022

Keala Pono Archaeological Consulting, LLC ● PO Box 1645, Kāne 'ohe, HI 96744 ● Phone 808.381.2361
MANAGEMENT SUMMARY

An archaeological inventory survey (AIS) was conducted for the proposed Kahului Civic Center Mixed-Use Complex Project in Wailuku Ahupua’a, Wailuku District, on the island of Maui. This is located at 153 W. Ka’ahumanu Avenue on a portion of TMK: (2) 3-7-004:003. This work was designed to identify any historic properties that may be located on the parcels in anticipation of the proposed construction. The AIS included a pedestrian survey that covered 100% of the project area, as well as test excavations consisting of 17 trenches. The property has been disturbed by modern use, and one site, the historic Kahului School was identified. The school consists of three historic buildings and a mortared basalt boundary wall.
CONTENTS

MANAGEMENT SUMMARY ......................................................................................... i
FIGURES.................................................................................................................. iv
TABLES.................................................................................................................... v

INTRODUCTION ......................................................................................................... 1
  Project Location and Natural Environment .............................................................. 1
  Project Description .................................................................................................. 4
CULTURAL BACKGROUND ....................................................................................... 6
  Wailuku in Traditional Times .................................................................................. 6
    Place Names ........................................................................................................... 6
    Subsistence and Traditional Land Use .................................................................... 7
    Moʻolelo .................................................................................................................. 8
    ‘Ōlelo Noʻeau .......................................................................................................... 9
  War and Conquest in Wailuku ................................................................................. 9
  Historic Wailuku: The 19th and 20th Centuries .................................................... 11
    Māhele Land Tenure ............................................................................................ 13
    The Kahului School ............................................................................................. 14
    Other Historic Maps of the Project Vicinity ........................................................ 14
    Previous Archaeology .......................................................................................... 23
    Summary of Background Research ..................................................................... 30
Anticipated Finds and Research Questions ............................................................. 31

METHODS .................................................................................................................. 32

RESULTS ................................................................................................................... 33
  SIHP 50-50-04-08872 - Kahului School Campus .................................................. 33
    Feature 1 – Boundary Wall ................................................................................... 33
    Feature 2 – McKinley Community School for Adults Maui Campus Building (Old Maui Vocational School) .......................................................... 41
    Feature 3 – Cafeteria ............................................................................................ 41
    Feature 4 – Utility Shed ....................................................................................... 44
    Discussion .............................................................................................................. 44
  Area Stratigraphy .................................................................................................... 46
  Representative Profiles .......................................................................................... 50
  Laboratory Analysis ................................................................................................. 64
  Summary of Results ............................................................................................... 66

SUMMARY AND RECOMMENDATIONS .................................................................... 67
  Site Significance Evaluation ................................................................................... 67

GLOSSARY ................................................................................................................ 71
REFERENCES .............................................................................................................. 72

APPENDIX: KAHLULI SCHOOL INFORMATION (COURTESY OF ANNALESE KEHLER) ............ 78
FIGURES

Figure 1. Project area on a 7.5 minute Wailuku quadrangle map (USGS 2013) ........................................ 2
Figure 2. Project area on a TMK plat map (State of Hawai‘i 1974) .......................................................... 3
Figure 3. Soils in the project area (data from Foote et al. 1972) ............................................................... 5
Figure 4. Major sugarcane irrigation ditches on the island of Maui (Wilcox 1996:120). ......................... 12
Figure 5. Project area projected on a 1950 NOAA aerial photo (NOAA 1950) .................................... 15
Figure 6. Project area plotted on a 1955 topographic map (USGS 1955) ................................................. 16
Figure 7. Project area plotted on a 1965 NOAA aerial photo (NOAA 1965) .......................................... 17
Figure 8. Project area plotted on a 1983 topographic map (USGS 1955) ................................................. 18
Figure 9. Project area plotted on a 1997 topographic map (USGS 1955) ................................................. 19
Figure 10. Project area plotted on a 2000 NOAA aerial photo (NOAA 2000) ..................................... 20
Figure 11. Portion of a map of Wailuku area, including Kahului (Alexander 1881) .......................... 21
Figure 12. Portion of a map of Maui (Dodge 1885) .............................................................................. 22
Figure 13. Portion of a map of Kahului and Kahului Harbor (Howell 1896) ........................................ 24
Figure 14. Portion of a map of the town of Kahului ............................................................................. 25
Figure 15. Previous archaeological studies and known archaeological sites ....................................... 26
Figure 16. Excavation with a backhoe. Orientation is to the southeast ............................................ 32
Figure 17. Trench locations plotted on a topographic map (USGS 2013) ............................................. 34
Figure 18. Closer view of trench locations plotted on aerial imagery ................................................. 35
Figure 19. Trench locations plotted over project construction plans ................................................... 36
Figure 20. Site SIHP 50-50-04-08872 plotted on a topographic map (USGS 2017) ...................... 37
Figure 21. A 2000 NOAA Aerial Photograph showing SIHP 50-50-04-08872 ..................................... 38
Figure 22. Plan view drawing of Site 1 wall with wall detail in insets ............................................... 39
Figure 23. Photo of the northern wall, facing east. Note the repaired section of cement................. 40
Figure 24. Central gap on the northern wall, with concrete pad, facing south ................................. 40
Figure 25. Change in wall weight, western extension, facing east ....................................................... 40
Figure 26. Eastern extension, facing west ............................................................................................... 42
Figure 27. Plaque on the northeastern corner, facing southwest ......................................................... 42
Figure 28. Example of missing stones in the northern wall, facing south ........................................... 42
Figure 29. Feature 2 the MCSA building, facing south ......................................................................... 43
Figure 30. Feature 2 the MCSA building, facing east ............................................................................ 43
Figure 31. Feature 3, Cafeteria building ruins, facing east ................................................................. 45
Figure 32. Feature 4, Utility shed, facing southeast .............................................................................. 45
Figure 33. Harris Matrix of the project area ......................................................................................... 48
Figure 34. Profile drawing of TR 1, facing east ..................................................................................... 51
Figure 35. Profile photo of TR 1, facing east ......................................................................................... 51
Figure 36. Profile drawing of TR 2, facing north ................................................................................... 51
Figure 37. Profile photo of TR 2, facing north ...................................................................................... 52
Figure 38. Profile drawing of TR 7, facing east ..................................................................................... 54
Figure 39. Profile photo of TR 7, facing east ......................................................................................... 54
Figure 40. Profile drawing of TR 12, facing south ............................................................................... 56
Figure 41. Profile photo of TR 12, facing south .................................................................................... 56
Figure 42. Profile drawing of TR 13, facing south ............................................................................... 56
Figure 43. Profile photo of TR 13, facing south .................................................................................... 57
Figures

Figure 44. Profile drawing of TR 14, facing west.......................................................... 57
Figure 45. Profile photo of TR 14, facing west................................................................. 58
Figure 46. Profile drawing of TR 15, facing west............................................................. 58
Figure 47. Profile photo of TR 15, facing west................................................................. 58
Figure 48. Profile drawing of TR 16, facing west............................................................. 59
Figure 49. Profile photo of TR 16, facing west................................................................. 60
Figure 50. Acc. 1, a crown-style glass bottle finish. ......................................................... 65
Figure 51. Acc. 2, a white ceramic fragment. ................................................................. 65

Tables

Table 1. Previous Archaeological Studies in the Vicinity of the Project Area.................. 27
Table 2. Area Stratigraphy Derived from Profiles within the Project Area ..................... 47
Table 3. Stratigraphy of Representative Profiles............................................................. 60
Table 4. Artifact Data....................................................................................................... 65
Table 5. Significance Determination................................................................................ 69
INTRODUCTION

At the request of G70, on behalf of the Hawai‘i Housing Finance & Development Corporation (HHFDC) Keala Pono Archaeological Consulting conducted an archaeological inventory survey (AIS) for the proposed Kahului Civic Center Mixed-Use Complex Project in Wailuku Ahupua‘a, Wailuku District, on the island of Maui. This is located at 153 W. Ka‘ahumanu Avenue on a portion of TMK: (2) 3-7-004:003. This work was designed to identify, document, assess significance, and provide mitigation recommendations for any historic properties that may be located in the project area in anticipation of the proposed construction.

This report is drafted to meet the requirements and standards of state historic preservation law, as set out in Chapter 6E of the Hawai‘i Revised Statutes and Hawaii Administrative Rules (HAR) §13–276, the Rules Governing Standards for Archaeological Inventory Surveys and Reports. The report begins with a description of the project area and a historical overview of land use, Hawaiian traditions, and archaeology in the area. The next section presents methods used in the fieldwork, followed by results of the survey. Project results are summarized and recommendations are made in the final section. Hawaiian words and technical terms are defined in a glossary at the end of the document.

Project Location and Natural Environment

The project area is located in Kahului, approximately 300 m (.2 mi.) inland from the coast at Kahului Harbor (Figure 1) on 1.91 ha (4.72 ac.) portion of TMK: (2) 3-7-004:003. TMK: (2) 3-7-004:003 is a 2.26-ha (5.572-ac.) property owned by the State of Hawai‘i located at 153 W. Ka‘ahumanu Avenue (Figure 2). The property is bounded by W. Ka‘ahumanu Avenue to the north, Kane Street to the west, Vevau Street to the south, and private parcels to the east.

The property currently houses the McKinley Community School for Adults Maui Campus, which includes three buildings that were constructed in 1920. Topography is relatively flat, and there is little to no vegetation on the properties. The project area lies at roughly 2 m (7 ft.) above mean sea level (amsl), and rainfall averages approximately 42 cm (17 in.) per year (Giambelluca et al. 2013).

The island of Maui was created by two separate shield volcanoes, Haleakalā in the east and Pu‘u Kukui in the west. The two land masses are connected by an isthmus when “lavas of Haleakala banked against the already existing West Maui volcano” (Macdonald et al. 1983:380). The project area is located in the large ahupua‘a of Wailuku in West Maui. Wailuku consists of Kahului Bay, from Paūkukalo to Kapukaulua; ‘Īao Valley; and the northern part of the island’s isthmus, which includes Waikapū, Waiehu, Waihe‘e, Kahakuloa, and Pulehu‘ui. Wailuku is bordered by the ahupua‘a of Ka‘anapali and Lahaina to the west, and Hamakuapoko to the east.

The isthmus on which the majority of Wailuku lies has soils composed of “alluvial fans of outwashed silts and gravels, overlain by coralline sands blown inland from the coast. The lower levels have become firmly lithified, forming a soft rock known as colianite” (Stearns 1978:10). The lithified sand dunes occur on the alluvial fans along the coast and farther inland from Kahului to Waihe‘e. Some of these dunes reach heights as great as 60 m (197 ft.) (Macdonald et al. 1983:388; Carlquist 1980:60).

Soils in the southwest half of the project area consist of Puuone sand 7–30% slopes (PZUE) (Figure 3). These soils are located on dunes near the coast and are often used for pasture and housing (Foote...
Figure 1. Project area on a 7.5 minute Wailuku quadrangle map (USGS 2013).
Figure 2. Project area on a TMK plat map (State of Hawai‘i 1974).
et al. 1972:117). The northeast half of the parcel lies on Fill land (Fd). This soil type consists mainly of lands that have been filled with bagasse and slurry from sugar mills, although some areas are filled with dredged material (Foote et al. 1972:31). As the project area is very close to Kahului Harbor, it is likely that the fill material here derived from dredging of the harbor.

**Project Description**

The Kahului Civic Center Mixed-Use Complex Project (Project) is a collaborative effort between HHFDC and the State Department of Accounting and General Services (DAGS). The Project primarily involves the construction of affordable and market-rate multi-family housing (multi-family housing) and a State Kahului Civic Center (Civic Center). The multi-family housing buildings and Civic Center will provide a total of approximately 381,000 SF of floor area and approximately 596 parking spaces. Approximately 300 multi-family dwelling units (mixture of 1-, 2- and 3-bedroom units) will be provided in two buildings (both roughly six stories); and approximately 414 parking spaces will be provided in two three-level parking podiums for the multi-family housing. The preliminary program for the Civic Center (roughly four stories) includes space for State offices, the State Department of Education’s McKinley Community School for Adults, and the Kahului Public Library. A parking deck built over a surface parking lot will provide approximately 182 parking spaces for the Civic Center. Community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center. The Civic Center program spaces may be adjusted due to the needs and priorities of State agencies and availability of funding. Existing structures on the Project parcel to be demolished include the Department of Education’s McKinley Community School for Adults Maui Campus, a lawnmower maintenance building (one-story), a collapsed building (one-story) and a parking lot with 21 parking spaces.

The County’s new Transit Hub is currently being constructed on the southeast portion (0.85 acres) of the Project parcel along Vevaau Street. The County’s new Transit Hub is not a part of this Project. The County’s new Transit Hub will replace the existing Transit Hub, located at the Queen Ka‘ahumanu Center.
Figure 3. Soils in the project area (data from Foote et al. 1972).
CULTURAL BACKGROUND

This section of the report presents background information as a means to provide a context through which one can examine the cultural and historical significance of the project lands. In the attempt to record and preserve both the tangible (e.g., traditional and historic archaeological sites) and intangible (e.g., mo‘olelo, ʻōlelo noʻeau) culture, this research assists in the discussion of anticipated finds. Research was conducted at the Hawai‘i State Library, the University of Hawai‘i at Mānoa libraries, the SHPD library, and online on the Office of Hawaiian Affairs website (OHA n.d.) and the Department of Accounting and General Services (DAGS n.d.), Waihona Aina (n.d.), Avakonohiki (n.d.), and Ulukau (n.d.) databases. Archaeological reports, historical reference books, and historic maps were among the materials examined.

Wailuku in Traditional Times

Place names often shed light on traditional views of an area and can provide important contextual information. Wailuku literally means “water of destruction” (Pukui et al. 1974:225) due to the battles that took place there, most notably the battle at ʻĪao Valley between Kamehameha the Great and Kahekili. Wailuku is also referred to as Nā Wai ʻEhā, which translates to “the four waters,” after the four streams that run through its valleys: Waiehu, Waikapū, Wailuku, and Waiheʻe. The old ‘okana (land division) named Nā Wai ʻEhā comprised the four great valleys which cut far back into the slopes of West Maui and drain the eastward watershed of Puʻu Kukui and the ridges radiating from it.

Place Names

One often overlooked source of history is the information embedded in the Hawaiian landscape. Hawaiian place names “usually have understandable meanings, and the stories illustrating many of the place names are well known and appreciated...The place names provide a living and largely intelligible history” (Pukui et al. 1974:xii).

Place names associated with the study area are listed in the Place Names of Hawaii (Pukui et al. 1974), along with the meanings of the names and/or comments about the specific locales:

Halekiʻi...Alternate name for the heiau at Pihana, Maui. Lit., image house. (Pukui et al. 1974:37)

ʻĪao. Stream, valley, peak (2,250 feet high), park, and one-time sacred burying place of chiefs, Wai-luku qd....Maui....Lit., cloud supreme. (Pukui et al. 1974:55)

Kaʻahumanu. Church, Wai-luku, Maui...Named for Queen Kaʻahumanu, favorite wife of Ka-mehameha I, who was later kuhina nui (executive officer), and who died a Christian in 1832...Lit., the bird [feather] cloak. (Pukui et al. 1974:59)

Kaʻākaupōhaku. Ancient surfing area, Ka-halui area, Maui. (Finney 1950b:345) Lit., the north (or right-hand) stone. (Pukui et al. 1974:60)

Kahului. Town, elementary school, port, bay, railroad, and surfing area known as Kahului Breakwater (Finney 1959a:108), Maui. Probably Lit., the winning. (Pukui et al. 1974:67)

Kaleholeho. Ancient surfing area, Ka-halui area, Maui. Lit., the callus. (Pukui et al. 1974:76)
Kanahā. Wildlife sanctuary and pond near Ka-halui, Maui, said to have been built by Chief Kiha-a-Piʻilani, brother-in-law of ʻUmi (HM387) who lived about A.D. 1500. Nearly 500 native Hawaiian stilts (āeʻo) have been counted here at one time, about a third of the known total. Some 50 kinds of birds have been seen here, including herons, geese, ducks, owls, plovers, sand pipers, tattlers, coots, pheasants, and doves...Lit., the shattered [thing]. (Pukui et al. 1974:83)

Kepaniwai. Park, Wailuku, Maui. Lit., the water dam (Wai-luku Stream was choked with human bodies after the slaughter there). (Pukui et al. 1974:109)


Māniaina. Ditch, Wailuku qd., Maui...Lit., a shuddering sensation. (Pukui et al. 1974:145)


Nehe. Point. Wai-luku qd., Maui...Lit., rustle. (Pukui et al. 1974:164)


Wailuku...land division...city, point, sugar company, and stream, West Maui; site of the battle in the late eighteenth century in which the army of Ka-lani-ʻōpuʻu was nearly annihilated by Ka-hekili of Maui. Lit., water [of] destruction. (Pukui 1974:225)

Subsistence and Traditional Land Use

Wailuku was a gathering place and home to important chiefs and their attendants (ʻĪʻī 1959:135). Handy et al. (1991:272) assert that there were five centers of population on the island of Maui, one of which was the part of West Maui, “where four deep valley streams watered four areas of taro land spreading fanwise to seaward: the Four Waters (Na-wai-ʻeha) famed in song and story–Waieʻe, Waiehu, Wailuku, and Waikapu.”

Wailuku is the third of the four streams that flows from the uplands of Puʻu Kukui’s ridges and down through ʻĪao Valley. Portions of the current city of Wailuku were built on old agricultural terraces (Handy et al. 1991:497):

Along the broad stream bed of ʻĪao Valley, extending several miles up and inland, the carefully leveled and stone-encased terraces may be seen. In the lower section of the valley these broad terraces served, in 1934, as sites for Camps 6 and 10 of Wailuku Sugar Plantation, being utilized for houses, gardens, playgrounds, and roads. A little farther up, neat private homes and vegetable and flower gardens covered these old taro terraces; while at their upper limit the terraces were submerged in guava thickets. Here a few wild taros were found, but we saw no terraces in ʻĪao or Wailuku being used as flooded taro patches. It is significant that here, as at Waieʻe, the old terraces were adapted to market gardening (Chinese bananas, vegetables, and flowers) by Japanese and Portuguese gardeners. (Handy et al. 1991:497)

The waters of Waikapū Stream were once diverted to feed loʻi systems, and its overflow was discharged on the dry plains on the isthmus between East and West Maui (Handy et al. 1991:496).
These abundant waters were later tapped for sugarcane irrigation (see Historic Wailuku section). Cheever commented on the lo‘i of Wailuku in the mid-19th century:

As you get into the valley and vega of Wailuku, you see numerous remains of old kihapais, or cultivated lots, and divisions of land now waste, showing how much more extensive formerly was the cultivation, and proportionally numerous the people than now…The whole valley of Wailuku, cultivated terrace after terrace, gleaming with running waters and standing pools, is a spectacle of uncommon beauty to one that has a position a little above it. (Cheever 1851 in Sterling 1998:75)

In addition to agricultural cultivation, fishponds were constructed in the region, near Kahului. Two major ponds are thought to have been constructed around AD 1500 during the rule of Kiha-a-Pi‘ilani (Kamakau 1992:42; Pukui et al. 1974:83). The ponds were named Kanahā and Mau‘oni. Kiha-a-Pi‘ilani also built the ala loa, a trail that circled the entire island. Another source states that the fishponds were constructed by Kapi‘ioho‘okalani, an ali‘i of O‘ahu and Moloka‘i, and that the walls were built by men passing stones from one to another in a line that extended from Makawela to Kanahā (Puea-a-Makakaualii in Sterling 1998:87).

A number of heiau have been identified within the ahupua‘a of Wailuku, with Halekī‘i and Pihana located approximately two kilometers northeast of the current study area. An annual publication by T.G. Thrum, the Hawaiian Almanac and Annual for 1909 briefly describes some of the heiau found in Wailuku:

- Pihana- Wailuku, near end of coral and sand ridge, one-half mile from the sea; about 300x120 ft. in size; walls in complete ruins showing foundations massive.
- Halekii- Wailuku, some 300 ft. to N.E. of Pihana and about 100 ft. square in size.
- Kalui- Wailuku, at Puu-o-hala; repaired in time of Kahekili; Kaleopuupuu its priest.
- Malumaluakua-Keahuku-Oloku-Olopio-Malena- Wailuku. No Particulars gathered of these heiaus further than nearly all of the Wailuku temples, with the Kapokea one in Waihee are named among those consecrated by Liho-liho during a year’s stay en route to Oahu, preceding the peleleu fleet. (Thrum 1909:38)

Mo‘olelo

The island of Maui was named after the legendary demigod Māui (Pukui et al. 1974), known for his trickiness. Legends tell of how he stole fire, raised the sky and snared the sun, trapped winds, and changed landscapes. Among all of the moʻolelo, one of his biggest accomplishments was fishing land out of the ocean and creating the Hawaiian Islands. Earlier accounts share that the name of the island was once called Ihikapalaumaewa in ancient times, prior to Papa and Wākea and before their child Māui became famous (Sterling 1998).

The wind name for Wailuku is Makani-lawe-malie, or “the wind that takes it easy” (Nuualiwa in Sterling 1998:62). And it is said that the ali‘i of the area spent much time surfing (Kamakau 1992:82).

The plains of Kama‘oma‘o in Wailuku were a place of wandering souls:

There are many who have died and have returned to say that they had no claim to an ‘āumakua {realm} (kuleana‘ole). These are the souls, it is said, who only wander upon the plain of Kama‘oma‘o on Maui or on the plain at Pu‘uokapolei on Oahu. Spiders and moths are their food. (Kamakau 1991:29)
A final moʻolelo concerns the appearance of foreigners in Wailuku in the mid-13th century, long before the first written record of foreigners arriving in the islands (Fornander 1969 [1878–1885]:80–82). A chief named Wakalana governed the windward side of Maui and lived in Wailuku. At this time, a ship called Mamala came to Wailuku. The ship’s captain was named Kaluikia-Manu, and other men and women on board were named Neleike, Malaea, Haakoa, and Hika. Neleike later became Wakalana’s wife, and together they bore fair skinned children with bright, shining eyes (Fornander 1969 [1878–1885]:81). Their descendants intermarried with other Hawaiians and many of them lived in Waimalu and Honolulu on Oʻahu. Fornander posits that the moʻolelo may refer to a Japanese fishing vessel that was blown off course, as Europeans were not near Hawaiian waters at that time (1969 [1878–1885]:81).

ʻŌlelo Noʻeau

Wailuku’s connection with its distinguished coast is preserved in many traditional proverbs and wise sayings. In 1983, Mary Kawena Pukui published a volume of close to 3,000 ʻōlelo noʻeau that she collected throughout the islands. The introductory chapter reminds us that if we know these proverbs and wise sayings well, then we will know Hawaiʻi well (Pukui 1983). Four ʻōlelo noʻeau were found that speak of Wailuku. They provide further insight to the traditional landscape and history of the region.

Kei nu aku la paha aʻu ʻĀlapa I ka wai o Wailuku.

My ʻĀlapa warriors must now be drinking the water of Wailuku.

Said when an expected success has turned into failure. This was a remark made by Kalaniōpuʻu to his wife Kalola and son Kiwalaʻō, in the belief that his selected warriors, the ʻĀlapa, were winning in their battle against Kahekili. Instead they were utterly destroyed. (Pukui 1983:184)

Na wai ʻehā.

The four wai.

A poetic term for these places on Maui: Wailuku, Waiehu, Waiheʻe, Waikapū, each of which has a flowing water (wai). (Pukui 1983:251)

Pili ka hanu o Wailuku.

Wailuku holds its breath.

Said of one who is speechless or petrified with either fear or extreme cold. There is a play on luku (destruction). Refers to Wailuku, Maui. (Pukui 1983:290)

Wailuku I ka malu he kuawa.

Wailuku in the shelter of the valleys.

Wailuku, Maui, reposes in the shelter of the clouds and the valley. (Pukui 1983:290)

War and Conquest in Wailuku

Maui’s ahupua’a of Wailuku was wrought with warfare through much of its known history, including what some would term a 100 years’ war. Many stories and accounts have been passed down. Rev. Cheever, in his book, Life in the Sandwich Islands: or, The Heart of the Pacific, As It Was and Is, wrote of how the various wars had an effect on how each stream in Wailuku was named:

There are in this region four streams in succession from the different gorges of the mountain, significantly named, it is thought, from the events of battles which have transpired upon them. Waikapu—The water where the conch was blown, and the engagement began.
Waiehu—The water where the combatants smoked with dust and perspiration. Wailuku—The water of destruction, where the battle began to be fierce and fatal. Waihee—The water of total rout and defeat, where the army melted away. (Cheever 1851:59)

One of the earliest battles was that between owls and men: “The owls retaliated against an act committed by a cruel man by flocking to Wailuku and descending upon him” (Silva n.d.). Another mention of this battle refers to the origin of the ahupua’a’s name: “The cruel man was punished, and the battle place still bears the name Wailuku, Water-of-killing” (Pukui and Curtis 1974:179).

In addition to the battles with owls, many battles were fought between chiefs. In the 16th century, the 15th mōʻī of Maui, Piʻilani, united the island’s districts through war, and gave his daughter to marry the current mōʻī of Hawaiʻi Island. Due to this marriage, there was peace between the two kings of each island, until Piʻilani died and a rivalry sparked between his two sons, Lono-a-Piʻilani and Kiha-a-Piʻilani (Speakman 1978). The eldest son, Lono, had inherited Maui and he sought to kill his brother Kiha, who then escaped to Hāna and met a young chiefess, Koleamoku. They fell in love and secretly married, even though she had been promised to Lono. The couple moved to Hawaiʻi Island, where Kiha’s sister was still living with ‘Umi, to avoid being captured by Lono. ‘Umi took the side of Kiha and launched a war with Maui. Lono was defeated and ‘Umi took partial control of the island of Maui, in Hāna, and peace was once again observed until the 17th century.

In the early 18th century, Kekaulike united the kingdom of Maui through war. While there were times of peace after this, things got worse for Maui by the end of the century with many wars with Hawaiʻi Island’s king, Alapaʻi who was trying to gain control of it. Kekaulike perished when fleeing to Wailuku:

When Ke-kau-like heard that the ruling chief of Hawaii was at Kohala on his way to war against Maui, he was afraid and fled to Wailuku in his double war canoe named Ke-akamilo. He sailed with his wives and children…his officers, war leaders, chiefs, and fighting men, including warriors, spearmen, and counselors. Some went by canoe and some overland, and the fleet landed at Kapaʻahu at the pit of ‘Ai-hakoʻko in Kula. Here on the shore the chiefs prepared a litter for Ke-kau-like and bore him upland to Halekii in Kukahua. There Ke-kau-like died, and sound of lamentation for the dead arose. (Kamakau 1992:69)

In an important battle, Kalaniʻōpuʻu was defeated in Wailuku (Kamakau 1992:85–91). It was in 1776 that Kalaniʻōpuʻu returned to war with Maui and was overthrown by Kahekili’s army. It is said that Kalaniʻōpuʻu’s forces “were slain like fish enclosed in a net,” and the slaughter was known as Ahulau ka Piʻipiʻi Kakanilua, or Slaughter of the Piʻipiʻi at Kakanilua (Kamakau 1992:86). Unthwarted, however, Kalaniʻōpuʻu prepared for another assault. Kahahana, the aliʻi of Oʻahu and Molokaʻi, came to assist Kahekili. This battle was fought in the area between Wailuku and Waikapū. Again, Kalaniʻōpuʻu’s forces were surrounded and killed.

Afflicted by war, Maui became impoverished, and Vancouver mentioned during his visit in 1793 that King Kahekili was having trouble finding enough provisions for his own ship (Speakman 1978). Kahekili was the last king of Maui and was able to rule Molokaʻi, Lanaʻi, and Oʻahu during his reign but was unable to conquer Hawaiʻi Island.

Foreigners increasingly visited Hawaiʻi after Captain Cook arrived at Kahului Bay in the late 18th century, and this was happening as Kamehameha was rising to power. Kamehameha, armed with a cannon he acquired by foreigners, went to battle in Wailuku.

The bay from Kahului to Hopukoa was filled with war canoes. For two days there was constant fighting in which many of the most skillful warriors of Maui took part, but
Kamehameha brought up the cannon, Lopaka, with men to haul it and the white men, John Young and Isaac Davis, to handle it; and there was a great slaughter. Had they fought face-to-face and hand-to-hand, as the custom was, they would have been equally matched. But the defensive was drawn up in a narrow pass in ‘Iao, and the offensive advanced from below and drew up the cannon as far as far as Kawelowelo‘ula and shot from there into ‘Iao and the hills about, and the men were routed. The victors pursued them and slew the vanquished as they scrambled up the cliffs. There was a great slaughter, but mostly among the commoners; no important chief was killed in the battle. “Clawed off the cliff” (Ka ‘uwa‘u-pali) and “The damming of the waters” (Ka-pani-wai) this battle was called.” (Kamakau 1992:148–149)

After winning the battle on Maui, Kamehameha moved on to conquer the remaining islands of Moloka‘i, O‘ahu, and Kaua‘i.

**Historic Wailuku: The 19th and 20th Centuries**

In 1832, missionaries began arriving in Maui and established a girls’ school in Wailuku. Around that time, the sugar industry was introduced, greatly affecting Wailuku. The Hungtai Sugar Works company, founded in 1828 by two Chinese merchants, was the first location of sugar production on the island. King Kamehameha had a sugar mill built in Wailuku in the 1840s, which much of the initial sugar industry had developed around. The abundance of water supply and accessible land in Wailuku allowed for the sugar industry to develop and become profitable within a short time period. In addition, the mills built in the early 1960s were among the most advanced, being steam powered. The arrival of over 100 foreign laborers to work on the plantations began to greatly change the population composition of the region, along with the decline in native population. The Wailuku Sugar Company was established in 1862 and later took over the Waiheʻe Plantation to the north. By 1867, 2,250 acres of land was planted with sugar in Wailuku. Much of the sugarcane cultivation took place in the western portion of Wailuku until 1876 when industry advancements enabled expansion to other dryer areas (Wilcox 1996, MacLennan 1997:102).

In the second half of the 19th century, the sugar industry in Hawaii greatly expanded as a result of the 1876 Reciprocity Treaty between the U.S. and the Hawaiian Kingdom, which gave the U.S. market free access to Hawai‘i’s land for sugar and other products. A major player in the Hawaiian sugar industry, Claus Spreckels, a German immigrant to the United States, had first established a major sugar refinery in San Francisco. He initially opposed the 1876 Reciprocity Treaty between the United States and Hawai‘i as he believed it would cause insurmountable competition in the sugar industry. However, in order to keep up with potential competition, Spreckels traveled to Maui in 1878 where he later founded the Hawaiian Commercial & Sugar Company (HC&S). He purchased and leased 40,000 acres of eastern Wailuku, including the Wailuku Commons. After obtaining the Wailuku Commons in 1882, Spreckels gained water and transport rights for his crops, creating a thriving sugar industry and plantation town named for himself–Spreckelsville. HC&S was incorporated in 1884 by Spreckels using $10 million in capital; his sugar empire on Maui included four sugar mills, 35 miles of railway (including equipment), a water reservoir, and a canal system built by a fellow German-American engineer which was highly advanced for its time (Spiekermann 2019:5). Spreckels’ Waiheʻe Ditch was the center of conflict at that time, with the Wailuku Sugar Company objecting that Spreckels did not have a right-of-way through their land or rights to waters of Waiheʻe Stream. Spreckels eventually lost control of HC&S and a new ditch was constructed. By the 1900s, a complicated system of ditches wove its way through both East and West Maui (Figure 4).
Figure 4. Major sugarcane irrigation ditches on the island of Maui (Wilcox 1996:120).
With the rise of the sugar industry in Wailuku, Kahului, and continuing on further east to Spreckelsville and Pāʻia, it was apparent that a railroad was needed to transport sugar to be exported to the U.S. The Kahului Railroad was first organized under the partnership between Thomas H. Hobron, William O. Smith, and William H. Baily. The first section of the railroad that extended from Wailuku to Kahului was completed by 1879. Hobron also operated a general merchandising business on Bay Street in Kahului, which later became the headquarters for the railroad. Construction began in 1880 of the railroad sections east of Kahului to Pāʻia and Spreckelsville. The three partners then sold the company to Samuel G. Wilder upon completion of the eastern section in 1884. In 1899, the railroad was then sold to HC&S Company—which by then was owned by Henry P. Baldwin and Associates. By 1913, the railroad extended east to the cannery in Hāʻiku. The main railroad terminal in Kahului was expanded in the 1920s to encompass a 219-acre facility. In 1923, a new railroad general office was constructed (today, the general office is located just northeast of the current project area). By this time, a total of 34 miles of the main line, nine miles of a secondary line, ten steam locomotives and 265 cars were in service. However, the depression of the 1930s and World War II of the 1940s saw a reduction in general service. The gradual introduction of motor busses starting in 1936 largely replaced locomotive transportation service in Kahului and by the end of the 1960s, the railroad had ended all services (Ramsay 1960).

The burgeoning sugar industry in Wailuku and Kahului also contributed to the increased use of Kahului Harbor as a major trade port. According to Burns (1991:47), by 1840, a small jetty may have been located at what is now the Maui Beach Hotel (formerly the Maui Palms Hotel), just north of the project area. In the 1870s, T.H. Hobron operated the Ka Moi, a schooner that ran between Kahului and Honolulu (Thomas 1983). A small commercial landing was opened in 1879 for the purposes of the sugar trade. Soon thereafter, Spreckels began operating Oceanic Steamship Lines between Kahului and North America out of the Kahului Harbor, making it the main shipping point for sugar from all of the Maui plantations. Samuel Wilder built the first breakwater wall and had part of the harbor dredged in 1904. The dredging fill was used to fill in the areas where the main business section is now located (Burns 1991:48).

Māhele Land Tenure

The change in the traditional land tenure system in Hawaiʻi began with the appointment of the Board of Commissioners to Quiet Land Titles by Kamehameha III in 1845. The Great Māhele took place during the first few months of 1848 when Kamehameha III and more than 240 of his chiefs worked out their interests in the lands of the Kingdom. This division of land was recorded in the Māhele Book. The King retained roughly a million acres as his own as Crown Lands, while approximately a million and a half acres were designated as Government Lands. The Konohiki Awards amounted to about a million and a half acres, however title was not awarded until the konohiki presented the claim before the Land Commission.

In the summer and fall of 1850 two pieces of key legislation were adopted by the Kingdom of Hawaii. First, on July 10th of 1850, the Alien Land Ownership Act was established, allowing foreigners to hold title to lands within the Kingdom. Less than a month later, the Alien Land Ownership Act was followed by the Kuleana Act on August 6th of 1850. The Kuleana Act allowed citizens to present claims before the Land Commission for parcels that they were cultivating within the Crown, Government, or Konohiki lands. By 1855 the Land Commission had made visits to all of the islands and had received testimony for about 12,000 land claims. This testimony is recorded in 50 volumes that have since been rendered on microfilm. Ultimately between 9,000 and 11,000 kuleana land claims were awarded to kamaʻāina totaling only about 30,000 acres and recorded in ten large volumes.
In the mid-1900s, the majority of the Wailuku Ahupua‘a was marked as Crown Land. And in 1872, when Kamehameha V died, his sister Princess Ruth Ke‘elikōlani inherited the land. She owned part, while 743.4 acres in the ‘ili of Owa in Wailuku was granted to Kamehameha’s steward Kuihelani. Princess Ruth eventually sold half of the Crown Lands in 1882 to Claus Spreckels even though he already held a lease for 16,000 acres in Wailuku.

The entirety of the current study area was encompassed by LCA 7713:23, awarded to Princess Victoria Kamāmalu. The LCA constituted 391 acres of the former ‘ili of Kula which consisted of lands from Wailuku to the portion of Kahului that borders the bay. Located just south of the current study area, was an area referred to as the Wailuku Commons and designated Crown Lands.

The Kahului School

The early 20th century saw the project area develop into a bustling school campus. The Kahului School itself was first established in 1900 (Ruzicka 2011) as a one-room school. This was replaced in the 1920s by the two-story Kahului School building and the old Maui Vocational School (MVS) building. The final period of construction happened in 1939 with the construction of the school annex and the boundary wall on the northern edge of the property. Aerial photos and USGS maps from 1950–1983 clearly show the MVS building, the Kahului School building and the school annex (Figures 5–8).

Today the school campus is dramatically different from its early 20th century form. The MVS moved up Ka‘ahumanu Avenue to a new campus in the 1940s before eventually becoming the University of Hawai‘i Maui College. Now, the old MVS building is used by the McKinley Community School for Adults Maui Campus. The Kahului School building went on to be included in the Kahului Historic District (SIHP 50-50-04-1607) in 1975, before it was demolished in 1996. This is reflected in the most recent aerial photos and USGS map, where the school has been replaced with greenspace (Figures 9 and 10). The 1939 school annex was most recently demolished in 2021. A historic resource evaluation report (HRER) has been prepared for the buildings that are still standing within the project area (Yarbrough 2021).

Additional information for the Kahului School is presented in the appendix of this report. This information, which dates to 1936, was provided by Annalise Kehler of the Maui County Cultural Resources Commission (CRC). It includes photos and a map of the school, as well as data on buildings and other structures.

Other Historic Maps of the Project Vicinity

Historic maps help to paint a picture of Wailuku in years past and illustrate the many changes that have taken place in the region. This section presents a selection of four maps from the 19th and 20th centuries that provide insight to the project area. Note that names are spelled as they are written on each map.

The first map depicts the lands of Wailuku and Kahului by W.D. Alexander in 1881 (Figure 11). No structures are present within the Wailuku vicinity, but buildings can be seen near Kahului Harbor and the Kahului Railroad interchange and yard. The railway from Kahului, west to Wailuku and east to Spreckelsville and Pā‘ia, is depicted just north of the current project area.

The next map, drawn in 1885, shows several interesting features in Wailuku (Figure 12). Sand hills are depicted, extending almost as far inland as Waiale Pond. The project area vicinity appears to be
Figure 5. Project area projected on a 1950 USGS aerial photo (USGS 1950).
Figure 6. Project area plotted on a 1955 topographic map (USGS 1955).
Figure 7. Project area plotted on a 1965 USDA aerial photo (USDA 1965).
Figure 8. Project area plotted on a 1983 topographic map (USGS 1983).
Figure 9. Project area plotted on a 1997 topographic map (USGS 1997).
Figure 10. Project area plotted on a 2000 NOAA aerial photo (NOAA 2000).
Figure 11. Portion of a map of Wailuku area, including Kahului (Alexander 1881).
Figure 12. Portion of a map of Maui (Dodge 1885).
within “GRANT 3433 C. SPRECKELS” and “Hawaiian Commercial and Sugar Co.” which at the time was owned by Claus Spreckels. The Kahului Railroad is depicted to the north and a trail that runs west to Wailuku is located just north of the project area.

A map by Hugh Howell from 1896 depicts the growing town of Kahului, which is based around the Kahului Railroad (Figure 13). The railroad is depicted heading west toward Wailuku from the Kahului town center. Roads are also depicted extending from Kahului toward Wailuku and heading north along the coastline.

The final map by surveyor James M. Dunn offers a closer look at the project area within the town of Kahului from 1953 (Figure 14). This map shows the project area is bound by Main, Kane, School, and Fourth Streets, with Third Street bisecting the subject lot in half. This map depicts the Kahului town site showing various deeds and boundaries, and indicates that most of the project area was deeded to the Territory of Hawaii from HC&S Company on December 21, 1925. It also shows that the northeast corner of the subject property was deeded to the Department of Instruction/Correction of the Territory of Hawaii on September 17, 1908.

**Previous Archaeology**

Many archaeological studies have been conducted in Wailuku. The following discussion provides information on archaeological investigations that have been carried out within approximately 1 km of the project area, based on reports found in the SHPD library in Kapolei, Hawai’i (Figure 15 and Table 1). Projects are summarized below in chronological order and State Inventory of Historic Places (SIHP) numbers are listed with the prefix 50-50-04.

Some of the earliest archaeological surveys and descriptions of Maui were done by Thrum in 1909 and Winslow Walker in 1928–1929. Thrum published the *Hawaiian Almanac and Annual for 1909* where he listed and described eight heiau in Wailuku. These are Pihana, Halekii, Kaluli, Malumaluakua, Keahuku, Olokua, Olopio, and Malena. Walker never published his work, but wrote a manuscript which is cited in works such as Sterling’s *Sites of Maui* (1998). Walker noted ten heiau for Wailuku (Keahuku, Olokua, Olopio, Malena, Pohakuokahi, Lelemako, Kawelowelo, Kaulupala, Palamaikhini, and Oloolokalani), but could not find any of them (Walker in Sterling 1998:79). In addition to these, Walker also described Kaluli Heiau, Pihana Heiau, and Halekiʻi Heiau for Wailuku. None of these heiau are located in the vicinity of the project area, however.

After this early work, no archaeological studies were conducted in the project vicinity until 1990, when archaeology started being conducted due to legal requirements. This is with the notable exception of the nomination of the Kahului Historic District to the Hawaiʻi Register of Historic Places (HRHP) in 1975. While the site was never formerly designated as a district, it was assigned SIHP 50-50-04-1607. The informal historic district includes a roundhouse, shop, office, bank, fairground, and the now demolished two-story school building originally located within the project area.

In 1990, an archeological inventory survey for the former Maui Palms Hotel (now the Maui Seaside Hotel) produced significant findings (Donham 1990). Located just north of the current project area, along the Kahului Harbor, midden and various artifacts were found eroding out of a sand embankment on the hotel property. The site, SIHP 50-50-04-0852, was found to be of historic origin based on the artifact types found and the lack of pre-contact artifacts. Hand-powered auger cores were excavated as part of the inventory survey. Observed surface and subsurface materials included clear, green, amber bottle glass, plastic, metal fragments, brick, ceramics, charcoal, shell, fish bones,
Figure 13. Portion of a map of Kahului and Kahului Harbor (Howell 1896).
Figure 14. Portion of a map of the town of Kahului with a close up inset of the subject property (Dunn 1953).
Figure 15. Previous archaeological studies and known archaeological sites in the vicinity of the project area.
<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Location</th>
<th>Work Completed</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrum 1909</td>
<td>Island-Wide</td>
<td>Heiau Documentation</td>
<td>Noted eight heiau in Wailuku, none in the project vicinity.</td>
</tr>
<tr>
<td>Walker 1928–1929</td>
<td>Island-Wide</td>
<td>Survey</td>
<td>Noted ten heiau in Wailuku but could not locate them; none are in the project vicinity.</td>
</tr>
<tr>
<td>Donham 1990</td>
<td>Maui Palms Hotel</td>
<td>Archaeological Inventory Survey</td>
<td>Identified SIHP 50-50-04-0852, consisting of surface and subsurface historic artifacts and faunal remains.</td>
</tr>
<tr>
<td>Kennedy et al. 1993</td>
<td>Wahinepio Ave.</td>
<td>Archaeological Inventory Survey</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Eble and Carlson 1996</td>
<td>Hobron Triangle</td>
<td>Archaeological Inventory Survey</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Fredericksen 1997</td>
<td>Mahalani St.</td>
<td>Archaeological Monitoring</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Wade et al. 1997</td>
<td>Kahului Harbor</td>
<td>Archaeological Inventory Survey</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Fredericksen and Fredericksen 1999</td>
<td>Kahului Harbor Barge Terminal</td>
<td>Archaeological Monitoring</td>
<td>Identified SIHP 50-50-04-4753, a subsurface deposit of historic artifacts with an underlying 'ili'ili pavement.</td>
</tr>
<tr>
<td>Burgett and Spear 1999</td>
<td>Kahului Harbor</td>
<td>Archaeological Monitoring</td>
<td>No significant historic properties identified, but did document what was thought to be a pit related to historic harbor activities.</td>
</tr>
<tr>
<td>Devereux and Hammatt 1999</td>
<td>Keōpūolani Regional Park</td>
<td>Archaeological Monitoring</td>
<td>Identified four burial sites (SIHP 50-50-04-4476 – 50-50-04-4479). Two sets of human remains stored at SHPD were reinterred along with a previously recorded burial (SIHP 50-50-04-4211) that was partially preserved.</td>
</tr>
<tr>
<td>Monahan 2004</td>
<td>TMK: (2) 3-7-004:001; 3-7-005:003, 011, 023</td>
<td>Archaeological Inventory Survey</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Fredericksen 2005</td>
<td>Kanaloa Ave.</td>
<td>Archaeological Monitoring</td>
<td>Documented two previously disturbed human burials (SIHP 50-50-04-5471 and 50-50-04-5472), four pre-contact burials (SIHP 50-50-04-5495), and two pre-contact habitation sites (SIHP 50-50-04-5496 and 5660).</td>
</tr>
<tr>
<td>Johnson and Dega 2006</td>
<td>Kahului Shopping Center</td>
<td>Archaeological Inventory Survey</td>
<td>Recorded historic artifacts in a secondary context, no significant historic properties were identified.</td>
</tr>
<tr>
<td>Shefcheck and Dega 2006</td>
<td>TMK: (2) 3-7-004:001; 3-7-005:003, 011, 023</td>
<td>Archaeological Monitoring</td>
<td>Recorded historic artifacts in a secondary context, no significant historic properties were identified.</td>
</tr>
<tr>
<td>Hunt et al. 2006</td>
<td>Pu‘unene Container Yard</td>
<td>Archaeological Inventory Survey</td>
<td>Documented one burial (SIHP 50-50-04-5773) and isolated artifacts added to the Kahului Historic District (SIHP 50-50-04-1607).</td>
</tr>
</tbody>
</table>
Table 1. (continued)

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Location</th>
<th>Work Completed</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conte 2007</td>
<td>Ka'ahumanu Ave.</td>
<td>Archaeological Inventory Survey</td>
<td>Observed three faunal bone fragments; no significant historic properties were identified.</td>
</tr>
<tr>
<td>Dye and Jourdane 2007</td>
<td>Lono Ave.</td>
<td>Historic Properties Assessment</td>
<td>No surface historic properties identified.</td>
</tr>
<tr>
<td>Fredericksen 2008</td>
<td>Maui Beach Hotel</td>
<td>Archaeological Inventory Survey</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Frey and Fredericksen 2009</td>
<td>Kahului coastal region</td>
<td>Archaeological Monitoring</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Royalty and Hammatt 2017</td>
<td>Main St. and Ka'ahumanu Ave.</td>
<td>Archaeological Monitoring</td>
<td>Documented four previously identified historic properties listed on the National Register of Historic Places (SIHP 50-50-04-1633, 50-50-04-1541, 50-50-04-1630, and 50-50-04-1607). SIHP 50-50-04-8498, a historic structural remnant was newly documented. None of these sites are near the current project area.</td>
</tr>
<tr>
<td>Duhaylonsod et al. 2021</td>
<td>Current Project Area</td>
<td>Cultural Impact Assessment</td>
<td>Compiled background information for the project area and conducted three ethnographic interviews.</td>
</tr>
</tbody>
</table>

and butcher-cut faunal remains. No further work was recommended for the site prior to the onset of construction activities, but archaeological monitoring was recommended during construction for this project.

An archaeological survey with subsurface testing north of the former Maui Community College Campus produced no significant findings (Kennedy 1993). A surface survey did not identify any archaeological resources. Subsequently, 54 trenches were excavated and two features were recorded. These consisted of an in-situ wooden post, and a trash pit, both of which were determined to be of modern origin. These features were not recommended for preservation or any further work and no SIHP numbers were assigned.

An archaeological inventory survey was completed for the Kahului Barge Terminal Improvements Project (Wade et al. 1997). No historic properties were identified and the fieldwork was reported as an archaeological assessment. Due to the presence of deep undisturbed sand deposits, archaeological monitoring was recommended. Two years later, archaeological monitoring was conducted for the same project at the Kahului Harbor (Fredericksen and Fredericksen 1999). While it was apparent that the majority of the project area had undergone extensive ground disturbance, one subsurface site was located, SIHP 50-50-04-4753, at the northwestern boundary of the project area. The site consisted of modern and historic materials at the upper level, a mix of modern/historic and pre-contact materials in the middle level and the bottom layer was described as a pavement of water-
worn pebbles (‘ili‘ili) up to 22 cm thick. Beneath the pavement was culturally sterile sand. The pavement extended over an area 10 m in length and an indeterminate width. It was recommended that additional work would be needed in order to determine the site extent, age, and function.

Archaeological monitoring for the construction of storage yard improvements at Kahului Harbor produced no significant findings (Burgett and Spear 1999). While no definitive cultural resources were encountered, an unusual rock and soil-filled pit was documented. Its purpose and age were not determined, but the authors speculated that it may have been associated with historic harbor facilities formerly in the area.

Construction of the 110-acre Keōpūolani Regional Park in 1999 required archaeological monitoring (Devereux and Hammatt 1999). During grubbing and grading activities, four human burials were encountered (SIHP 50-50-04-4476 through 50-50-04-4479). A prior study of the property in 1996 uncovered a human burial that was partially preserved (SIHP 50-50-04-4211). Another two sets of human remains were being held by SHPD and reinterred with SIHP 50-50-04-4211.

Human burials were identified during archaeological monitoring for improvements to Kanaloa Avenue (Fredericksen 2005). This included four pre-contact burials assigned SHIP 5495 and two previously disturbed human burials (SIHP 50-50-04-5471 and 50-50-04-5472). The disturbed remains were reinterred with the SIHP 50-50-04-5495 burials. In addition to the human remains, two habitation sites dating to the pre-contact era were also documented (SIHP 50-50-04-5496 and 50-50-04-5660).

Archaeological monitoring for the Pu‘unene Container Yard covered the Fredericksen and Fredericksen (1999) Barge Terminal project area (Hunt et al. 2006). A post-contact burial was identified during monitoring and designated as SIHP 50-50-04-5773. Traditional and historic artifacts associated with the burial included glass and shell beads, basalt and shell sinkers, a basalt core, an octopus lure, a worked basalt cobble, a poi pounder, basalt hammer stones, and a chopping stone. These artifacts were included with SIHP 50-50-04-1607, the Kahului Historic District.

In 2004, an archaeological inventory survey was completed for the Maui Community College Lono Avenue Student Housing Project located on two contiguous parcels adjacent to the current project area to the south and east (Monahan 2004). The fieldwork did not identify historic properties, however due to the proximity to documented burials and archaeological sites, archaeological monitoring was recommended. Archaeological monitoring did not identify traditional Hawaiian cultural material or sites, but a large quantity of historic bottles was collected from throughout both properties (Shefcheck and Dega 2006). No SIHP numbers were assigned, even though a significance assessment was included in the report, based on artifacts identified. It was recommended that an archaeological monitor should be on site for any further excavations within the project area and its immediate vicinity.

An archaeological assessment for the proposed development of the Kahului Shopping Center was conducted at a property located just east and adjacent to the current project area (Johnson and Dega 2006). A total of 16 trenches were excavated, and while modern and historic artifacts dating from the 1920s were identified, it was concluded that they were from a secondary context, having been brought in with fill and deposited in that location. However, due to the possibility of identifying human remains during construction, it was recommended to have an archaeological monitor on site during any further excavation on the property.

An archaeological assessment for the installation of a cell tower at a property along Ka‘ahumanu Avenue, located to the east and adjacent to the current project area had minimal findings (Conte 2007). Within the three test trenches that were excavated, only two fragments of machine cut cow
bone and one chicken bone fragment were identified. While it was determined that nothing of cultural significance was found, archaeological monitoring was recommended for all excavations related to the cell tower project due to the presence of undisturbed sand deposits.

A historic properties assessment was conducted for a property just west of the current project (Dye and Jourdane 2007). It was determined that the installation of telecommunications equipment would have no effect on historic properties, yet an archaeological inventory survey was recommended because of the subsurface archaeological sites that have been identified nearby.

An archaeological literature review and field inspection at two parcels adjacent to the Kahului Harbor identified four surface historic properties (Hill et al. 2009). These consist of three historic buildings and a historic-era park that is associated with the HC&S sugar enterprise and the Kahului Railroad. Additional work was recommended to establish significance and mitigation recommendations for each property. No SIHP numbers were assigned at the time of the study.

Archaeological monitoring for the Kahului and Wailuku Force Main Project further documented the Kahului Railroad, SIHP 50-50-04-3112 (Medrano and Dega 2015). Additional components of the railroad infrastructure were recorded, with intact remnants of the railroad found directly beneath the modern road pavement. Isolated historic artifacts (modern debris, a bottle, and railroad ties, spikes, and rail wheel) were also recorded during monitoring. It was recommended that any additional work in the vicinity should proceed with an archaeological monitoring program.

In 2017, archaeological monitoring was conducted for the Main Street and Ka‘ahumanu Avenue resurfacing project from High Street to Hobron Avenue (Royalty and Hammatt 2017). Four previously identified historic properties were recorded during monitoring. The Waiale Drive Bridge (SIHP 50-50-04-1633), Ka‘ahumanu Avenue-Naniloa Drive Overpass (SIHP 50-50-04-1541), Baldwin High School (SIHP 50-50-04-1630), and the Ka‘ahumanu Church (SIHP 50-50-04-1607) are all listed on the National Register of Historic Places, however none of these sites are located near the current project area. A historic concrete structural foundation (SIHP 50-50-04-8498) was also documented.

Additionally, two archaeological inventory surveys (Eble and Carlson 1996, Frederickson 2008) and two archaeological monitoring studies (Frey and Fredericksen 2009, Fredericksen 1997) had no significant findings during fieldwork.

Most recently, a cultural impact assessment was completed for the current project (Duhaylonsod et al. 2021). Three ethnographic interviews were conducted, and the following recommendations were made for the project: 1) Have a cultural monitor on site during construction; 2) Allow access to the facilities for all community members rather than a members-only facility; 3) Keep open communication with the community regarding the project; 4) Plant useful foliage on the property such as plumeria, lau‘e, palapalai, noni, kalo, and naupaka for the community to gather, and to hold cultural classes on the property, such as lei-making, to make good use of the plants; 5) Use native plants instead of invasives for landscaping on the grounds; 6) If any trees on the property are being cut down, consult the community to see if the trees can be utilized by community members.

Summary of Background Research

Several archaeological implications can be made based on the background research presented above. The southern end of the current project area is the location for the McKinley Community School for Adults Maui Campus, while the north end of the lot is a landscaped field. In pre-contact times, the Wailuku region was one of five population centers on the island of Maui (Handy et al. 1991), as well as an area of chiefly residence (‘Ī‘ī 1959). Portions of the current city of Wailuku were also built
atop former agricultural terraces with its well-watered location (Handy et al. 1991). However, Wailuku was afflicted by warfare through much of its history [with the meaning of Wailuku being ‘water of destruction] (e.g., Kamakau 1992, Pukui et al. 1974).

In the post-contact era, sugar interests took the forefront of the Wailuku and Kahului economy, and cane fields, mills, ditches, a railroad, and other infrastructure forever changed the landscape. According to historic maps, the vicinity surrounding the current project area was not under heavy development or cultivation until at least the mid-20th century. Vestiges of the sugar industry still remain, particularly the Kahului Railroad, which is not far north from the project area.

**Anticipated Finds and Research Questions**

Archaeological studies conducted near the project area can help inform on the kinds of subsurface archaeological resources that may be found. The closest archaeological studies to the project identified historic artifacts and intact portions of the Kahului Railroad infrastructure. In the areas just outside the immediate vicinity of the project area, traditional Hawaiian artifacts and human burials have been identified. It is possible that these kinds of archaeological resources will be found on the property. A historic wall and three historic buildings are known to occur within the project area.

Research questions will broadly address the identification of the above archaeological resources and may become more narrowly focused based on the kinds of resources that are found. Initial research questions are as follows:

1. **Are there subsurface cultural deposits or evidence of human burials within the survey area?** Where are they located and what time period do they belong to?
2. **Are there any vestiges of historic-era use of the project area other than the wall and three buildings still standing on the property? Are there subsurface remnants of the Kahului Railroad in this area of Kahului?**

Once these basic questions are answered, additional research questions may be developed in consultation with SHPD, tailored to the specific kinds of archaeological resources that occur in the project area.
METHODS

Pedestrian survey and subsurface testing were carried out on June 14 and 15, 2021 by Jeffrey Lapinad, Max Pinsoneault MA, and Windy McElroy, PhD. McElroy served as Principal Investigator, overseeing all aspects of the project.

For the pedestrian survey, the ground surface was visually inspected for surface archaeological remains, with transects walked for the entire area. Archaeologists were spaced approximately 2 m apart. Of the 1.91 ha (4.72 ac.) survey area, 100% was covered on foot. The study area is open and flat with excellent visibility, and the project area has been disturbed by modern development, including portions that are paved in asphalt.

Test trenches (TR) were excavated in 17 locations throughout the project area. The excavation strategy was approved by SHPD beforehand. Excavation was accomplished with a backhoe (Figure 16). Vertical provenience was measured from the surface, and trenches were excavated to the water table. Profiles were drawn and photographed, and soils were described using the USDA Soil Survey Manual (Soil Science Division Staff 2017), Munsell soil color charts (Munsell 2010), and a sediment texture flowchart (Thien 1979). Smartphone cameras were used to take digital photos of various stages of the work and where profiles were drawn. Photo logs and bag lists recorded photo locations and information for collected cultural material. Trench locations were recorded with a 3 m-accurate Garmin GPSmap 66st, and all trenches were backfilled after excavation. Where trenches were excavated on asphalt paving, the asphalt was repaired after backfilling.

The scale in all field photographs is marked in 10 cm increments. The north arrow on all maps points to magnetic north. Throughout this report, rock sizes follow the conventions outlined in Field Book for Describing and Sampling Soils: Gravel <7 cm; Cobble 7–25 cm; Stone 25–60 cm; Boulder >60 cm (Schoeneberger et al. 2002:2-35). All cultural material thought to be 50 years or older was collected. Collected materials are temporarily being curated at the Keala Pono storage facility in Honolulu until they can be returned to the landowner.

Figure 16. Excavation with a backhoe. Orientation is to the southeast.
RESULTS

Pedestrian survey and subsurface testing were conducted at TMK: (2) 3-7-004:003 (por.) in Wailuku Ahupua’a, Wailuku District, on the island of Maui. One archaeological site, the Kahului School, was found on the surface, and it consists of a wall and three buildings. Excavation of 17 trenches did not yield any evidence of subsurface archaeological deposits or features. Trenches were spread across the entire parcel, with a concentration of trenches in the large yard on the northern side of the project parcel (Figures 17–19). Stratigraphic layers were organized according to their depth and projected age to form an area stratigraphy utilizing a Harris Matrix, according to the methodology put forth by Edward Harris (1979). In addition to this AIS, a historic architectural report (Yarbrough 2021) and a cultural impact assessment were prepared (Duhaylonsod et al. 2021).

SIHP 50-50-04-08872 - Kahului School Campus

SIHP 50-50-04-08872 is the former Kahului School campus, located on TMK: (2) 3-7-004:003 (Figures 20 and 21). The main features of the site are a low stone wall (Feature 1) and the MCSA building (Feature 2). Also on the property are a collapsed cafeteria building and a utility shed. The wall was constructed in 1939, and the MCSA building was built in 1920. Neither the cafeteria or the utility shed are particularly notable in terms of historical significance. The present deterioration of the cafeteria has removed any historical significance it might once have had, while the utility shed is a purely utilitarian structure, with no apparent historical significance. The boundary wall and the MCSA building do possess integrity of location and feeling however, and are historically significant.

Two additional historic buildings were located on this property in the past, the two-story school building, constructed in 1920, and the school annex, built in 1939. Both structures are now demolished. The two-story school building was part of the Kahului Historic District (SIHP 50-50-04-1607). First proposed in 1975, the district included a railroad roundhouse, a bank, the fairgrounds, and the two-story school building that used to be on this property. The district was centered around preserving the history of the port of Kahului, the second largest port in Hawai‘i.

Feature 1 – Boundary Wall

Formal Type: Wall
Size: 140 m long (plus two extensions of 21 m and 1.6 m, respectively), 85 cm wide, 70 cm tall
Shape: Linear, with extensions at either end
Construction: Mortared cobbles and stones
Surface Remains: None
Subsurface Deposits: None
Condition: Good
Function: Boundary
Age: Historic
Significance Criteria: a, associated with efforts to restore the economy after the Great Depression; and c, characteristic of territorial-era construction in Hawai‘i

Feature 1 consists of a wall demarcating the northern property boundary. The wall is composed of rounded basalt cobbles and stones set in mortar (Figure 22). The longest section of the wall fronts W. Ka‘ahumanu Avenue and measures 140 m long and approximately 70 cm high (Figure 23). There are three gaps in the wall, roughly 1 m wide each. The central gap exhibits a cement pad on the ground surface (Figure 24). The west and east ends of this northern section curve so that the wall is extended to the south on both sides. The extension on the west end of the wall runs for 21 m to the south and steps down in height from 100 to 50 cm (Figure 25) and then slopes down toward the south from 50 to 30 cm high. There are remnants of a chain-link fence in this section. On the east
Figure 17. Trench locations plotted on a topographic map (USGS 2013).
Figure 18. Closer view of trench locations plotted on aerial imagery.
Figure 19. Trench locations plotted over project construction plans.
Figure 20. SIHP 50-50-04-08872 plotted on a topographic map (USGS 2017).
Figure 21. A 2000 NOAA aerial photograph showing SIHP 50-50-04-08872.
Figure 22. Plan view drawing of Site 1 wall with wall detail in insets.
Figure 23. Photo of the northern wall, facing east. Note the repaired section of cement.

Figure 24. Central gap on the northern wall, with concrete pad, facing south.

Figure 25. Change in wall height, western extension, facing east.
end of the wall there is a 1.6 m-long extension that runs to the south (Figure 26). Here the wall is approximately 60 cm high.

The wall exhibits two placards indicating a construction date of 1939 with the inscription “W.P.A.,” referring to the Works Progress Administration (e.g., Figure 27). The W.P.A. was a widespread infrastructure and employment program established in 1935 as part of the New Deal, which aimed at restoring the U.S. economy after the Great Depression. The W.P.A. initiated public works and arts projects throughout the U.S., including many in Hawai‘i. Other projects around the State include bridges, canals, parks, pavilions, as well as military, school, and airport improvements. While not directly funded by the W.P.A., the now demolished school annex was built concurrently in 1939.

The wall is in good condition, although it has some sections of missing rocks and other segments that have quite clearly undergone significant repairs (e.g., Figure 28; also see Figure 23). This wall is historic in age and functioned as a partial boundary for the property. It is representative of basalt wall construction during the Territorial era in Hawai‘i and is an important vestige of the effort to restore the economy after the Great Depression.

**Feature 2 – McKinley Community School for Adults Maui Campus Building (Old Maui Vocational School)**

Formal Type: Building  
Size: A one story building, measuring 50 m long 22.5 m wide, with a 21 m long 10 m protrusion off the north side.  
Shape: H-Plan building with a front extension  
Construction: Concrete base and perimeter, and wooden upper.  
Surface Remains: None  
Subsurface Deposits: None  
Condition: Good  
Function: School / Office  
Age: Historic  
Significance Criterion: c, characteristic of territorial-era construction in Hawai‘i

The largest structure remaining on the property is the old Maui Vocational School, constructed in 1920 (Figures 29 and 30). Currently used as the MCSA building, the structure is an H-plan with a front extension under one complex hip roof. The extension on the front of the building is separated from the H-plan by a U-shaped breezeway hall. The clapboard clad wood building has broad eaves with prominent rafters. The foundation of the building consists of a concrete pad with a concrete lower perimeter that rises roughly 2 feet above grade. The windows are wood framed, but it is possible that some are replacements of earlier windows. The building’s internal breezeway has wooden slat bars and secure entry gates bracketing both sides of the central extension on the north side of the building. The breezeway collects and amplifies the breeze coming off Kahului Harbor cooling the high ceilings in the large classrooms and administrative offices.

**Feature 3 – Cafeteria**

Formal Type: Building  
Size: A one story building, measuring 25 m long, 10 m wide, with a 5 m protrusion off the north side  
Shape: T-Plan building with a small extension  
Construction: Post-on-Concrete footings elevating a single-story wood-frame building  
Surface Remains: None  
Subsurface Deposits: None  
Condition: Poor  
Function: Cafeteria  
Age: Historic  
Significance Criteria: None
Figure 26. Eastern extension, facing west.

Figure 27. Plaque on the northeastern corner, facing southwest.

Figure 28. Example of missing stones in the northern wall, facing south.
Figure 29. Feature 2 the MCSA building, facing south.

Figure 30. Feature 2 the MCSA building, facing east.
Temporary Feature 3 is a partially collapsed, elevated, single-story, wooden T-plan building, constructed on posts anchored in concrete footings (Figure 31). The building is located in the center of the property between the demolished school building and the MCSA building. Judging by the building’s design and construction, it was built sometime in the 20th century.

**Feature 4 – Utility Shed**

**Formal Type:** Building  
**Size:** A small utility shed, measuring 5 m long, by 2 m wide, elevated, 70 cm off the ground.  
**Shape:** Rectangular  
**Construction:** Concrete footings elevating a small wood and steel shed.  
**Surface Remains:** None  
**Subsurface Deposits:** None  
**Condition:** Good  
**Function:** Electrical  
**Age:** Historic or Modern  
**Significance Criteria:** None

Feature 4 is a small wooden shed, elevated 70 cm off the ground on three concrete footings (Figure 32). The shed houses electrical panels and is utilitarian in nature. The structure is located in the center of the property, between the MCSA building and the cafeteria. Judging by the building’s design and construction, it was constructed sometime in the 20th century.

**Discussion**

Due to the ravages of time and development, only two structures on the property have retained their historic integrity over the years. Feature 1 has retained its integrity of feeling (partial), location, materials, design, workmanship, and association. Furthermore, the boundary wall is a valuable contributing resource to the Kahului Historic District as it holds a prominent position along Ka‘ahumanu Avenue, and adds to the historic feel and setting of Kahului. Feature 2 has retained its integrity of location, design, materials, workmanship, and association. This integrity would certainly qualify it for inclusion in the Kahului Historic District as well, as the building is not only a great example of Territorial era construction, but the last operational building on the Kahului School Campus. Both Features 3 and 4 would offer little as contributing resources to the Kahului Historic District. Feature 3 has fallen into such a state of disrepair that it only has integrity of location and partial integrity of association. Feature 4 is a common utilitarian shed that is unremarkable and only retains a tenuous integrity of association.

While both Features 1 and 2 would likely be eligible for their own SIHP numbers, packaging them together is more appropriate as their interpretation is inseparable from the Kahului School itself. Together they demonstrate the importance of the Kahului School Campus in the early and mid-20th century, through multiple periods of development. Between the high quality lumber and carpentry used to build the MCSA, and the carefully inset plaques in the basalt and mortar wall, pride can be seen in the structures remaining on the campus today. This pride is almost certainly a reflection of the school’s importance in the past.

The cultural impact assessment that was prepared as a part of this project interviewed three community members to gather mana’o and ike on the project area and vicinity. Unfortunately, the old school building was rarely mentioned during the interviews, only being brought up concerning its recent status as an abandoned building before it was demolished (Duhaylongsod et al. 2021). Even so, the school building was likely included in the historic district because of its importance to the local community. Other consultation was conducted by G70, in which stakeholders were engaged, including federal, state, and county agencies, elected officials, utility companies, as well as
Figure 31. Feature 3, cafeteria building ruins, facing east.

Figure 32. Feature 4, utility shed, facing southeast.
community organizations and neighbors of the property. G70 also held a public meeting in February 2021 where a broad net was cast to invite folks to attend. Most recently, consultation was also conducted with Annalise Kehler of the CRC and Janet Six of SHPD on December 22, 2021. Several mitigation recommendations were offered for the historic structures on the property:

- The Feature 1 wall should be preserved as much as possible; particularly in the sections where the plaques are located.
- If sections of the wall must be partially dismantled, they could be moved to a nearby location on the property or their rocks incorporated in the design of the building(s) with accompanying interpretive signage.
- Options to either reuse or move the Feature 2 Administration Building should be considered.
- If the Administration Building and cafeteria must be demolished, a Historic American Buildings Survey (HABS) should be completed.
- Low-density buildings with wide setbacks from property lines are preferred, to fit in with the character of the Kahului Historic District. Additionally, air flow throughout the Site should be considered.

Considering the Kahului School Site as a whole, it clearly contributes to the Historic Kahului District. The boundary wall running along Ka‘ahumanu Avenue is very prominent and is characteristic of the materials, design, and workmanship of early 20th century Hawai‘i; the MCSA Building is well constructed in Territorial-era style and is the last intact building of the school that remains. Therefore the Kahului School Campus is representative of early 20th century growth of Kahului and contributes to the Kahului Historic District.

**Area Stratigraphy**

In total, 12 distinct stratigraphic layers were encountered in the project area, consisting of two pavements, a basecourse, and nine soil layers (Table 2). These layers were organized into a Harris Matrix to demonstrate their relationships to each other (Figure 33). Of note, layers P-I, P-II, and B-I are classified outside of the standard stratigraphic sequence (I, II, III, etc.) because of their clear modern construction and use. The Harris Matrix is read from top to bottom, with the youngest layers being found at the top and the oldest layers being found at the bottom. Lines connecting layers demonstrate boundaries that have been identified. Any layer that is found below another has been identified as older, either through stratigraphic inference or through the identification of objects found within the layer. Layers on the same level as each other are not necessarily identified to be from the same period. Instead, there is no evidence demonstrating their relative age one way or the other.

The first tier of the Harris Matrix represents the surface layer of the project area. This includes an asphalt pavement (P-I) and its basecourse (B-I), a compacted gravel pavement (P-II), and topsoils (I, II, and III). The second tier of the Harris Matrix is populated by two layers of secondary fill – Layers IV and V. The natural layers of the project area are found below this, sometimes demarcated by Layer VI, a buried sandy loam topsoil lens that forms the third tier of the Harris Matrix. The fourth tier of the matrix is Layer VII, a natural layer of sandy loam. Finally, the fifth and bottom tier of the matrix is a sandy loam (VIII) and a buried stream deposit or remnant of the old coastline (IX).
Table 2. Area Stratigraphy Derived from Profiles within the Project Area

<table>
<thead>
<tr>
<th>Layer</th>
<th>Average Depth (cmbs)</th>
<th>Munsell Color</th>
<th>Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-I</td>
<td>0–10</td>
<td>-</td>
<td>An asphalt pavement</td>
<td>Modern pavement</td>
</tr>
<tr>
<td>P-II</td>
<td>0–25</td>
<td>-</td>
<td>A compact gravel pavement</td>
<td>Modern pavement</td>
</tr>
<tr>
<td>B-I</td>
<td>10–20</td>
<td>-</td>
<td>A compact basecourse</td>
<td>Modern basecourse</td>
</tr>
<tr>
<td>I</td>
<td>0–27</td>
<td>10YR3/3 (dark brown)</td>
<td>Sandy loam; dry; non-sticky; non-plastic; 1–25% fine to medium roots; 1–5% gravel; abandoned utilities; concrete rubble; historic glass bottle (Acc. 1); smooth, gradual to clear boundary with Layer V.</td>
<td>Topsoil</td>
</tr>
<tr>
<td>II</td>
<td>0–40</td>
<td>10YR6/2 (light gray)</td>
<td>Sandy loam; dry; non-sticky; non-plastic; 90% fine roots; 1% gravel; smooth, diffuse boundary with Layer V.</td>
<td>Topsoil</td>
</tr>
<tr>
<td>III</td>
<td>0–20</td>
<td>10YR4/3 (brown)</td>
<td>Sandy clay loam; wet; slightly sticky; very plastic; 30% fine roots; 1% gravel; smooth, diffuse boundary with Layer IV.</td>
<td>Topsoil</td>
</tr>
<tr>
<td>IV</td>
<td>20–94</td>
<td>7.5YR6/3 (light brown)</td>
<td>Sandy loam; dry; non-sticky; non-plastic; 0–5% fine roots; 0–5% gravel; smooth, clear boundary with Layer VI.</td>
<td>Fill</td>
</tr>
<tr>
<td>V</td>
<td>26–21</td>
<td>10YR6/2 (light gray)</td>
<td>Rocky sandy loam; dry; non-sticky; non-plastic; 0–5% fine to coarse roots; 2–10% gravel to stone sized basalt; concrete rubble; abandoned utilities; smooth, clear boundary with Layer VI; smooth, gradual to clear boundary with Layer VIII; smooth, clear boundary with Layer IX.</td>
<td>Fill</td>
</tr>
<tr>
<td>VI</td>
<td>78–105</td>
<td>5YR6/8 (reddish yellow)</td>
<td>Sandy loam; wet; non-sticky; non-plastic; 5–30% fine to coarse roots; 2–5% gravel; smooth, abrupt boundary with Layer VII; smooth, clear boundary with Layer VIII.</td>
<td>Buried topsoil lens</td>
</tr>
<tr>
<td>VII</td>
<td>82–148</td>
<td>10YR6/2 (light gray)</td>
<td>Sandy loam; wet; non-sticky; non-plastic; 0–5% medium roots; 2–10% gravel to cobble sized rocks; smooth, gradual to clear boundary with Layer VIII.</td>
<td>Natural</td>
</tr>
<tr>
<td>VIII</td>
<td>110–208</td>
<td>10YR2/2 (very dark brown)</td>
<td>Sandy loam; wet; non-sticky; non-plastic; no roots; 1–5% gravel and coral cobbles; smooth, diffuse boundary with Layer IX; typically base of excavation.</td>
<td>Natural</td>
</tr>
<tr>
<td>IX</td>
<td>134–174</td>
<td>10YR2/2 (very dark brown)</td>
<td>Rocky sandy loam; wet; non-sticky; non-plastic; no roots; 90% waterworn cobbles; smooth, gradual to clear boundary with Layer VIII.</td>
<td>Natural buried streambed or portion of old coastline</td>
</tr>
</tbody>
</table>
Figure 33. Harris Matrix of the project area, demonstrating the relationship between individual layers, with the youngest layers at the top and the oldest layers at the bottom.

Layers P-I and B-I are found over the northern parking lot and form the modern pavement and basecourse for the primary parking lot in the project area. Layer P-I extends from the surface to a maximum depth of roughly 10 cmbs, and Layer B-I extends from Layer P-I to a maximum depth of 20 cmbs. Both layers have a thickness of 10 cm.

Layer P-II is found in the eastern parking lot, which is now repurposed for construction storage, and is either the remnants of the basecourse from an asphalt pavement or a compacted gravel pavement. The pavement extends from the surface to a maximum depth ranging from 20–30 cmbs, with an average thickness of 25 cm.

Layer I is a dark brown, dry sandy topsoil found throughout the northern yard that dominates the northern half of the project area. The layer extends from the surface to a maximum depth of 10–40 cmbs with a typical thickness of 30 cm. Layer I contains 1–25% fine to medium roots, 1–5% gravel, abandoned utilities, concrete rubble, and a glass bottle fragment (Acc. 1). The soil has a smooth boundary with Layer V below, ranging from gradual to clear in distinctness.

Layer II is a light gray, dry sandy loam topsoil found west of the eastern parking lot. The layer extends from the surface to a maximum depth of 40 cmbs, with a thickness of 40 cm. Layer II contains 90% fine roots and 1% gravel. The soil has a smooth and diffuse boundary with Layer V below.

Layer III is a slightly sticky, very plastic, wet, brown, sandy clay loam topsoil found immediately northwest of the southern parking lot. The layer extends from the surface to a maximum depth of 20
cmbs, with a thickness of 20 cm. Layer III contains 30% fine roots and 1% gravel. This soil has a smooth, diffuse boundary with layer IV below.

Layer IV is a light brown, dry sandy loam found along the southern portion of the project parcel. The layer extends from a minimum depth of 10–30 cmbs, and runs to a maximum depth of 60–110 cmbs, with a typical thickness of 70 cm. Layer IV contains 0–5% fine roots and 0–5% gravel. This soil has a smooth, clear boundary with Layer VI below.

Layer V is a light gray, dry, rocky, sandy loam found throughout the northern portion of the project area. Extending from a minimum depth of 0–30 cmbs and running to a maximum depth of 70–190 cmbs, this soil has an average thickness of 90 cm. Layer V contains 0–5% fine to coarse roots and 2–10% gravel, cobbles, and stones, in addition to concrete rubble and abandoned utilities. Below Layer V, this soil shares a smooth, clear boundary with Layer VI and IX and a smooth, gradual to clear boundary with Layer VIII.

Layer VI is a reddish yellow, wet sandy loam, buried topsoil. Layer VI is found along the southern portion of the project area and delineates the artificial and natural soils where it is found. The layer extends from a minimum depth of 60–110 cmbs and runs to a maximum depth of 80–120 cmbs, with a typical thickness of roughly 30 cm. Layer VI contains 5–30% fine to coarse roots and 2–5% gravel. Below Layer VI the soil shares a smooth, abrupt boundary with Layer VII and a smooth, clear boundary with Layer VIII.

Layer VII is the younger of the natural soils in the project area. Found throughout the southern portions of the project area, Layer VII is a light gray, wet, sandy loam with 0–5% medium roots and 2–10% gravel to cobble sized rocks. This layer extends from a minimum depth of 50–120 cmbs and runs to a maximum depth of 140–160 cmbs, with an average thickness of 50 cm. Layer VII shares a smooth, gradual to clear boundary with Layer VIII below.

Layer VIII is the older of the natural sediments in the project area. Found throughout the entire project area, Layer VIII is a very dark brown, wet sandy loam containing 1–5% basalt gravel and coral cobbles. Extending from a minimum depth of 60–165 cmbs and running to the base of excavation, the thickness of Layer VIII is unknown. While Layer VIII was typically the base of excavations during trenching, it was sometimes found above and/or below Layer IX, of which it formed a smooth, diffuse boundary.

Layer IX is a buried streambed or old coastline remnant found intermittently throughout the project area. Similar to Layer VIII, Layer IX is a very dark brown, wet sandy loam, but whereas Layer VIII contains 1–5% gravels and cobbles, Layer IX contains 90% waterworn cobbles. Layer IX extends from a minimum depth of 60–250 cmbs and runs to maximum depth of 110–270 cmbs, with a typical thickness of 30 cm. As mentioned above, Layer IX is found above, below, and within Layer VIII, likely associating these layers together chronologically.

The stratigraphy in the project area can be diagnosed in two aspects, in terms of north and south, and artificial and natural. Interestingly both divisions are apparent on the Harris Matrix (see Figure 33). The stratigraphy presented in the southern portion of the site is the branch on the left side of the figure, while the simpler stratigraphy to the north forms the upper right. Below, the natural sediments form an organic cluster, unifying the northern and southern branches of the site at Layer VI and VIII. Interestingly, despite the parcel’s curious stratigraphy, the layers themselves are predominantly sterile, with only a single subsurface artifact being encountered during the entire project (Acc. 1). The only evidence that Layers IV and V are fill is the abandoned utilities and construction debris found in Layer V and the buried topsoil found below Layer IV.
Another important aspect is Layer IX, the buried streambed or old coastline remnant, found near the bottom of the sequence. While we could not identify its exact path across the area, it does meander significantly around the lower sections of the stratigraphic sequence. This is possibly the remnants of an ancient drainage flowing north to the ocean.

Representative Profiles

The area stratigraphy above was constructed by analyzing 17 trenches (TR) excavated throughout the project area. From these exploratory trenches, eight distinct stratigraphy patterns were encountered, for each of which we provide a representative profile drawing and photo. Profile locations are shown in Figures 17–19. Table 3 (at the end of this section) and the paragraphs below describe individual trench stratigraphy.

TR 1 is located on the western edge of the northern yard, approximately 20 meters northwest of the gate to the northern parking lot. TR 1 reaches a depth of 290 cmbs and includes Layers I, V, and VIII (Figures 34 and 35). In TR 1, Layer I contains 1% gravel rocks and 25% fine roots and extends from the surface to 30 cmbs. A historic glass bottle finish (Acc. 1) was found in this layer at approximately 25 cmbs. Additionally, an abandoned concrete jacket was encountered at the base of Layer I amidst concrete rubble. Layer I has a smooth, gradual boundary with Layer V below. Layer V runs from 30–180 cmbs and contains 2% gravel rocks, a 4x4 wooden beam at 120 cmbs, a concrete jacket at 70 cmbs, and wires from 40-60 cmbs. Layer V has a smooth, clear boundary with Layer VIII below. Layer VIII runs from 165–290 cmbs, contains 3% cobbles, is sterile, and crosses the water table, where digging was halted.

The stratigraphy encountered in TR 1 is typical of the trenches dug throughout the northern yard, with a nearly identical stratigraphic sequence being encountered in TR 3, TR 4, TR 5, TR 6, TR 8, and TR 10. In addition, this stratigraphy is similar if not identical to TR 2, TR 7, TR 9, and TR 11. Notably, all of these trenches are located in the northern yard, and none of them contain Layer VI, the buried topsoil encountered elsewhere in the project area. Additionally, the boundaries between layers are very smooth with little verticality. When considered together, the lack of a buried topsoil and the smoothness of the boundary between Layers V and VIII may indicate bulldozing, likely to landscape the yard present on the surface today.

TR 2 is located on the western edge of the northern yard, approximately 30 m north of the gate to the northern parking lot. TR 2 reaches a depth of 240 cmbs and includes Layers V and VIII (Figures 36 and 37). In TR 2, Layer V runs from the surface to 150 cmbs and contains 2% basalt gravel and 5% fine to coarse roots. Layer V has a smooth, clear boundary with Layer VIII below. Layer VIII runs from 120 cmbs to the base of excavation and contains 2% gravel and broken natural marine shells. Layer VIII is archaeologically sterile and crosses the water table, where digging was halted. The stratigraphy encountered in TR 2 is unique amongst the project area in that it does not have a distinct layer of root heavy topsoil. Aside from the lack of topsoil, TR 2 presents a very similar stratigraphy to the rest of the northern yard trenches.

TR 3 has a similar stratigraphy to TR 1 (see Figure 34). Located on the western edge of the northern yard, TR 3 is approximately 60 m north-northwest of the gate to the northern parking lot. TR 3 reaches a depth of 290 cmbs and includes Layers I, V, and VIII. In TR 3, Layer I runs from the surface to 40 cmbs and contains 1% basalt gravel and 1% fine roots. Layer I also contains concrete rubble. Layer I has a smooth, gradual boundary with Layer V below. Layer V runs from 30–190 cmbs and contains 1% basalt gravel and 1% fine to coarse roots. Layer V has a smooth, gradual boundary with Layer VIII below. Layer VIII runs from 160 cmbs to the base of excavation and contains 1% gravel rocks, 2% coral cobbles, and broken natural marine shells. Layer VIII is archaeologically sterile and crosses the water table, where digging was halted.
Figure 34. Profile drawing of TR 1, facing east.

Figure 35. Profile photo of TR 1, facing east.

Figure 36. Profile drawing of TR 2, facing north.
Figure 37. Profile photo of TR 2, facing north.

TR 4 has a similar stratigraphy to TR 1 (see Figure 34). Located in the central portion of the northern yard, TR 4 is approximately 30 m east-northeast of the gate to the northern parking lot. TR 4 reaches a depth of 170 cmbs and includes Layers I, V, and VIII. In TR 4, Layer I runs from the surface to 40 cmbs and contains 5% basalt gravel and 25% fine to medium roots. Additionally, Layer I also contains a piece of rebar at 16 cmbs. Layer I has a smooth, clear boundary with Layer V below. Layer V runs from 30–100 cmbs and contains 10% gravel to stone sized rocks and 5% fine roots. Additionally, Layer V contains a piece of rebar at 16 cmbs. Layer V has a smooth, clear boundary with Layer VIII below. Layer VIII runs from 100 cmbs to the base of excavation and contains 5% gravel rocks. Layer VIII is archaeologically sterile and crosses the water table, where digging was halted.

TR 5 has a similar stratigraphy to TR 1 (see Figure 34). Located in the central portion of the northern yard, TR 4 is approximately 90 m east northeast of the gate to the northern parking lot. TR 5 reaches a depth of 190 cmbs and includes Layers I, V, and VIII. In TR 5, Layer I runs from the surface to 30 cmbs and contains 5% basalt gravel and 25% fine to medium roots. Layer I has a smooth, gradual boundary with Layer V below. Layer V runs from 30–80 cmbs and contains 10% gravel to cobble sized rocks and 5% fine roots. Additionally, Layer V contains a piece of rebar at 35 cmbs, an abandoned waterline at 41 cmbs, and concrete rubble throughout the layer. Layer V has a smooth, clear boundary with Layer VIII below. Layer VIII runs from 70 cmbs to the base of excavation and contains 5% basalt gravel. Layer VIII is archaeologically sterile and crosses the water table, where digging was halted.

TR 6 has a similar stratigraphy to TR 1 (see Figure 34). Located in the central portion of the northern yard, TR 4 is approximately 60 m east-northeast of the gate to the northern parking lot. A ceramic sherd (Acc. 2) was found on the surface nearby. TR 6 reaches a depth of 150 cmbs and includes Layers I, V, and VIII. In TR 6, Layer I runs from the surface to 30 cmbs and contains 5% basalt gravel and 25% fine to medium roots. Layer I has a smooth, gradual boundary with Layer V below. Layer V runs from 30–70 cmbs and contains 10% gravel to stone-sized rocks and 5% fine roots. Additionally, Layer V contains a piece of rebar at 38 cmbs, an abandoned pipe at 41 cmbs, and concrete rubble throughout the layer. Layer V has a smooth, clear boundary with Layer VIII below. Layer VIII runs from 60 cmbs to the base of excavation and contains 1% basalt gravel. Layer VIII is archaeologically sterile and crosses the water table, where digging was halted.
TR 7 has a slightly different stratigraphy than TR 1, with Layer IX, a buried streambed or old coastline remnant, present between Layer II and VIII (Figure 38). Located in the central portion of the northern yard, TR 7 is approximately 60 m northeast of the gate to the northern parking lot. TR 7 reaches a depth of 150 cmbs and includes Layers I, V, VIII, and IX (Figure 39). In TR 7, Layer I runs from the surface to 30 cmbs and contains 5% basalt gravel and 10% fine to medium roots. Layer I has a smooth, gradual boundary with Layer V below. Layer V runs from 20–90 cmbs and contains 10% gravel to cobbles-sized rocks and 5% fine roots. Additionally, Layer V contains an abandoned irrigation line at 59 cmbs and concrete rubble throughout the layer. Layer V has a smooth, clear boundary with Layers VIII and IX below. Layer IX runs from 60–110 cmbs and contains 90% waterworn cobbles. In this trench, Layer IX lies above Layer VIII, with a smooth, gradual boundary below. Layer VIII runs from 80 cmbs to the base of excavation and contains 5% gravel rocks. Layer VIII is archaeologically sterile and crosses the water table, where digging was halted.

The stratigraphy encountered in TR 7 is representative of the north yard trenches that encountered the buried streambed or old coastline remnant. While in TR 7 Layer IX is above Layer VIII, the two layers are intermixed in other parts of the project area. TR 9 and TR 11 have a similar stratigraphy to TR 7. The exact path of the buried streambed or old coastline is challenging to tell with our limited subsurface testing alone, but it evidently meanders throughout the project area with a particular cluster in the northeastern corner of the property.

TR 8 has a similar stratigraphy to TR 1 (see Figure 34). Located in the central portion of the northern yard, TR 8 is approximately 75 m northeast of the gate to the northern parking lot. TR 8 reaches a depth of 160 cmbs and includes Layers I, V, and VIII. In TR 8, Layer I runs from the surface to 20 cmbs and contains 5% basalt gravel and 20% fine roots. Additionally, Layer I contains an abandoned irrigation line at 7 cmbs. Layer I has a smooth, gradual boundary with Layer V below. Layer V runs from 10–90 cmbs and contains 2% gravel rocks and 5% fine roots. Additionally, Layer V contains concrete rubble. Layer V has a smooth, clear boundary with Layer VIII below. Layer VIII runs from 90 cmbs to the base of excavation and contains 2% basalt gravel. Layer VIII is archaeologically sterile and crosses the water table, where digging was halted.

TR 9 has a similar stratigraphy to TR 7 (see Figure 38). Located in the central portion of the northern yard, TR 9 is approximately 90 m north northeast of the gate to the northern parking lot. TR 9 reaches a depth of 170 cmbs and includes Layers I, V, VIII, and IX. In TR 9, Layer I runs from the surface to 20 cmbs and contains 5% basalt gravel and 20% fine roots. Layer I has a smooth, gradual boundary with Layer V below. Layer V runs from 10–90 cmbs and contains 2% basalt gravel and 5% fine roots. Layer V has a smooth, clear boundary with Layers VIII and IX below. Layer IX runs from 80–110 cmbs and contains 90% waterworn cobbles. Layer IX has a smooth, gradual boundary with Layer VIII below. Layer VIII runs from 100 cmbs to the base of excavation and contains 5% basalt gravel. Layer VIII is archaeologically sterile and crosses the water table, where digging was halted.

TR 11 has a similar stratigraphic to TR 7 (see Figure 38). Located in the northeastern corner of the northern yard, TR 11 is approximately 100 m northeast of the gate to the northern parking lot. TR 11 reaches a depth of 170 cmbs and includes Layers I, V, VIII, and IX. In TR 11, Layer I runs from the surface to 10 cmbs and contains 5% basalt gravel and 20% fine roots. Layer I has a smooth, gradual boundary with Layer V below. Layer V runs from 10–80 cmbs and contains 10% gravel to cobble sized rocks and 5% fine roots. Layer V has a smooth, clear boundary with Layers VIII below. Layer VIII runs from 70 cmbs to the base of excavation and contains 2% gravel rocks. Layer VIII has a smooth, gradual boundary with Layer IX below. Layer IX runs from 150 cmbs to the base of excavation and contains 90% waterworn cobbles. In portions of this trench, Layer IX was exposed on both sides and below by Layer VIII. Both Layer VIII and IX are archaeologically sterile and cross the water table, where digging was halted.
TR 12 exhibits the more variable stratigraphy of the southern and eastern portions of the project area (Figure 40). Located in the southwestern corner of the northern yard, TR 12 is approximately 30 m west southwest of the gate to the northern parking lot. TR 12 reaches a depth of 270 cmbs and includes Layers I, IV, VI, VII, VIII, and IX (Figure 41). In TR 12, Layer I runs from the surface to 30 cmbs and contains 5% basalt gravel and 20% fine roots. Additionally, Layer I contained a large metal pipe at 15 cmbs. Layer I has a smooth, clear boundary with Layer IV below. Layer IV runs from 20–110 cmbs and contains 5% gravel rocks and 5% fine roots. Layer IV has a smooth, clear boundary with Layer VI below. Layer VI runs from 70–120 cmbs and contains 30% medium to coarse roots. Layer VI has a smooth, clear boundary with Layer VII below. Layer VII runs from 70–160 cmbs and contains 10% gravel to cobblesized rocks. Layer VII has a smooth, gradual boundary with Layer VIII below. Layer VIII runs from 130–250 cmbs and contains 2% gravel. Layer VIII has a smooth, clear boundary with Layer IX below. Layer IX runs from 250 cmbs to the base of excavation and contains 90% waterworn cobbles. Layers VIII and IX are archaeologically sterile and cross the water table, where digging was halted.

The stratigraphy encountered in TR 12 is the first profile presented that shows the buried topsoil encountered throughout the rest of the project area. TR 12 is the only trench in the northern yard containing Layers IV, VI, and VII. Notably, TR 12 is also the only trench excavated in the panhandle of the northern yard, south of the gate (see Figure 18). The stratigraphy here likely indicates that
whatever bulldozing event that took place in the rest of the northern yard did not occur south of the gate between the yard and the parking lot. This is conclusion is strengthened because not only are Layer VI – the buried topsoil – and Layer VII – the intermediate natural sediment above Layer VIII – present, but also a different fill layer exists above Layer VI. Layer IV is present here instead of Layer V. This stratigraphic sequence has some variation throughout the remainder of the project area, but the general order of Layer IV over Layer VI over Layer VII over Layer VIII remains consistent through TR 12, TR 13, and TR 14.

TR 13 exhibits the more variable stratigraphy of the southern and eastern portions of the project area (Figure 42). Located in the center of the northern parking lot, TR 13 is approximately 30 m south of the gate to the northern yard. TR 13 reaches a depth of 240 cmbs and includes Layers P-I, B-I, IV, VI, VII, VIII, and IX (Figure 43). In TR 13, Layer P-I is an asphalt pavement that runs from the surface to 10 cmbs. Layer P-I has a smooth, very abrupt boundary with Layer B-I below. Layer B-I is a basecourse that runs from 10–20 cmbs. Layer B-I has a smooth, gradual boundary with Layer IV below. Layer IV runs from 20–90 cmbs and has a smooth, clear boundary with Layer VI below. Layer VI runs from 70–100 cmbs and contains 5% fine roots. Layer VI has a smooth, gradual boundary with Layer VII below. Layer VII runs from 80–140 cmbs and contains 5% gravel sized rocks and 5% medium roots. Layer VII has a smooth, gradual boundary with Layer IX below. Layer IX runs from 130–210 cmbs and contains 90% waterworn cobbles. Layer IX has a smooth, diffuse boundary with Layer VIII below and aside. Layer VIII runs from 140 cmbs to the base of excavation and contains 5% basalt gravel. Layers VIII is archaeologically sterile and crosses the water table, where digging was halted. TR 13 is the only trench that was excavated through the parking lot north of the main building on the property. While the top two layers are different than TR 12 to the west and TR 14 to the southwest, the lower half is very similar, with the primary difference being the much thicker presence of Layer IX in this section.

TR 14 also exhibits the more variable stratigraphy of the southern and eastern portions of the project area (Figure 44). TR 14 is located between the northern and southern parking lots. TR 14 reaches a depth of 270 cmbs and includes Layers III, IV, VI, VII, and VIII (Figure 45). In TR 14, Layer III runs from the surface to 20 cmbs and contains 1% basalt gravel and 30% fine roots. Layer III has a smooth, diffuse boundary with Layer IV below. Layer IV runs from 10–110 cmbs and contains 5% basalt gravel and 5% fine roots. Layer III has a smooth, clear boundary with Layer VI below. Layer VI runs from 110–120 cmbs and contains 5% basalt gravel and 5% fine roots. Layer VI has a smooth, clear boundary with Layer VII below. Layer VII runs from 120–180 cmbs and contains 2% basalt gravel. Layer VII has a smooth, gradual boundary with Layer VIII below. Layer VIII runs from 160–270 cmbs to the base of excavation and contains 2% basalt gravel. Layers VIII is archaeologically sterile and crosses the water table, where digging was halted. The stratigraphy encountered in TR 14 is very similar to that of TR 12 and TR 13. Interestingly, TR 14 is the only trench in the project area where Layer III occurred. Layer III was the only clayish soil encountered during the trenching.

TR 15 also exhibits the more variable stratigraphy of the southern and eastern portions of the project area (Figure 46). TR 15 is located just west of the eastern parking lot. TR 15 reaches a depth of 260 cmbs and includes Layers II, V, VI, and VIII (Figure 47). In TR 15, Layer II runs from the surface to 40 cmbs and contains 1% basalt gravel and 90% fine roots. Layer II has a smooth, diffuse boundary with Layer V below. Layer V runs from 10–120 cmbs and contains 5% basalt gravel. Layer V has a smooth, clear boundary with Layer VIII below and envelopes Layer VI with a smooth abrupt boundary. Layer VI runs from 60–80 cmbs and contains 2% basalt gravel and 10% fine roots. Layer VIII runs from 110 cmbs to the base of excavation and contains 5% basalt gravel. Layers VIII is archaeologically sterile and crosses the water table, where digging was halted. The stratigraphy encountered in TR 15 appears to be a transitional area of the site in which a portion of the buried topsoil is visible, intermixed with Layer V. Notably, this portion of Layer VI appears to be out of
Figure 40. Profile drawing of TR 12, facing south.

Figure 41. Profile photo of TR 12, facing south.

Figure 42. Profile drawing of TR 13, facing south.
Figure 43. Profile photo of TR 13, facing south.

Figure 44. Profile drawing of TR 14, facing west.
Figure 45. Profile photo of TR 14, facing west.

Figure 46. Profile drawing of TR 15, facing west.

Figure 47. Profile photo of TR 15, facing west.
context. It is possible that a spoils pile containing Layer VI is near TR 15, and this trench was excavated at the edge of it. Also of note, this is the only excavation through Layer II, a very root-heavy topsoil, that would likely be found in the wider vicinity of TR 15 where there is more dense underbrush.

TR 16 also exhibits the more variable stratigraphy of the southern and eastern portions of the project area (Figure 48). TR 16 is located in the southern corner of the eastern parking lot. TR 16 reaches a depth of 190 cmbs and includes Layers P-II, IV, VII, and VIII (Figure 49). In TR 16, Layer P-II is a compacted gravel pavement that runs from the surface to 30 cmbs and contains 90% basalt gravel. Layer P-II has a smooth, diffuse boundary with Layer IV below. Layer IV runs from 30–100 cmbs and contains 5% basalt gravel. Layer IV has a smooth, clear boundary, with Layer VII below. Layer VII runs from 90–160 cmbs and contains 2% basalt gravel. Layer VIII runs from 140 cmbs to the base of excavation and contains 3% basalt gravel. Layer VIII is archaeologically sterile and crosses the water table, where digging was halted.

The stratigraphy encountered in TR 16 and TR 17 are very similar, with Layer P-II over Layer IV over Layer VII over Layer VIII. Layer P-II, the surface pavement in this area, is a very compact gravel pavement. TR 17 exhibits the more variable stratigraphy of the southern and eastern portions of the project area (see Figure 48). TR 17 is located in the northern corner of the eastern parking lot. TR 17 reaches a depth of 180 cmbs and includes Layers P-II, IV, VII, and VIII. In TR 17, Layer P-II is a compacted gravel pavement that runs from the surface to 20 cmbs and contains 90% basalt gravel. Layer P-II has a smooth, diffuse boundary with Layer IV below. Layer IV runs from 20–60 cmbs and contains 5% basalt gravel. Layer IV has a smooth, clear boundary, with Layer VII below. Layer VII runs from 50–100 cmbs and contains 2% basalt gravel. Layer VIII runs from 90 cmbs to the base of excavation and contains 5% basalt gravel. Layer VIII is archaeologically sterile and crosses the water table, where digging was halted.

Figure 48. Profile drawing of TR 16, facing west.
Figure 49. Profile photo of TR 16, facing west.

Table 3. Stratigraphy of Representative Profiles

<table>
<thead>
<tr>
<th>Profile</th>
<th>Layer</th>
<th>Min Depth</th>
<th>Max Depth</th>
<th>Boundary Character / Distinctness</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR 1</td>
<td>I</td>
<td>0</td>
<td>30</td>
<td>Smooth / Gradual</td>
<td>Acc. 1, a glass bottle fragment (25 cmbs), abandoned utilities, 1% gravel, 25% fine roots</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>30</td>
<td>180</td>
<td>Smooth / Clear</td>
<td>4x4 wooden beam (120 cmbs), concrete jacket, abandoned utilities, 2% gravel</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>165</td>
<td>290</td>
<td>Base of Excavation</td>
<td>3% Cobbles</td>
</tr>
<tr>
<td>TR 2</td>
<td>V</td>
<td>0</td>
<td>150</td>
<td>Smooth / Gradual</td>
<td>2% Gravel, 5% fine–coarse roots</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>120</td>
<td>240</td>
<td>Base of Excavation</td>
<td>Broken naturel marine shells, 2% Gravel</td>
</tr>
<tr>
<td>TR 3</td>
<td>I</td>
<td>0</td>
<td>40</td>
<td>Smooth / Gradual</td>
<td>Concrete rubble, 1% gravel, 1% fine roots</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>30</td>
<td>190</td>
<td>Smooth / Clear</td>
<td>1% Gravel, 1% fine–coarse roots</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>160</td>
<td>290</td>
<td>Base of Excavation</td>
<td>Natural marine shells, 1% gravel, 2% coral cobbles</td>
</tr>
</tbody>
</table>
### Table 3. (continued)

<table>
<thead>
<tr>
<th>Profile</th>
<th>Layer</th>
<th>Min Depth</th>
<th>Max Depth</th>
<th>Boundary Character / Distinctness</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR 4</td>
<td>I</td>
<td>0</td>
<td>40</td>
<td>Smooth / Clear</td>
<td>Rebar (16 cmbs), 5% gravel, 25% fine-medium roots</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>30</td>
<td>100</td>
<td>Smooth / Clear</td>
<td>Abandoned utility (43 cmbs), 10% gravel–stone sized rocks, 5% fine roots</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>100</td>
<td>170</td>
<td>Base of Excavation</td>
<td>5% Gravel</td>
</tr>
<tr>
<td>TR 5</td>
<td>I</td>
<td>0</td>
<td>30</td>
<td>Smooth / Gradual</td>
<td>5% Gravel, 25% fine–medium roots</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>30</td>
<td>80</td>
<td>Smooth / Clear</td>
<td>Rebar (44 cmbs), concrete rubble, abandoned utilities, 5% gravel–cobble sized rocks, 5% fine roots</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>70</td>
<td>190</td>
<td>Base of Excavation</td>
<td>5% Gravel</td>
</tr>
<tr>
<td>TR 6</td>
<td>I</td>
<td>0</td>
<td>30</td>
<td>Smooth / Gradual</td>
<td>5% Gravel, 25% fine–medium roots</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>30</td>
<td>70</td>
<td>Smooth / Clear</td>
<td>Rebar (37 cmbs), concrete rubble, abandoned utilities, 10% gravel–stone sized rocks, 5% fine roots</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>60</td>
<td>150</td>
<td>Base of Excavation</td>
<td>1% Gravel</td>
</tr>
<tr>
<td>TR 7</td>
<td>I</td>
<td>0</td>
<td>30</td>
<td>Smooth / Gradual</td>
<td>5% Gravel, 10% fine–medium sized roots</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>20</td>
<td>90</td>
<td>Smooth / Clear</td>
<td>Abandoned utilities, concrete rubble, 10% gravel–cobble sized rocks, 5% Fine roots</td>
</tr>
<tr>
<td></td>
<td>IX</td>
<td>60</td>
<td>110</td>
<td>Smooth / Gradual</td>
<td>90% Waterworn cobbles</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>80</td>
<td>150</td>
<td>Base of Excavation</td>
<td>2% Gravel</td>
</tr>
<tr>
<td>TR 8</td>
<td>I</td>
<td>0</td>
<td>20</td>
<td>Smooth / Gradual</td>
<td>Abandoned utilities, 5% gravel, 20% fine roots</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>10</td>
<td>90</td>
<td>Smooth / Clear</td>
<td>Concrete rubble, 2% gravel, 5% fine roots</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>90</td>
<td>160</td>
<td>Base of Excavation</td>
<td>2% Gravel</td>
</tr>
</tbody>
</table>
Table 3. (continued)

<table>
<thead>
<tr>
<th>Profile</th>
<th>Layer</th>
<th>Min Depth</th>
<th>Max Depth</th>
<th>Boundary Character / Distinctness</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR 9</td>
<td>I</td>
<td>0</td>
<td>20</td>
<td>Smooth / Gradual</td>
<td>5% Gravel, 20% fine roots</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>10</td>
<td>110</td>
<td>Smooth / Clear</td>
<td>10% Gravel–cobble sized rocks, 5% fine–medium sized roots</td>
</tr>
<tr>
<td></td>
<td>IX</td>
<td>80</td>
<td>110</td>
<td>Smooth / Gradual</td>
<td>90% Waterworn cobbles</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>100</td>
<td>170</td>
<td>Base of Excavation</td>
<td>5% Gravel</td>
</tr>
<tr>
<td>TR 10</td>
<td>I</td>
<td>0</td>
<td>20</td>
<td>Smooth / Gradual</td>
<td>5% Gravel, 20% fine roots</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>20</td>
<td>90</td>
<td>Smooth / Clear</td>
<td>10% Gravel–cobble sized rocks, 5% fine roots</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>80</td>
<td>160</td>
<td>Base of Excavation</td>
<td>5% Gravel</td>
</tr>
<tr>
<td>TR 11</td>
<td>I</td>
<td>0</td>
<td>10</td>
<td>Smooth / Gradual</td>
<td>5% Gravel, 20% fine roots</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>10</td>
<td>80</td>
<td>Smooth / Clear</td>
<td>10% Gravel–cobble sized rocks, 5% fine roots</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>70</td>
<td>170</td>
<td>Smooth / Gradual</td>
<td>2% Gravel</td>
</tr>
<tr>
<td></td>
<td>IX</td>
<td>150</td>
<td>170</td>
<td>Base of Excavation</td>
<td>90% Waterworn cobbles</td>
</tr>
<tr>
<td>TR 12</td>
<td>I</td>
<td>0</td>
<td>30</td>
<td>Smooth / Clear</td>
<td>Large metal pipe (15 cmbs), 5% gravel, 20% fine roots</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>20</td>
<td>110</td>
<td>Smooth / Clear</td>
<td>5% Gravel, 5% fine roots</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>70</td>
<td>120</td>
<td>Smooth / Clear</td>
<td>30% Medium–coarse sized roots</td>
</tr>
<tr>
<td></td>
<td>VII</td>
<td>70</td>
<td>160</td>
<td>Smooth / Gradual</td>
<td>10% Gravel–cobble sized rocks</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>130</td>
<td>250</td>
<td>Smooth / Clear</td>
<td>2% Gravel</td>
</tr>
<tr>
<td></td>
<td>IX</td>
<td>250</td>
<td>270</td>
<td>Base of Excavation</td>
<td>90% Waterworn cobbles</td>
</tr>
<tr>
<td>Profile</td>
<td>Layer</td>
<td>Min Depth</td>
<td>Max Depth</td>
<td>Boundary Character / Distinctness</td>
<td>Contents</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>TR 13</td>
<td>P-I</td>
<td>0</td>
<td>10</td>
<td>Smooth / Very Abrupt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-I</td>
<td>10</td>
<td>20</td>
<td>Smooth / Gradual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>20</td>
<td>90</td>
<td>Smooth / Clear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>70</td>
<td>100</td>
<td>Smooth / Clear</td>
<td>5% Fine roots</td>
</tr>
<tr>
<td></td>
<td>VII</td>
<td>80</td>
<td>140</td>
<td>Smooth / Gradual</td>
<td>5% Gravel, 5% medium roots</td>
</tr>
<tr>
<td></td>
<td>IX</td>
<td>130</td>
<td>210</td>
<td>Smooth / Diffuse</td>
<td>90% Waterworn cobbles</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>140</td>
<td>240</td>
<td>Base of Excavation</td>
<td>5% Gravel</td>
</tr>
<tr>
<td>TR 14</td>
<td>III</td>
<td>0</td>
<td>20</td>
<td>Smooth / Diffuse</td>
<td>1% Gravel, 30% fine roots</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>10</td>
<td>110</td>
<td>Smooth / Clear</td>
<td>5% Gravel, 5% fine roots</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>110</td>
<td>120</td>
<td>Smooth / Clear</td>
<td>5% Gravel, 5% fine roots</td>
</tr>
<tr>
<td></td>
<td>VII</td>
<td>120</td>
<td>180</td>
<td>Smooth / Gradual</td>
<td>2% Gravel</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>160</td>
<td>270</td>
<td>Base of Excavation</td>
<td>2% Gravel</td>
</tr>
<tr>
<td>TR 15</td>
<td>II</td>
<td>0</td>
<td>40</td>
<td>Smooth / Diffuse</td>
<td>1% Gravel, 90% fine roots</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>10</td>
<td>120</td>
<td>Smooth / Clear</td>
<td>5% Gravel</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>60</td>
<td>80</td>
<td>Smooth / Abrupt</td>
<td>2% Gravel, 10% fine roots</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>110</td>
<td>260</td>
<td>Base of Excavation</td>
<td>5% Gravel</td>
</tr>
</tbody>
</table>
Laboratory Analysis

A total of two artifacts were encountered during the archaeological inventory survey (Table 4). The artifacts consisted of a fragmentary glass bottle finish (Acc. 1) and a fragment of ceramic whiteware (Acc. 2). Acc. 1, the glass bottle finish, was found in Layer 1 of TR 1 at 25 cmbs. Acc. 2, the ceramic sherd, was found on the surface near TR 6. Both artifacts are likely 20th century in origin.

Acc. 1 is a crown-style glass bottle finish, with mold seams visibly crossing the lip of the bottle (Figure 50). These mold seams are definitive evidence that this is part of a machine-made glass bottle produced after 1908 (Lindsey 2021).

Acc. 2 is a white ceramic fragment, identified as a piece of whiteware (Figure 51). This style of ceramic vessel was first produced in 1820 and remains popular to this day (Aultman 2014).

It is notable that the two artifacts discussed above, the only ones encountered during the survey, are an item encountered in the first 30 cm of excavation and another found on the surface. This indicates that despite the relatively common occurrence of construction debris (concrete rubble, abandoned piping, and rebar) during trenching, the project area itself appears mostly archaeologically sterile. The limited evidence that we do have points to a 20th century occupation of Layer I, the uppermost stratigraphic layer found throughout the northern yard area.
<table>
<thead>
<tr>
<th>Acc.</th>
<th>Description</th>
<th>Depth (cmbs)</th>
<th>Layer</th>
<th>Size (cm)</th>
<th>Weight (g)</th>
<th>Estimated Age</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Colorless Glass Bottle Finish</td>
<td>25</td>
<td>I</td>
<td>5.5 x 2.0 x 0.5</td>
<td>34</td>
<td>Post-1908</td>
<td>Seams running over finish. Found in TR 1, Layer I, 25 cmbs.</td>
</tr>
<tr>
<td>2</td>
<td>Whiteware Fragment</td>
<td>50</td>
<td>Surface</td>
<td>1.5 x 1.7 x 0.4</td>
<td>7</td>
<td>Post-1840</td>
<td>White fragment of whiteware. Found on surface near TR 6.</td>
</tr>
</tbody>
</table>

Figure 50. Acc. 1, a crown-style glass bottle finish.

Figure 51. Acc. 2, a white ceramic fragment.
Summary of Results

An archaeological inventory survey on a portion of TMK: (2) 3-7-004:003 identified one archaeological site, a historic wall. The excavation of 17 exploratory trenches did not find any subsurface deposits or features. Two historic artifacts were collected: a glass bottle fragment dating to post-1908 and a ceramic sherd dating to post-1820. Three historic buildings are located on the property; a historic architectural report is being prepared for the buildings.

The stratigraphy in the area can be divided between the northern lot and the remainder of the project parcel. The stratigraphic sequence in the northern lot is quite simple, with 20th century topsoil (Layer I) over a historic fill layer (Layer V), over a natural sedimentary layer (Layer VIII) containing a buried streambed or remnant of the old coastline (Layer IX). The stratigraphy in the remainder of the site is more complex, with varied surface layers (Layers P-I, P-II, I, II, and III) over one of two historic fill layers (Layer IV and V), over a buried topsoil lens (Layer VI), over two natural sedimentary layers (Layers VII and VIII) and the buried streambed or remnant coastal deposit (Layer IX). While the upper layers vary according to the surface use, the lower layers are consistent throughout the project area, indicating that they are naturally occurring. Aside from this, the most notable, anthropogenic data we can derive from the stratigraphic sequence is that the buried topsoil was almost completely absent from the northern lot. This is indicative of a bulldozing event at some point in the past.
SUMMARY AND RECOMMENDATIONS

An archaeological inventory survey was conducted at TMK: (2) 3-7-004:003 (por.) in Wailuku Ahupua’a, Wailuku District, on the island of Maui for the proposed Kahului Civic Center Mixed-Use Complex Project. The AIS included a pedestrian survey that covered 100% of the 1.91 ha (4.72 ac.) project area, as well as test excavations consisting of 17 trenches. One archaeological site was identified. This consists of a historic wall that serves as a boundary on the north side of the property. Two historic artifacts were recovered, not in association with the wall. Three historic buildings are located on the property; a historic architectural report is being prepared for the buildings.

The limited size of the artifact collection hindered any intensive analysis but may be indicative of 20th century use of the northern yard area. This analysis is consistent with the 1939 construction date of the wall and now-demolished school annex building. Stratigraphy in the area can be divided between the northern yard and the remainder of the project parcel, with the northern yard exhibiting simpler stratigraphy. While the upper layers vary according to the surface use, the lower layers are consistent throughout the project area, indicating that they are naturally occurring. Whereas the buried topsoil was almost completely absent from the northern yard, this area may have been impacted by past bulldozing.

Both of the research questions posed earlier have been answered in the negative. No evidence was found of subsurface cultural deposits or human burials within the survey area. And no subsurface remnants of the Kahului Railroad were found. The only vestiges of historic use of the property consist of the 1939 wall and the three historic buildings still standing within the project area.

Site Significance Evaluation

To be significant, a historic property shall possess integrity of location, design, setting, materials, workmanship, feeling, and association and shall meet one or more of the following criteria:

1. Criterion “a”. Be associated with events that have made important contribution to the broad patterns of our history;
2. Criterion “b”. Be associated with the lives of persons important in our past;
3. Criterion “c”. Embody the distinctive characteristics of a type, period, or method of construction; represent the work of a master; or possess high artistic value;
4. Criterion “d”. Have yielded, or is likely to yield, information important for research on prehistory or history;
5. Criterion “e”. Have an important value to the native Hawaiian people or to another ethnic group of the state due to associations with cultural practices once carried out, or still carried out, at the property or due to associations with traditional beliefs, events or oral accounts – these associations being important to the group’s history and cultural identity. [HAR 13-275-6(b)]

Integrity is defined as the authenticity of a property’s historic identity, as evidenced by the survival of physical characteristics it possessed in the past, and its capacity to convey information about a culture or people, historic patterns, or architectural or engineering design or technology. The aspects of integrity are: location, design, setting, materials, workmanship, feeling, and association. Location refers to the place where an event occurred or a property was constructed. Design considers elements such as plan, form, and style of a property. Setting is the physical environment of the property.
Materials refer to the physical elements used to construct the property. Workmanship refers to the craftsmanship of the creators of a property. Feeling is the property’s ability to convey its historic time and place. Association refers to the link between the property and a historic event or person.

The Kahului School Campus is significant under criterion a, for its association with efforts to restore the economy after the Great Depression (Table 5). The site is also significant under criterion c, because the various structures on the campus are characteristic of Territorial-era construction in Hawai‘i. The site is not significant under criterion e because it is not important to a specific ethnic group and is not associated with cultural practices. A cultural impact assessment for the property with the local community did identify the cultural practice of gathering plumeria from the project area (Duhatolsod et al. 2021), however the features of SIHP 50-50-04-08872 are not associated with this practice. Consultation with the CRC and SHPD identified the following mitigation recommendations:

- The Feature 1 wall should be preserved as much as possible; particularly in the sections where the plaques are located.
- If sections of the wall must be partially dismantled, they could be moved to a nearby location on the property or their rocks incorporated in the design of the building(s) with accompanying interpretive signage.
- Options to either reuse or move the Feature 2 Administration Building should be considered.
- If the Administration Building and cafeteria must be demolished, a Historic American Buildings Survey (HABS) should be completed.
- Low-density buildings with wide setbacks from property lines are preferred, to fit in with the character of the Kahului Historic District. Additionally, air flow throughout the Site should be considered.

The essential elements of Feature 1 are the basalt-and-mortar construction, the plaques inset along the wall, and its prominence as a boundary demarcation. All three of these aspects are visible and convey their significance at a glance. Additionally, Feature 1 is associated with the Works Progress Administration, which was very important during the Great Depression. And finally, the wall has partially maintained its integrity of feeling, remaining largely unchanged from its 1939 construction, with only the character of the road to the north dramatically changing in the last century. Overall, Feature 1 has retained its integrity of feeling (partial), location, materials, design, workmanship, and association. Feature 1 is a contributing resource to Kahului School Campus, and the Kahului Historic District. Considering the structure’s close association with the Kahului School Campus in feeling and setting, it is recommended that Feature 1 be considered an integral feature to the site. While the wall will be partially impacted by the project, the majority of this feature will be preserved. Mitigation measures are currently being discussed with SHPD.

The essential physical aspects of the Feature 2 MCSA building are the complex building plan and roofline, broad eaves, high single-story edifice and internal breezeway, quality craftsmanship and materials, relieved sharp-edged clapboard, and large-scale fenestration. All of these features are visible to the casual viewer and contribute to the building’s integrity of design, materials, and workmanship. Feature 2 has not retained its integrity of feeling, as parking lots surround the building, and the majority of the Kahului School Campus around the building have been demolished, leaving the area largely unrecognizable from its heyday. Overall, the building has retained its integrity of location, design, materials, workmanship, and association. Feature 2 is an example of the characteristic building style of 1920s Hawai‘i. It is recommended that the building be considered as a contributing resource to the Kahului School Campus site, although it will be demolished for the new construction.
<table>
<thead>
<tr>
<th>SIHP #</th>
<th>Description</th>
<th>Function</th>
<th>Integrity</th>
<th>Criteria</th>
<th>Justification</th>
<th>Historic Kahului District Contribution</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-50-04-08872</td>
<td>Rock and Mortar Wall, Three Buildings</td>
<td>Boundary, School Building, School Cafeteria, Utility Shed</td>
<td>Feeling (partial), location, materials, design, workmanship, association</td>
<td>a, c</td>
<td>Associated with efforts to restore the economy after the Great Depression; characteristic of Territorial-era construction in Hawai‘i</td>
<td>Prominent wall with Territorial-era charm (Fe. 1), building characteristic of Territorial-era construction (Fe. 2)</td>
<td>Partial preservation of Fe. 1 wall (the wall will either be moved to a nearby location on the property or the rocks incorporated in the design of the building(s) with accompanying interpretive signage); HABS or similar documentation for the Fe. 2 Administration Building and Fe. 3 cafeteria (all buildings will be demolished) further mitigation commitments based on consultation with SHPD and CRC</td>
</tr>
</tbody>
</table>
The essential physical aspects of Feature 3 cafeteria building would have been the building’s elevated T-plan design, construction materials, and workmanship. Unfortunately, today the building has fallen into disrepair and is partially collapsed. The materials and workmanship from the building’s initial construction have deteriorated over the years and no longer retain their integrity. The cafeteria does retain its association with the larger Kahului School Campus, but offers little in terms of contributing to the campus feeling or setting. Overall, Feature 3 retains integrity of association (partial), and location. Due to the building’s lack of integrity, and general disrepair, Feature 3 does not contribute to the Kahului Historic District or Kahului School Campus. The poor condition of the building has stripped away any of its integrity of design, materials, or workmanship that would have associated it with the historic district and school campus. No further work is recommended for this feature.

Feature 4 does not have any physical features that differentiate it from other modern utilitarian structures. Neither materials, nor craftsmanship of the shed are particularly notable. Also, it is unclear if the structure retains integrity of location as the shed could have been built elsewhere and relocated here any time in the last 50 years. The utility shed is associated with the Kahului School Campus but would not be considered integral to the overall feeling or setting. Overall, Feature 4 only retains a tenuous integrity of association. Due to the structure’s common utilitarian nature, Feature 4 does not contribute to the Kahului Historic District or the Kahului School Campus. The utilitarian nature and simple construction of the building makes any historical or archaeological significance dubious. Furthermore, there is no definitive evidence linking this utility shed to the Territorial era on Maui, which is the era of significance for the Kahului Historic District. No further work is recommended for this feature.

In sum, an AIS of a portion of TMK: (2) 3-7-004:003 identified one archaeological site, the Kahului School Campus. This site is comprised of three historic buildings and a wall, and as a whole the site contributes to the Kahului Historic District. No subsurface features or deposits were identified. The property has been disturbed by modern use, including probable bulldozing in the northern yard, although three historic buildings remain, in addition to the 1939 wall. A historic resource evaluation report has been prepared for the buildings. Plans for construction should address concerns discussed during consultation where possible.
Glossary

ahupua’a  Traditional Hawaiian land division usually extending from the uplands to the sea.
ala loa  Highway, belt road around island.
ali‘i  Chief, chiefess, monarch.
‘aumakua  Family or personal gods. The plural form of the word is ‘aumākua.
hei‘au  Place of worship and ritual in traditional Hawai‘i.
‘ili  Traditional land division, usually a subdivision of an ahupua’a.
‘ili‘ili  Waterworn cobbles often used in floor paving.
kalo  The Polynesian-introduced Colocasia esculenta, or taro, the staple of the traditional Hawaiian diet.
kamaʻāina  Native-born.
kuhina nui  Prime minister or premier. Ka‘ahumanu was the first kuhina nui. The position was abolished in 1864.
konohiki  The overseer of an ahupua’a ranked below a chief; land or fishing rights under control of the konohiki; such rights are sometimes called konohiki rights.
kuleana  Right, title, property, portion, responsibility, jurisdiction, authority, interest, claim, ownership.
laua‘e  A fragrant fern, Microsorium scolopendria, when crushed, it fragrance suggests that of maile.
lei  Garland, wreath; necklace of flowers.
lo‘i, lo‘i kalo  An irrigated terrace or set of terraces for the cultivation of taro.
Māhele  The 1848 division of land.
mana‘o  Thoughts, opinions, ideas.
mō‘ī  King.
mo‘olelo  A story, myth, history, tradition, legend, or record.
aupaka  The native shrub Scaevola sp., varieties of which are found both in the uplands and by the sea.
noni  Morinda citrifolia, the Indian mulberry, a tree or shrub known for its medicinal value in traditional Hawai‘i.
‘okana  Subdivision or district, usually consisting of several ahupua’a.
‘ōlelo no‘eau  Proverb, wise saying, traditional saying.
apalapalai  Microlepia strigosa, ferns can grow up to 4 to 5 ft in height. Used traditionally to decorate hula altars. Indigenous to Hawai‘i.
plumeria  Ornamental trees of the genus Plumeria, widely used in landscaping, especially at temples and graveyards.
post-contact  After A.D. 1778 and the first written records of the Hawaiian Islands made by Captain James Cook and his crew.
pre-contact  Prior to A.D. 1778 and the first written records of the Hawaiian Islands made by Captain James Cook and his crew.
REFERENCES

Alexander, W.D.

Aultman, J., N. Bon-Harper, L. Cooper, J. Galle

Avakonohiki

Burgett, B.B. and R. Spear
1999 Archaeological Monitoring of Storage Yard Paving and Utility Improvements Kahului Harbor, Maui. TMK (2) 3-7-10 Scientific Consulting Services Inc., Honolulu

Burns, I.

Carlquist, S.
1980 Hawaii, A Natural History. S.B. Printers, Honolulu

Cheever, Rev. H.T.
1851 Life in the Sandwich Islands: or, The Heart of the Pacific, As It Was and Is. A.S. Barnes, New York.

Conte, P.
2007 Archaeological Assessment Report for the Proposed Nextel Partners Inc. Kaahumanu Cell Site (HI202P) 32 Lono Avenue Kahului, Maui. TMK (2) 3-7-004:006 por. CRM Solutions Hawai‘i, Inc.

DAGS (Department of Accounting and General Services, State of Hawai‘i

Devereux, T. and H.H. Hammatt

Dodge, F.S.

Donham, T.K.
1990 Archaeological Inventory Survey Maui Palms Hotel Site, Land of Wailuku, Wailuku District, Island of Maui. (TMK 3-7-03) PHRI, Hilo, Hawai‘i.

2021 Cultural Impact Assessment for the Kahului Civic Center and Mixed-Use Complex Project, Wailuku Ahupua’a, Wailuku District, Island of Maui, Hawai‘i TMK: (2) 3-7-004:003 (por.). Keala Pono Archaeological Consulting, Kāne‘ohe, Hawai‘i.
Dunn, J.M.

Dye, T.S. and E.H.R. Jourdane
2007 Historic Properties Assessment for the Proposed Nextel Partners, Inc. Queen Ka'ahumanu Cell Site (HI202P), 32 Lono Avenue, Kahului, Maui Island, TMK: (2)3-7-004:006 por. T.S. Dye & Colleagues, Honolulu.

Eble, F. and I. Carlson
1996 Archaeological Inventory Survey of the Hobron Triangle, Kahului, Maui. TMK: (2)3-7-011:03. Department of Anthropology, Bernice Pauahi Bishop Museum, Honolulu.

Finney, B.R.


Foote, D., E. Hill, S. Nakamura, and F. Stephens
1972 Soil Survey of the Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii. United States Department of Agriculture, Soil Conservation Service. Published in cooperation with the University of Hawaii Agricultural Experiment Station, Washington, D.C.

Fornander, A.

Fredericksen, E.M.

2005 Archaeological Inventory Survey Report for Work Carried Out on the Kanaloa Avenue Improvements – Kahului Beach Road to Ka'ahumanu Avenue - Project, Wailuku Ahupuaa Wailuku District, Maui Island (Federal Aid Project No. STP-0900[59]) (TMK: 3-8-25 and 3-7-01:02 por.). Xamanek Researches, Pukalani, Hawai‘i.


Fredericksen, E.M. and D.L. Fredericksen
1999 An Archaeological Monitoring Report for the Kahului Barge Terminal Improvements Project, (Job No. H.C. 3281)Wailuku Ahupuaa Wailuku District, Maui Island (TMK: 3-7-08:1,3, por.4,6). Xamanek Researches, Pukalani, Hawai‘i.
Frey, J.J. and E.M. Fredericksen
2009 *An Archaeological Monitoring Report for the Kahului Concrete Sewer Laterals Replacement Project, Wailuku Ahupua’a Wailuku District, Maui Island (Various TMKs in Kahului).* Xamanek Researches, Pukalani, Hawai’i.


Handy, E.S., E.G. Handy, and M.K. Pukui

Harris, E.C.

Hill, R., T. Lee-Greig, and H.H. Hammatt
2009 *An Archaeological Literature Review and Field Inspection for Two Parcels Located at Kahului Harbor, Ahupua’a of Wailuku, Wailuku District, Island of Maui. TMK (2) 3-7-10:001, 036.* Cultural Surveys Hawaii, Kailua, Hawai’i.

Howell, H.
1896 Map of Lands Between Kahului and Wailuku, Maui, HI. RM 1757.

Hunt, J., D. Shefcheck, and M.F. Dega
2006 *An Archaeological Monitoring Report for a 5.443-Acre Property Located at Kahului Harbor, Ahupua’a of Wailuku, Wailuku District, Maui Island (TMK: 3-7-008: por. 006 and 3-7-008:004).* Scientific Consultant Services, Inc., Honolulu.

‘Ī‘ī, J.P.

Johnson, K. and M. Dega
2006 *An Archaeological Assessment of the Kahului Shopping Center Project, Ahupua’a of Wailuku, Wailuku District, Island of Maui.* Cultural Surveys Hawaii, Kailua, Hawai’i.

Kamakau, S.M.


Kennedy, J., P.P. Brennan, and S. Ireland
1993 *Archaeological Inventory Survey with Subsurface Testing Report for a Property Located at Portions of TMK 3-8-07: 1, 40, 125, 117 and 3-7-01:2 Wailuku Ahupua’a, Wailuku District, Island of Maui.* Archaeological Consultants of Hawaii, Inc., Hale‘iwa, Hawai‘i.

Lindsey, B.
Macdonald, G.A., A.T. Abbott, and F.L. Peterson  

MacLennan, C.A.  

Medrano, S. and M.F. Dega  

Monahan, C.  

Munsell Color (Firm)  

NOAA (National Oceanic and Atmospheric Administration)  
2000 Aerial Photo of Maui. Frame 2158. Reference No.:033-3279.

OHA (Office of Hawaiian Affairs)  

Pukui, M.K.  

Pukui, M.K. and C. Curtis  
1974 The Water of Kane and Other Legends of the Hawaiian Islands. The Kamehameha Schools Press, Honolulu.

Pukui, M.K., S.H. Elbert, and E.T. Mookini  

Ramsay, R A.  

Royalty, Z.D. and H.H. Hammatt  
2017 Archaeological Monitoring Report for the Main Street and Ka‘ahumanu Avenue Resurfacing Project from High Street to Hobron Avenue, Wailuku Ahupua‘a, Wailuku District, Maui Island (TMK: 3-4-001, 011–013, 018, 042, 3-7-002–004, 008, 010, 011, and 3-8-007 and 046). Cultural Surveys Hawai‘i, Inc., Wailuku, Hawai‘i.

Ruzick, D.  
Schoeneberger, P.J., D.A. Wysocki, E.C. Benham, and Soil Survey Staff

Shefcheck, D. and M. Dega

Silva, C.

Soil Science Division Staff

Speakman, C.E.

Spiekermann, U.

State of Hawai’i
1974 TMK Map, Zone 3 Sec 7 Plat 04. Por. Of Kahului, Maui, File Plan 22. Scale 1 in. = 50 ft. Department of Finance, Property Assessment Division, Honolulu.

Stearns, H.T.

Sterling, E.P.

Thien, S.

Thomas, M.
1983 *Schooner from Windward.* University Of Hawaii Press, Honolulu.

Thrum, T.G.
1909 *Hawaiian Almanac and Annual for 1909.* T.G. Thrum, Honolulu.

Ulukau
USDA (United States Department of Agriculture)

USGS (United States Geological Survey)


Wade, K., F. Eble, and J. Pantaleo

Waihona Aina

Wilcox, C.
APPENDIX: KAHULUI SCHOOL INFORMATION (COURTESY OF ANNALISE KEHLER)
<table>
<thead>
<tr>
<th>#</th>
<th>School Name</th>
<th>Territory, of</th>
<th>School Name</th>
<th>Territory, of</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hali`u School</td>
<td></td>
<td>Kealakehe School</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Halawa School</td>
<td></td>
<td>Kealakehe School</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kaena`ulu School</td>
<td></td>
<td>Kamehameha School</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Hau`ula School</td>
<td></td>
<td>Kiai Elementary School</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kalihi School</td>
<td></td>
<td>Kilauea School</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Kahaluu School</td>
<td></td>
<td>Kipahulu School</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Honokowai School</td>
<td></td>
<td>Lahaina School High School</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Honolua School</td>
<td></td>
<td>Lani<code>a</code>u Elementary School</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Kalama School</td>
<td></td>
<td>Makawao School</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Kula School</td>
<td></td>
<td>Maui High School</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Kula High School</td>
<td></td>
<td>Maui Vocational School</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Kula Intermediate School</td>
<td></td>
<td>Na`alehu School</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Nākula School</td>
<td></td>
<td>Moloka`i Intermediate School</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Na`alehu School</td>
<td></td>
<td>Moloka`i Standard School</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Napo`ole School</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PUBLIK SCHOOLS OF THE COUNTY OF MAUI

The public schools of the County of Maui, including the islands of Molokai and Lanai, consist of forty separate school plants, varying in size from Nahiku school, with its one-classroom and cottage building on an acre of ground, to Lahainaluna school with its numerous classrooms, shops, library, gymnasium, dormitories, cottages and incidental structures, its spacious grounds and gardens, and school property totalling in all 433.20 acres.

Classrooms, shop buildings, home-making buildings, cafeterias in the County total 129 structures. Teachers cottages, dwellings and dormitories number 69 buildings. Miscellaneous small structures and improvements of land such as garages, water tanks, toilets, etc., total 92.

The original cost of all structures and improvements (taking estimated replacement cost where the original figures are not available) amounts to $1,209,290.00. Based upon a yearly depreciation of 5% for wood-frame buildings, 4% for stucco and 3% for concrete structures, and assuming a residual value of 25% of the original cost on all buildings in use, irrespective of age, the present worth of the school buildings and supplementary structures is placed at $609,983.20 as of December 31, 1935.

School equipment, according to 1935 school inventories, is listed at $115,177.63 and materials and supplies at $27,006.10.

On the following pages, in alphabetical order, are detailed descriptions of the individual school plants, illustrated with photographs of the principal buildings. Maps showing the area of the school sites and location of buildings and structures, accompany the detailed data for each school.
KAHULUI SCHOOL

The Kahului School, located conveniently at the curve of the Beach Road leading from Kahului to Wailuku and at the lower end of the new Wailuku-Kahului Federal Highway, consists of a modern two story building of reinforced concrete and frame, a home making cottage, supervising principals' office, shop, and modern sanitary toilets for boys and girls. Additional structures and improvements to land consist of driveway fountains, fence and flagpole.

The original cost of this plant was $49,915.00 and the present (1935) value is $37,791.25. The land, acquired by purchase, is listed at $926.00. Equipment is listed at $5740.10 and materials and supplies at $1031.18, in the 1935 school inventory.

A map, showing the school grounds, location of buildings, etc., together with constructional data, illustrated with photographs, follows:
KAHULUI SCHOOL
KAHULUI, MAUI, T.H.

Areas: School Lot 3; 35 Acres

MAIN SCHOOL BUILDING

Contract Price: $41,965.00.

Built In: 1927.
Reinforced concrete and frame structure classrooms building; two stories; mineral surfaced roofing over 1 1/2" shiplap; entrance porches on three sides of first floor; two fire escape ladders on each end of building; celular walls and ceilings; maple floor.

First Floor: Area: 8,853 square feet.
Nine 24'x18' classrooms; one 12'x18' principal's office; one 11'x20' entrance hallway and stairwell; one 4'x9' man's toilet; one 8'x8' woman's toilets; one 7'x13' hallway.

Second Floor: Area: 5,760 square feet.
Six 24'x26' classrooms; balustrades on both ends of building; two 9'x12'7" hallways running lengthwise of building; seven foot hallway from second story wall to each hallway through first story attic.

HOME-MAKING COTTAGE

Contract Price: $10,575.00.

Frame; 720 floor; rustio siding over 1 1/2"x6" T&G exterior walls; 12'x16' partitions; none ceiling; mineral surfaced roofing over 1 1/2" shiplap sheathing; 1200 square feet; one 20'x24' living; one 6'x9' bedroom; one 12'x12' kitchen; one 9'x11' hall; one 11'x25' living and dining room; one 9'x13'6" kitchen; one 4'x9' back porch.

SUPERVISING PRINCIPAL'S OFFICE

Contract Price: $2860.00.

Frame; 720 floor; rustio siding over 1 1/2"x6" T&G exterior walls; 11'x12' T&G partitions; none ceiling; mineral surfaced roofing over 1 1/2" shiplap sheathing; 1972 square feet; one 22'x26' supply room; one 14'x20' secretary's office; two 14'x26' offices; one 4'x6' toilet; one 4'x10' back porch; one 6'x10' storage.

NOTES: TOILET

Contract Price: $2854.00 including Girls' Toilet.

Built In: 1929.
Frame; T&G siding; concrete foundation and floor; mineral surfaced roofing over 1 1/2" shiplap sheathing; 775 square feet; 16 compartments with sanitary toilets; one 5-foot urinal; one shower room with two shower heads.

GIRLS' TOILET

Contract Price: (See above)

Frame; concrete foundation and floor; T&G siding; mineral surfaced roofing over 1 1/2" shiplap sheathing; 662 square feet; 18 compartments with sanitary toilets; one shower room with two shower heads.

SHOP


Built In: 1930.
Frame; T&G floor and siding; shingle roof; 400 square feet; one 20'x20' shop.

DRINKING FOUNTAIN

Concrete base with six drinking faucets.

PLAYFIELD

Concrete base; 35 feet high.

LAWN AND PLAYGROUND

Good. Manicured and mowed grass.
Cahului School

WATER SUPPLY
Good. From the Vailuku Waterworks System.

FENCE
Two 4'x4' rails in front and on one side; galvanized wire fence with redwood posts on two sides.

PAINT AND COLOR
Main Building
- Red roof; coral plaster finish; natural celotex finish; varnished wainscoting interior walls; cream ceiling.

Supervising Principals' Office
- Red roof; sanded exterior; natural celotex ceiling with green moulding; lettuce green interior; forest green floor.

Home-Making Cottage
- Red roof; sanded exterior.

Boys' and Girls' Toilets
- Red roof; coral finish exterior; cream interior.

Shop
- Red roof; coral finish exterior; cream interior.

Flagpole
- White.
Appendix L

Cultural Impact Assessment
REVISED FINAL— Cultural Impact Assessment for the Kahului Civic Center and Mixed-Use Complex Project, Wailuku Ahupuaʻa, Wailuku District, Island of Maui, Hawaiʻi

TMK: (2) 3-7-004:003 (por.)

Prepared For:

G70
111 S. King Street, Suite 170
Honolulu, Hawaii 96813

January 2022

Keala Pono Archaeological Consulting, LLC ● PO Box 1645, Kāneʻohe, HI 96744 ● Phone 808.381.2361
REVISED FINAL — Cultural Impact Assessment for the Kahului Civic Center and Mixed-Use Complex Project, Wailuku Ahupua‘a, Wailuku District, Island of Maui, Hawai‘i

TMK: (2) 3-7-004:003 (por.)

Prepared For:

G70
111 S. King Street, Suite 170
Honolulu, Hawaii 96813

Prepared By:

Dietrix J.U. Duhaylonsod, BA
Windy Keala McElroy, PhD
Kālenalani McElroy, MA
and
Leandra Medina, BA

January 2022

Keala Pono Archaeological Consulting, LLC ● PO Box 1645, Kāne‘ohe, HI 96744 ● Phone 808.381.2361
MANAGEMENT SUMMARY

A Cultural Impact Assessment was conducted for the proposed Kahului Civic Center and Mixed-Use Complex Project in Wailuku Ahupua’a, Wailuku District, on the island of Maui. This is located at 153 W. Ka’ahumanu Avenue on a portion of TMK: (2) 3-7-004:003. The current study took the form of background research and an ethnographic survey consisting of three interviews with community members, all of which are included in this report.

The background research synthesizes traditional and historic accounts and land use history for the Wailuku/Kahului region. Community consultations were performed to obtain information about the cultural significance of the subject property and the surrounding area, as well as to address possible concerns of community members regarding the effects of the proposed project on places of cultural or traditional importance.

As a result of this work, the cultural significance of the project vicinity has been made clear. Portions of the current city of Wailuku were built atop former agricultural terraces with its well-watered location, and Wailuku was afflicted by warfare through much of its history. In the post-contact era, sugar interests took the forefront of the Wailuku and Kahului economy, and cane fields, mills, ditches, a railroad, and other infrastructure forever changed the landscape. Vestiges of the sugar industry still remain, particularly the Kahului Railroad, which is not far north from the project area. The closest archaeological studies to the project mostly identified historic artifacts and intact portions of the Kahului Railroad infrastructure. In addition, intact sand deposits have been observed and it has been noted that the possibility of identifying human burials remains high in the vicinity.

Interviews with individuals knowledgeable about the project lands produced information on its rich cultural history. The interviewees had several recommendations for the project, consisting of the following:

- Have a cultural monitor on site during construction;
- Allow access to the facilities for all community members rather than a members-only facility;
- Keep open communication with the community regarding the project;
- Plant useful foliage on the property such as plumeria, laua‘e, palapalai, noni, kalo, and naupaka for the community to gather, and to hold cultural classes on the property, such as lei-making, to make good use of the plants;
- Use native plants instead of invasives for landscaping on the grounds;
- If any trees on the property are being cut down, consult the community to see if the trees can be utilized by community members.
CONTENTS

MANAGEMENT SUMMARY............................................................................................i
FIGURES......................................................................................................................iv
TABLES.........................................................................................................................iv

INTRODUCTION ..............................................................................................................1
    Project Location and Natural Environment ................................................................. 1
    Project Description ..................................................................................................... 4

CULTURAL BACKGROUND ............................................................................................6
    Wailuku in Traditional Times ..................................................................................... 6
    Place Names ............................................................................................................... 6
    Subsistence and Traditional Land Use ....................................................................... 7
    Moʻolelo .................................................................................................................... 8
    ‘Ōlelo Noʻeau ........................................................................................................... 9
    War and Conquest in Wailuku .................................................................................. 9
    Historic Wailuku: The 19th and 20th Centuries .........................................................11
    Māhele Land Tenure .................................................................................................13
    Historic Maps ...........................................................................................................14
    Previous Archaeology ...............................................................................................14
    Summary of Background Research ..........................................................................23

ETHNOGRAPHIC SURVEY ...........................................................................................25
    Interviewee Backgrounds .........................................................................................26
    Aiau Koa ...................................................................................................................26
    Kalani Au .................................................................................................................26
    Kumu Kaponoʻai Molitau .........................................................................................27
    Topical Breakouts ....................................................................................................27
    Connections to the Project Area ..............................................................................27
    Moʻolelo and Archaeological Sites ..........................................................................27
    Gathering Practices .................................................................................................28
    Change Through Time .............................................................................................28
    Concerns and Recommendations ............................................................................28
    Summary of Ethnographic Survey ............................................................................29

SUMMARY AND RECOMMENDATIONS .........................................................................30
    Cultural Resources, Practices, and Beliefs Identified .................................................30
    Potential Effects of the Proposed Project .................................................................30
    Confidential Information Withheld ..........................................................................30
    Conflicting Information .........................................................................................30
    Recommendations/Mitigations ...............................................................................30
    Summary and Conclusion .......................................................................................30

GLOSSARY .....................................................................................................................32
REFERENCES ..................................................................................................................34
Contents

APPENDIX A: AGREEMENT TO PARTICIPATE ................................................................. 39
APPENDIX B: CONSENT FORM .................................................................................. 43
APPENDIX C: TRANSCRIPT RELEASE ........................................................................ 47
APPENDIX D: INTERVIEW WITH KALANI A‘U ............................................................ 51
APPENDIX E: INTERVIEW WITH KUMU KAPONO‘AI MOLITAU .................................. 55
APPENDIX F: INTERVIEW WITH AIAU KOA ................................................................ 59

FIGURES

Figure 1. Project area on a 7.5 minute Wailuku quadrangle map (USGS 2013). .................. 2
Figure 2. Project area on a TMK plat map (State of Hawai‘i 1974). ................................. 3
Figure 3. Soils in the project area (data from Foote et al. 1972). ..................................... 5
Figure 4. Major sugarcane irrigation ditches on the island of Maui (Wilcox 1996:120). ..... 12
Figure 5. Portion of a map of Wailuku area, including Kahului (Alexander 1881). .......... 15
Figure 6. Portion of a map of Maui (Dodge 1885). ....................................................... 16
Figure 7. Portion of a map of Kahului and Kahului Harbor (Howell 1896). ..................... 17
Figure 8. Portion of a map of the town of Kahului (Dunn 1953). .................................. 18
Figure 9. Previous archaeological studies in the vicinity of the project area. ..................... 19

TABLES

Table 1. Previous Archaeological Studies in the Vicinity of the Project Area .................... 20
Table 2. List of Individuals Involved in the Cultural Impact Assessment .......................... 26
INTRODUCTION

At the request of G70, Keala Pono Archaeological Consulting a Cultural Impact Assessment (CIA) for the proposed Kahului Civic Center and Mixed-Use Complex Project in Wailuku Ahupua’a, Wailuku District, on the island of Maui. This is located at 153 W. Kaʻahumanu Avenue on a portion of TMK: (2) 3-7-004:003. The CIA study was designed to identify any cultural resources or practices that may occur in the area and to gain an understanding of the community’s perspectives on the proposed construction.

The report begins with a description of the project area and a historical overview of land use and archaeology in the area. The next section presents methods and results of the ethnographic survey. Project results are summarized, and recommendations are made in the final section. Hawaiian words, flora and fauna, and technical terms are defined in a glossary at the end of the report. Also included are appendices with documents relevant to the ethnographic survey, including full transcripts of the interviews.

Project Location and Natural Environment

The project area is located in Kahului, approximately 300 m (.2 mi.) inland from the coast at Kahului Harbor (Figure 1) on 1.91 ha (4.72 ac.) of TMK: (2) 3-7-004:003 (Figure 2). TMK: (2) 3-7-004:003 is a 2.26-ha (5.572-ac.) property owned by the State of Hawai‘i located at 153 W. Kaʻahumanu Avenue. The property is bounded by W. Kaʻahumanu Avenue to the north, Kane Street to the west, Vevau Street to the south, and private parcels to the east.

The property currently houses the Maui Community School for Adults, which includes two buildings that were constructed in 1920. Topography is relatively flat, and there is little to no vegetation on the properties. The project area lies at roughly 2 m (7 ft.) above mean sea level (amsl), and rainfall averages approximately 42 cm (17 in.) per year (Giambelluca et al. 2013).

The island of Maui was created by two separate shield volcanoes, Haleakalā in the east and Pu‘u Kukui in the west. The two land masses are connected by an isthmus when “lavas of Haleakala banked against the already existing West Maui volcano” (Macdonald et al. 1983:380). The project area is located in the large ahupua‘a of Wailuku in West Maui. Wailuku consists of Kahului Bay, from Pa‘ukukalo to Kapukaulua; ‘Īao Valley; and the northern part of the island’s isthmus, which includes Waikapū, Waiehu, Waihe’e, Kahakuloa, and Pulehuunui. Wailuku is bordered by the ahupua‘a of Ka‘anapali and Lahaina to the west, and Hamakuaapoko to the east.

The isthmus on which the majority of Wailuku lies has soils composed of “alluvial fans of outwashed silts and gravels, overlain by coralline sands blown inland from the coast. The lower levels have become firmly lithified, forming a soft rock known as colianite” (Stearns 1966:10). The lithified sand dunes occur on the alluvial fans along the coast and farther inland from Kahului to Waihe’e. Some of these dunes reach heights as great as 60 m (197 ft.) (Macdonald et al. 1983:388; Carlquist 1980:60).

Soils in the southwest half of the project area consist of Puuone sand 7–30% slopes (PZUE) (Figure 3). These soils are located on dunes near the coast and are often used for pasture and housing (Foote et al. 1972:117). The northeast half of the parcel lies on Fill land (Fd). This soil type consists mainly of lands that have been filled with bagasse and slurry from sugar mills, although some areas are filled with dredged material (Foote et al. 1972:31). As the project area is very close to Kahului Harbor, it is likely that the fill material here derived from dredging of the harbor.
Figure 1. Project area on a 7.5 minute Wailuku quadrangle map (USGS 2013).
Figure 2. Project area on a TMK plat map (State of Hawai‘i 1974).
Project Description

The State of Hawai‘i, Department of Business and Economic Development and Tourism (DBEDT), Hawai‘i Housing, Finance, and Development Corporation (HHFDC) are proposing to undertake the “Kahului Civic Center and Mixed-Use Complex Project” (“Project”). The Project is a collaborative effort between the HHFDC and State Department of Accounting and General Services. The State, via Executive Order No. 4590 (July 29, 2019), set aside the Project parcel [TMK: (2) 3-7-004:003] to the HHFDC for the purpose of developing the Project.

The Project primarily involves the construction of affordable and market-rate multi-family housing (multi-family housing) and a State Kahului Civic Center (Civic Center). The multi-family housing buildings and Civic Center will provide a total of approximately 381,000 SF of floor area and approximately 596 parking spaces. Approximately 300 multi-family dwelling units (mixture of 1-, 2- and 3-bedroom units) will be provided in two buildings (both roughly six stories); and approximately 414 parking spaces will be provided in two three-level parking podiums for the multi-family housing. The preliminary program for the Civic Center (roughly four stories) includes space for State offices, the State Department of Education’s McKinley Community School for Adults, and the Kahului Public Library. A parking deck built over a surface parking lot will provide approximately 182 parking spaces for the Civic Center. Community-oriented commercial space may be included in either the multi-family housing building(s) or the Civic Center. The Civic Center program spaces may be adjusted due to the needs and priorities of State agencies and availability of funding. Existing structures on the Project parcel to be demolished include the Department of Education’s McKinley Community School for Adults building (one-story), a lawnmower maintenance building (one-story), a collapsed building (one-story) and a parking lot with 21 parking spaces.

The County’s new Transit Hub is currently being constructed on the southwest portion (0.85 acres) of the Project parcel along Vevau Street. The County’s new Transit Hub is not a part of this Project. The County’s new Transit Hub will replace the existing Transit Hub, located at the Queen Ka‘ahumanu Center.
Figure 3. Soils in the project area (data from Foote et al. 1972).
CULTURAL BACKGROUND

This section of the report presents background information as a means to provide a context through which one can examine the cultural and historical significance of the project lands. In the attempt to record and preserve both the tangible (e.g., traditional and historic archaeological sites) and intangible (e.g., mo’olelo, ‘ōlelo no’eau) culture, this research assists in the discussion of anticipated finds. Research was conducted at the Hawai‘i State Library, the University of Hawai‘i at Mānoa libraries, the SHPD library, and online on the Office of Hawaiian Affairs website (OHA n.d.) and the Department of Accounting and General Services (DAGS n.d.), Waihona Aina (n.d.), Avakonohiki (n.d.), and Ulukau (n.d.) databases. Archaeological reports, historical reference books, and historic maps were among the materials examined.

Wailuku in Traditional Times

Place names often shed light on traditional views of an area and can provide important contextual information. Wailuku literally means “water of destruction” (Pukui et al. 1974:225) due to the battles that took place there, most notably the battle at ʻĪao Valley between Kamehameha the Great and Kahekili. Wailuku is also referred to as Nā Wai ‘Ehā, which translates to “the four waters,” after the four streams that run through its valleys: Waiehu, Waikapū, Wailuku, and Waihe’e. The old ‘okana (land division) named Nā Wai ‘Ehā comprised the four great valleys which cut far back into the slopes of West Maui and drain the eastward watershed of Pu‘u Kukui and the ridges radiating from it.

Place Names

One often overlooked source of history is the information embedded in the Hawaiian landscape. Hawaiian place names “usually have understandable meanings, and the stories illustrating many of the place names are well known and appreciated...The place names provide a living and largely intelligible history” (Pukui et al. 1974:xii).

Place names associated with the study area are listed in the Place Names of Hawaii (Pukui et al. 1974), along with the meanings of the names and/or comments about the specific locales:

- Haleki‘i...Alternate name for the heiau at Pihana, Maui. Lit., image house. (Pukui et al. 1974:37)
- ʻĪao. Stream, valley, peak (2,250 feet high), park, and one-time sacred burying place of chiefs, Wai-luku qd....Maui....Lit., cloud supreme. (Pukui et al. 1974:55)
- Kaʻahumanu. Church, Wai-luku, Maui. Named for Queen Kaʻahumanu, favorite wife of Ka-mehameha I, who was later kuhina nui (executive officer), and who died a Christian in 1832...Lit., the bird [feather] cloak. (Pukui et al. 1974:59)
- Kaʻākaupōhaku. Ancient surfing area, Ka–halui area, Maui. (Finney 1950b:345) Lit., the north (or right-hand) stone. (Pukui et al. 1974:60)
- Kahului. Town, elementary school, port, bay, railroad, and surfing area known as Kahului Breakwater (Finney 1959a:108), Maui. Probably Lit., the winning. (Pukui et al. 1974:67)
- Kaleholeho. Ancient surfing area, Ka–halui area, Maui. Lit., the callus. (Pukui et al. 1974:76)
Kanahā. Wildlife sanctuary and pond near Ka-halui, Maui, said to have been built by Chief Kiha-a-Piʻilani, brother-in-law of ‘Umi (HM387) who lived about A.D. 1500. Nearly 500 native Hawaiian stilts (āʻeʻo) have been counted here at one time, about a third of the known total. Some 50 kinds of birds have been seen here, including herons, geese, ducks, owls, plovers, sand pipers, tattlers, coots, pheasants, and doves...Lit., the shattered [thing]. (Pukui et al. 1974:83)

Kepaniwai. Park, Wailuku, Maui. Lit., the water dam (Wai-luku Stream was choked with human bodies after the slaughter there). (Pukui et al. 1974:109)


Māniaina. Ditch, Wailuku qd., Maui...Lit., a shuddering sensation. (Pukui et al. 1974:145)


Nehe. Point. Wai-luku qd., Maui...Lit., rustle. (Pukui et al. 1974:164)


Wailuku...land division...city, point, sugar company, and stream, West Maui; site of the battle in the late eighteenth century in which the army of Ka-lani-'ōpuʻu was nearly annihilated by Ka-hekili of Maui. Lit., water [of] destruction. (Pukui 1974:225)

Subsistence and Traditional Land Use

Wailuku was a gathering place and home to important chiefs and their attendants (ʻĪ ʻi 1959:135). Handy et al. (1991:272) assert that there were five centers of population on the island of Maui, one of which was the part of West Maui, “where four deep valley streams watered four areas of taro land spreading fanwise to seaward: the Four Waters (Na-wai-ʻeha) famed in song and story–Waieʻe, Waiehu, Wailuku, and Waikapu.”

Wailuku is the third of the four streams that flows from the uplands of Puʻu Kukui’s ridges and down through ʻĪao Valley. Portions of the current city of Wailuku were built on old agricultural terraces (Handy et al. 1991:497):

Along the broad stream bed of ʻĪao Valley, extending several miles up and inland, the carefully leveled and stone-encased terraces may be seen. In the lower section of the valley these broad terraces served, in 1934, as sites for Camps 6 and 10 of Wailuku Sugar Plantation, being utilized for houses, gardens, playgrounds, and roads. A little farther up, neat private homes and vegetable and flower gardens covered these old taro terraces; while at their upper limit the terraces were submerged in guava thickets. Here a few wild taros were found, but we saw no terraces in ʻīao or Wailuku being used as flooded taro patches. It is significant that here, as at Waieʻe, the old terraces were adapted to market gardening (Chinese bananas, vegetables, and flowers) by Japanese and Portuguese gardeners. (Handy et al. 1991:497)

The waters of Waikapū Stream were once diverted to feed loʻi systems, and its overflow was discharged on the dry plains on the isthmus between East and West Maui (Handy et al. 1991:496).
These abundant waters were later tapped for sugarcane irrigation (see Historic Wailuku section). Cheever commented on the lo‘i of Wailuku in the mid-19th century:

As you get into the valley and vega of Wailuku, you see numerous remains of old kihapais, or cultivated lots, and divisions of land now waste, showing how much more extensive formerly was the cultivation, and proportionally numerous the people than now…The whole valley of Wailuku, cultivated terrace after terrace, gleaming with running waters and standing pools, is a spectacle of uncommon beauty to one that has a position a little above it. (Cheever 1851 in Sterling 1998:75)

In addition to agricultural cultivation, fishponds were constructed in the region, near Kahului. Two major ponds are thought to have been constructed around AD 1500 during the rule of Kiha-a-Pi’ilani (Kamakau 1992:42; Pukui et al. 1974:83). The ponds were named Kanahā and Mauʻoni. Kiha-a-Pi’ilani also built the ala loa, a trail that circled the entire island. Another source states that the fishponds were constructed by Kapiʻiohoʻokalani, an aliʻi of Oʻahu and Molokaʻi, and that the walls were built by men passing stones from one to another in a line that extended from Makawela to Kanahā (Puea-a-Makakahauali in Sterling 1998:87).

A number of heiau have been identified within the ahupua‘a of Wailuku, with Halekī‘i and Pihana located approximately two kilometers northeast of the current study area. An annual publication by T.G. Thrum, the *Hawaiian Almanac and Annual for 1909* briefly describes some of the heiau found in Wailuku:

- Pihana- Wailuku, near end of coral and sand ridge, one-half mile from the sea; about 300x120 ft. in size; walls in complete ruins showing foundations massive.
- Halekīi- Wailuku, some 300 ft. to N.E. of Pihana and about 100 ft. square in size.
- Kalui- Wailuku, at Puu-o-hala; repaired in time of Kahekili; Kaleopuuupuu its priest.
- Malumaluakua-Keahuku-Oloku-Olopio-Malena- Wailuku. No Particulars gathered of these heiaus further than nearly all of the Wailuku temples, with the Kapokea one in Waihee are named among those consecrated by Liho-liho during a year’s stay en route to Oahu, preceding the peleleu fleet. (Thrum 1909:38)

**Moʻolelo**

The island of Maui was named after the legendary demigod Māui (Pukui et al. 1974), known for his trickiness. Legends tell of how he stole fire, raised the sky and snared the sun, trapped winds, and changed landscapes. Among all of the moʻolelo, one of his biggest accomplishments was fishing land out of the ocean and creating the Hawaiian Islands. Earlier accounts share that the name of the island was once called Ihikapalaumaewa in ancient times, prior to Papa and Wākea and before their child Māui became famous (Sterling 1998).

The wind name for Wailuku is Makani-lawe-malie, or “the wind that takes it easy” (Nuhiwa in Sterling 1998:62). And it is said that the aliʻi of the area spent much time surfing (Kamakau 1992:82).

The plains of Kamaʻomaʻo in Wailuku were a place of wandering souls:

There are many who have died and have returned to say that they had no claim to an ʻaumakua ʻrealm) (kuleanaʻole). These are the souls, it is said, who only wander upon the plain of Kamaʻomaʻa on Maui or on the plain at Puʻuokapolei on Oahu. Spiders and moths are their food. (Kamakau 1991:29)
A final moʻolelo concerns the appearance of foreigners in Wailuku in the mid-13th century, long before the first written record of foreigners arriving in the islands (Fornander 1969 [1878–1885]: 80–82). A chief named Wakalana governed the windward side of Maui and lived in Wailuku. At this time, a ship called Mamala came to Wailuku. The ship’s captain was named Kaluikia-Manu, and other men and women on board were named Neleike, Malaea, Haakoa, and Hika. Neleike later became Wakalana’s wife, and together they bore fair skinned children with bright, shining eyes (Fornander 1969 [1878–1885]:81). Their descendants intermarried with other Hawaiians and many of them lived in Waimalu and Honouliuli on Oʻahu. Fornander posits that the moʻolelo may refer to a Japanese fishing vessel that was blown off course, as Europeans were not near Hawaiian waters at that time (1969 [1878–1885]:81).

ʻÓlelo Noʻeau

Wailuku’s connection with its distinguished coast is preserved in many traditional proverbs and wise sayings. In 1983, Mary Kawena Pukui published a volume of close to 3,000 ʻōlelo noʻeau that she collected throughout the islands. The introductory chapter reminds us that if we know these proverbs and wise sayings well, then we will know Hawaiʻi well (Pukui 1983). Four ʻōlelo noʻeau were found that speak of Wailuku. They provide further insight to the traditional landscape and history of the region.

Kei nu aku la paha aʻu ʻĀlapa I ka wai o Wailuku.
*My ʻĀlapa warriors must now be drinking the water of Wailuku.*

Said when an expected success has turned into failure. This was a remark made by Kalaniōpuʻu to his wife Kalola and son Kiwalaʻō, in the belief that his selected warriors, the ʻĀlapa, were winning in their battle against Kahekili. Instead they were utterly destroyed. (Pukui 1983:184)

Na wai ʻehā.
*The four wai.*

A poetic term for these places on Maui: Wailuku, Waiehu, Waiheʻe, Waikapū, each of which has a flowing water (*wai*). (Pukui 1983:251)

Pili ka hanu o Wailuku.
*Wailuku holds its breath.*

Said of one who is speechless or petrified with either fear or extreme cold. There is a play on *luku* (destruction). Refers to Wailuku, Maui. (Pukui 1983:290)

Wailuku I ka malu he kuawa.
*Wailuku in the shelter of the valleys.*

Wailuku, Maui, reposes in the shelter of the clouds and the valley. (Pukui 1983:290)

War and Conquest in Wailuku

Mauʻi’s ahupua’a of Wailuku was wrought with warfare through much of its known history, including what some would term as a 100 years’ war. Many stories and accounts have been passed down. Rev. Cheever, in his book, *Life in the Sandwich Islands: or, The Heart of the Pacific, As It Was and Is,* wrote of how the various wars had an effect on how each stream in Wailuku was named:

There are in this region four streams in succession from the different gorges of the mountain, significantly named, it is thought, from the events of battles which have transpired upon them. Waikapu—The water where the conch was blown, and the engagement began.
Waiehu—The water where the combatants smoked with dust and perspiration. Wailuku—The water of destruction, where the battle began to be fierce and fatal. Waihee—The water of total rout and defeat, where the army melted away. (Cheever 1851:59)

One of the earliest battles was that between owls and men: “The owls retaliated against an act committed by a cruel man by flocking to Wailuku and descending upon him” (Silva n.d). Another mention of this battle refers to the origin of the ahupua’a’s name: “The cruel man was punished, and the battle place still bears the name Wailuku, Water-of-killing” (Pukui and Curtis 1974:179).

In addition to the battles with owls, many battles were fought between chiefs. In the 16th century, the 15th mōʻi of Maui, Pi’ilani, united the island’s districts through war, and gave his daughter to marry the current mōʻi of Hawai’i Island. Due to this marriage, there was peace between the two kings of each island, until Pi’ilani died and a rivalry sparked between his two sons, Lono-a-Pi’ilani and Kiha-a-Pi’ilani (Speakman 1978). The eldest son, Lono, had inherited Maui and he sought to kill his brother Kiha, who then escaped to Hāna and met a young chiefess, Koleamoku. They fell in love and secretly married, even though she had been promised to Lono. The couple moved to Hawai‘i Island, where Kiha’s sister was still living with ʻUmi, to avoid being captured by Lono. ʻUmi took the side of Kiha and launched a war with Maui. Lono was defeated and ʻUmi took partial control of the island of Maui, in Hāna, and peace was once again observed until the 17th century.

In the early 18th century, Kekaulike united the kingdom of Maui through war. While there were times of peace after this, things got worse for Maui by the end of the century with many wars with Hawai‘i Island’s king, Alapaʻi who was trying to gain control of it. Kekaulike perished when fleeing to Wailuku:

When Ke-kau-like heard that the ruling chief of Hawaii was at Kohala on his way to war against Maui, he was afraid and fled to Wailuku in his double war canoe named Ke-aka-milo. He sailed with his wives and children...his officers, war leaders, chiefes, and fighting men, including warriors, spearmen, and counselors. Some went by canoe and some overland, and the fleet landed at Kapaʻahu at the pit of ʻAi-hakoʻko in Kula. Here on the shore the chiefs prepared a litter for Ke-kau-like and bore him upland to Halekii in Kukahua. There Ke-kau-like died, and sound of lamentation for the dead arose. (Kamakau 1992:69)

In an important battle, Kalaniʻōpuʻu was defeated in Wailuku (Kamakau 1992:85–91). It was in 1776 that Kalaniʻōpuʻu returned to war with Maui and was overthrown by Kahekili’s army. It is said that Kalaniʻōpuʻu’s forces “were slain like fish enclosed in a net,” and the slaughter was known as Ahulau ka Piʻipiʻi Kakanilua, or Slaughter of the Piʻipiʻi at Kakanilua (Kamakau 1992:86). Unthwarted, however, Kalaniʻōpuʻu prepared for another assault. Kahahana, the aliʻi of Oʻahu and Molokaʻi, came to assist Kahekili. This battle was fought in the area between Wailuku and Waikapū. Again, Kalaniʻōpuʻu’s forces were surrounded and killed.

Afflicted by war, Maui became impoverished, and Vancouver mentioned during his visit in 1793 that King Kahekili was having trouble finding enough provisions for his own ship (Speakman 1978). Kahekili was the last king of Maui and was able to rule Molokaʻi, Lanaʻi, and Oʻahu during his reign but was unable to conquer Hawai‘i Island.

Foreigners increasingly visited Hawai‘i after Captain Cook arrived at Kahului Bay in the late 18th century, and this was happening as Kamehameha was rising to power. Kamehameha, armed with a cannon he acquired by foreigners, went to battle in Wailuku.

The bay from Kahului to Hopukoa was filled with war canoes. For two days there was constant fighting in which many of the most skillful warriors of Maui took part, but
Kamehameha brought up the cannon, Lopaka, with men to haul it and the white men, John Young and Isaac Davis, to handle it; and there was a great slaughter. Had they fought face-to-face and hand-to-hand, as the custom was, they would have been equally matched. But the defensive was drawn up in a narrow pass in ‘Iao, and the offensive advanced from below and drew up the cannon as far as far as Kawelowelolu and shot from there into ‘Iao and the hills about, and the men were routed. The victors pursued them and slew the vanquished as they scrambled up the cliffs. There was a great slaughter, but mostly among the commoners; no important chief was killed in the battle. “Clawed off the cliff” (Ka‘uwa‘u-pali) and “The damming of the waters” (Ka-pani-wai) this battle was called.”
(Kamakau 1992:148–149)

After winning the battle on Maui, Kamehameha moved on to conquer the remaining islands of Moloka‘i, O‘ahu, and Kaua‘i.

**Historic Wailuku: The 19th and 20th Centuries**

In 1832, missionaries began arriving in Maui and established a girls’ school in Wailuku. Around that time, the sugar industry was introduced, greatly affecting Wailuku. The Hungtai Sugar Works company, founded in 1828 by two Chinese merchants, was the first location of sugar production on the island. King Kamehameha had a sugar mill built in Wailuku in the 1840s, which much of the initial sugar industry had developed around. The abundance of water supply and accessible land in Wailuku allowed for the sugar industry to develop and become profitable within a short time period. In addition, the mills built in the early 1960s were among the most advanced, being steam powered. The arrival of over 100 foreign laborers to work on the plantations began to greatly change the population composition of the region, along with the decline in native population. The Wailuku Sugar Company was established in 1862 and later took over the Waihe‘e Plantation to the north. By 1867, 2,250 acres of land was planted with sugar in Wailuku. Much of the sugarcane cultivation took place in the western portion of Wailuku until 1876 when industry advancements enabled expansion to other dryer areas (Wilcox 1996, MacLennan 1997:102).

In the second half of the 19th century, the sugar industry in Hawaii greatly expanded as a result of the 1876 Reciprocity Treaty between the U.S. and the Hawaiian Kingdom, which gave the U.S. market free access to Hawai‘i’s land for sugar and other products. A major player in the Hawaiian sugar industry, Claus Spreckels, a German immigrant to the United States, had first established a major sugar refinery in San Francisco. He initially opposed the 1876 Reciprocity Treaty between the United States and Hawai‘i as he believed it would cause insurmountable competition in the sugar industry. However, in order to keep up with potential competition, Spreckels traveled to Maui in 1878 where he later founded the Hawaiian Commercial & Sugar Company (HC&S). He purchased and leased 40,000 acres of eastern Wailuku, including the Wailuku Commons. After obtaining the Wailuku Commons in 1882, Spreckels gained water and transport rights for his crops, creating a thriving sugar industry and plantation town named for himself–Spreckelsville. HC&S was incorporated in 1884 by Spreckels using $10 million in capital; his sugar empire on Maui included four sugar mills, 35 miles of railway (including equipment), a water reservoir, and a canal system built by a fellow German-American engineer which was highly advanced for its time (Spiekermann 2019:5). Spreckels’ Waihe‘e Ditch was the center of conflict at that time, with the Wailuku Sugar Company objecting that Spreckels did not have a right-of-way through their land or rights to waters of Waihe‘e Stream. Spreckels eventually lost control of HC&S and a new ditch was constructed. By the 1900s, a complicated system of ditches wove its way through both East and West Maui (Figure 4).
Figure 4. Major sugarcane irrigation ditches on the island of Maui (Wilcox 1996:120).
With the rise of the sugar industry in Wailuku, Kahului, and continuing on further east to Spreckelsville and Pā’ia, it was apparent that a railroad was needed to transport sugar to be exported to the U.S. The Kahului Railroad was first organized under the partnership between Thomas H. Hobron, William O. Smith, and William H. Baily. The first section of the railroad that extended from Wailuku to Kahului was completed by 1879. Hobron also operated a general merchandising business on Bay Street in Kahului, which later became the headquarters for the railroad. Construction began in 1880 of the railroad sections east of Kahului to Pā’ia and Spreckelsville. The three partners then sold the company to Samuel G. Wilder upon completion of the eastern section in 1884. In 1899, the railroad was then sold to HC&S Company—which by then was owned by Henry P. Baldwin and Associates. By 1913, the railroad extended east to the cannery in Hā’iku. The main railroad terminal in Kahului was expanded in the 1920s to encompass a 219-acre facility. In 1923, a new railroad general office was constructed (today, the general office is located just northeast of the current project area). By this time, a total of 34 miles of the main line, nine miles of a secondary line, ten steam locomotives and 265 cars were in service. However, the depression of the 1930s and World War II of the 1940s saw a reduction in general service. The gradual introduction of motor busses starting in 1936 largely replaced locomotive transportation service in Kahului and by the end of the 1960s, the railroad had ended all services (Ramsay 1960).

The burgeoning sugar industry in Wailuku and Kahului also contributed to the increased use of Kahului Harbor as a major trade port. According to Burns (1991:47), by 1840, a small jetty may have been located at what is now the Maui Beach Hotel (formerly the Maui Palms Hotel), just north of the project area. In the 1870s, T.H. Hobron operated the Ka Moi, a schooner that ran between Kahului and Honolulu (Thomas 1983). A small commercial landing was opened in 1879 for the purposes of the sugar trade. Soon thereafter, Spreckels began operating Oceanic Steamship Lines between Kahului and North America out of the Kahului Harbor, making it the main shipping point for sugar from all of the Maui plantations. Samuel Wilder built the first breakwater wall and had part of the harbor dredged in 1904. The dredging fill was used to fill in the areas where the main business section is now located (Burns 1991:48).

The 20th century saw the project area developed into the Maui Community School, and one historic building from this era still stands. The structure is known as Building 5, and it was constructed in 1920. It is a one-story structure, built of Concrete Masonry Unit (CMU) walls with a wood and steel frame. In addition to the historic building, a rock and mortar wall is known to be located within the project area. The wall dates to 1939.

Māhele Land Tenure

The change in the traditional land tenure system in Hawaiʻi began with the appointment of the Board of Commissioners to Quiet Land Titles by Kamehameha III in 1845. The Great Māhele took place during the first few months of 1848 when Kamehameha III and more than 240 of his chiefs worked out their interests in the lands of the Kingdom. This division of land was recorded in the Māhele Book. The King retained roughly a million acres as his own as Crown Lands, while approximately a million and a half acres were designated as Government Lands. The Konohiki Awards amounted to about a million and a half acres, however title was not awarded until the konohiki presented the claim before the Land Commission.

In the fall of 1850 legislation was passed allowing citizens to present claims before the Land Commission for parcels that they were cultivating within the Crown, Government, or Konohiki lands. By 1855 the Land Commission had made visits to all of the islands and had received testimony for about 12,000 land claims. This testimony is recorded in 50 volumes that have since been rendered on microfilm. Ultimately between 9,000 and 11,000 kuleana land claims were awarded to kamaʻāina totaling only about 30,000 acres and recorded in ten large volumes.
In the mid-1900s, the majority of the Wailuku Ahupua‘a was marked as Crown Land. And in 1872, when Kamehameha V died, his sister Princess Ruth Ke‘elikōlani inherited the land. She owned part, while 743.4 acres in the ‘ili of Owa in Wailuku was granted to Kamehameha’s steward Kuihelani. Princess Ruth eventually sold half of the Crown Lands in 1882 to Claus Spreckels even though he already held a lease for 16,000 acres in Wailuku.

The entirety of the current study area was encompassed by LCA 7713:23, awarded to Princess Victoria Kamāmalu. The LCA constituted 391 acres of the former ‘ili of Kula which consisted of lands from Wailuku to the portion of Kahului that borders the bay. Located just south of the current study area, was an area referred to as the Wailuku Commons and designated Crown Lands.

**Historic Maps**

Historic maps help to paint a picture of Wailuku in years past and illustrate the many changes that have taken place in the region. This section presents a selection of four maps from the 19th and 20th centuries that provide insight to the project area. Note that names are spelled as they are written on each map.

The first map depicts the lands of Wailuku and Kahului by W.D. Alexander in 1881 (Figure 5). No structures are present within the Wailuku vicinity, but buildings can be seen near Kahului Harbor and the Kahului Railroad interchange and yard. The railway from Kahului, west to Wailuku and east to Spreckelsville and Pā‘ia, is depicted just north of the current project area.

The next map, drawn in 1885, shows several interesting features in Wailuku (Figure 6). Sand hills are depicted, extending almost as far inland as Waiale Pond. The project area vicinity appears to be within “GRANT 3433 C. SPRECKELS” and “Hawaiian Commercial and Sugar Co.” which at the time was owned by Claus Spreckels. The Kahului Railroad is depicted to the north and a trail that runs west to Wailuku is located just north of the project area.

A map by Hugh Howell from 1896 depicts the growing town of Kahului, which is based around the Kahului Railroad (Figure 7). The railroad is depicted heading west toward Wailuku from the Kahului town center. Roads are also depicted extending from Kahului toward Wailuku and heading north along the coastline.

The final map by surveyor James M. Dunn offers a closer look at the project area within the town of Kahului from 1953 (Figure 8). This map shows the project area is bound by Main, Kane, School, and Fourth Streets, with Third Street bisecting the subject lot in half. This map depicts the Kahului town site showing various deeds and boundaries, and indicates that most of the project area was deeded to the Territory of Hawaii from HC&S Company on December 21, 1925. It also shows that the northeast corner of the subject property was deeded to the Department of Instruction/Correction of the Territory of Hawaii on September 17, 1908.

**Previous Archaeology**

Many archaeological studies have been conducted in Wailuku. The following discussion provides information on archaeological investigations that have been carried out within approximately 1 km of the project area, based on reports found in the SHPD library in Kapolei, Hawai‘i (Figure 9 and Table 1). Projects are summarized below in chronological order. State Inventory of Historic Places (SIHP) numbers are prefaced by 50-50-04.

Some of the earliest archaeological surveys and descriptions of Maui were done by Thrum in 1909 and Winslow Walker in 1928–1929. Thrum published the *Hawaiian Almanac and Annual for 1909* where he listed and described eight heiau in Wailuku. These are Pihana, Halekii, Kaluli,
Figure 5. Portion of a map of Wailuku area, including Kahului (Alexander 1881).
Figure 6. Portion of a map of Maui (Dodge 1885).
Figure 7. Portion of a map of Kahului and Kahului Harbor (Howell 1896).
Figure 8. Portion of a map of the town of Kahului with a close up inset of the subject property (Dunn 1953).
Figure 9. Previous archaeological studies and known archaeological sites in the vicinity of the project area.
<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Location</th>
<th>Work Completed</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrum 1909</td>
<td>Island-Wide</td>
<td>Heiau Documentation</td>
<td>Noted eight heiau in Wailuku, none in the project vicinity.</td>
</tr>
<tr>
<td>Walker 1928–1929</td>
<td>Island-Wide</td>
<td>Survey</td>
<td>Noted ten heiau in Wailuku but could not locate them; none are in the project vicinity.</td>
</tr>
<tr>
<td>Donham 1990</td>
<td>Maui Palms Hotel</td>
<td>Archaeological Inventory Survey</td>
<td>Identified SIHP 852, consisting of surface and subsurface historic artifacts and faunal remains.</td>
</tr>
<tr>
<td>Kennedy et al. 1993</td>
<td>Wahinepio Ave.</td>
<td>Archaeological Inventory Survey</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Eble and Carlson 1996</td>
<td>Hobron Triangle</td>
<td>Archaeological Inventory Survey</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Fredericksen 1997</td>
<td>Mahalani St.</td>
<td>Archaeological Monitoring</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Wade et al. 1997</td>
<td>Kahului Harbor</td>
<td>Archaeological Inventory Survey</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Fredericksen and Fredericksen 1999</td>
<td>Kahului Harbor Barge Terminal</td>
<td>Archaeological Monitoring</td>
<td>Identified SIHP 4753, a subsurface deposit of historic artifacts with an underlying ‘ili’ili pavement.</td>
</tr>
<tr>
<td>Burgett and Spear 1999</td>
<td>Kahului Harbor</td>
<td>Archaeological Monitoring</td>
<td>No significant historic properties identified, but did document what was thought to be a pit related to historic harbor activities.</td>
</tr>
<tr>
<td>Devereux and Hammatt 1999</td>
<td>Keōpūolani Regional Park</td>
<td>Archaeological Monitoring</td>
<td>Identified four burial sites (SIHP 4476–4479). Two sets of human remains stored at SHPD were reinterred along with a previously recorded burial (SIHP 4211) that was partially preserved.</td>
</tr>
<tr>
<td>Monahan 2004</td>
<td>TMK: (2) 3-7-004:001; 3-7-005:003, 011, 023</td>
<td>Archaeological Inventory Survey</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Fredericksen 2005</td>
<td>Kanaloa Ave.</td>
<td>Archaeological Monitoring</td>
<td>Documented two previously disturbed human burials (SIHP 5471 and 5472), four pre-contact burials (SIHP 5495), and two pre-contact habitation sites (SIHP 5496 and 5660).</td>
</tr>
<tr>
<td>Johnson and Dega 2006</td>
<td>Kahului Shopping Center</td>
<td>Archaeological Inventory Survey</td>
<td>Recorded historic artifacts in a secondary context, no significant historic properties were identified.</td>
</tr>
<tr>
<td>Shefcheck and Dega 2006</td>
<td>TMK: (2) 3-7-004:001; 3-7-005:003, 011, 023</td>
<td>Archaeological Monitoring</td>
<td>Recorded historic artifacts in a secondary context, no significant historic properties were identified.</td>
</tr>
<tr>
<td>Hunt et al. 2006</td>
<td>Puʻunene Container Yard</td>
<td>Archaeological Inventory Survey</td>
<td>Documented one burial (SIHP 5773) and isolated artifacts added to the Kahului Historic District (SIHP 1607).</td>
</tr>
</tbody>
</table>
Table 1. (continued)

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Location</th>
<th>Work Completed</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conte 2007</td>
<td>Ka‘ahumanu Ave.</td>
<td>Archaeological Inventory Survey</td>
<td>Observed three faunal bone fragments; no significant historic properties were identified.</td>
</tr>
<tr>
<td>Dye and Jourdane 2007</td>
<td>Lono Ave.</td>
<td>Historic Properties Assessment</td>
<td>No surface historic properties identified.</td>
</tr>
<tr>
<td>Fredericksen 2008</td>
<td>Maui Beach Hotel</td>
<td>Archaeological Inventory Survey</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Frey and Fredericksen 2009</td>
<td>Kahului coastal region</td>
<td>Archaeological Monitoring</td>
<td>No historic properties identified.</td>
</tr>
<tr>
<td>Medrano and Dega 2015</td>
<td>Kahului Harbor</td>
<td>Archaeological Monitoring</td>
<td>Identified intact remnants of the Kahului Railroad and its infrastructure, SIHP 3112.</td>
</tr>
<tr>
<td>Royalty and Hammatt 2017</td>
<td>Main St. and Ka‘ahumanu Ave.</td>
<td>Archaeological Monitoring</td>
<td>Documented four previously identified historic properties listed on the National Register of Historic Places (SIHP 1633, 1541, 1630, and 1607). SIHP 8498, a historic structural remnant was newly documented. None of these sites are near the current project area.</td>
</tr>
</tbody>
</table>

Malumaluakua, Keahuku, Olokua, Olopio, and Malena. Walker never published his work, but wrote a manuscript which is cited in works such as Sterling’s Sites of Maui (1998). Walker noted ten heiau for Wailuku (Keahuku, Olokua, Olopio, Malena, Pohakuokahi, Lelemako, Kawelowelo, Kaulupala, Palamaihiki, and Oloolokalani), but could not find any of them (Walker in Sterling 1998:79). In addition to these, Walker also described Kaluli Heiau, Pihana Heiau, and Halekiʻi Heiau for Wailuku. None of these heiau are located in the vicinity of the project area, however.

After this early work, no archaeological studies were conducted in the project vicinity until 1990, when archaeology started being conducted due to legal requirements. An archeological inventory survey for the former Maui Palms Hotel (now the Maui Seaside Hotel) produced significant findings (Donham 1990). Located just north of the current project area, along the Kahului Harbor, midden and various artifacts were found eroding out of a sand embankment on the hotel property. The site, SIHP 852, was found to be of historic origin based on the artifact types found and the lack of pre-contact artifacts. Hand-powered auger cores were excavated as part of the inventory survey. Observed surface and subsurface materials included clear, green, amber bottle glass, plastic, metal fragments, brick, ceramics, charcoal, shell, fish bones, and butcher-cut faunal remains. No further work was recommended for the site prior to the onset of construction activities, but archaeological monitoring was recommended during construction for this project.

An archaeological survey with subsurface testing north of the former Maui Community College Campus produced no significant findings (Kennedy 1993). A surface survey did not identify any archaeological resources. Subsequently, 54 trenches were excavated and two features were recorded. These consisted of an in-situ wooden post, and a trash pit, both of which were determined to be of modern origin. These features were not recommended for preservation or any further work and no SIHP numbers were assigned.
An archaeological inventory survey was completed for the Kahului Barge Terminal Improvements Project (Wade et al. 1997). No historic properties were identified and the fieldwork was reported as an archaeological assessment. Due to the presence of deep undisturbed sand deposits, archaeological monitoring was recommended. Two years later, archaeological monitoring was conducted for the same project at the Kahului Harbor (Fredericksen and Fredericksen 1999). While it was apparent that the majority of the project area had undergone extensive ground disturbance, one subsurface site was located, SIHP 4753, at the northwestern boundary of the project area. The site consisted of modern and historic materials at the upper level, a mix of modern/historic and pre-contact materials in the middle level and the bottom layer was described as a pavement of water-worn pebbles (‘ili’ili) up to 22 cm thick. Beneath the pavement was culturally sterile sand. The pavement extended over an area 10 m in length and an indeterminate width. It was recommended that additional work would be needed in order to determine the site extent, age, and function.

Archaeological monitoring for the construction of storage yard improvements at Kahului Harbor produced no significant findings (Burgett and Spear 1999). While no definitive cultural resources were encountered, an unusual rock and soil-filled pit was documented. Its purpose and age were not determined, but the authors speculated that it may have been associated with historic harbor facilities formerly in the area.

Construction of the 110-acre Keōpūolani Regional Park in 1999 required archaeological monitoring (Devereux and Hammatt 1999). During grubbing and grading activities, four human burials were encountered (SIHP 4476–4479). A prior study of the property in 1996 uncovered a human burial that was partially preserved (SIHP 4211). Another two sets of human remains were being held by SHPD and reinterred with SIHP 4211.

Human burials were identified during archaeological monitoring for improvements to Kanaloa Avenue (Fredericksen 2005). This included four pre-contact burials assigned SHIP 5495 and two previously disturbed human burials (SHIP 5471 and 5472). The disturbed remains were reinterred with the SIHP 5495 burials. In addition to the human remains, two habitation sites dating to the pre-contact era were also documented (SIHP 5496 and 5660).

Archaeological monitoring for the Puʻunene Container Yard covered the Fredericksen and Fredericksen (1999) Barge Terminal project area (Hunt et al. 2006). A post-contact burial was identified during monitoring and designated as SIHP 5773. Traditional and historic artifacts associated with the burial included glass and shell beads, basalt and shell sinkers, a basalt core, an octopus lure, a worked basalt cobble, a poi pounder, basalt hammer stones, and a chopping stone. These artifacts were included with SIHP 1607, the Kahului Historic District.

In 2004, an archaeological inventory survey was completed for the Maui Community College Lono Avenue Student Housing Project located on two contiguous parcels adjacent to the current project area to the south and east (Monahan 2004). The fieldwork did not identify historic properties, however due to the proximity to documented burials and archaeological sites, archaeological monitoring was recommended. Archaeological monitoring did not identify traditional Hawaiian cultural material or sites, but a large quantity of historic bottles was collected from throughout both properties (Shefcheck and Dega 2006). No SIHP numbers were assigned, even though a significance assessment was included in the report, based on artifacts identified. It was recommended that an archaeological monitor should be on site for any further excavations within the project area and its immediate vicinity.

An archaeological assessment for the proposed development of the Kahului Shopping Center was conducted at a property located just east and adjacent to the current project area (Johnson and Dega 2006). A total of 16 trenches were excavated, and while modern and historic artifacts dating from
the 1920s were identified, it was concluded that they were from a secondary context, having been brought in with fill and deposited in that location. However, due to the possibility of identifying human remains during construction, it was recommended to have an archaeological monitor on site during any further excavation on the property.

An archaeological assessment for the installation of a cell tower at a property along Ka‘ahumanu Avenue, located to the east and adjacent to the current project area had minimal findings (Conte 2007). Within the three test trenches that were excavated, only two fragments of machine cut cow bone and one chicken bone fragment were identified. While it was determined that nothing of cultural significance was found, archaeological monitoring was recommended for all excavations related to the cell tower project due to the presence of undisturbed sand deposits.

A historic properties assessment was conducted for a property just west of the current project (Dye and Jourdane 2007). It was determined that the installation of telecommunications equipment would have no effect on historic properties, yet an archaeological inventory survey was recommended because of the subsurface archaeological sites that have been identified nearby.

An archaeological literature review and field inspection at two parcels adjacent to the Kahului Harbor identified four surface historic properties (Hill et al. 2009). These consist of three historic buildings and a historic-era park that is associated with the HC&S sugar enterprise and the Kahului Railroad. Additional work was recommended to establish significance and mitigation recommendations for each property. No SIHP numbers were assigned at the time of the study.

Archaeological monitoring for the Kahului and Wailuku Force Main Project further documented the Kahului Railroad, SIHP 3112 (Medrano and Dega 2015). Additional components of the railroad infrastructure were recorded, with intact remnants of the railroad found directly beneath the modern road pavement. Isolated historic artifacts (modern debris, a bottle, and railroad ties, spikes, and rail wheel) were also recorded during monitoring. It was recommended that any additional work in the vicinity should proceed with an archaeological monitoring program.

In 2017, archaeological monitoring was conducted for the Main Street and Ka‘ahumanu Avenue resurfacing project from High Street to Hobron Avenue (Royalty and Hammatt 2017). Four previously identified historic properties were recorded during monitoring. The Waiale Drive Bridge (SIHP 1633), Ka‘ahumanu Avenue-Naniloa Drive Overpass (SIHP 1541), Baldwin High School (SIHP 1630), and the Ka‘ahumanu Church (SIHP 1607) are all listed on the National Register of Historic Places, however none of these sites are located near the current project area. A historic concrete structural foundation (SIHP 8498) was also documented.

Additionally, two archaeological inventory surveys (Eble and Carlson 1996, Frederickson 2008) and two archaeological monitoring studies (Frey and Fredericksen 2009, Fredericksen 1997) had no significant findings during fieldwork.

Summary of Background Research

Several archaeological implications can be made based on the background research presented above. The southern end of the current project area is the location for the Maui Community School for Adults, while the north end of the lot is a landscaped field. In pre-contact times, the Wailuku region was one of five population centers on the island of Maui (Handy et al. 1991), as well as an area of chiefly residence (‘Ī‘ī 1959). Portions of the current city of Wailuku were also built atop former agricultural terraces with its well-watered location (Handy et al. 1991). However, Wailuku was afflicted by warfare through much of its history [with the meaning of Wailuku being ‘water of destruction] (e.g., Kamakau 1992, Pukui et al. 1974).
In the post-contact era, sugar interests took the forefront of the Wailuku and Kahului economy, and cane fields, mills, ditches, a railroad, and other infrastructure forever changed the landscape. According to historic maps, the vicinity surrounding the current project area was not under heavy development or cultivation until at least the mid-20th century. Vestiges of the sugar industry still remain, particularly the Kahului Railroad, which is not far north from the project area. A historic building constructed in 1920 and a rock wall built in 1939 are located within the project area.

Archaeological studies conducted near the project area can help inform on the kinds of subsurface archaeological resources that may be found. The closest archaeological studies to the project identified historic artifacts and intact portions of the Kahului Railroad infrastructure. In the areas just outside the immediate vicinity of the project area, traditional Hawaiian artifacts and human burials have been identified.
ETHNOGRAPHIC SURVEY

There are some things that cannot be found in the archives, in textbooks, or at the library, but are instead preserved through the knowledge, experiences and stories of our kūpuna, kamaʻāina, and other community members. Through these experiential narratives, we are able to better understand the past and plan for our future. With the goal to identify and understand the importance of, and potential impacts to, traditional Hawaiian and/or historic cultural resources and traditional cultural practices of the Kahului area, ethnographic interviews were conducted with community members who are knowledgeable about the project area.

Methods

This Cultural Impact Assessment was conducted between January and February, 2021. Guiding documents for this work include The Hawai‘i Environmental Council’s Guidelines for Assessing Cultural Impacts, A Bill for Environmental Impact Statements, and Act 50 (State of Hawai‘i). Personnel involved with this study include Windy McElroy, PhD, Principal Investigator of Keala Pono Archaeological Consulting, and Dietrix Duhaylonsod, BA, Ethno-historian.

Interviewees were selected because they met one or more of the following criteria: 1) was referred by Keala Pono Archaeological Consulting or G70; 2) had/has ties to the project area or vicinity; 3) is a known Hawaiian cultural resource person; 4) is a known Hawaiian traditional practitioner; or 5) was referred by other cultural resource professionals. Three individuals participated in the current study (Table 2). Manaʻo and ‘ike shared during these interviews are included in this report.

Due to the Covid-19 restrictive proclamations, written or telephone interviews were substituted for in-person interviews. Each interviewee was provided with a map or aerial photograph of the subject property, the Agreement to Participate (Appendix A), and Consent Form (Appendix B), and briefed on the purpose of the Cultural Impact Assessment. Research categories were addressed in the form of open questions which allowed the interviewee to answer in the manner that he/she was most comfortable.

A copy of the interview transcript was sent to each interviewee, along with the Transcript Release Form (Appendix C). The Transcript Release Form provided space for clarifications, corrections, additions, or deletions to the transcript, as well as an opportunity to address any objections to the release of the document. When the forms were returned, transcripts were corrected to reflect any changes made by the interviewee.

Several potential interviewees were contacted, resulting in one interview via phone, one interview via email, and a summary of a telephone conversation discussing the project (see Table 2). The following section includes background information for each interviewee, in their own words. This includes information on the interviewee’s ‘ohana and where the interviewee was born and raised. The ethnographic analysis process consisted of examining each transcript and organizing information into research themes, or categories. The ethnographic analysis process consisted of examining each transcript and organizing information into research themes, or categories. Research topics include connections to the project lands, moʻolelo and archaeological sites, gathering practices, change through time, and concerns and recommendations for the project. Transcripts are presented at the end of this report in Appendices D–F.
Table 2. List of Individuals Involved in the Cultural Impact Assessment

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Result of Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Luʻuwai</td>
<td>Hawaiian Canoe Club</td>
<td>No reply</td>
</tr>
<tr>
<td>Papaikaniʻau Kaiʻanui</td>
<td>UH Maui College</td>
<td>No reply</td>
</tr>
<tr>
<td>Colsen Kanei</td>
<td>Kawaianuheelua</td>
<td>No reply</td>
</tr>
<tr>
<td>Kamaka Kukona</td>
<td>Ka Hanu Lehua</td>
<td>No reply</td>
</tr>
<tr>
<td>Kaponoʻai Molitau</td>
<td>Na Hanona Kulike O Piʻilani</td>
<td>Participated in phone discussion with summary writeup</td>
</tr>
<tr>
<td>Ualani Smith</td>
<td>Halau Hula I Kona Mau Lima</td>
<td>Passed away</td>
</tr>
<tr>
<td>Keopuolani Salvador</td>
<td>Keala Kahinano O Puna</td>
<td>No reply</td>
</tr>
<tr>
<td>Kanoelani Kamaliʻi-Ligsay</td>
<td>KS Maui</td>
<td>No reply</td>
</tr>
<tr>
<td>Moani Kekahuna</td>
<td>KS Maui</td>
<td>No reply</td>
</tr>
<tr>
<td>Kalani Au</td>
<td>Lokelani Intermediate School</td>
<td>Interview Complete</td>
</tr>
<tr>
<td>Hokulani Holt Padilla</td>
<td>Paʻu O Hiʻiaka</td>
<td>Interview not conducted; recommended Clifford Naʻeʻole</td>
</tr>
<tr>
<td>Kealiʻi Reichel</td>
<td>Kealaokamaile</td>
<td>Declined Interview</td>
</tr>
<tr>
<td>Roselle Bailey</td>
<td>Ka ‘Imi Naʻauao O Hawaiʻi Nei</td>
<td>Recommended Kurt Kawachi</td>
</tr>
<tr>
<td>Kurt Kawachi</td>
<td>Kanaha Fishpond</td>
<td>Recommended Aiau Koa</td>
</tr>
<tr>
<td>Aiau Koa</td>
<td>Kahului-Wailuku Resident &amp; Cultural Practitioner</td>
<td>Interview Complete</td>
</tr>
</tbody>
</table>

Interviewee Backgrounds

The following section includes background information for each interviewee, in their own words. This includes information on their ‘ohana and where the interviewee was born and raised. The interviewees are Aiau Koa, Kalani Au, and Kumu Kaponoʻai Molitau.

**Aiau Koa**

My name is Henry Aiau Kauka Koa. I was born and raised on the island of Oʻahu, born in Waiʻanae, but the last place I lived on Oʻahu was Waipahu, went to Pearl City Elementary, Pearl City Intermediate, Pearl City High School, and moved to Maui, 1979, 1980, around that time. I grew up mainly in the Pearl City section, the Waipahu section of Oʻahu. My family, my dad is actually from Maui. He’s from Honokōhau Valley. My mom is from Oʻahu. She’s from Papakōlea.

My father, his name was Francis Lono Koa, born and raised on the island of Maui. My mom, her name is Leilani Bertha Parker, born and raised on Oʻahu.

My background, I’m actually a hula dancer. I danced hula with Kealiʻi Reichel for like twenty-something years.

**Kalani Au**

Kumu Kaponoʻai Molitau
Kumu Kaponoʻai Molitau. I live and work on Maui [as a kumu hula].

Topical Breakouts

The following sections are extended quotations from the interviews, organized by topic. Interviewees provided information on connections to the project lands, moʻolelo and archaeological sites, gathering practices, change through time, and concerns and recommendations for the proposed Kahului Civic Center and Mixed-Use Complex project.

Connections to the Project Area

The Adult School is connected with the Department of Education, who I currently work for as an administrator. There were some occasions when I participate in meetings [that] are there. [Kalani Au]

That area that I looked at and we spoke about, which is across of Kaʻahumanu Shopping Center, which if you face the front part of Kaʻahumanu Shopping Center, then that section is actually on the right hand side, if you’re facing out towards Kaʻahumanu Avenue. And it’s bordered by Kahului Beach Road and Kaʻahumanu Avenue. That area that it’s actually on, it’s on the right hand side, I know that area because I used to work in that area. There’s a place that was called Maui Economic Opportunity, and it was a non-profit organization to help out families on Maui, from the senior citizens to lower income families, even our children for Head Start. I started working there, I think when I was like about 17 or 18 years old. I worked there. So that area that they’re proposing, I’ve seen it. I worked there for maybe 8, 9 years, maybe 10 years. [Aiau Koa]

Mainly I learned about the area because of working there. We worked there every day, and there were buildings there that are no longer there. There was a two-story concrete building that housed students from the college. It was an old style building made out of concrete, and it was in front, bordering the Kaʻahumanu Avenue. It was facing outwards. And the building that I was working in was right behind and on the side of it. We had different wooden buildings that were there. And that area also housed DAGS, the State of Hawaiʻi Department of Accounting and General Services, they had their offices there, besides MEO, Maui Economic Opportunity. [Aiau Koa]

…They also housed the bus transportation base yard there. After about 2 or 3 years working at the farmer’s market, then I moved up to become a bus driver. We had a base yard there with about 20 buses, and we would go around Maui County, from Hāna to Lāhaina to Kula, Kihei, to pick up senior citizens and take them to their luncheon… [Aiau Koa]

Moʻolelo and Archaeological Sites

There used to be sand dunes throughout the area in the past. This gives a strong likelihood that iwi kupuna are present within the proposed project footprint. [Kumu Kaponoʻai Molitau]

Well, I don’t know of any [archaeological sites] on that site, but from what I do know, there was a fishpond across of there where Maui Beach is actually housed at right now, Maui Beach Hotel. That’s adjacent to the harbor. So if you look out there, you’ll see rock formations, and I believe that was fishponds back then. [Aiau Koa]

…So that area, that property of the Kahului complex [current project area], I don’t know of any cultural sites or archaeological things that I would think would have, but…I wouldn’t pass it that it wouldn’t have. The only reason being, I’ve been at the harbor police for about thirty-something years now, and we have done some projects at the harbor, when they did the expansion of the harbor out towards Kaʻahumanu Avenue side, we have found
human remains. So I’m quite sure that might have, but I cannot say for certain. I’d be surprised if they wouldn’t have any. [Aiiau Koa]

Yeah, it could be a possibility [archaeological sites], because Kahului Harbor, when we did the expansion of Pier 2 container yard, which would be expansion out to Pu‘unēnē and Ka‘ahumanu Avenue, they have found some iwi kūpuna. [Aiiau Koa]

Kahului refers to a battle formation used by warriors in the past. Historical accounts make a reference to Hawai‘i island warriors under Kamehameha landing their canoes in the area to attack Maui. Another reference was made to Kakanilua a famous battle near the area that resulted in many lives lost. Lastly, there were many pu‘uone (sand dunes) in the area where many loved ones were interred. [Kalani Au]

To my knowledge, I do not know of any [archaeological sites in the project area]. [Kalani Au]

Gathering Practices

I think that gathering practices should be continued, but I don’t see any plants or things that I know on that property…the only thing that had over there was plumeria trees. And every hula dancer came there to pick the plumeria trees. [Aiiau Koa]

Some of ‘em are still there [plumeria trees], but there were a lot. And of course, we was part of that group picking flowers for hula. But there was no other native trees, like lehua, or ‘a‘ali‘i, or any other kind of plants that I think we could have gathered. I don’t see any other trees or plants. [Aiiau Koa]

Change Through Time

I have been in Maui for 20 years and in just my time here, I have seen the area change a lot. [Kalani Au]

[There has been] lots of development all over Maui. [Kumu Kapono‘ai Molitau]

So MEO, Maui Economic Opportunity, was the main company, or non-profit organization, that was housed there…And that whole place started to change only because everything got bigger, more buses, more residents, so eventually they had to move to a bigger place, a bigger facility. And those [old] buildings were all wooden buildings, kind of like you know the portable buildings for schools? [Aiiau Koa]

[The area] They’re proposing, it’s where I spent most of my time there. I worked long hours there. I just knew that area, and now, how it’s run down, and they tore that big building down that was in front there. And it’s a big wide open field area, and now there’s more homeless people around that area, in the back. It’s still a nice place when you drive by. You can see a big open area, but now you see homeless around that area. [Aiiau Koa]

Concerns and Recommendations

I don’t see any [adverse effects on any cultural practices or cultural sites]. Yeah, I can’t foresee any, but if they could plant more plumeria trees [laughs], then we can gather more… Or plant laua‘e. Plant some laua‘e there so we can make laua‘e leis, maybe some palapalai, if you guys like. [Aiiau Koa]

Yeah because if they going have a complex and community center, what if they have a lei-making class or different stuff where they can use native plants there, so that they could use it to teach the younger generation. The kūpuna could say, “These are plants that we use for medicine right here, the noni plant, the kalo plant.” So planting native stuff that could educate our younger generation would help, and the reason why is it’s right in town. [Aiiau Koa]
Cultural concerns…No, I can’t think of any. But if it’s for the community, if it’s proposed for the community, then make it accessible to the community, not so much it’s a member-only kind of community, like you have to belong to this to get in. I feel that if it’s for the community, then the community, of course you have to have some kind of protocol, but not so much a gated community place. That’s one thing I hate when I see gates put up by the community. I understand the gate when you don’t want crime to come through your area, but it feels like it [the gate] separates us. So the community complex, make it accessible to the community. [Aiiau Koa]

If any construction was to move forward, a cultural monitor should be present at all times to help with any inadvertent disturbances. [Kumu Kaponoʻai Molitau]

Outside of the promise to provide housing, which is more often than not unaffordable, there needs to be culturally responsible development. For example, during previous construction in the area, so many kupuna trees were recklessly chopped down. This was very irresponsible and wasteful. These kumu niu were of value, and the community should have been consulted prior so they could use them. [Kumu Kaponoʻai Molitau]

It could [affect places of cultural significance], because many iwi (bones) were known to be interred in this area. [Kalani Au]

Ensure there is communication with the public on the impact as well as positive intentions of the development to service the community. [Kalani Au]

Besides being culturally cognizant, the developer and planners should maximize current footprints. What’s the use of constructing new buildings when we already have empty buildings not being used? Pointing to the Maui Marketplace as well as the old Sports Authority, leaving abandoned buildings around is like people leaving their rubbish for others to take care of. [Kumu Kaponoʻai Molitau]

Summary of Ethnographic Survey

The interviewees have extensive knowledge of Wailuku and the area around the proposed Kahului Civic Center and Mixed-Use Complex project. One of them grew up on Maui and two have familial connections to Maui and are longtime residents themselves. One informant shared about a battle in the area associated with Kamehameha’s arrival. Archaeological sites noted for the region include human remains as well as traditional rock formations and fishponds nearby. It was noted that the area was once a sand dune landscape (a common environment for human burials in the past), and that human remains have already been encountered during other construction projects nearby. Also noted was the traditional gathering practice of hula hālau picking the plumerias from trees in the project area.

The interviewees voiced their concerns and recommendations for the project. It was noted that there may be iwi kūpuna found on the property and that a cultural monitor should be on site during construction. Allowing access to the facilities for all community members rather than having a members-only facility was also mentioned, as well as keeping open communication with the community regarding this project. It was recommended to plant useful foliage on the property such as plumeria, lauaʻe, palapalai, noni, kalo, and naupaka for the community to gather, and to hold cultural classes on the property, such as lei-making, to make good use of the plants. Another suggestion was to use native plants instead of invasives for landscaping on the ground. It was also recommended that if any trees on the property are being cut down, the construction team should consult the community to see if the trees can be utilized by community members. And finally, one community member emphasized responsible development, questioning the definition of “affordable” in affordable housing, and also, recommending the repurposing of buildings currently not in use rather than constructing new buildings alongside abandoned ones.
SUMMARY AND RECOMMENDATIONS

This study highlights the unique history of Wailuku and demonstrates the importance of this place to the community. Three community members were interviewed to share their mana'o and to help identify any potential cultural resources or practices that might be affected by the proposed project.

Cultural Resources, Practices, and Beliefs Identified

Archival research and ethnographic interviews compiled for the current study revealed that Wailuku was a culturally significant area with many of the natural resources which supported traditional subsistence activities. The region was a gathering place and home to chiefs as well as the location for a number of heiau.

Previous archaeological studies have identified a range of historic properties in the region. The closest studies to the project area identified historic artifacts and intact portions of the Kahului Railroad infrastructure. In the areas just outside the immediate vicinity of the project area, traditional Hawaiian artifacts and human burials have been documented.

In the historic period, most activity in the region and on Maui as a whole was focused on the sugar industry. A historic building dating to 1920 and a rock wall dating to 1939 are currently located within the project area.

The discussions revealed that hula hālau continue to gather plumeria from trees in the project area today. Archaeological sites discussed during the interviews focused on nearby human remains and the possibility of human burials within the project area as well as the need for cultural monitoring.

Potential Effects of the Proposed Project

The interviewees had different opinions on whether or not the proposed project would affect any places of cultural significance. One interviewee believed that no cultural sites would be affected, while another asserted that “it could [affect places of cultural significance], because many iwi (bones) were known to be interred in this area.”

Confidential Information Withheld

During the course of researching the present report and conducting the ethnographic survey program, no sensitive or confidential information was discovered or revealed, therefore, no confidential information was withheld.

Conflicting Information

No conflicting information was obvious in analyzing the gathered sources. On the contrary, a number of themes were repeated and information was generally confirmed by independent sources.

Recommendations/Mitigations

Recommendations for the project include the following:

- Have a cultural monitor on site during construction;
- Allow access to the facilities for all community members rather than a members-only facility;
• Keep open communication with the community regarding the project;
• Plant useful foliage on the property such as plumeria, lauaʻe, palapalai, noni, kalo, and naupaka for the community to gather, and to hold cultural classes on the property, such as lei-making, to make good use of the plants;
• Use native plants instead of invasives for landscaping on the grounds;
• If any trees on the property are being cut down, consult the community to see if the trees can be utilized by community members.

Summary and Conclusion

In sum, background research and oral history interviews identified several archaeological resources within and near to the project area, although it is unclear if they may be affected by the proposed project. An archaeological inventory survey is recommended to determine if any surface or subsurface cultural resources remain on the property with special care to look out for any inadvertent discoveries of iwi kūpuna. The community should be kept informed on the construction plans, and their concerns and recommendations should be considered during all phases of the proposed work. The area is clearly significant in both the past and present.
### Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘a‘ali‘i</td>
<td><em>Dodonaea viscosa</em>, the fruit of which were used for red dye, the leaves and fruits fashioned into lei, and the hard, heavy wood made into bait sticks and house posts.</td>
</tr>
<tr>
<td>‘ae</td>
<td>Yes, to say yes, or to agree, approve, or consent.</td>
</tr>
<tr>
<td>ae‘o</td>
<td>The Hawaiian stilt <em>Himantopus mexicanus knudseni</em>, endemic and formerly common on the main Hawaiian Islands, but now endangered.</td>
</tr>
<tr>
<td>ahupua‘a</td>
<td>Traditional Hawaiian land division usually extending from the uplands to the sea.</td>
</tr>
<tr>
<td>ala loa</td>
<td>Highway, belt road around island.</td>
</tr>
<tr>
<td>ali‘i</td>
<td>Chief, chieffess, monarch.</td>
</tr>
<tr>
<td>aloha</td>
<td>Love, affection, compassion, sympathy, kindness, greeting.</td>
</tr>
<tr>
<td>‘a‘ole</td>
<td>No, never, not; to have none.</td>
</tr>
<tr>
<td>‘aumakua</td>
<td>Family or personal gods. The plural form of the word is ‘aumākua.</td>
</tr>
<tr>
<td>e kala mai ia‘u</td>
<td>I’m sorry; excuse me.</td>
</tr>
<tr>
<td>hālau</td>
<td>Meeting house for hula instruction or long house for canoes.</td>
</tr>
<tr>
<td>heiau</td>
<td>Place of worship and ritual in traditional Hawai‘i.</td>
</tr>
<tr>
<td>hula</td>
<td>The hula (traditional Hawaiian dance), a hula dancer; to dance the hula.</td>
</tr>
<tr>
<td>‘ike</td>
<td>To see, know, feel; knowledge, awareness, understanding.</td>
</tr>
<tr>
<td>‘ili</td>
<td>Traditional land division, usually a subdivision of an ahupua‘a.</td>
</tr>
<tr>
<td>‘ili‘ili</td>
<td>Waterworn cobbles often used in floor paving.</td>
</tr>
<tr>
<td>iwi</td>
<td>Bone.</td>
</tr>
<tr>
<td>kalo</td>
<td>The Polynesian-introduced <em>Colocasia esculenta</em>, or taro, the staple of the traditional Hawaiian diet.</td>
</tr>
<tr>
<td>kali</td>
<td>A martial art from the Philippine Islands</td>
</tr>
<tr>
<td>kama‘āina</td>
<td>Native-born.</td>
</tr>
<tr>
<td>kihāpai</td>
<td>Small land division; cultivated garden, patch, orchard, or field; parish of a church.</td>
</tr>
<tr>
<td>kuhina nui</td>
<td>Prime minister or premier. Ka‘ahumanu was the first kuhina nui. The position was abolished in 1864.</td>
</tr>
<tr>
<td>konohiki</td>
<td>The overseer of an ahupua‘a ranked below a chief; land or fishing rights under control of the konohiki; such rights are sometimes called konohiki rights.</td>
</tr>
<tr>
<td>kuleana</td>
<td>Right, title, property, portion, responsibility, jurisdiction, authority, interest, claim, ownership.</td>
</tr>
<tr>
<td>kumu hula</td>
<td>Hula teacher/master.</td>
</tr>
<tr>
<td>kupuna</td>
<td>Grandparent, ancestor; kūpuna is the plural form.</td>
</tr>
<tr>
<td>laua‘e</td>
<td>A fragrant fern, <em>Microsorium scolopendria</em>, when crushed, it fragrance suggests that of maile.</td>
</tr>
</tbody>
</table>
lehua  The native tree *Metrosideros polymorpha*, the wood of which was utilized for carving images, as temple posts and palisades, for canoe spreaders and gunwales, and in musical instruments; a taro variety that makes red poi.

lei  Garland, wreath; necklace of flowers.

liʻiʻiʻi  Small, little; here and there; a little at a time.

loʻi, loʻi kalo  An irrigated terrace or set of terraces for the cultivation of taro.

mahalo nui loa  Thank you very much.

Māhele  The 1848 division of land.

maikaʻi  Good, well, fine, beautiful, good health.

mālama  To care for, preserve, or protect.

mālama pono  To take care.

manaʻo  Thoughts, opinions, ideas.

mele  Song, chant, or poem.

mōʻi  King.

moʻolelo  A story, myth, history, tradition, legend, or record.

naupaka  The native shrub *Scaevola* sp., varieties of which are found both in the uplands and by the sea.

noni  *Morinda citrifolia*, the Indian mulberry, a tree or shrub known for its medicinal value in traditional Hawaiʻi.

ʻohana  Family.

ʻokana  Subdivision or district, usually consisting of several ahupuaʻa.

oli  Chant.

ʻōlelo Haole  English language

ʻōlelo noʻeau  Proverb, wise saying, traditional saying.

palapalai  *Microlepia strigosa*, ferns can grow up to 4 to 5 ft in height. Used traditionally to decorate hula altars. Indigenous to Hawaiʻi.

pilikia  Trouble.

plumeria  Ornamental trees of the genus *Plumeria*, widely used in landscaping, especially at temples and graveyards.

post-contact  After A.D. 1778 and the first written records of the Hawaiian Islands made by Captain James Cook and his crew.

pre-contact  Prior to A.D. 1778 and the first written records of the Hawaiian Islands made by Captain James Cook and his crew.

puʻe one  Sand dune or sand bar.
REFERENCES

Alexander, W.D.

Avakonohiki

Burgett, B.B. and R. Spear
1999 Archaeological Monitoring of Storage Yard Paving and Utility Improvements Kahului Harbor, Maui. TMK (2) 3-7-10 Scientific Consulting Services Inc.

Burns, I.

Carlquist, S.
1980 Hawaii, A Natural History. S.B. Printers, Honolulu

Cheever, Rev. H.T.
1851 Life in the Sandwich Islands: or, The Heart of the Pacific, As It Was and Is. A.S. Barnes, New York.

Conte, P.
2007 Archaeological Assessment Report for the Proposed Nextel Partners Inc. Kaahumanu Cell Site (HI202P) 32 Lono Avenue Kahului, Maui. TMK (2) 3-7-004:006 por. CRM Solutions Hawai‘i, Inc.

DAGS (Department of Accounting and General Services, State of Hawai‘i

Devereux, T. and H.H. Hammatt

Dodge, F.S.

Donham, T.K.
1990 Archaeological Inventory Survey Maui Palms Hotel Site, Land of Wailuku, Wailuku District, Island of Maui. (TMK 3-7-03) PHRI, Hilo, Hawaii.

Dunn, J.M.

Dye, T.S. and E.H.R. Jourdane
Eble, F. and I. Carlson
1996 *Archaeological Inventory Survey of the Hobron Triangle, Kahului, Maui. TMK: (2)3-7-011:03*. Department of Anthropology, Bernice Pauahi Bishop Museum, Honolulu.

Finney, Ben R.

Foote, D., E. Hill, S. Nakamura, and F. Stephens
1972 *Soil Survey of the Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii*. United States Department of Agriculture, Soil Conservation Service. Published in cooperation with the University of Hawaii Agricultural Experiment Station, Washington, D.C.

Fornander, A.

Fredericksen, E.M.
2005 *Archaeological Inventory Survey Report for Work Carried Out on the Kanaloa Avenue Improvements – Kahului Beach Road to Ka’ahumanu Avenue - Project, Wailuku Ahupuaa Wailuku District, Maui Island (Federal Aid Project No. STP-0900[59]) (TMK: 3-8-25 and 3-7-01:02 por.)*. Xamanek Researches, Pukalani, Hawai’i.
2008 *Supplemental Archaeological Assessment Testing and Survey for the Maui Palms Hotel Redevelopment Project, Wailuku Ahupuaa Wailuku District, Maui Island (TMK: [2]3-7-03 por. of 007 and 009)*. Xamanek Researches, Pukalani, Hawai’i.

Fredericksen, E.M. and D.L. Fredericksen
1999 *An Archaeological Monitoring Report for the Kahului Barge Terminal Improvements Project, (Job No. H.C. 3281)Wailuku Ahupuaa Wailuku District, Maui Island (TMK: 3-7-08:1,3, por.4,6)*. Xamanek Researches, Pukalani, Hawai’i.

Frey, J.J. and E.M. Fredericksen
2009 *An Archaeological Monitoring Report for the Kahului Concrete Sewer Laterals Replacement Project, Wailuku Ahupuaa Wailuku District, Maui Island (Various TMKs in Kahului)*. Xamanek Researches, Pukalani, Hawai’i.


Handy, E.S., E.G. Handy, and M.K. Pukui
Hill, R., T. Lee-Greig, and H.H. Hammatt
2009 An Archaeological Literature Review and Field Inspection for Two Parcels Located at Kahului Harbor, Ahupua‘a of Wailuku, Wailuku District, Island of Maui. TMK (2) 3-7-10:001, 036. Cultural Surveys Hawaii, Kahului, Hawai‘i.

Howell, H.
1896 Map of Lands Between Kahului and Wailuku, Maui, HI. RM 1757.

Hunt, J., D. Shefcheck, and M. F. Dega

ʻĪ‘ī, J.P.

Johnson, K. and M. Dega
2006 An Archaeological Assessment of the Kahului Shopping Center Project, Ahupua‘a of Wailuku, Wailuku District, Island of Maui. Cultural Surveys Hawaii, Kailua, Hawai‘i.

Kamakau, S.M.


Kennedy, J., P.P. Brennan, and S. Ireland

Macdonald, G.A., A.T. Abbott, and F.L. Peterson

MacLennan, C.A.

Medrano, S. and M.F. Dega

Monahan, C.

36
Munsell Color (Firm)

OHA (Office of Hawaiian Affairs)

Pukui, M.K.

Pukui, M.K. and C. Curtis
1974 The Water of Kane and Other Legends of the Hawaiian Islands. The Kamehameha Schools Press, Honolulu.

Pukui, M.K., S.H. Elbert, and E.T. Mookini

Ramsay, R A.

Royalty, Z.D. and H.H. Hammatt
2017 Archaeological Monitoring Report for the Main Street and Ka‘ahumanu Avenue Resurfacing Project from High Street to Hobron Avenue, Wailuku Ahupua‘a, Wailuku District, Maui Island (TMK: 3-4-001, 011–013, 018, 042, 3-7-002–004, 008, 010, 011, and 3-8-007 and 046). Cultural Surveys Hawai‘i, Inc., Wailuku, Hawai‘i.

Schoeneberger, P. J., D. A. Wysocki, E. C. Benham, and Soil Survey Staff

Shefcheck, D. and M. Dega

Silva, C.

Soil Science Division Staff

Speakman, C.E.

Spiekermann, U.

State of Hawai‘i
1974 TMK Map, Zone 3 Sec 7 Plat 04. Por. Of Kahului, Maui, File Plan 22. Scale 1 in. = 50 ft. Department of Finance, Property Assessment Division, Honolulu.

Stearns, H.T.

Sterling, E.P.

Thien, S.

Thomas, M.
1983 *Schooner from Windward*. University Of Hawaii Press, Honolulu.

Thrum, T.G.

Ulukau

USGS (United States Geological Survey)

Wade, K., F. Eble, and J. Pantaleo

Waihona Aina

Wilcox, C.
APPENDIX A: AGREEMENT TO PARTICIPATE
Agreement to Participate in the Cultural Impact Assessment for the Kahului Civic Center and Mixed-Use Complex Project

Dietrix J. U. Duhaylonsod, Ethnographer, Keala Pono Archaeological Consulting

You are invited to participate in a Cultural Impact Assessment (CIA) for the proposed Kahului Civic Center and Mixed-Use Complex in the Kahului area of Maui (herein referred to as “the Project”). The Assessment is being conducted by Keala Pono Archaeological Consulting (Keala Pono), a cultural resource management firm, on behalf of G70. The ethnographer will explain the purpose of the Assessment, the procedures that will be followed, and the potential benefits and risks of participating. A brief description of the Assessment is written below. Feel free to ask the ethnographer questions if the procedures need further clarification. If you decide to participate, please sign the attached Consent Form. A copy of this form will be provided for you to keep.

Description of the Project

This CIA is being conducted to collect information about the Property in the Kahului area of Maui through interviews with individuals who are knowledgeable about this area, and/or about information including (but not limited to) cultural practices and beliefs, mo'olelo, mele, or oli associated with this area. The goal of this Assessment is to identify and understand the importance of any traditional Hawaiian and/or historic cultural resources, or traditional cultural practices within the Project area. This Assessment will also attempt to identify any effects that the proposed development may have on cultural resources present, or once present within the Property area.

Procedures

After agreeing to participate in the Assessment and signing the Consent Form, the ethnographer will digitally record your interview and it may be transcribed in part or in full. The transcript may be sent to you for editing and final approval. Data from the interview will be used as part of the ethno-historical report for this project and transcripts may be included in part or in full as an appendix to the report. The ethnographer may take notes and photographs and ask you to spell out names or unfamiliar words.

Discomforts and Risks

Possible risks and/or discomforts resulting from participation in this Assessment may include, but are not limited to the following: being interviewed and recorded; having to speak loudly for the recorder; providing information for reports which may be used in the future as a public reference; your uncompensated dedication of time; possible misunderstanding in the transcribing of information; loss of privacy; and worry that your comments may not be understood in the same way you understand them. It is not possible to identify all potential risks, although reasonable safeguards have been taken to minimize them.

Benefits

This Assessment will give you the opportunity to express your thoughts and opinions and share your knowledge, which will be considered, shared, and documented for future generations. Your sharing of knowledge may be instrumental in the preservation of cultural resources, practices, and information.
Confidentiality

Your rights of privacy, confidentiality and/or anonymity will be protected upon request. You may request, for example, that your name and/or sex not be mentioned in the Assessment material, such as in written notes, on tape, and in reports; or you may request that some of the information you provide remain off-the-record and not be recorded in any way. To ensure protection of your privacy, confidentiality and/or anonymity, you should immediately inform the ethnographer of your requests. The ethnographer will ask you to specify the method of protection and note it on the attached Consent Form.

Refusal/Withdrawal

At any time during the interview process, you may choose to not participate any further and ask the ethnographer for the tape and/or notes. If the transcription of your interview is to be included in the report, you will be given an opportunity to review your transcript, and to revise or delete any part of the interview.
APPENDIX B: CONSENT FORM
Consent Form

I, ________________________, am a participant in the Cultural Impact Assessment for the Kahului Civic Center and Mixed-Use Complex Project on Maui (herein referred to as “Project”). I understand that the purpose of the Assessment is to conduct oral history interviews with individuals knowledgeable about the Project and the surrounding area of Kahului on Maui Island. I understand that Keala Pono Archaeological Consulting and/or G70 will retain the product of my participation (digital recording, transcripts of interviews, etc.) as part of their permanent collection and that the materials may be used for scholarly, educational, land management, and other purposes.

I hereby grant to Keala Pono and Element Environmental LLC ownership of the physical property delivered to the institution and the right to use the property that is the product of my participation (e.g., my interview, photographs, and written materials) as stated above. By giving permission, I understand that I do not give up any copyright or performance rights that I may hold.

I also grant to Keala Pono and Element Environmental LLC my consent for any photographs provided by me or taken of me in the course of my participation in the Project to be used, published, and copied by Keala Pono and Element Environmental LLC and its assignees in any medium for purposes of the Project.

I agree that Keala Pono and Element Environmental LLC may use my name, photographic image, biographical information, statements, and voice reproduction for this Project without further approval on my part.

If transcriptions are to be included in the report, I understand that I will have the opportunity to review my transcripts to ensure that they accurately depict what I meant to convey. I also understand that if I do not return the revised transcripts after two weeks from the date of receipt, my signature below will indicate my release of information for the draft report, although I will still have the opportunity to make revisions during the draft review process.

By signing this permission form, I am acknowledging that I have been informed about the purpose of this Project, the procedure, how the data will be gathered, and how the data will be analyzed. I understand that my participation is strictly voluntary, and that I may withdraw from participation at any time without consequence.

________________________________________  __________________________
Consultant Signature                               Date

________________________________________  __________________________
Print Name                                      Phone

________________________________________
Address

Thank you for participating in this valuable study.
APPENDIX C: TRANSCRIPT RELEASE
Transcript Release

I, _______________________, am a participant in the Cultural Impact Assessment for the Kahului Civic Center and Mixed-Use Complex Project on Maui (herein referred to as “Project”) and was interviewed for the Project. I have reviewed the transcripts of the interview and agree that the transcript is complete and accurate except for those matters delineated below under the heading “CLARIFICATION, CORRECTIONS, ADDITIONS, DELETIONS.”

I agree that Keala Pono Archaeological Consulting and/or Element Environmental LLC may use and release my identity, biographical information, and other interview information, for the purpose of including such information in a report to be made public, subject to my specific objections, to release as set forth below under the heading “OBJECTIONS TO RELEASE OF INTERVIEW MATERIALS.”

CLARIFICATION, CORRECTIONS, ADDITIONS, DELETIONS:


OBJECTIONS TO RELEASE OF INTERVIEW MATERIALS:

Consultant Signature

Date

Print Name

Phone

Address

49
APPENDIX D: INTERVIEW WITH KALANI AU
TALKING STORY WITH

KALANI AU

Oral History for the Kahului Civic Center and Mixed-Use Complex project completed by email.
For Keala Pono 1/19/21

1) To start please tell us about yourself…Name? Where/When you were born? Where you grew up? Where you went to school?


2) Could you tell us about your ʻohana/family background?

My ʻohana is mainly from the Koʻolauloa area of Oʻahu with previous connections to Maui (Hāna, Koʻolau).

3) What is your association to the subject property (family land, work place, etc.)?

The Adult School is connected with the Department of Education, who I currently work for as an administrator. There were some occasions when I participate in meetings are there.

4) What are the ways you have acquired special knowledge of this area (from your ʻohana, personal research, specific sources)?

Through personal research and word of mouth.

5) Could you share your manaʻo relevant to the Wailuku-Kahului area and the surrounding region (personal anecdotes, moʻolelo, mele, oli, place names, etc.)?

Kahului refers to a battle formation used by warriors in the past. Historical accounts make a reference to Hawaiʻi island warriors under Kamehameha landing their canoes in the area to attack Maui. Another reference was made to Kakanilua a famous battle near the area that resulted in many lives lost. Lastly, there were many puʻuone (sand dunes) in the area where many loved ones were interred.

6) As far as you remember and your experiences, how has the area changed? Could you share how it was when you were young and how it’s different now?

I have been in Maui for 20 years and in just my time here, I have seen the area change a lot.
7) Do you know of any traditional sites or historically significant buildings which are or were located on the Property site--for example: cultural sites, archaeological sites, historic structures and/or burials? Please elaborate.

To my knowledge, I do not know of any.

8) Do you think the proposed development would affect any place of cultural significance or access to a place of cultural significance? Please elaborate.

It could, because many iwi (bones) were known to be interred in this area.

9) Are you aware of any traditional gathering practices at the Property area and/or within the surrounding areas both past and ongoing?

To my knowledge, no.

10) While development of the area continues, what could be done to lessen the adverse effects on any current cultural practices in the area?

Ensure there is communication with the public on the impact as well as positive intentions of the development to service the community.

11) Are you aware of any other cultural concerns the community might have related to cultural practices within or in the vicinity of the Property site and its surrounding areas?

To my knowledge, no.

12) Do you know of any other kūpuna, kamaʻāina, cultural/lineal descendants, or other knowledgeable people who might be willing to share their manaʻo of the Wailuku-Kahului area?

One person comes to mind, Kaponoʻai Molitau.
APPENDIX E: INTERVIEW WITH KUMU KAPONO‘AI MOLITAU
TALKING STORY WITH

KUMU KAPONOʻAI MOLITAU

Oral History for the Kahului Civic Center and Mixed-Use Complex project completed by email.
For Keala Pono 1/20/21

1) To start please tell us about yourself…Name? Where/When you were born? Where you grew up? Where you went to school?

Kumu Kaponoʻai Molitau

2) Could you tell us about your ‘ohana/family background?
[Did not reply.]

3) What is your association to the subject property (family land, work place, etc.)?

Lives and works on Maui

4) What are the ways you have acquired special knowledge of this area (from your ‘ohana, personal research, specific sources)?

Kumu Hula

5) Could you share your manaʻo relevant to the Wailuku-Kahului area and the surrounding region (personal anecdotes, moʻolelo, mele, oli, place names, etc.)?

There used to be sand dunes throughout the area in the past. This gives a strong likelihood that iwi kupuna are present within the proposed project footprint. If any construction was to move forward, a cultural monitor should be present at all times to help with any inadvertent disturbances.

6) As far as you remember and your experiences, how has the area changed? Could you share how it was when you were young and how it’s different now?

Lots of development all over Maui.

7) Do you know of any traditional sites or historically significant buildings which are or were located on the Property site--for example: cultural sites, archaeological sites, historic structures and/or burials? Please elaborate.
[Did not reply.]

8) Do you think the proposed development would affect any place of cultural significance or access to a place of cultural significance? Please elaborate.
[Did not reply.]
9) Are you aware of any traditional gathering practices at the Property area and/or within the surrounding areas both past and ongoing?
[Did not reply.]

10) While development of the area continues, what could be done to lessen the adverse effects on any current cultural practices in the area?

Outside of the promise to provide housing, which is more often than not unaffordable, there needs to be culturally responsible development. For example, during previous construction in the area, so many kupuna trees were recklessly chopped down. This was very irresponsible and wasteful. These kumu niu were of value, and the community should have been consulted prior so they could use them.

Besides being culturally cognizant, the developer and planners should maximize current footprints. What's the use of constructing new buildings when we already have empty buildings not being used? Pointing to the Maui Marketplace as well as the old Sports Authority, leaving abandoned buildings around is like people leaving their rubbish for others to take care of.

11) Are you aware of any other cultural concerns the community might have related to cultural practices within or in the vicinity of the Property site and its surrounding areas?
[Did not reply.]

12) Do you know of any other kūpuna, kamaʻāina, cultural/lineal descendants, or other knowledgeable people who might be willing to share their manaʻo of the Wailuku-Kahului area?

Recommending Noelani Ahia if a cultural monitor is needed.
TALKING STORY WITH

AIAU KOA (AK)

Oral History for the Kahului Civic Center and Mixed-Use Complex project by Dietrix Duhaylonsod (DD)

For Keala Pono 2/14/2021

DD: Today is Sunday, February 14, 202, and we are going to be talking story with Aiau Koa from Maui. Currently I am in Honokai Hale, O‘ahu, but we are doing this interview by way of phone. We are going to be talking about the proposed Kahului Civic Center and Mixed Use Complex in Kahului, and before we go any further, we want to say, “Mahalo nui loa,” to Aiau for taking the time to talk story with us, so mahalo and aloha.

AK: Aloha, ‘aʻole pilikia.

DD: If we could start, maybe you could say a little bit about yourself, where/when you were born, where you grew up, where you went to school, just a little background?

AK: Ok, sure. My name is Henry Aiau Kauka Koa. I was born and raised on the island of O‘ahu, born in Waiʻanae, but the last place I lived on O‘ahu was Waipahu, went to Pearl City Elementary, Pearl City Intermediate, Pearl City High School, and moved to Maui, 1979, 1980, around that time. I grew up mainly in the Pearl City section, the Waipahu section of O‘ahu. My family, my dad is actually from Maui. He’s from Honokōhau Valley. My mom is from O‘ahu. She’s from Papakōlea.

DD: Ah, ok, did you say Ka‘au Koa or Ka‘ai Koa, e kala mai iaʻu.

AK: Kauka.

DD: Oh Kauka.

AK: Henry Aiau Kauka Koa, named after my grandfather. My official name.

DD: Oh ok.

AK: My father, his name was Francis Lono Koa, born and raised on the island of Maui. My mom, her name is Leilani Bertha Parker, born and raised on O‘ahu.

DD: Ok, mahalo, oh wait, are you related to Miki‘ala Pescaia, she’s Aiau yeah?

AK: Well see, get different Aiaus, get plenty Henry Aiaus, the last name is Kauka, the middle name is Aiau, and it’s spelled a-i-a-u. I met a lot of cousins named Henry Aiau, all the watermen, all the ocean guys.

DD: ‘Ae, right, right on, mahalo for sharing some background.
So we’re gonna be talking about the Kahului area, and I sent you a map, you can see it’s across the street from the Ka‘ahumanu Shopping Center. Could you kind of share how you’re associated with that area?

AK: Sure. That area that I looked at and we spoke about, which is across of Ka‘ahumanu Shopping Center, which if you face the front part of Ka‘ahumanu Shopping Center, then that section is actually on the right hand side, if you’re facing out towards Ka‘ahumanu Avenue. And it’s bordered by Kahului Beach Road and Ka‘ahumanu Avenue. That area that it’s actually on, it’s on the right hand side, I know that area because I used to work in that area. There’s a place that was called Maui Economic Opportunity, and it was a non-profit organization to help out families on Maui, from the senior citizens to lower income families, even our children for Head Start. I started working there, I think when I was like about 17 or 18 years old. I worked there. So that area that they’re proposing, I’ve seen it. I worked there for maybe 8, 9 years, maybe 10 years.

DD: That’s quite some time that you’ve been over there. Are there any other ways that you may have gotten mana‘o about the area?

AK: Mainly I learned about the area because of working there. We worked there every day, and there were buildings there that are no longer there. There was a two-story concrete building that housed students from the college. It was an old style building made out of concrete, and it was in front, bordering the Ka‘ahumanu Avenue. It was facing outwards. And the building that I was working in was right behind and on the side of it. We had different wooden buildings that were there. And that area also housed DAGS, the State of Hawai‘i Department of Accounting and General Services, they had their offices there, besides MEO, Maui Economic Opportunity.

DD: I see.

AK: So I learned a lot by working there. That place, a lot of the community came there back in the day. We would distribute food from the government. Back then was cheese, we would have containers all full of cheese parked out on the front lawn. The community would come, and we would distribute all of that food, the cheese and milk, to the community. And I remember working there extensively to help the community.

When I first started, we would set up like a farmer’s market. Myself and another local boy by the name of Jerome Kikiwi, we would set up vegetables and farm stuff on tables, and set it up so the senior citizens would come there and purchase vegetables very cheap for them. So I started up working as a farmer’s market helper to help the community through MEO.

DD: Some good programs out of that property.

AK: Yes. A lot of the community would come there seeking help, and MEO was always helping.
They also housed the bus transportation base yard there. After about 2 or 3 years working at the farmer’s market, then I moved up to become a bus driver. We had a base yard there with about 20 buses, and we would go around Maui County, from Hāna to Lāhaina to Kula, Kihei, to pick up senior citizens and take them to their luncheon. We would take some of them to their adult day care centers. So our job started early in the morning picking up senior citizens from all of Maui and dropping them off so they could have lunch and do other projects. And then later in the afternoon, we’d pick all of them up and take them all home. We would take them to each one of their homes. So driving buses made me know Maui a lot because we had to actually go to each person’s house, not go to one area and everyone waits there. We had addresses to go to. So I know the roads of Maui, from the back roads, the sugarcane roads, every road, that people don’t even know. I remember picking people up in Hāna. We would pick people up in Hāna and take them to Lāhaina.

DD: Hū, that’s far!

AK: To Lāhaina, they would have luncheon or whatever excursion that they made, and then I would take them back to Lāhaina later that day, come back out. I would always volunteer to do that route because I love picking up older Hawaiians from Hāna and talking story with me on the way out, got a lot of mana’o from them, just to talk story with them. A lot of them, they love to share, and I love to listen.

DD: Oh, priceless.

AK: Oh I loved it, I loved it. Some houses that I did go to in the Pu‘unēnē, or the sugar mill district of Kahului, some of their houses were like old, old plantation homes, and in their garages they would have old cars from the 1930s, ’20s, and the car was like with wooden wheels. The kind you had to crank, they still would have those cars in there, and I would look at them. And they would talk story, and I was very blown away by meeting all these wonderful old Filipino, Japanese, Portuguese, Hawaiian, all mixed race, senior citizens. Everyone was very nice and happy to you, you know?

DD: Yeah, wow, what another era.

AK: Yeah, definitely another era, very respectful, very respectful senior citizens to everyone around them.

DD: Ah nice, right on. So you mentioned the programs, and the buildings that were over there, is there anything else you can say about how that particular parcel has changed through the years, how it’s different now? What are your thoughts on that?

AK: So MEO, Maui Economic Opportunity, was the main company, or non-profit organization, that was housed there. At that time, the boss for MEO was Joe Souki. He was the boss back when I started. And then when I left, about 10 years later, Miss Gladys Baisa, she was the director of MEO at that time. And that whole place started to change only because everything got bigger, more buses, more residents, so eventually they had
to move to a bigger place, a bigger facility. And those [old] buildings were all wooden buildings, kind of like you know the portable buildings for schools?

DD: Yeah, yeah, ok

AK: Yeah, those style, but bigger and longer, and they were all wooden structures back then. And when they moved out, they moved up to the Wailuku area, the Cameron Center it’s called, and with modern concrete and stuff like that. But that place started to change because now no one was using that area. Unfortunately it started to get run down, and more homeless people started using that area because that area got all these old buildings or older portables. And they even moved out the bus transportation base yard from there. It’s because they started acquiring more buses for more people. And now I believe they’re up to over a hundred buses in their base yard now, servicing Maui from wheelchairs to non-ambulatory patients.

At one time I was part of the non-emergency ambulance service which means we would pick up people from their homes that were actually paraplegic, and they were bedridden. So we had a second ambulance with a gurney, who would pick them up, put them on the gurney, and just take them to their medical appointments, doctor’s medical appointment or any kind of procedures, you know, not an emergency like an ambulance or EMT. So I was one of only two that was certified to do this kind of transportation. I loved it. We got to know the patients and take care of them. And to mālama those people, it gave a lot of relief for the family to know that we cared about picking them up and transporting. We made sure we take care of them whether they still have an IV in them or if they have oxygen [tank]. Buses that we had was just like an ambulance, so we could do everything and transport them safely. So that was one of the last things that I worked at MEO before I moved on in my career. But that was one of the most fulfilling to do because you could see there was no service for these people to get to any place, and they’re bedridden. So we were really busy and trying to help Maui county out.

So that’s that area of the transportation, where we talked about that property that houses those special buses, that’s right where the complex is gonna be. They’re proposing, it’s where I spent most of my time there. I worked long hours there. I just knew that area, and now, how it’s run down, and they tore that big building down that was in front there. And it’s a big wide open field area, and now there’s more homeless people around that area, in the back. It’s still a nice place when you drive by. You can see a big open area, but now you see homeless around that area.

I remember one time, sorry, I’m gonna tell you a story.

DD: Mhmhm.

AK: I’m not sure if you’re familiar with the Vietnam Wall. It’s in Washington, D.C. They have this wall, that when you go to Washington, has every single name of the person who died in Vietnam on this wall. A lot of people go to visit. But they have a
traveling wall that they go around the country, and this wall, they brought it to Maui. And they were looking for volunteers to set it up, and I volunteered. And that whole area that is proposed, they had containers that came with panels to put together of all the names of the Vietnam people that died. I volunteered. And that wall stretched from one end of that property, and it went all the way to the other end. It was that long. And we set it up for about a week. And we stayed there 24 hours to watch the wall. So everybody would want to come and see it and pay their respects. And there were a lot of Vietnam veterans in Hawai‘i that came to that wall, and they just stayed there. They actually camped there.

DD: Wow, that must have been a lot of casualties for the wall to stretch from one side [of the property] to the other.

AK: Yeah, the panels weren’t short. It was taller than me. I’m six feet, and it was way taller than me, and it stretched all the way over. It kind of tripped me out that guys came out from all over. These guys came from Kaupō, came from Hāna, came from places like you wouldn’t think. And a lot of them were dressed in their old Vietnam uniform. And the whole week, they stayed there. They camped there.

DD: When was that, do you remember what year it was maybe?

AK: I would say maybe like it might be 1983 to 1986. Maybe that time. It blew me away.

There’s an old newscaster from KGMB, I can’t remember his name, but he flew over, and he started talking about the wall. But then he stayed, and then he came back, and he had his uniform on. He was in Vietnam. I remember, he stayed. He stayed there. And there was a lot of people that was hurt and crying. And I was blown away by that. But that was an honor to volunteer and help out with that, and that’s one thing I will never forget about that place that housed the Vietnam wall. I think that would be the only place that could do it because it was so big. But then it was right on the main road of Ka‘ahumanu that everyone could see, and people would stop.

DD: That must have been something to see.

AK: Yeah, for me it was. I mean, I was just blown away. I was just happy that I could volunteer, me and couple of my friends who were actually other bus drivers, and as soon as we heard about it, we said, “Brah, we going volunteer. We going do this.” That’s one thing that I always remember about that one place more than anything else.

DD: Wow, you have a history of service to the community, volunteering to make this happen for the Vietnam vets, and then taking the kūpuna around, and especially with the special services also, taking care of those that needed to get to their appointments. Especially when families are working, they know that people will help them out with their family members.
AK: I really enjoy that. And they sent us to Oklahoma for training. We had to go to Oklahoma. And they had everyone who would do this job description had to be trained, Passenger Assisted Techniques, that’s what it was called. So after you pass the certification, they give you a patch that you wear, and it says, “P-A-T”, and there’s a symbol that you have on there, the Department of Transportation. And then it says that you are actually trained and certified to assist handicapped people as well as ambulatory people. So I did it. I did it because I wanted to volunteer, because they ask for volunteers, who would be willing. It wasn’t a job description that we gonna have this job, so they asked for volunteers, who would do this training. So myself and another lady, a Hawaiian lady, we volunteered to do it. And they sent us to training in Oklahoma.

DD: Wow, awesome.

AK: That all happened at that place where they propose. So that’s why that area where they’re proposing is a special place for me, because I feel like that was my home for at least 10 years. And I still remember that day when I had to leave, well not I had to leave, but I took a job for the State of Hawai‘i, and sorry, I going share this story with you if you don’t mind?

DD: All good, definitely.

AK: MEO had their awards ceremony, which they have every year. Most of us always attend. And they had their Employee of the Year award. And we always know that Employee of the Year is usually always the management staff, but then that night, the Employee of the Year was me. They called my name, and I kinda like, I was taken away. And the reason why, I was like, “No, no, no,” like, “I cannot, I cannot,” is because the next day, I was telling Gladys Baisa, who was the boss at that time, that I was resigning, because I was giving my two weeks’ notice, ‘cause I got the job at the State of Hawai‘i Harbor Police. So the night of the banquet, I found out I won the Employee of the Year, and the next day I was telling her that I was leaving. I was up on stage and shaking hands and looking at everyone, and my wife at that time, she was like, “Ohhh.” And I was like, “Oh my God, I don’t know what to say.”

DD: [laughs] Auwe, the timing.

AK: And I’m looking at Gladys Baisa, she’s such a good boss, I mean, really, really good. And the next day, I walked into her office, and I just looked at her, and she go, “You alright?” I neva know what for say, and she just said, “What’s wrong?” And I just kinda like, “I don’t know how to say this,” and I started to cry, and she said, “What’s wrong, what’s wrong?” And I told her, “Please don’t be mad.” And when I told her, she just looked at me, and the only thing she said was, “You’re doing the right thing. You’re securing a job for yourselves and your family.”

DD: Ah, that’s nice.

AK: Yeah. And then she said, “But I still mad at you, you know.” [laughs]
DD: [laughs] Because they neva like lose you. But it was well-deserved that you got the award.

AK: [laughs] No, but I was like, “The timing couldn’t be any worse. Nah, I good, I good. Give this to somebody else.” And yeah, the State went ask me when could I start. I was like, “I gotta put my two weeks in.” They was like, “Ok.” And I was actually happy that I got it and the whole thing, but when that happened that night, I was blown away. So that’s why, that area, that proposed area has a lot of meaning in my life.

DD: Yes, I see.

AK: In the beginning of my life as an adult, I spent most of it there working and getting to know the community, and getting to know senior citizens, kupunas, like I was around them more than my age group. And I enjoyed being with them and talking to them. They were very knowledgeable. Especially Mr. Oliveira was his name, he was actually from, going out Nahiku side, he was a hunter, ahh? I go, “You so knowledgeable about the dog, the plants,” and he tell me, “You know what one old wise man once told me?” I go, “No, Mr. Oliveira.” He go, “The old man said, ‘I was young and dumb too, you know. But when I got older, I realized all the young and dumb stuff that I did was lessons of life.’” I always remember him saying that.

DD: Wowww, that’s heavy.

AK: Yeah. So now, I say the same thing to the young ones, “All the stuff you go through is the lessons of life.”

Ok sorry, I’m done.

DD: No, all good, mahalo for sharing about your connection to the place there. And it gives us an insight as to what went on at the property over there prior to this. And now there’s homeless around the area.

AK: Yes.

DD: Do you know if the homeless are on the property still?

AK: I think, more around now, our Mayor on Maui, he tried to get some of the people into homes. So they have a program up in Wailuku where they built small little studios all over the place, and they can get in there. You gotta do a background check and do stuff. Part of my job when I patrol, I patrol around the harbor towards the beach side, where there’s a lot of homeless. So we talk to them. The Mayor, Mike Victorino, he actually comes down himself, and he talks to them. He actually gives them his card, and he tells them, “Call me. I can help you. I can get you out of this van. I can get you into someplace, but you have to call me. I cannot help you unless you actually tell me you need help.” And he give ‘em his personal cell phone. I’ve seen this with him, and he goes around and does that.
DD: Wow, terrific.

AK: Yeah, so some of them, when I talk to them later, “Did you call the Mayor’s office?” They go, “Aw, I was busy.” I go, “Doing what? Busy what? He can help you get out of what you doing here.” That’s why, the Mayor, he tries, and he tries. He only can help someone who wants the help. And he does. So the homeless people in that area now, they tried to clean it up with the Maui Police Department, with the community relations officers always talking to them. They try to move them along and get them into a better place. Some of them do work, a lot of them I talk to, they work. They just don’t make enough money to get a house. And that’s the story. I’ve seen them work. I see them. But the homeless, they’re trying to move them out in that area. I know that area that they propose, right next to the apartment complex, if I’m not mistaken, that apartment complex there, that was actually for our college, Maui Community College, that area was for the student housing, which is right next, adjacent to that property.

DD: I see. And what about when speaking to all the kūpuna you’d meet, by any chance, did any of them share any moʻolelo, mele, or old place names of the surrounding area of that parcel?

AK: Not that I can recall any kūpuna speaking of that area. Mainly they spoke of the area that they lived in. Because that area, that parcel right there, I guess it’s not so much of a place where people actually lived, meaning like had housing there or stuff like that.

DD: Right, I see, because these kupunas going basically talk about where they grew up, and I guess by that time, it already wasn’t residential for a long time.

AK: No. It wasn’t. It was not a residential area. I think anything close to the harbor, like Kahului, everything’s built around the harbor and goes out, because that’s where everything came in from. So anything closer to the harbor was mainly all industrial, or something related to the maritime and the railroad building, the railroad tracks. Everything else was pushed out for housing, outside of the harbor. So that area really didn’t have housing that I know of, or even the kupunas that talked of that area.

DD: That makes a lot of sense, because it kind of gives us a timeline perspective, especially with the harbor being in use, and our islands being maritime, it would’ve been at an earlier time that residences would start moving out. As they started building out from the harbor, the residence would be pushed out to the inland, away from the harbor itself. That makes sense.

So I guess then, would there be any cultural sites or archaeological sites or burials or historic buildings within that property? What are your thoughts on that?

AK: Well, I don’t know of any on that site, but from what I do know, there was a fishpond across of there where Maui Beach is actually housed at right now, Maui Beach Hotel. That’s adjacent to the harbor. So if you look out there, you’ll see rock formations, and I believe that was fishponds back then. But the area across Kaʻahumanu Avenue is what separates that property that we’re talking about, the Kahului complex, that
Kaʻahumanu Avenue separates Maui Beach Hotel from Seaside Hotel, which is directly on the harbor’s waterfront. So that area, that property of the Kahului complex, I don’t know of any cultural sites or archaeological things that I would think would have, but [pause] I wouldn’t pass it that it wouldn’t have. The only reason being, I’ve been at the harbor police for about thirty-something years now, and we have done some projects at the harbor, when they did the expansion of the harbor out towards Kaʻahumanu Avenue side, we have found human remains. So I’m quite sure that might have, but I cannot say for certain. But I wouldn’t doubt it, that it wouldn’t have. I’d be surprised if they wouldn’t have any.

DD: That’s a good point. You’re saying that across the street, there are remains of fishponds from the ancient days, and in the past they have inadvertently discovered iwi kūpuna, and so there is a possibility, there might also be iwi on the property. Is that correct?

AK: Yeah, it could be a possibility, because Kahului Harbor, when we did the expansion of Pier 2 container yard, which would be expansion out to Puʻunēnē and Kaʻahumanu Avenue, they have found some iwi kūpuna. Of course we did all the protocols, called the agency that needed to be called, and the construction company, they did everything that needed to be done. And then they proceeded with every protocol that had to be done. So in my own mind, I would think that if we have [iwi] here, I cannot see not having somewhere else close to the area.

DD: Right. That’s a really good point because these boundary lines, like the road itself, it’s just a visual boundary line, but in the old days, it was a different landscape.

AK: Yes, I mean, we both know a lot of iwi kūpuna were buried in sand. My background, I’m actually a hula dancer. I danced hula with Kealiʻi Reichel for like twenty-something years.

DD: Oh wow.

AK: I’ve done a lot of Hawaiian cultural stuff, and I’m a musician too. I still play music. I played music with Kealiʻi when we first started. And then recently I stopped playing with Kealiʻi, and I play with this other guy named Kalani Peʻa. I have a lot of experience in Hawaiian protocols, and I love to chant, I’m an avid oli practitioner, so if we go to the mountain or to the ocean, we do some chanting, just to show respect. We go places that we’ve never been before, and we always ask permission, speaking ‘ōlelo Hawaiʻi so that maybe they’re [the kūpuna] more familiar to hear the Hawaiian language, better than speaking ‘ōlelo Haole, I have a soft spot for a lot of our Hawaiian people and Hawaiian at heart, just wanted to say that.

DD: Yes, it’s apparent, not only from your years spending time with the kūpuna, but also from your years of training, you have a lot of ‘ike and manaʻo, so mahalo for sharing.

AK: Small kine liʻiliʻi.
DD: [laughs] I think more than that.

AK: But my daughter, her name is Ora, Oralani Koa, she’s a cultural specialist. And that’s what she does, she works for the Westin Maui. And recently within the past several months, they have found iwi kūpuna, and she’s part of that iwi kūpuna protocol, and the Burial Council comes, and just help her. She goes down and retrieve some of the iwi kūpuna, and she only ‘ōlelo Hawai‘i and puts it in a safe place and do other protocols they need. My daughter surprised me with her knowledge of she knows. I was really taken away by her vast knowledge of doing what she does. She graduated UH in Hawaiian Studies.

DD: Oh ok, over there or in Mānoa?

AK: In Mānoa.

DD: I can see she was probably following in your footsteps, probably inspired by you.

AK: I don’t know. [laughs] I think inspired by all the uncles and aunties, from the hālau and everybody else.

DD: [laughs] Well if I could ask you about traditional gathering practices, are you aware of any traditional gathering practices at the property, either now or before? What are your thoughts on gathering practices in that area?

AK: I think that gathering practices should be continued, but I don’t see any plants or things that I know on that property that would, the only thing that had over there was plumeria trees. And every hula dancer came there to pick the plumeria trees.

DD: Are the trees still there?

AK: Some of ‘em are still there, but there were a lot. And of course, we was part of that group picking flowers for hula. But there was no other native trees, like lehua, or ‘a‘ali‘i, or any other kind of plants that I think we could have gathered. I don’t see any other trees or plants.

DD: Ok, well maybe an extension of that question would be regarding adverse effects on any cultural practices or cultural sites. So correct me if I’m wrong, but the only cultural practice for that property itself would be the gathering of flowers for lei-making. So how do you see any adverse effects on this cultural practice or any other culturally related things on that property, if I may ask, any adverse effects from this proposed project?

AK: I don’t see any. Yeah, I can’t foresee any, but if they could plant more plumeria trees [laughs], then we can gather more.

DD: Right.
AK: Or plant lauaʻe. Plant some lauaʻe there so we can make lauaʻe leis, maybe some palapalai, if you guys like.

DD: Yeah, that’s a good idea, as far as future plants and trees that can be used for lei making, yeah, I see.

AK: Yeah because if they going have a complex and community center, what if they have a lei-making class or different stuff where they can use native plants there, so that they could use it to teach the younger generation. The kūpuna could say, “These are plants that we use for medicine right here, the noni plant, the kalo plant.” So planting native stuff that could educate our younger generation would help, and the reason why is it’s right in town. We don’t have to drive up in the mountain. We don’t have to go Hāna. I’m not saying that we don’t wanna go Hāna, but for those that can’t go to Hāna, or different places that might not be accessible to these people, they can go to the Kahului Complex and say, “Eh, there it is. This is what the naupaka looks like.” You know what I mean?

DD: Yeah, that’s a really good use of the landscape, that’s a really good idea.

AK: So don’t bring in foreign plants. We need our native plants that we have here. We have ginger. You know, I don’t have to explain that it’s a good thing to use our native plants here. That’s exactly what my daughter did at the Westin. She said, “I think we need native plants. All these other plants, I’m not saying that they’re not beautiful, but they have no connection to Hawai‘i.” So they did. They brought in palapalai all in the front. They replanted. They did a lot of different stuff there. So yeah, if they could somehow work that in their plan, they would have a section or an area. Sometimes plumeria are the most beautiful ones, very useful for everyone, from small kids to kupunas.

DD: Good point, I’ll make sure to pass that on. Thank you for sharing that.

AK: I’m not talking too much?

DD: No, it’s all maikaʻi.

AK: Ok, ok.

DD: No, mahalo. Are there any other cultural concerns the community might have related to this property that we haven’t mentioned yet?

AK: [pause] Cultural concerns. [pause] No, I can’t think of any. But if it’s for the community, if it’s proposed for the community, then make it accessible to the community, not so much it’s a member-only kind of community, like you have to belong to this to get in. I feel that if it’s for the community, then the community, of course you have to have some kind of protocol, but not so much a gated community place. That’s one thing I hate when I see gates put up by the community. I understand the gate when you don’t want crime to come through your area, but it feels like it [the gate] separates
us. So the community complex, make it accessible to the community. Eh, hula classes, oli classes, any kind of classes, Filipinos too, because I’m an avid martial artist too. I always tell all the different ethnic groups on Maui --- Filipino, Japanese, everybody --- “Learn part of your culture. I no care what it is, whether it’s language, whether it’s fighting.” They go, “Fighting?” I go, “Yeah, you know fighting teaches you discipline? It doesn’t teach you to fight all the time. It teaches you why you have to learn this. And it teaches you discipline on training, discipline and respect.”

DD: True.

AK: And I love Filipino style of fighting, kali. And I always tell the boys, Filipino boys, even the guys at work, I start showing them a little, and I say, “Learn. Learn from your kupunas. They know. They just no talk about it. But if you sit down and actually talk story with them, and they see your sincerity, they going open up. They will.”

DD: Nice, right on, mahaalo.

Ok, so I’ll be sure to pass on the point of making sure the place is accessible. If it’s a community center, you’re right, it should be accessible. It shouldn’t be a members-only thing. It should be accessible to the community. And also, your other point about utilizing native Hawaiian plants into the landscape of the project area, those are really good points. Thank you for sharing them.

So I guess the last question is if you know of any other kūpuna, kamaʻāina, any other descendants of the area, or knowledgeable people who might be willing to share their manaʻo of the place?

AK: Aw man, I wish I knew you earlier. My mother-in-law just passed away.

DD: Oh, I’m sorry to hear that.

AK: No, no, she passed away maybe about 4 or 5 months ago. But she knows that area, she knows that area exactly. Yeaaaah, it was my mother-in-law who got me the job. She worked there, and she helped the community. She was an outreach counselor that helped everybody there. She knew everybody, and everybody knew her. She helped everyone. She knew that parcel like the back of her hand.

DD: What was her name?

AK: Her name was Ora Latham. Latham was her married name.

DD: Latham?

AK: Latham. L – a – t – h – a – m. Her maiden name was Souza. Yeah, Patricia Ora Souza.

DD: I guess your daughter was named after her?
AK: Yeah, yeah. And they both the same, always helping the community. My mother-in-law, she had a Portuguese father and a Japanese mom.

Oh, you know who would know? It’s Gladys Baisa. She just retired from the council. She was in the City Council for Maui over here for like long time. She just retired. She knows the area.

DD: How do you spell her last name?


DD: Oh ok, Baisa.

AK: Yeah, she was the Director for MEO in that area. She would probably know more stories about that area because MEO stayed there for as long as I know. And all the people I know that used to work there, they are no longer living. You know why? I was a young kid, das why, when I first got there. I was the youngest kid, 17 years old, so everybody was older. Everybody was good to me. Gladys Baisa was so good to me and my family, super good, that’s why I had a hard time leaving.

DD: Right.

AK: But if I can think of any other person other than Gladys Baisa, I’ll definitely hit you up.

DD: Ok, yeah, and anything else that comes to mind, just let me know. Otherwise I’ll go type this up, and I’ll send it back to you for review. And I remember you said earlier that you have a Sunday date with your wife, so I don’t want to take up any more of your time. I appreciate you taking the time. Mahalo nui loa.

AK: [laughs] Easy.

DD: [laughs] No, mahalo for making the time, I know you busy. Thank you for today and sharing your mana’o and ‘ike about this area, I really appreciate it. Mahalo nui loa.

AK: Sorry I talk too much.

DD: No, it’s all good, and I appreciate it, so thank you so much.

AK: Ok, thank you my braddah, take care now.

DD: Mālama pono, aloha.

AK: Aloha.
Appendix M

Early Consultation Package
October 6, 2020

Subject: Early Consultation Request for a Hawai'i Revised Statutes, Chapter 343 Environmental Assessment for the Kahului Civic Center and Mixed-Use Complex Project located at
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai'i

Dear Participant:

On behalf of the State of Hawai'i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), G70 is undertaking the preparation of an Environmental Assessment, pursuant to Hawai'i Revised Statutes, Chapter 343, and Hawai'i Administrative Rules (HAR) Chapter 11-200.1 for the proposed Kahului Civic Center and Mixed-Use Complex Project ("Project") located in Kahului, Maui, Hawai'i.

Pursuant to HAR Chapter 11-200.1-18, the HHFDC (proposing agency) is conducting early consultation with agencies, organizations, and individuals who may be interested in the environmental review of this Project. Enclosed in this transmittal is an Early Consultation Handout with a Project description and location map for your review and comment. Please provide comments via U. S. mail or email to the contact indicated below, no later than November 5, 2020.

G70
111 S. King Street, Suite 170
Honolulu, HI 96813
Attn: Mr. Jeff Overton
Phone: (808) 523-5866
Email: KahuluiEAcomments@g70.design

Thank you for your participation in the early consultation for this Project.

Sincerely,

GROUP 70 INTERNATIONAL, INC., dba G70

Mr. Jeff Overton, AICP, LEED AP
Principal

Enclosure: Early Consultation Handout
Kahului Civic Center and Mixed-Use Complex
Early Consultation for Draft Environmental Assessment

This Early Consultation Handout has been prepared in accordance with the requirements of Hawai‘i Revised Statutes (HRS), Chapter 343 (as amended), and Hawai‘i Administrative Rules (HAR), Chapter 11-200.1, which sets forth the requirements for the preparation of environmental assessments.

1.1 PROJECT INFORMATION SUMMARY

Type of Document: Draft Environmental Assessment (DEA)

Project Name: Kahului Civic Center and Mixed-Use Complex

Proposing Agency: State of Hawai‘i (State)
Department of Business, Economic Development & Tourism (DBEDT)
Hawaii Housing Finance & Development Corporation (HHFDC)
677 Queen Street, Suite 300
Honolulu, HI 96813

Accepting Authority: State
DBEDT, HHFDC
677 Queen Street, Suite 300
Honolulu, HI 96813

HRS, Chapter 343 Trigger: HRS §343-5(a)(1), use of state lands and funds
HRS §343-5(a)(6), for potential amendments to an existing County general plan for 201H exemptions pursuant to HRS §201H-38

Project Location: 153 West Ka‘ahumanu Avenue
Kahului, HI 96732
(Figure 1: Project Location)

Tax Map Key (TMK) Parcel and Recorded Fee Owner: TMK: (2) 3-7-004:003 (por.) – State

Project Area: Approximately 4.72 acres (Project parcel is 5.57 acres)

State Land Use District: Urban District

County Zoning: B-2 – Business-Community


Special Management Area (SMA): Within SMA

Flood Zone: Zone X – Determined to be outside the 500-year flood plain

Anticipated Determination: Finding of No Significant Impact (FONSI)
1.2 OVERVIEW OF PROPOSED PROJECT

The State, DBEDT, HHFDC is proposing to undertake the “Kahului Civic Center and Mixed-Use Complex Project” (“Project”). The State, via Executive Order No. 4590 (July 29, 2019), set aside the Project parcel (TMK: (2) 3-7-004:003) to the HHFDC for the purpose of developing the Project.

The Project involves the demolition of existing structures and the construction of approximately 200 to 400 residential dwelling units (mixture of 1-, 2- and 3-bedroom units); approximately 38,000 square feet (SF) of State office space; approximately 7,000 SF of classroom and support space for the State Department of Education’s (DOE) McKinley Community School for Adults; approximately 5,000 SF of commercial space; approximately 16,000 SF for the Kahului Public Library; up to 6,000 SF for a community center; and parking spaces.

The County’s new Transit Hub is currently being constructed on the southwest portion (0.85 acres) of the Project parcel along Vevau Street. The County’s new Transit Hub is not a part of this Project and is not covered under this EA. A Final EA and FONSI was published for the “Transit Hub Relocation Project” on October 8, 2019. The County’s new Transit Hub will replace the existing Transit Hub, located at the Queen Ka‘ahumanu Center.

1.3 PROJECT SITE

The Project site is approximately 4.72 acres and is located on TMK: (2) 3-7-004:003 (por.) at 153 West Ka‘ahumanu Avenue in Kahului, on the island of Maui (Figure 1: Project Location). The Project site is located within the “Urban” State Land Use District, the “B-2 – Business-Community” zoning district and is designated for “B – Business/Commercial” use per the County’s Wailuku-Kahului Community Plan (2002).

Existing structures on the Project parcel (to be demolished) include the DOE’s McKinley Community School for Adults building (one-story), a lawnmower maintenance building (one-story), a collapsed building (one-story) and a parking lot with 21 parking spaces.

The Project site is surrounded by a mix of commercial, residential, and resort uses. North of the Project site is the Maui Beach Hotel, and west of the Project site is the Queen Ka‘ahumanu Center, a shopping center with a variety of retailers. The Waterfront Apartments at Kahului are east of the Project site, and south is currently being developed for Kahului Lani, an affordable senior housing complex.

1.4 PURPOSE OF ENVIRONMENTAL ASSESSMENT

On behalf of the HHFDC, G70 is undertaking the preparation of a DEA, pursuant to HRS, Chapter 343, and HAR, Chapter 11-200.1 for the proposed Project. This Project triggers a need for an environmental review under HRS §343-5(a)(1), as it proposes the use of state lands and funds; and under HRS §343-5(a)(6), as it potentially involves an amendment to the existing County general plan for zoning exemptions pursuant to HRS §201H-38. The DEA will include a description of the proposed action and alternatives considered; a description of the existing environment; identification and analysis of potential impacts of the Project; and proposed mitigation measures. This DEA is expected to result in a FONSI.
Figure 1: Project Location
Appendix N

Early Consultation Comments and Responses
Early Consultation Comments and Responses

Federal Agencies
October 26, 2020

Mr. Jeff Overton
Principal
Group 70 International, Inc.
111 S. King Street, Suite 170
Honolulu, Hawai‘i 96813

Subject: Technical Assistance for Proposed Kahului Civic Center and Mixed-Use Complex in Kahului, Maui

Dear Mr. Overton:

Thank you for your letter of October 13, 2020 requesting early consultation for the proposed Kahului Civic Center and Mixed-Use Complex Project in Kahului, Maui. The work involves the demolition of existing structures, including the McKinley Community School for Adults, a lawn-mower maintenance building, a collapsed building, and a parking lot with 21 spaces. Proposed construction consists of approximately 200 to 400 residential dwelling units; approximately 38,000 square feet (SF) of State office space; approximately 16,000 SF for the Kahului Public Library; up to 6,000 SF for a community center; and parking spaces. The project site is approximately 4.72 acres and is located on TMK: (2) 3-7-004:003 at 153 West Ka‘ahumanu Avenue in Kahului. The project parcel is within the “Urban” State Land Use District, the “B-2 – Business-Community” zoning district, and is designated for “B-Business/Commercial” use per the County’s 2020 Wailuku-Kahului Community Plan. This letter has been prepared under the authority of, and in accordance with, provisions of the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) as amended (ESA).

We have reviewed the information you provided and pertinent information in our files, as it pertains to listed species in accordance with section 7 of the ESA. Our data indicate that the following federally listed species may occur or transit through the vicinity of the proposed project area: the endangered Hawaiian hoary bat (Lasiurus cinereus semotus), Blackburn’s sphinx moth (Manduca blackburni), Hawaiian yellow-faced bees (Hyleus anthracinus, H. assimilus, H. facilis, H. hilaris, and H. longiceps), Hawaiian petrel (Pterodroma sandwicensis), Hawai‘is distinct population segment (DPS) of the band-rumped storm-petrel (Oceanodroma castro), Hawaiian stilt (Himantopus mexicanus knudseni), Hawaiian coot (Fulica alai), and Hawaiian duck (Anas wyvilliana), and the federally threatened Newell’s shearwater (Puffinus auricularis newelli) and Hawaiian goose (Branta sandvicensis). The Hawaiian petrel, band-rumped storm-petrel, and Newell’s shearwater will hereafter collectively be referred to as “Hawaiian
seabirds”. The Hawaiian stilt, Hawaiian coot, and Hawaiian duck will hereafter collectively be referred to as “Hawaiian waterbirds”.

**Hawaiian hoary bat**
The Hawaiian hoary bat roosts in both exotic and native woody vegetation across all islands and will leave young unattended in trees and shrubs when they forage. If trees or shrubs 15 feet (ft.) or taller are cleared during the pupping season, there is a risk that young bats could inadvertently be harmed or killed since they are too young to fly or move away from disturbance. Additionally, Hawaiian hoary bats forage for insects from as low as 3 ft. to higher than 500 ft. above the ground and can become entangled in barbed wire used for fencing.

To avoid and minimize impacts to the endangered Hawaiian hoary bat we recommend you incorporate the following applicable measures into your project description:
- Do not disturb, remove, or trim woody plants greater than 15 ft. tall during the bat birthing and pup-rearing season (June 1 through September 15).
- Do not use barbed wire for fencing.

**Blackburn’s sphinx moth**
The Blackburn’s sphinx moth is known from the islands of Hawai‘i, Maui, Lāna‘i, and Kaho‘olawe, and may be in the vicinity of any proposed project on these islands if host plants are present. Adult moths feed on nectar from native plants, including Ipomoea pes-caprae (beach morning glory), Plumbago zeylanica (‘ilie’e), and Capparis sandwichiana (malalipo). Blackburn’s sphinx moth larvae feed on Nicotiana glauca (non-native tree tobacco) and native ‘aiea (Nothocestrum spp.). Moth eggs and larvae are most commonly found feeding on the leaves of native ‘aiea and non-native tree tobacco. To pupate, the larvae burrow into the soil and can remain in a state of torpor for a year or more before emerging from the soil. Soil disturbance can result in death of the pupae.

We offer the following survey recommendations to assess whether the Blackburn’s sphinx moth is within the project area:
- A biologist familiar with the species should survey areas of proposed activities for the Blackburn’s sphinx moth and its larval host plants prior to work initiation.
- Surveys should be conducted during the wettest portion of the year (usually November – April or several weeks after a significant rain) and within 4-6 weeks prior to construction.
- Surveys should include searches for eggs, larvae, and signs of larval feeding (chewed stems, frass, or leaf damage).
- If moths or the native ‘aiea or tree tobacco over 3 feet tall are found during the survey, please contact the Service for additional guidance to avoid take.

If no Blackburn’s sphinx moth, ‘aiea, or tree tobacco are found during pre-construction surveys, it is imperative that measures be taken to avoid attraction of Blackburn’s sphinx moth to the project location and prohibit tree tobacco from entering the site. Tree tobacco can grow greater than 3 feet tall in approximately 6 weeks. If it grows over 3 feet, the plants may become a host for the Blackburn’s sphinx moth.

We therefore recommend that you:
- Remove any tree tobacco less than 3 feet tall.
- Monitor the site every 4-6 weeks for new tree tobacco growth before, during, and after the proposed ground-disturbing activity.
- Monitoring for tree tobacco can be completed by any staff, such as a groundskeeper or regular maintenance crew, provided with picture placards of tree tobacco at different life stages.
Hawaiian yellow-faced bees
Coastal populations of yellow-faced bees occur in habitat along rocky shorelines with Scaevola taccada (naupaka) and Heliotropium foertherianum (tree heliotrope) with native vegetation, landscaped vegetation, non-native kiawe (Prosopis pallida), or bare rock inland. Bees are restricted to an extremely narrow corridor, typically 10–20 meters wide, and do not occur on sandy beaches or inland, or on landscaped native plants on hotel grounds. Documented nectar and pollen plants include naupaka, Sida fallax (‘ilima), Chamaesyce spp. (‘akoko), Argemone glauca (pua kala), Myoporum sandwicense (naio), and tree heliotrope. Female bees collect pollen from a variety of native plants and nonnative tree heliotrope.

Threats to yellow-faced bees include habitat destruction and modification from land use change, nonnative plants, ungulates, and fire, along with predation by nonnative ants and wasps.

To avoid and minimize project impacts to yellow-faced bees and their nests, we recommend you incorporate the following applicable measures into your project description:

- If an action will occur in or adjacent to known occupied habitat, a buffer area around the habitat may be required and can be worked out on a site-specific basis through consultation with the Service.
- For coastal species, protect all coastal strand habitat from human disturbance, including:
  - No fires or wood collecting
  - Leave woody debris in place
  - Restrict vehicles to existing roads and trails
  - Post educational signs to inform people of the presence of sensitive species.

Hawaiian sea birds
Hawaiian sea birds may traverse the project area at night during the breeding, nesting, and fledging seasons (March 1 to December 15). Outdoor lighting could result in seabird disorientation, fallout, and injury or mortality. Seabirds are attracted to lights and after circling the lights they may become exhausted and collide with nearby wires, buildings, or other structures, or they may land on the ground. Downed seabirds are subject to increased mortality due to collision with automobiles, starvation, and predation by dogs, cats, and other predators. Young birds (fledglings) traversing the project area between September 15 and December 15, in their first flights from their mountain nests to the sea, are particularly vulnerable.

To avoid and minimize potential project impacts to seabirds we recommend you incorporate the following applicable measures into your project plan:

- Fully shield all outdoor lights so the bulb can only be seen from below bulb height and only use when necessary.
- Install automatic motion sensor switches and timer controls on all outdoor lights or turn off lights when human activity is not occurring in the lighted area.
- Avoid nighttime construction during the seabird fledging period, September 15 through December 15.

Hawaiian waterbirds
Hawaiian waterbirds are currently found in a variety of wetland habitats including freshwater marshes and ponds, coastal estuaries and ponds, artificial reservoirs, kalo or taro (Colocasia esculenta) lo‘i or patches, irrigation ditches, sewage treatment ponds, and in the case of the Hawaiian duck, montane streams and marshlands. Hawaiian stilts may also be found wherever ephemeral or persistent standing water may occur. Threats to these species include non-native predators, habitat loss, and habitat degradation. Hawaiian ducks are also subject to threats from hybridization with introduced mallards.
Based on the project details provided, your project may result in the creating of standing water or open water that could attract Hawaiian waterbirds to the project site. In particular, the Hawaiian stilt is known to nest in sub-optimal locations (e.g., any ponding water), if water is present. Hawaiian waterbirds attracted to sub-optimal habitat may suffer adverse impacts, such as predation and reduced reproductive success, and thus the project may create an attractive nuisance. Therefore, we recommend you work with our office during project planning so that we may assist you in developing measures to avoid impacts to listed species (e.g., fencing, vegetation control, predator management).

To avoid and minimize potential project impacts to Hawaiian waterbirds we recommend you incorporate the following measures into your project description:

- In areas where waterbirds are known to be present, post and implement reduced speed limits, and inform project personnel and contractors about the presence of endangered species on-site.
- If water resources are located within or adjacent to the project site, incorporate applicable best management practices regarding work in aquatic environments into the project design (see enclosure).
- Have a biological monitor that is familiar with the species’ biology conduct Hawaiian waterbird nest surveys where appropriate habitat occurs within the vicinity of the proposed project site prior to project initiation. Repeat surveys again within 3 days of project initiation and after any subsequent delay of work of 3 or more days (during which the birds may attempt to nest). If a nest or active brood is found:
  - Contact the Service within 48 hours for further guidance.
  - Establish and maintain a 100-foot buffer around all active nests and/or broods until the chicks/ducklings have fledged. Do not conduct potentially disruptive activities or habitat alteration within this buffer.
  - Have a biological monitor that is familiar with the species’ biology present on the project site during all construction or earth moving activities until the chicks/ducklings fledge to ensure that Hawaiian waterbirds and nests are not adversely impacted.

**Hawaiian goose**

Hawaiian geese are predominately found on the islands of Hawai‘i, Maui, Moloka‘i, and Kaua‘i. They may be observed in a variety of habitats, but prefer open areas, such as pastures, golf courses, wetlands, natural grasslands and shrublands, and lava flows. Threats to the species include introduced mammalian and avian predators, wind facilities, and vehicle strikes.

To avoid and minimize potential project impacts to Hawaiian geese we recommend you incorporate the following applicable measures into your project plan:

- Do not approach, feed, or disturb Hawaiian geese.
- If Hawaiian geese are observed loafing or foraging within the project area during the breeding season (September through April), halt work and have a biologist familiar with the nesting behavior of Hawaiian geese survey for nests in and around the project area prior to the resumption of any work. Repeat surveys after any subsequent delay of work of 3 or more days (during which the birds may attempt to nest).
- Cease all work immediately and contact the Service for further guidance if a nest is discovered within a radius of 150 feet of proposed work, or a previously undiscovered nest is found within said radius after work begins.
In areas where Hawaiian geese are known to be present, post and implement reduced speed limits, and inform project personnel and contractors about the presence of threatened species on-site.

Measures to Avoid the Spread of Invasive Species
All activities, including site surveys, risk introduction of nonnative species into project areas. Specific attention needs to be made to ensure that all equipment, personnel, and supplies are properly checked and are free of contamination (weed seeds, organic matter, or other contaminants) before entering project areas.

If this potential project should receive federal funding, federal permits, or any federal authorization, it will require a Section 7 consultation with the Service. The Service only conducts Section 7 consultations with the federal action agency or their designated representative. If there is no federal action agency, but take of listed species cannot be avoided, further coordination with us pursuant to compliance with the ESA is necessary.

If you have any questions, please contact me at Christina_Richards@fws.gov or by telephone at 808-792-9450. When referring to this project, please include this reference number: 01EPIF00-2020-TA-0024

Sincerely,

Aaron Nadig
Digitally signed by Aaron Nadig
Date: 2020.10.26 11:51:56 -10'00'

Island Team Manager
Pacific Islands Fish and Wildlife Office
March 31, 2021

Mr. Aaron Nadig
Island Team Manager
Pacific Islands Fish and Wildlife Office
300 Ala Moana Boulevard, Room 3-122
Honolulu, HI 96850

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai‘i

Dear Mr. Nadig,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated October 26, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. This letter has been prepared under the authority of, and in accordance with, provisions of the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.) as amended (ESA).
   We have reviewed the information you provided and pertinent information in our files, as it pertains to listed species in accordance with section 7 of the ESA. Our data indicate the following federally listed species may occur or transit through the vicinity of the proposed project area: the endangered Hawaiian hoary bat (Lasiurus cinereus semotus), Blackburn’s sphinx moth (Manduca blackburni), Hawaiian yellow-faced bees (Hylaeus anthracinus, H. assimulans, H. facilis, H. hilaris, and H. longiceps), Hawaiian petrel (Pterodroma sandwichensis), Hawai‘i distinct population segment (DPS) of the band-rumped storm-petrel (Oceanodroma castro), Hawaiian stilt (Himantopus mexicanus knudseni), Hawaiian coot (Fulca alai), and Hawaiian duck (Anas wyvilliana), and the federally threatened Newell’s shearwater (Puffinus auricularis newelli) and Hawaiian goose (Branta sandvicensis). The Hawaiian petrel, band-rumped storm-petrel, and Newell’s shearwater will hereafter collectively be referred to as “Hawaiian seabirds”. The Hawaiian stilt, Hawaiian coot, and Hawaiian duck will hereafter collectively be referred to as “Hawaiian waterbirds.”

HHFDC appreciates the US Department of the Interior, Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office’s information regarding federally-listed species that may occur or transit through the Project site. A Flora and Fauna survey will be conducted for the Project site to determine if any federally-listed species are present at or in the vicinity of the Project site.
2. **Hawaiian hoary bat**: The Hawaiian hoary bat roosts in both exotic and native woody vegetation across all islands and will leave young unattended in trees and shrubs when they forage. If trees or shrubs 15 feet (ft.) or taller are cleared during the pupping season, there is a risk that young bats could inadvertently be harmed or killed since they are too young to fly or move away from disturbance. Additionally, Hawaiian hoary bats forage for insects from as low as 3 ft. to higher than 500 ft. above the ground and can become entangled in barbed wire used for fencing. To avoid and minimize impacts to the endangered Hawaiian hoary bat we recommend you incorporate the following applicable measures into your project description:

- Do not disturb, remove, or trim woody plants greater than 15 ft. tall during the bat birthing and pup-rearing season (June 1 through September 15).
- Do not use barbed wire for fencing.

A Flora and Fauna survey will be completed to determine whether the Hawaiian Hoary Bat is present at or in the vicinity of the Project site.

If applicable, the above-listed mitigation measures will be incorporated into the DEA and implemented during construction.

3. **Blackburn’s sphinx moth**: The Blackburn’s sphinx moth is known from the islands of Hawai’i, Maui, Lāna’i, and Kaho’olawe, and may be in the vicinity of any proposed project on these islands if host plants are present. Adult moths feed on nectar from native plants, including Ipomoea pes-caprae (beach morning glory), Plumbago zeylanica (ʻilieʻe), and Capparis sandwichiana (maiapilo). Blackburn’s sphinx moth larvae feed on Nicotiana glauca (non-native tree tobacco) and native ʻaiea (Nothocestrum spp.). Moth eggs and larvae are most commonly found feeding on the leaves of native ʻaiea and non-native tree tobacco. To pupate, the larvae burrow into the soil and can remain in a state of torpor for a year or more before emerging from the soil. Soil disturbance can result in death of the pupae.

We offer the following survey recommendations to assess whether the Blackburn’s sphinx moth is within the project area:

- A biologist familiar with the species should survey areas of proposed activities for the Blackburn’s sphinx moth and its larval host plants prior to work initiation.
- Surveys should be conducted during the wettest portion of the year (usually November – April or several weeks after a significant rain) and within 4-6 weeks prior to construction.
- Surveys should include searches for eggs, larvae, and signs of larval feeding (chewed stems, frass, or leaf damage).
- If moths or the native ʻaiea or tree tobacco over 3 feet tall are found during the survey, please contact the Service for additional guidance to avoid take. If no Blackburn’s sphinx moth, ʻaiea, or tree tobacco are found during pre-construction surveys, it is imperative that measures be taken to avoid attraction of Blackburn’s sphinx moth to the project location and prohibit tree tobacco from entering the site. Tree tobacco can grow greater than 3 feet tall in approximately
6 weeks. If it grows over 3 feet, the plants may become a host for the Blackburn’s sphinx moth. We therefore recommend that you:

- Remove any tree tobacco less than 3 feet tall.
- Monitor the site every 4-6 weeks for new tree tobacco growth before, during, and after the proposed ground-disturbing activity.
- Monitoring for tree tobacco can be completed by any staff, such as a groundskeeper or regular maintenance crew, provided with picture placards of tree tobacco at different life stages.

A Flora and Fauna survey will be completed to determine whether the Blackburn’s Sphinx Moth, native ‘aiea and/or tree tobacco (over 3 ft. tall) are present at or in the vicinity of the Project site. If Blackburn’s Sphinx Moth, native ‘aiea and/or tree tobacco are found during the survey, the Fish and Wildlife Service (FWS) will be contacted for additional guidance. If Blackburn’s Sphinx Moth, native ‘aiea and/or tree tobacco are not found during the survey, the above-listed mitigation measures will be incorporated into the DEA and implemented during construction.

4. **Hawaiian yellow-faced bees**: Coastal populations of yellow-faced bees occur in habitat along rocky shorelines with Scaevola taccada (naupaka) and Heliotropium foertherianum (tree heliotrope) with native vegetation, landscaped vegetation, non-native kiawe (Prosopis pallida), or bare rock inland. Bees are restricted to an extremely narrow corridor, typically 10–20 meters wide, and do not occur on sandy beaches or inland, or on landscaped native plants on hotel grounds. Documented nectar and pollen plants include naupaka, Sida fallax (‘ilima), Chamaesyce spp. (ʻakoko), Argemone glauca (pua kala), Myoporum sandwicense (naio), and tree heliotrope. Female bees collect pollen from a variety of native plants and nonnative tree heliotrope.

Threats to yellow-faced bees include habitat destruction and modification from land use change, nonnative plants, ungulates, and fire, along with predation by nonnative ants and wasps.

To avoid and minimize project impacts to yellow-faced bees and their nests, we recommend you incorporate the following applicable measures into your project description:

- If an action will occur in or adjacent to known occupied habitat, a buffer area around the habitat may be required and can be worked out on a site-specific basis through consultation with the Service.
- For coastal species, protect all coastal strand habitat from human disturbance, including:
  - No fires or wood collecting
  - Leave woody debris in place
  - Restrict vehicles to existing roads and trails
  - Post educational signs to inform people of the presence of sensitive species.

A Flora and Fauna survey will be completed to determine whether Hawaiian yellow-faced bees and associated habitats are present at or in the vicinity of the Project site. If the Project occurs in or adjacent to a known occupied habitat, the FWS will be contacted for guidance on an appropriate buffer area around the habitat.
5. **Hawaiian sea birds**: Hawaiian sea birds may traverse the project area at night during the breeding, nesting, and fledging seasons (March 1 to December 15). Outdoor lighting could result in seabird disorientation, fallout, and injury or mortality. Seabirds are attracted to lights and after circling the lights they may become exhausted and collide with nearby wires, buildings, or other structures, or they may land on the ground. Downed seabirds are subject to increased mortality due to collision with automobiles, starvation, and predation by dogs, cats, and other predators. Young birds (fledglings) traversing the project area between September 15 and December 15, in their first flights from their mountain nests to the sea, are particularly vulnerable. To avoid and minimize potential project impacts to seabirds we recommend you incorporate the following applicable measures into your project plan:

- Fully shield all outdoor lights so the bulb can only be seen from below bulb height and only use when necessary.
- Install automatic motion sensor switches and timer controls on all outdoor lights or turn off lights when human activity is not occurring in the lighted area.
- Avoid nighttime construction during the seabird fledging period, September 15 through December 15.

A Flora and Fauna survey will be completed to determine whether Hawaiian sea birds are present at or in the vicinity of the Project site. If applicable, the above-listed mitigation measures will be incorporated into the DEA and implemented during construction.

6. **Hawaiian waterbirds**: Hawaiian waterbirds are currently found in a variety of wetland habitats including freshwater marshes and ponds, coastal estuaries and ponds, artificial reservoirs, kalo or taro (Colocasia esculenta) loʻi or patches, irrigation ditches, sewage treatment ponds, and in the case of the Hawaiian duck, montane streams and marshlands. Hawaiian stilts may also be found wherever ephemeral or persistent standing water may occur. Threats to these species include non-native predators, habitat loss, and habitat degradation. Hawaiian ducks are also subject to threats from hybridization with introduced mallards. Based on the project details provided, your project may result in the creating of standing water or open water that could attract Hawaiian waterbirds to the project site. In particular, the Hawaiian stilt is known to nest in sub-optimal locations (e.g. any ponding water), if water is present. Hawaiian waterbirds attracted to sub-optimal habitat may suffer adverse impacts, such as predation and reduced reproductive success, and thus the project may create an attractive nuisance. Therefore, we recommend you work with our office during project planning so that we may assist you in developing measures to avoid impacts to listed species (e.g., fencing, vegetation control, predator management).

To avoid and minimize potential project impacts to Hawaiian waterbirds we recommend you incorporate the following measures into your project description:

- In areas where waterbirds are known to be present, post and implement reduced speed limits, and inform project personnel and contractors about the presence of endangered species on-site.
• If water resources are located within or adjacent to the project site, incorporate applicable best management practices regarding work in aquatic environments into the project design (see enclosure).

• Have a biological monitor that is familiar with the species’ biology conduct Hawaiian waterbird nest surveys where appropriate habitat occurs within the vicinity of the proposed project site prior to project initiation. Repeat surveys again within 3 days of project initiation and after any subsequent delay of work of 3 or more days (during which the birds may attempt to nest). If a nest or active brood is found:
  o Contact the Service within 48 hours for further guidance.
  o Establish and maintain a 100-foot buffer around all active nests and/or broods until the chicks/ducklings have fledged. Do not conduct potentially disruptive activities or habitat alteration within this buffer.
  o Have a biological monitor that is familiar with the species’ biology present on the project site during all construction or earth moving activities until the chicks/ducklings fledge to ensure that Hawaiian waterbirds and nests are not adversely impacted.

A Flora and Fauna survey will be completed to determine whether Hawaiian waterbirds and associated habitats are present at or in the vicinity of the Project site. Surveys will also be repeated within 3 days of initiation of construction and after any subsequent delay of work of 3 or more days.

If applicable, the above-listed mitigation measures will be incorporated into the DEA and implemented during construction.

7. Hawaiian goose: Hawaiian geese are predominately found on the islands of Hawai’i, Maui, Moloka’i, and Kaua’i. They may be observed in a variety of habitats, but prefer open areas, such as pastures, golf courses, wetlands, natural grasslands and shrublands, and lava flows. Threats to the species include introduced mammalian and avian predators, wind facilities, and vehicle strikes. To avoid and minimize potential project impacts to Hawaiian geese we recommend you incorporate the following applicable measures into your project plan:
  • Do not approach, feed, or disturb Hawaiian geese.
  • If Hawaiian geese are observed loafing or foraging within the project area during the breeding season (September through April), halt work and have a biologist familiar with the nesting behavior of Hawaiian geese survey for nests in and around the project area prior to the resumption of any work. Repeat surveys after any subsequent delay of work of 3 or more days (during which the birds may attempt to nest).
  • Cease all work immediately and contact the Service for further guidance if a nest is discovered within a radius of 150 feet of proposed work, or a previously undiscovered nest is found within said radius after work begins.
  • In areas where Hawaiian geese are known to be present, post and implement reduced speed limits, and inform project personnel and contractors about the presence of threatened species on-site.
A Flora and Fauna survey will be completed to determine whether Hawaiian geese are present at or in the vicinity of the Project site.

If applicable, the above-listed mitigation measures will be incorporated into the DEA and implemented during construction.

8. **Measures to Avoid the Spread of Invasive Species**: All activities, including site surveys, risk introduction of nonnative species into project areas. Specific attention needs to be made to ensure that all equipment, personnel, and supplies are properly checked and are free of contamination (weed seeds, organic matter, or other contaminants) before entering project areas.

If this potential project should receive federal funding, federal permits, or any federal authorization, it will require a Section 7 consultation with the Service. The Service only conducts Section 7 consultations with the federal action agency or their designated representative. If there is no federal action agency, but take of listed species cannot be avoided, further coordination with us pursuant to compliance with the ESA is necessary.

Movement of plant or soil material between worksites will be avoided throughout construction. Equipment, materials, and personnel will be cleaned of excess soil and debris to minimize the risk of spreading weed seeds, organic matter, or other contaminants before entering Project areas.

The HHFDC acknowledges that ESA Section 7 consultation with the FWS will be required if the Project involves federal funding, permits, or authorization. Additionally, if take of a listed species cannot be avoided, further coordination with the FWS pursuant to ESA Section 7 will be required.

Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
Early Consultation Comments and Responses

State of Hawai‘i Agencies
Mr. Jeff Overton  
Group 70 International, Inc.  
111 S. King Street, Suite 170  
Honolulu, HI 96813  
KahuluiEAcomments@g70.design

Dear Mr. Overton:

Thank you for your submittal requesting comments to the Early Consultation Request for Hawaii Revised Statutes, Chapter 343 Environmental Assessment for the Kahului Civic Center and Mixed-Use Complex Project located at Tax Map Key: (2) 3-7-004: 003, Kahului, Island of Maui.

Project activities shall comply with the following Administrative Rules of the Department of Health:

- Chapter 11-46 Community Noise Control  
- Chapter 11-501 Asbestos Requirements  
- Chapter 11-503 Fees for Asbestos Removal & Certification  
- Chapter 11-504 Asbestos Abatement Certification Program

Should you have any questions, please contact me at (808) 586-4700.
March 31, 2021

Mr. Jeffrey M. Eckerd
Program Manager
State of Hawaii
Department of Health
Indoor and Radiological Health Branch
P.O. Box 3378
Honolulu, HI 96801-3378

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai‘i

Dear Mr. Eckerd,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated October 13, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. Project activities shall comply with the following Administrative Rules of the Department of Health:
   - Chapter 11-46 Community Noise Control
   - Chapter 11-501 Asbestos Requirements
   - Chapter 11-503 Fees for Asbestos Removal & Certification
   - Chapter 11-504 Asbestos Abatement Certification Program

The Project will comply with Hawai‘i Administrative Rules, Chapters 11-46, 11-501, 11-503 and 11-504 as applicable.

Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
Aloha,

Attached is our standard comments for the Kahului Civic Center for the early consultation request.

Thank you,

Solid and Hazardous Waste Branch
State of Hawaii | Department of Health
2827 Waimano Home Road, #100, Pearl City, HI 96782
Phone Number: (808) 586-4226 | Fax Number: (808) 586-7509
Solid and Hazardous Waste Branch
Standard Comments
November 26, 2018

The Solid and Hazardous Waste Branch administers programs in the areas of:
1) Management of hazardous waste;
2) Management of solid waste; and
3) Regulation of underground storage tanks.

Our general comments on projects are below. For further information about these programs, please contact the Solid and Hazardous Waste Branch at (808) 586-4226. All chapters of the Hawaii Revised Statutes (HRS) are at https://www.capitol.hawaii.gov/hrscurrent/.

Hazardous Waste Program

- The state regulations for hazardous waste and used oil are in chapters 11-260.1 to 11-279.1, Hawaii Administrative Rules (HAR) [http://health.hawaii.gov/shwb/hwrules/]. These rules apply to the identification, handling, transportation, storage and disposal of regulated hazardous waste and used oil. Generators, transporters and treatment, storage, and disposal facilities of hazardous waste and used oil must adhere to these requirements. Violations are subject to penalties under chapter 342J, HRS.

Solid Waste Section


- The purpose of the rules is to establish minimum standards governing the design, construction, installation, operation, and maintenance of solid waste disposal, recycling, reclamation and transfer systems.

- All facilities that accept solid wastes are required to obtain a solid waste management permit from the SWS. Examples of the types of facilities governed by these regulations include landfills, transfer stations and convenience centers, recycling facilities, composting facilities, and salvage facilities. Medical waste, infectious waste, and foreign waste treatment facilities are also included.

- Generators of solid waste are required to ensure that their wastes are properly delivered to permitted solid waste management facilities. Managers of construction and demolition projects should require their waste contractors to submit disposal receipts and invoices to ensure proper disposal of wastes.

For further information about these programs, please contact the Solid and Hazardous Waste Branch at (808) 586-4226.
Solid and Hazardous Waste Branch Standard Comments

Office of Solid Waste Management

- The Office of Solid Waste Management (OSWM) administers statewide integrated solid waste management planning activities, which apply to the counties, as well as various recycling programs, e.g. the Glass Advance Disposal Fee (ADF) and Deposit Beverage Container (DBC) Programs. Management of the DBC Program is conducted pursuant to chapter 342G, HRS, which contains compliance and enforcement provisions, and chapter 11-282, HAR, “Deposit Beverage Recycling” [http://health.hawaii.gov/h15/rules-regulations-additional-links/]. OSWM is also responsible for limited enforcement and compliance of solid waste management facilities that operate primarily as certified DBC redemption centers pursuant to chapter 342H, HRS, and chapter 11-58.1, HAR, “Solid Waste Management Control” [http://health.hawaii.gov/shwb/solid-waste/]. Authority for the integrated solid waste management planning and ADF programs is contained in chapter 342G, HRS.

- Glass Advance Disposal Fee Program: Businesses that import glass containers into Hawaii are required to register with the Department of Health and pay a 1.5 cent per container fee. Fee revenue is distributed to the counties for the operation of glass recycling programs.

- Deposit Beverage Container Program: Business that manufacture or import deposit beverage containers into Hawaii are required to register with the Department of Health and pay the five cent deposit and one cent container fee on each deposit container. Deposits and fees are deposited into a special fund and are used to reimburse DBC redemption center refunds paid to consumers; and to pay handling fees to redemption/recycling companies to process and recycle collected deposit beverage containers; and to pay program administrative costs.

- The Department of Health reimburses and pays an associated handling fee for the redemption of deposit beverage containers (DBC). These transactions are conducted only with certified redemption centers. Certification requires obtaining a solid waste management permit from the SWS (which addresses environmental issues) and a certification from the DBC program (which standardizes the redemption process).

- Chapter 342G, HRS, encourages the reduction of waste generation, reuse of discarded materials, and the recycling of solid waste. Businesses, property managers and developers, and government entities are highly encouraged to develop solid waste management plans to ensure proper handling of wastes and divert recyclables from being landfilled.

- Solid waste management plans seek to maximize waste diversion and minimize disposal. Such plans should include designated areas to promote the collection of reusable and recyclable materials.

For further information about these programs, please contact the Solid and Hazardous Waste Branch at (808) 586-4226.
Solid and Hazardous Waste Branch Standard Comments

Underground Storage Tank Program

- The state's underground storage tank (UST) regulations, found in chapter 11-280.1, HAR [http://health.hawaii.gov/shwb/underground-storage-tanks/], include specific requirements that UST owners and operators must meet when installing, operating, and permanently closing their UST systems and addressing releases from USTs. Violations are subject to penalties under chapter 11-280.1, HAR, and chapter 342L, HRS.

- A permit is required prior to the installation and operation of a UST. Any new UST system that will be installed must have secondary containment with interstitial monitoring. Refer to subchapters 2, 3, 4, and 12 of chapter 11-280.1, HAR. The installation permit expires 1 year from the date of issuance. The operation permit expires 5 years from the date of issuance.

- §11-280.1-50, HAR, requires owners and operators of USTs or tank systems to notify DOH within twenty-four (24) hours and follow the procedures in §11-280.1-52, HAR, if any of the following occur, with specific exceptions found in the rules:
  1) The discovery by any person of evidence of regulated substances which may have been released at the UST site or in the surrounding area (such as the presence of free product or vapors in soils, basements, sewer and utility lines, or nearby surface water);
  2) Unusual UST system operating conditions observed or experienced (such as the erratic behavior of product dispensing equipment, the sudden loss of product from the UST, or an unexplained presence of water in the tank); or
  3) Monitoring results from a release detection method required under §§11-280.1-41 or 11-280.1-42 indicate a release may have occurred.


For further information about these programs, please contact the Solid and Hazardous Waste Branch at (808) 586-4226.
March 31, 2021

Ms. Michelle Aragon  
State of Hawaii  
Department of Health  
Solid and Hazardous Waste Branch  
2827 Waimano Home Road, #100  
Pearl City, HI 96782

Subject: Early Consultation for Draft Environmental Assessment  
Kahului Civic Center Mixed-Use Complex Project  
Tax Map Key: (2) 3-7-004:003  
Kahului, Island of Maui, Hawai‘i

Dear Ms. Aragon,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated October 15, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project ("Project"). The following responses are offered regarding your comments (italicized below).

1. Attached is our standard comments for the Kahului Civic Center for the early consultation request.

The HHFDC has reviewed the DOH, Solid and Hazardous Waste Branch’s Standard Comments (dated November 26, 2018). The HHFDC will comply with Hawai‘i Revised Statues, Chapters 342H and 3421; and Hawai‘i Administrative Rules, Chapters 11-260.1 to 11-279.1, 11-58.1, and 11-280.1 as applicable.

Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP  
Principal
OCT 22 2020

Mr. Jeff Overton, Principal
G70
111 S. King Street, Suite 170
Honolulu, Hawaii 96813

Dear Mr. Overton:

Subject: Early Consultation Request for a HRS, Chapter 343 Environmental Assessment for the Kahului Civic Center and Mixed-Use Complex Project Kahului, Maui, Hawaii TMK No. (2)3-7-004:003

Thank you for the opportunity to comment on the subject project. This project requires the Department of Accounting and General Services’ collaboration and input. Therefore, we request to be informed of any progress and review of future developments.

If you have any questions, your staff may call Ms. Dora Choy of the Planning Branch at 586-0488.

Sincerely,

[Signature]

CHRISTINE L. KINIMAKA
Public works Administrator

DC:no
c: Mr. Wade Shimabukuro, DAGS-MDO
March 31, 2021

Ms. Christine L. Kinimaka
Public Works Administrator
State of Hawaii
Department of Accounting and General Services
P.O. Box 119
Honolulu, HI 96810-0119

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai‘i

Dear Ms. Kinimaka,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated October 22, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project ("Project"). The following responses are offered regarding your comments (italicized below).

1. This project requires the Department of Accounting and General Services’ collaboration and input. Therefore, we request to be informed of any progress and review of future developments.

The HHFDC is pleased to be collaborating with the Department of Accounting and General Services (DAGS) and will continue to consult with DAGS throughout the EA and future development process.

Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
October 29, 2020

Mr. Jeff Overton, AICP, LEED AP
Principal
G70
111 S. King Street, Suite 170
Honolulu, Hawaii 96813

Dear Mr. Overton:

Subject: Early Consultation for Environmental Assessment (EA)
Kahului Civic Center and Mixed-Use Complex Project
Kahului, Maui, Hawaii
Tax Map Key: (2) 3-7-004:003

The State of Hawaii Department of Transportation (HDOT) has reviewed the subject request and understands the State of Hawaii Department of Business Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC) is proposing to demolish existing structures and construct approximately 200 to 400 residential dwelling units; approximately 38,000 square feet (SF) of State office space; approximately 7,000 SF of classroom and support space for the State of Hawaii Department of Education’s McKinley Community School for Adults; approximately 5,000 SF of commercial space; approximately 16,000 SF for the Kahului Public Library; up to 6,000 SF for a community center; and parking spaces. The project will be developed on an approximately 4.72-acre site located south of Kaahumanu Avenue (State Route 32) in Kahului.

HDOT has the following comments:

Airports Division (HDOT-A)

1. The Kahului Civic Center and Mixed-Use Complex Project site is approximately 1.8 miles from Kahului Airport. All projects within 5 miles from Hawaii State airports are advised to read the Technical Assistance Memorandum (TAM) for guidance with development and activities that may require further review and permits. The TAM can be viewed at the following link: http://files.hawaii.gov/dbedt/op/docs/TAM-FAA-DOT-Airports_08-01-2016.pdf.

2. Federal Aviation Administration (FAA) regulation requires the submittal of FAA Form 7460-1 Notice of Proposed Construction or alteration pursuant to the Code of Federal Regulations, Title 14, Part 77.9, if the construction or alteration is within 20,000 feet of a public use or military airport which exceeds a 100:1 surface from any point on the runway of each airport with its longest runway more than 3,200 feet. Construction
equipment and staging area heights, including heights of temporary construction cranes, shall be included in the submittal. The form and criteria for submittal can be found at the following website: https://oeaaa.faa.gov/oeaaa/external/portal.jsp.

3. Due to the proximity to the airport, HHFDC should be aware of potential single event noise from aircraft operations. In addition, there is also a potential for fumes, smoke, vibrations, odors, etc., that may result from occasional aircraft flight operations over the project location.

Highways Division (HDOT-HWY)

1. A traffic assessment should be prepared by a licensed engineer and be included in the Draft EA. The assessment should address any impacts to Kaahumanu Avenue. The traffic assessment should include:

   a. Description of existing trip generation at the site, existing traffic conditions and multimodal routes in the study area.

   b. Forecasted traffic and multimodal conditions in the horizon year (year at full project build-out) without the project and with the project.

   c. Analysis of existing and future safety conditions.

   d. Recommend mitigation measures for direct or indirect impacts to State roadways.

2. The Draft EA should include the location of existing and proposed site access driveways. Vehicular access to the project site should remain from Kane Street or Vevau Street.

3. The Draft EA should identify any infrastructure to be removed or constructed within the HDOT-HWY right-of-way (ROW). Construction plans for all work done within HDOT-HWY ROW must be submitted to HDOT-HWY’s Maui District Engineer for review and approval.

4. HDOT-HWY requests a roadway setback of 30 feet from the existing Kaahumanu Avenue ROW for future roadway improvements.

If there are any questions, please contact Mr. Blayne Nikaido of the HDOT Statewide Transportation Planning Office at (808) 831-7979 or via email at blayne.h.nikaido@hawaii.gov.

Sincerely,

JADE T. BUTAY
Director of Transportation
March 31, 2021

Mr. Jade T. Butay
Director of Transportation
State of Hawaii
Department of Transportation
869 Punchbowl Street
Honolulu, HI 96813-5097

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawaii

Dear Mr. Butay,

On behalf of the Proposing Agency, the State of Hawaii, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated October 29, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. **Airports Division**: The Kahului Civic Center and Mixed-Use Complex Project site is approximately 1.8 miles from Kahului Airport. All projects within 5 miles from Hawaii State airports are advised to read the Technical Assistance Memorandum (TAM) for guidance with development and activities that may require further review and permits. The TAM can be viewed at the following link: http://files.hawaii.gov/dbedt/op/docs/TAM-FAA-DOT-Airports_08-01-2016.pdf

The HHFDC appreciates the provision of the TAM which provides guidance for development activities that may require further review and permits.

2. **Airports Division**: Federal Aviation Administration (FAA) regulation requires the submittal of FAA Form 7460-1 Notice of Proposed Construction or alteration pursuant to the Code of Federal Regulations, Title 14, Part 77.9, if the construction or alteration is within 20,000 feet of a public use or military airport which exceeds a 100:1 surface from any point on the runway of each airport with its longest runway more than 3,200 feet. Construction equipment and staging area heights, including heights of temporary construction cranes, shall be included in the submittal. The form and criteria for submittal can be found at the following website: https://oeaaa.faa.gov/oeaaa/external/portal.jsp

The Project does not meet any of the requirements to file FAA Form 7460-1 according to the 14 CFR Part 77.9. Project constructions will not occur within 20,000 feet of a public use airport which exceeds a 100:1 surface from any point on the runway of the airport with its longest runway more than 3,200 feet.
3. **Airports Division**: Due to the proximity to the airport, HHFDC should be aware of potential single event noise from aircraft operations. In addition, there is also a potential for fumes, smoke, vibrations, odors, etc., that may result from occasional aircraft flight operations over the project location.

The HHFDC acknowledges that the proximity to the Kahului Airport may result in noise, fumes, smoke, vibrations, and odors from the occasional aircraft flight over the Project site.

4. **Highways Division**: A traffic assessment should be prepared by a licensed engineer and be included in the Draft EA. The assessment should address any impacts to Kaahumanu Avenue. The traffic assessment should include:
   - Description of existing trip generation at the site, existing traffic conditions and multimodal routes in the study area.
   - Forecasted traffic and multimodal conditions in the horizon year (year at full project build-out) without the project and with the project.
   - Analysis of existing and future safety conditions.
   - Recommend mitigation measures for direct or indirect impacts to State roadways.

A traffic impact assessment report (TIAR) is being prepared by a licensed engineer for the project and will be included in the Draft EA. The TIAR will include a description of existing trip generation at the site, existing traffic conditions and multimodal routes, forecasted traffic and multimodal conditions in the horizon year, an analysis of existing and future safety conditions and mitigation measures for potential impacts to State roadways.

5. **The Draft EA should include the location of existing and proposed site access driveways. Vehicular access to the project site should remain from Kane Street or Vevau Street.**

The Draft EA will include a discussion on existing and proposed site access driveways.

6. **The Draft EA should identify any infrastructure to be removed or constructed within the HDOT-HWY right-of-way (ROW). Construction plans for all work done within HDOT-HWY ROW must be submitted to HDOT-HWY’s Maui District Engineer for review and approval.**

The Draft EA will identify any infrastructure to be removed or constructed within the HDOT-HWY right-of-way (ROW). Construction plans for work done within HDOT-HWY ROW will be submitted to HDOT-HWY’s Maui District Engineer for review and approval.

7. **HDOT-HWY requests a roadway setback of 30 feet from the existing Kaahumanu Avenue ROW for future roadway improvements.**

Per a follow-up telephone communication with the HDOT-HWY in November 2020, it was confirmed that a roadway setback of 30 feet from the existing Ka’ahumanu Avenue ROW is not applicable to the project.
Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
November 4, 2020

Mr. Jeff Overton, AICP, LEED AP
Principal
GROUP 70 INTERNATIONAL, INC., dba G70
111 South King Street
Suite 170
Honolulu, HI 96813

Regarding: Draft Environmental Assessment for the Kahului Civic Center and Mixed-Use Complex Project

Dear Mr. Overton:

The Disability and Communication Access Board (DCAB) would like to thank you for the opportunity to review and comment on the Draft Environmental Assessment for the Kahului Civic Center and Mixed-Use Complex Project. The purpose of this review is to ensure that this project will take into account accessibility design requirements for persons with disabilities.

Because this project is being constructed on State land, it is covered by §103-50, Hawaii Revised Statutes (HRS). New construction of the Kahului Civic Center and Mixed-Use Complex Project is required to comply with the Department of Justice’s (DOJ) 2010 ADA Standards for Accessible Design (2010 Standards) http://www.ada.gov/2010ADASTANDARDS_INDEX.htm. To be consistent with the DOJ’s standard, DCAB adopted the 2004 Americans with Disabilities Act Accessibility Guidelines (ADAAG) as of January 1, 2011 and passed interpretive opinions consistent with the 2010 ADA Standards. All new Interpretive Opinions can be viewed or downloaded at http://health.hawaii.gov/dcab/facility-access/interpretive-opinions/.

If this project is receiving federal funds, it will also have to comply with the requirements under Section 504 of the Rehabilitation Act, but this is not included in the DCAB review process. If you have any questions regarding your obligations under Section 504 of the Rehabilitation Act, you should contact the federal agency that is providing federal funds for your project.

In addition to the 2010 Standards, the dwelling units will be required to comply with the Fair Housing Act. DCAB’s document review includes a review to the Fair Housing Act Accessibility Guidelines.
Projects with construction documents that are covered by §103-50, HRS, are required to be submitted to DCAB for a formal document review.

Beyond DCAB’s review process, program access obligations must be met under the ADA Title II provisions. This obligation may require additional means to provide access, especially where full compliance with the 2010 Standards cannot be achieved.

The above reflects DCAB’s staff review and comments concerning the Draft Environmental Assessment for the Kahului Civic Center and Mixed-Use Complex Project.

Should you have any further questions, please feel free to contact Duane Buote, Facility Access Coordinator at (808) 586-8121.

Sincerely,

KIRBY L. SHAW
Executive Director
March 31, 2021

Mr. Kirby L. Shaw
Executive Director
State of Hawaii
Disability and Communication Access Board
1010 Richards Street, Room 118
Honolulu, HI 96813

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai‘i

Dear Mr. Shaw,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated November 4, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. The purpose of this review is to ensure that this project will take into account accessibility design requirements for persons with disabilities.

   Because this project is being constructed on State land, it is covered by §103-50, Hawaii Revised Statutes (HRS). New construction of the Kahului Civic Center and Mixed-Use Complex Project is required to comply with the Department of Justice’s (DOJ) 2010 ADA Standards for Accessible Design (2010 Standards) http://www.ada.gov/2010ADASTANDARDS/index.htm. To be consistent with the DOJ’s standard, DCAB adopted the 2004 Americans with Disabilities Act Accessibility Guidelines (ADAAG) as of January 1, 2011 and passed interpretive opinions consistent with the 2010 ADA Standards. All new Interpretive Opinions can be viewed or downloaded at http://health.hawaii.gov/dcab/facility-access/interpretive-opinions/.

   The HHFDC will comply with the DOJ 2010 ADA Standards for Accessible Design and will review Disability and Communication Access Board's (DCAB) interpretive opinions consistent with the 2010 ADA Standards, to ensure that the Project incorporates design requirements for persons with disabilities.

2. If this project is receiving federal funds, it will also have to comply with the requirements under Section 504 of the Rehabilitation Act, but this is not included in the DCAB review process. If you have any questions regarding your obligations under Section 504 of the Rehabilitation Act, you should contact the federal agency that is providing federal funds for your project.
HHFDC acknowledges your comment that the Project will also be subject to Section 504 of the Rehabilitation Act, if the Project receives federal funding.

3. In addition to the 2010 Standards, the dwelling units will be required to comply with the Fair Housing Act. DCAB's document review includes a review to the Fair Housing Act Accessibility Guidelines.

The HHFDC will comply with the Fair Housing Act.

4. Projects with construction documents that are covered by §103-50, HRS, are required to be submitted to DCAB for a formal document review.

The Project is a public facility and will be subject to requirements under Hawai‘i Revised Statutes, Chapters 103-50. The Project construction documents will be submitted to DCAB for a formal document review.

5. Beyond DCAB’s review process, program access obligations must be met under the ADA Title II provisions. This obligation may require additional means to provide access, especially where full compliance with the 2010 Standards cannot be achieved.

The Project will comply with the ADA Title II provisions.

Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
November 10, 2020

G70
111 S. King Street, Suite 170
Honolulu, HI 96813
Attn: Mr. Jeff Overton

Dear Mr. Overton:

The Department of Land and Natural Resources, Division of Forestry and Wildlife (DOFAW) has received your inquiry regarding the early consultation request for a Hawai‘i Revised Statutes, Chapter 343 Environmental Assessment for the Kahului Civic Center and Mixed-Use Complex Project located in Kahului, Maui, TMK: (2) 3-7-004:003. The proposed project consists of: demolishing existing structures; constructing approximately 200 to 400 residential dwelling units; approximately 38,000 square feet of office space; approximately 7,000 square feet of classroom and support space for the State Department of Education; 5,000 square feet of commercial space; approximately 16,000 square feet for the Kahului Library; up to 6,000 square feet for a community center; and parking spaces.

The State listed Blackburn’s Sphinx Moth (BSM; Manduca blackburni) has a historic range that encompasses the project area. Larvae of BSM feed on many nonnative hostplants that include tree tobacco (Nicotiana glauca) which grows in disturbed soil. We recommend contacting our Maui DOFAW office at (808) 984-8100 for further information about where BSM may be present and whether a vegetation survey should be conducted to determine the presence of plants preferred by BSM. To avoid harm to BSM, DOFAW recommends removing plants less than one meter in height or during the dry time of the year. If you remove tree tobacco over one meter in height or disturb the ground around or within several meters of these plants they must be checked thoroughly for the presence of eggs and larvae.

The State listed Hawaiian Hoary Bat or ‘Ōpe‘ape‘a (Lasiurus cinereus semotus) has the potential to occur in the vicinity of the project area and may roost in nearby trees. If any site clearing is required this should be timed to avoid disturbance during the bat birthing and pup rearing season (June 1 through September 15). If this cannot be avoided, woody plants greater than 15 feet (4.6 meters) tall should not be disturbed, removed, or trimmed without consulting DOFAW.

DOFAW recommends minimizing the movement of plant or soil material between worksites, such as in fill. Soil and plant material may contain invasive fungal pathogens (e.g. Rapid ‘Ōhi‘a Death), vertebrate and invertebrate pests (e.g. Little Fire Ants), or invasive plant parts that could harm our native species and ecosystems. We recommend consulting the Maui Invasive Species Committee at (808) 573-6472 in planning, design, and construction of the project to learn of any high-risk
invasive species in the area and ways to mitigate spread. All equipment, materials, and personnel should be cleaned of excess soil and debris to minimize the risk of spreading invasive species. Materials, and personnel should be cleaned of excess soil and debris to minimize the risk of spreading invasive species.

DOFAW recommends using native plant species for landscaping that are appropriate for the area (i.e. climate conditions are suitable for the plants to thrive, historically occurred there, etc.). Please do not plant invasive species. DOFAW recommends consulting the Hawai‘i-Pacific Weed Risk Assessment website to determine the potential invasiveness of plants proposed for use in the project (https://sites.google.com/site/weedriskassessment/home). We recommend that you refer to www.plantpono.org for guidance on selection and evaluation for landscaping plants.

Although no tree removal was clearly described in the scope of work, DOFAW would like to emphasize the value of trees—green infrastructure -- in our urban social-ecological systems where we live, work, and play. Our communities rely on trees for our wellbeing and survival.

Clean Air: In addition to creating oxygen, essential for all life on Earth, trees clean the air by removing carbon dioxide and other air pollutants. One hundred large street trees can remove 19 tons of carbon dioxide and 372 pounds of other air pollutants annually.

Health & Well-being: Tree-filled neighborhoods are safer, reduce mental and physical stress, and encourage people to spend more time outdoors, including transportation (i.e., walking and biking vs. driving). Tree-lined streets encourage slower driving and promote pedestrian safety.

Energy Cost Savings: Trees provide shade and cooling, greatly reducing energy costs. Trees save more than $622,000 per year (based on 2013 rates of $0.32/kWh for 43,000 inventoried street trees in Honolulu.)

Watershed Protection: Trees cost-effectively filter and improve water quality by reducing stormwater runoff and flooding. Trees in Honolulu intercept more than 35 mil. gallons of stormwater per year. This contribution is valued at more than $350,000 annually.

Reef Protection: A healthy urban forest reduces erosion and filters pollutants significantly reducing runoff and the destruction of our valuable reefs.

☐ Proposed disturbance of area:
  • Scope of work should include a tree protection plan and be supervised by a certified arborist
  • Install green infrastructure for rehabilitated areas post-disturbance

☐ Proposed tree root & crown pruning:
  • Scope of work should include a tree protection plan and be supervised by a certified arborist

☐ Proposed repaving:
  • Consider permeable pavement or other permeable surface to allow for absorption of groundwater
We appreciate your efforts to work with our office for the conservation of our native species. Should the scope of the project change significantly, or should it become apparent that threatened or endangered species may be impacted, please contact our staff as soon as possible.

If you have any questions, please contact Koa Matsuoka, Protected Species Habitat Conservation Planning Associate at (808) 587-4149 or koa.matsuoka@hawaii.gov. For questions pertaining to urban green infrastructure should be referred to Heather McMillen, Urban & Community Forester, heather.l.mcmillen@hawaii.gov.

Sincerely,

[Signature]

DAVID G. SMITH
Administrator
March 31, 2021

Mr. David G. Smith
Administrator
State of Hawaii
Department of Land and Natural Resources
Division of Forestry and Wildlife
1151 Punchbowl Street, Room 325
Honolulu, HI 96813

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai‘i

Dear Mr. Smith,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated November 10, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. The State listed Blackburn’s Sphinx Moth (BSM; Manduca blackburni) has a historic range that encompasses the project area. Larvae of BSM feed on many nonnative hostplants that include tree tobacco (Nicotiana glauca) which grows in disturbed soil. We recommend contacting our Maui DOFAW office at (808) 984-8100 for further information about where BSM may be present and whether a vegetation survey should be conducted to determine the presence of plants preferred by BSM. To avoid harm to BSM, DOFAW recommends removing plants less than one meter in height or during the dry time of the year. If you remove tree tobacco over one meter in height or disturb the ground around or within several meters of these plants they must be checked thoroughly for the presence of eggs and larvae.

A Flora and Fauna survey will be completed to determine whether the Blackburn’s Sphinx Moth or the tobacco tree is present at or in the vicinity of the Project site.

If applicable, the above-listed mitigation measures will be incorporated into the DEA and implemented during construction.

2. The State listed Hawaiian Hoary Bat or ‘Ōpe‘ape‘a (Lasiurus cinereus semotus) has the potential to occur in the vicinity of the project area and may roost in nearby trees. If any site clearing is required this should be timed to avoid disturbance during the bat birthing and pup rearing season (June 1 through September 15). If this cannot be avoided, woody plants greater than 15 feet (4.6
meters) tall should not be disturbed, removed, or trimmed without consulting DOFAW.

A Flora and Fauna survey will be completed to determine whether the Hawaiian Hoary Bat is present at or in the vicinity of the Project site. Site clearing will avoid the Hawaiian Hoary Bat birthing and pup rearing season (June 1 through September 15) or if this is not possible DOFAW will be consulted.

3. **DOFAW recommends minimizing the movement of plant or soil material between worksites, such as in fill.** Soil and plant material may contain invasive fungal pathogens (e.g., Rapid ‘Ōhi’a Death), vertebrate and invertebrate pests (e.g., Little Fire Ants), or invasive plant parts that could harm our native species and ecosystems. We recommend consulting the Maui Invasive Species Committee at (808) 573-6472 in planning, design, and construction of the project to learn of any high-risk invasive species in the area and ways to mitigate spread. All equipment, materials, and personnel should be cleaned of excess soil and debris to minimize the risk of spreading invasive species.

Movement of plant or soil material between worksites will be avoided throughout construction. Equipment, materials, and personnel will be cleaned of excess soil and debris to minimize the risk of spreading fungal pathogens (e.g. Rapid ‘Ōhi’a Death), vertebrate and invertebrate pests (e.g. Little Fire Ants), or invasive plant parts.

4. **DOFAW recommends using native plant species for landscaping that are appropriate for the area (i.e., climate conditions are suitable for the plants to thrive, historically occurred there, etc.).** Please do not plant invasive species. **DOFAW recommends consulting the Hawai‘i-Pacific Weed Risk Assessment website to determine the potential invasiveness of plants proposed for use in the project** ([https://sites.google.com/site/weedriskassessment/home](https://sites.google.com/site/weedriskassessment/home)). We recommend that you refer to [www.plantpono.org](http://www.plantpono.org) for guidance on selection and evaluation for landscaping plants.

Native plant species will be used for Project landscaping to the extent possible, per Hawaii Revised Statutes §103D-408. The HHFDC will consult with the Hawai‘i-Pacific Weed Risk Assessment website to determine the potential invasiveness of plants proposed for use in the project and for guidance on the selection of landscaping plants.

5. **Although no tree removal was clearly described in the scope of work, DOFAW would like to emphasize the value of trees—green infrastructure -- in our urban social-ecological systems where we live, work, and play. Our communities rely on trees for our wellbeing and survival.**

The HHFDC acknowledges the value of trees in the urban social-ecological system, and on our communities’ wellbeing and survival. Mature trees on the Project site will be preserved as much as practicable. If trees are proposed for removal, relocation and/or replacement trees will be provided.
Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
Early Consultation Comments and Responses

County of Maui Agencies
October 14, 2020

Mr. Jeff Overton, AICP, LEED AP
Principal
G70
111 South King Street, Suite 170
Honolulu, Hawaii 96813

Re: Early Consultation Request for a Hawaii Revised Statutes, Chapter 343 Environmental Assessment for the Kahului Civic Center and Mixed-Use Complex Project located at TMK: (2) 3-7-004:003
Kahului, Island of Maui, Hawaii

Dear Mr. Overton:

This is in response to your letter dated October 6, 2020 requesting comments on the preparation of an Environmental Assessment for the proposed Kahului Civic Center and Mixed-Use Complex Project.

In review of the submitted documents, we would like to recommend the project manager take into account any effects on vehicular and pedestrian movement once construction begins. The area of the proposed project is very busy throughout the day with vehicular traffic. During construction, we recommend steps should be taken to control noise levels, dust, and run off to minimize any inconvenience to neighboring businesses and surrounding roadways.

Thank you for giving us the opportunity to comment on this project.

Sincerely,

[Signature]
Assistant Chief John Jakubczak
for TIVOLI S. FAAUMU
Chief of Police
March 31, 2021

Tivoli S. Faaumu  
Chief of Police  
Police Department  
County of Maui  
55 Mahalani Street  
Wailuku, HI 96793

Subject: Early Consultation for Draft Environmental Assessment  
Kahului Civic Center Mixed-Use Complex Project  
Tax Map Key: (2) 3-7-004:003  
Kahului, Island of Maui, Hawai‘i

Dear Chief Faaumu,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business,  
Economic Development & Tourism, Hawaii Housing Finance & Development  
Corporation (HHFDC), thank you for your comment letter dated October 14, 2020  
concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center  
Mixed-Use Complex Project (“Project”). The following responses are offered regarding  
your comments (*italicized* below).

1. *In review of the submitted documents, we would like to recommend the project  
manager take into account any effects on vehicular and pedestrian movement  
once construction begins. The area of the proposed project is very busy  
throughout the day with vehicular traffic. During construction, we recommend  
steps should be taken to control noise levels, dust, and run off to minimize any  
inconvenience to neighboring businesses and surrounding roadways.*

The contractor will be required to comply with applicable federal, state and county  
regulations and implement Best Management Practices during construction to mitigate  
impacts on existing vehicular traffic, pedestrian movements, noise conditions, air quality  
and water quality.

Your comment letter and this response will be included in the DEA. Thank you for your  
participation in the environmental review process. Please contact Vi Verawudh, Senior  
Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or  
require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP  
Principal
Mr. Jeff Overton, AICP, LEED AP
Principal
G70
111 S. King Street, Suite 170
Honolulu, Hawaii 96813

Subject: Early Consultation Request for a Hawaii Revised Statutes, Chapter 343 Environment Assessment (EA) for the Kahului Civic Center and Mixed-Use Complex Project located at: TMK (2) 3-7-004:003, Kahului, Maui, Hawaii

Dear Mr. Overton:

The Department has reviewed the Draft EA handout for the above subject project. Based on our review, we have determined that the project is subject to Chapter 2.96, Maui County Code. The owner will be required to execute a Residential Workforce Housing Agreement.

Please call Mr. Buddy Almeida of our Housing Division at 270-7355 if you have any questions.

Sincerely,

C. BUDDY ALMEIDA
Housing Administrator

cc: Lori Tsuhako, Director of Housing and Human Concerns

TO SUPPORT AND EMPOWER OUR COMMUNITY TO REACH IT'S FULLEST POTENTIAL FOR PERSONAL WELL-BEING AND SELF-RELIANCE
March 31, 2021

Mr. C. Buddy Almeida
Housing Administrator
Department of Housing & Human Concerns
County of Maui
2200 Main Street, Suite 546
Wailuku, HI 96793

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai’i

Dear Mr. Almeida,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated October 15, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. Based on our review, we have determined that the project is subject to Chapter 2.96, Maui County Code. The owner will be required to execute a Residential Workforce Housing Agreement.

The HHFDC will comply with Maui County Code Chapter 2.96. Before the issuance of a building permit, the developer will enter into a Residential Workforce Housing Agreement with the County of Maui.

Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
October 15, 2020

Mr. Jeff Overton
G70
via email: WaitukuEIAcomments@g70.design  KahuluiEIAcomments@g70.design

Dear Mr. Overton:

SUBJECT: EARLY CONSULTATION REQUEST FOR HRS, CHAPTER 343 EA
KAHULUI CIVIC CENTER AND MIXED-USE COMPLEX PROJECT
TMK: (2) 3-7-004:003, Wailuku, Maui, Hawaii

Thank you for the opportunity to review and comment on the subject project, which includes the construction of approximately 200 to 400 residential dwelling units (mixture of 1-, 2- and 3-bedroom units); approximately 38,000 square feet of State office space; approximately 7,000 square feet of classroom and support space for the State Department of Education’s McKinley Community School for Adults; approximately 5,000 square feet of commercial space; approximately 16,000 square feet for the Kahului Public Library; and up to 6,000 square feet for a community center.

The Department’s records indicate there is an existing 2-inch water meter along Kaahumanu Avenue. Assuming no existing water demand, the existing 2-inch water meter’s capacity is 160 gallons per minute (gpm).

As defined in Maui County Code (MCC) 14.01.040, subdivisions are also defined as “the construction of a building or group of buildings, other than a hotel, on a single lot, parcel, or site which will contain, result, or be divided into four or more dwelling units.” Since the project is proposing 200 to 400 residential dwelling units, the project is defined as a subdivision and shall be subject to subdivision requirements as indicated in MCC 14.05 and the Department’s standards to provide an adequate water system for fire protection, domestic and irrigation service. Requirements may include the construction of water system improvements for adequate fire protection, domestic and irrigation service.

Other requirements, include, but are not limited to the following:

- State claims jurisdiction over Kaahumanu Avenue, therefore any proposed work within Kaahumanu Avenue will require their review and approval as well.
- Should the domestic and irrigation calculations show that the demand is exceeding the capacity of the property’s existing water meter, a larger meter to meet the added demands would be required. However, even if the meter may not need to be upsized, the property’s existing water meter box and possibly the water service lateral shall be upgraded to current.

“By Water All Things Find Life”
Department’s standards. This would involve the submittal of construction plans (24”x36”), signed and stamped by a licensed engineer for our review and approval prior to construction.

- If a larger meter is required, the project will need to meet the criteria for water service outlined in the Administrative Rules (Title 16, Chapter 201), that took effect on 1/29/2018 and amended on 12/12/2019. However, if the entire project is considered a County, state, or federal public facility project, as defined in section 19.04.040, Maui County Code, the water service requested for the proposed project is exempt from the Administrative Rules, provided that the Central Maui water system has adequate capacity.

- The reduced pressure backflow preventer (RPBP) should be functioning properly, if not it should be repaired, retested by a certified tester, and a satisfactory test report must be submitted to the Department.

Please be aware that the 2020 Central Maui water system’s current estimated three-year forecast for water usage is 94.2 percent of the maximum reliable capacity. This means that an applicant may request up to 3,000 gallons per day of new or additional water service for a parcel. The Department’s three-year forecast and percentage of maximum reliable capacity are updated at the beginning of each year. Please refer to the Department’s Administrative Rules at https://www.mauicounty.gov/205/Rules-Regulations.

Please contact Tammy Yeh of our Engineering Division at (808) 270-7835 or by email at tammy.yeh@mauicounty.gov to notify us if you will be proceeding or if you have any questions.

Sincerely,

WENDY TAOMOTO, P.E.
Engineering Program Manager

TY

cc: DWS Water Resources Division, Attn: Marti Buckner, via email: marti.buckner@mauicounty.gov
March 31, 2021

Ms. Wendy Taomoto, P.E.
Engineering Program Manager
Department of Water Supply
County of Maui
200 South High Street
Wailuku, HI 96793

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai‘i

Dear Ms. Taomoto,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated October 15, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. The Department’s records indicate there is an existing 2-inch water meter along Kaahumanu Avenue. Assuming no existing water demand, the existing 2-inch water meter’s capacity is 160 gallons per minute (gpm).

As defined in Maui County Code (MCC) 14.01.040, subdivisions are also defined as “the construction of a building or group of buildings, other than a hotel, on a single lot, parcel, or site which will contain, result, or be divided into four or more dwelling units.” Since the project is proposing 200 to 400 residential dwelling units, the project is defined as a subdivision and shall be subject to subdivision requirements as indicated in MCC 14.05 and the Department’s standards to provide an adequate water system for fire protection, domestic and irrigation service. Requirements may include the construction of water system improvements for adequate fire protection, domestic and irrigation service.

The HHFDC acknowledges that the Project is subject to Maui County Code Sections 14.01.040 and 14.05. Adequate water system for fire protection, domestic and irrigation service will be provided.

2. Other requirements include, but are not limited to the following: State claims jurisdiction over Kaahumanu Avenue, therefore any proposed work within Kaahumanu Avenue will require their review and approval as well.

The HHFDC acknowledges that proposed work within Ka‘ahumanu Avenue will require the State’s review and approval.
3. **Should the domestic and irrigation calculations show that the demand is exceeding the capacity of the property’s existing water meter, a larger meter to meet the added demands would be required. However, even if the meter may not need to be upsized, the property’s existing water meter box and possibly the water service lateral shall be upgraded to current Department’s standards. This would involve the submittal of construction plans (24”x36”), signed and stamped by a licensed engineer for our review and approval prior to construction.**

The existing water meter box and water service lateral(s) will be upgraded to current Department of Water Supply’s (DWS) standards. Construction plans (24”x36”) signed and stamped by a licensed engineer will be submitted to the DWS for review and approval prior to construction.

4. **If a larger meter is required, the project will need to meet the criteria for water service outlined in the Administrative Rules (Title 16, Chapter 201), that took effect on 1/29/2018 and amended on 12/12/2019. However, if the entire project is considered a County, state, or federal public facility project, as defined in section 19.04.040, Maui County Code, the water service requested for the proposed project is exempt from the Administrative Rules, provided that the Central Maui water system has adequate capacity.**

The HHFDC’s requested water service for the Project is exempt from the Administrative Rules (Title 16, Chapter 201), as it is a “public facility” project, as defined in Maui County Code §19.04.040; and is exempt under §16-201-03 (g)(1-2), as it is an affordable or “workforce housing” project, as defined in Maui County Code §2.86.140 and 2.96.

5. **The reduced pressure backflow preventer (RPBP) should be functioning properly, if not it should be repaired, retested by a certified tester, and a satisfactory test report must be submitted to the Department.**

The HHFDC will ensure that the reduced pressure backflow preventer is functioning properly.

6. **Please be aware that the 2020 Central Maui water system’s current estimated three-year forecast for water usage is 94.2 percent of the maximum reliable capacity. This means that an applicant may request up to 3,000 gallons per day of new or additional water service for a parcel. The Department’s three-year forecast and percentage of maximum reliable capacity are updated at the beginning of each year. Please refer to the Department’s Administrative Rules at [https://www.mauicounty.gov/205/Rules-Regulations](https://www.mauicounty.gov/205/Rules-Regulations).**

The HHFDC’s requested water service for the Project is exempt from the Administrative Rules (Title 16, Chapter 201), as it is a “public facility” project, as defined in Maui County Code §19.04.040; and is exempt under §16-201-03 (g)(1-2), as it is an affordable or “workforce housing” project, as defined in Maui County Code §2.86.140 and 2.96.
Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
DEPARTMENT OF FIRE & PUBLIC SAFETY
FIRE PREVENTION BUREAU
COUNTY OF MAUI
313 MANEA PLACE
WAILUKU, HI 96793

October 20, 2020

G70
Attn: Jeff Overton
111 S. King Street, Suite 170
Honolulu, HI 96813

SUBJECT: Early Consultation Request for Hawaii Revised Statutes, Chapter 343
Environmental Assessment
Kahului Civic Center and Mixed-Use Complex Project; Kahului Maui
TMK: (2) 3-7-004:003

Dear Jeff,

Thank you for allowing our office to provide comment on the subject proposed project. As per your request, comments are provided below:

- At this time, there are no comments in regards to the proposed Early Consultation Request for a Hawaii Revised Statutes, Chapter 343 Environmental Assessment for the proposed Kahului Civic Center and Mixed-Use Complex Project.

- Our office does reserve the right to comment on the proposed project during the building permit review process should detailed plans for this project be routed to our office for review. At that time, fire department access, water supply for fire protection, and fire and life safety requirements will be addressed.

If there are any questions or comments, please feel free to contact me at (808) 876-4693 or by email at paul.haake@mauicounty.gov.

Sincerely,

Paul Haake
Captain - Fire Prevention Bureau
March 31, 2021

Paul Haake, Captain
Fire Prevention Bureau
Department of Fire & Public Safety
County of Maui
313 Manea Place
Wailuku, HI 96793

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai‘i

Dear Captain Haake,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated October 20, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. At this time, there are no comments in regard to the proposed Early Consultation Request for a Hawaii Revised Statutes, Chapter 343 Environmental Assessment for the proposed Kahului Civic Center and Mixed-Use Complex Project. Our office does reserve the right to comment on the proposed project during the building permit review process should detailed plans for this project be routed to our office for review. At that time, fire department access, water supply for fire protection, and fire and life safety requirements will be addressed.

The HHFDC acknowledges that the Department of Fire & Public Safety has no comments at this time and may comment on the Project during the building permit review process, to ensure that fire department access, water supply for fire protection, and fire and life safety requirements are addressed.

Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
G70
Attn: Mr. Jeff Overton
111 S. King Street, Suite 170
Honolulu, HI 96813
via email: KahuluiEAcomments@g70.design

SUBJECT: Early Consultation Request for a Hawai‘i Revised Statutes, Chapter 343 Environmental Assessment for the Kahului Civic Center and Mixed-Use Complex Project located at Tax Map Key: (2) 3-7-004:003 Kahului, Island of Maui, Hawaii

Dear Mr. Overton,

Thank you for the opportunity to provide comments on this early consultation request for the Kahului Civic Center and Mixed-Use Complex Project.

The County of Maui Department of Transportation will be operating its Transit Center on the same parcel as this proposed project. The Department looks forward to working with the State and is excited to be a part of this proposed Kahului Civic Center and Mixed-Use Complex.

As public transportation is a vital service for many residents of Maui, please consider ways transit riders, bicyclists, pedestrians and future residents, would access this project by having a welcoming and convenient interconnected pedestrian network with ample lighting in the evening to promote walkability.

As construction commences, should the project require either the closure of Vevau Street and/or Kane Street, the Department would like to be notified at least one month prior to the road closure so a detour can be planned and affected bus riders can be notified should the closure affect bus operations. The Department isn’t expecting any closure to the Transit Hub during the project’s construction period.

Please feel free to contact me should you have any questions.

Sincerely,

Marc Takamori
Director
March 31, 2021

Mr. Marc Takamori, Director
Department of Transportation
County of Maui
200 South High Street
Wailuku, HI 96793

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai‘i

Dear Mr. Takamori,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated October 30, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. The County of Maui Department of Transportation will be operating its Transit Center on the same parcel as this proposed project. The Department looks forward to working with the State and is excited to be a part of this proposed Kahului Civic Center and Mixed-Use Complex.

   As public transportation is a vital service for many residents of Maui, please consider ways transit riders, bicyclists, pedestrians and future residents, would access this project by having a welcoming and convenient interconnected pedestrian network with ample lighting in the evening to promote walkability.

The HHFDC looks forward to working with the Department of Transportation (DOT) and will consider ways to promote walkability and accessibility between the Project and the Transit Center.

2. As construction commences, should the project require either the closure of Vevau Street and/or Kane Street, the Department would like to be notified at least one month prior to the road closure so a detour can be planned and affected bus riders can be notified should the closure affect bus operations. The Department isn’t expecting any closure to the Transit Hub during the project’s construction period.

The HHFDC will notify the DOT at least one month prior if the Project requires the closure of Vevau Street and/or Kane Street. Construction of the Project is not anticipated to require closure of the Transit Center.
Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
November 2, 2020

Jeff Overton, Principal
Group 70 International, Inc., dba G70
111 S. King Street, Suite 170
Honolulu, Hawaii 96813

Dear Mr. Overton:

SUBJECT: EARLY CONSULTATION REQUEST FOR A HAWAII REVISED STATUTES, CHAPTER 343 ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED KAHLULUI CIVIC CENTER AND MIXED-USE COMPLEX PROJECT; TMK: (2) 3-7-004:003; KAHLULUI, MAUI, HAWAII

Thank you for the opportunity to review and comment on the subject project. The Department of Parks and Recreation has no comment at this time.

Should you have any questions, please feel free to contact me or Samual Marvel, Chief of Planning and Development at samual.marvel@co.mau.mi.us or (808) 270-6173.

Sincerely,

KARLA H. PETERS
Director of Parks and Recreation

c: Samual Marvel, Chief of Planning and Development

KHP:SM:csa
March 31, 2021

Ms. Karla H. Peters, Director
Department of Parks and Recreation
County of Maui
700 Hālī‘a Nakoa Street, Unit 2
Wailuku, HI 96793

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai‘i

Dear Ms. Peters,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated November 2, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. The Department of Parks and Recreation has no comment at this time.

The HHFDC acknowledges that the Department of Parks and Recreation (DPR) has no comments at this time and will continue to consult with the DPR throughout the EA process.

Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
Mr. Jeff Overton, AICP, LEED AP, Principal
Group 70 International, Inc., dba G70
111 South King Street, Suite 170
Honolulu, Hawai‘i 96813

Dear Mr. Overton:

SUBJECT: EARLY CONSULTATION REQUEST FOR A HAWAI‘I REVISED STATUTES, CHAPTER 343 ENVIRONMENTAL ASSESSMENT FOR THE KAHLULUI CIVIC CENTER AND MIXED-USE COMPLEX
TMK: (2) 3-7-004:003

We reviewed the subject early consultation request and have the following comments:

Comments from the Engineering Division:

1. Roadway improvements are required on roadways fronting the parcel. Please coordinate with the Department of Public Works on the requirements.

2. A traffic impact analysis report is required. Study limits and parameters shall be coordinated with the Department of Public Works

Comments from the Development Services Administration, Building Inspection Section:

3. Demolition building permits B2013/0352, B2013/0353 and B2013/0354 have expired, no inspections done.
Comments from the Highways Division:

4. The project site is within the Municipal Separate Storm Sewer System (MS4) boundaries. Please incorporate soil erosion and sediment control Best Management Practices (BMPs) throughout the construction.

5. Any damage to existing pavement due to construction traffic and traffic pattern changes should be the responsibility of the State to return to previous or improved condition.

Please call Jordan Molina at (808) 270-7845 if you have any questions regarding this letter.

Sincerely,

[Signature]

ROWENA M. DAGDAG-ANDAYA
Director of Public Works

RMDA:JM:da
xc:   Highways Division
      Engineering Division
S:\DSA\Engn\CZM\Draft Comments\37004003_ecr_ea_kah_civic_cntr_&_mixed_use_complex.rtf
March 31, 2021

Ms. Rowena M. Dagdag-Andaya, Director
Department of Public Works
County of Maui
200 South High Street, Room 434
Wailuku, HI 96793

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai‘i

Dear Ms. Dagdag-Andaya,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated November 6, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. Engineering Division: Roadway improvements are required on roadways fronting the parcel. Please coordinate with the Department of Public Works on requirements.

The HHFDC will coordinate with the Department of Public Works (DPW) on required roadway improvements fronting the subject property.

2. Engineering Division: A traffic impact analysis report is required. Study limits and parameters shall be coordinated with the Department of Public Works.

A traffic impact analysis report is being prepared as part of the DEA, which DPW will have an opportunity to review and provide feedback.

3. Development Services Administration, Building Inspection Section: Demolition building permits B2013/0352, B2013/0353 and B2013/0354 have expired, no inspections done.

The HHFDC acknowledges that demolition building permits B2013/0352, B2013/0353 and B2013/0354 have expired.

4. Highways Division: The project site is within the Municipal Separate Storm Sewer System (MS4) boundaries. Please incorporate soil erosion and sediment control Best Management Practices throughout the construction.
The contractor will be required to incorporate soil erosion and sediment control Best Management Practices during construction.

5. **Highways Division:** Any damage to existing pavement due to construction traffic and traffic pattern changes should be the responsibility of the State to return to previous or improved condition.

The HHFDC will return existing pavement to previous or improved condition, if damage occurs as a result of construction-related traffic.

Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
November 9, 2020

Mr. Jeff Overton, AICP, LEED AP
Principal
G70
111 South King Street, Suite 170
Honolulu, Hawaii 96813

Dear Mr. Overton:

SUBJECT: EARLY CONSULTATION REQUEST FOR PROPOSED KAHULUI CIVIC CENTER AND MIXED-USE COMPLEX PROJECT, KAHULUI, ISLAND OF MAUI, HAWAII; TMK: (2) 3-7-004:003 (POR.) (EAC 2020/0009)

The Department of Planning (Department) is in receipt of your early consultation request for the Draft Environmental Assessment for the proposed Kahului Civic Center and Mixed-Use Complex Project at TMK (2) 3-7-004:003 in Kahului, Maui, Hawaii. The Department understands that the proposed project will involve the use of State lands and funds and a potential amendment to the County general plan, along with exemptions pursuant to Chapter 201H, Hawaii Revised Statutes (HRS). Therefore, these are “triggers” that require environmental review in accordance with HRS, Chapter 343. Because of the 201H component involved, HHFDC will serve as the accepting authority in this case.

Upon review of the early consultation request, the Department has the following comments:

1) The Department has received State and County funding to develop a Transit Oriented Development (TOD) Corridor Master Plan for 2.5 miles of Kaahumanu Avenue, between the commercial core of Kahului and the civic core of Wailuku. The Plan objective is to connect facilities and land uses that are or can be developed for affordable housing, commerce, commuting to enable better access and connectivity for multimodal transportation. The “Kaahumanu Community Corridor” planning process includes extensive community outreach with residents, business owners and stakeholders, in addition to coordination and collaboration among many county, state and federal agencies and departments. The Kahului Civic Complex is a critical asset, located within the study area for the TOD masterplan, for the Kaahumanu Community Corridor (KCC).
2) For plan development, please engage with the community to garner their feedback, and include vicinity residents within the TOD Corridor areas. For the Special Management Area (SMA) Use Permit process, the Notice of Public Hearing is typically mailed out to neighbors within 500 feet of the property boundary. Because the number of dwelling units within 500 feet is limited in this area, we encourage the Applicant to expand the outreach beyond the 500 foot limits. We note that the KCC has conducted many focus groups, given presentations to community associations and civic groups, and has established a social media presence and interactive web site (www.kaahumanucommunitycorridor.org). Perhaps they can share information that they have to aid in your community outreach efforts.

3) For the TOD Corridor Master Plan, the buildings must have mixed uses in order to create a vibrant community with easy access to jobs, housing, stores and services. Lower floors at street-level must be reserved for active uses, which will help to create an interesting and inviting streetscape for pedestrians and transit riders. Ground floors should include transparent windows along active frontages to create interesting façades, and improve the pedestrian experience. Primary building entrances must face the street or a public place. Doors and windows should clearly demarcate the public and private realm. Building designs must prioritize pedestrians by providing convenient access to commercial spaces and residential lobbies along pedestrian routes. Access to entrances must not be a barrier for pedestrians. Upper floors should be for offices and/or dwellings, which will act as “eyes on the street” security to provide greater safety, and convenient access to a variety of surrounding uses, including the neighboring Central Maui Transit Hub. The proposed mixed-use project concept is consistent with the TOD Corridor Master Plan design objectives and embodies Smart Growth principles, as they relate to land use. We note that this proposed facility is located across the street from a major retail shopping mall, across the street from and next to affordable rentals and densely populated residential areas.

4) Please develop the project with an appropriate scale, in consideration of existing, surrounding developments. Because the parcel is so small, it is difficult to envision what the proposed scope of work will look like when fully built-out. In order to be consistent with the TOD Corridor Master Plan, please use appropriate massing to make the buildings relatable to pedestrians. A Site Plan should be developed that promotes the use of smaller "blocks" and offers opportunities for pedestrian connections from adjacent streets.
5) Buildings should be set back from the street to enable a continuation of the open landscaped buffer at Queen Kaahumanu Mall and Maui Beach Hotel. Please design yards and setbacks so that it is more aesthetically-pleasing experience to passersby, similar to Maui Beach Hotel. The landscaping and open spaces will offer visual relief. In addition to landscaping, setback area improvements can include: hardscape and pedestrian amenities, such as publicly accessible seating, shade trees, portable planters, trash and recycling bins, and bicycle facilities.

6) Please provide green infrastructure like planted swales and shade trees for heat mitigation and storm water management.

7) Please engage with the adjacent Waterfront Apartment owners, Robert and Mark Day Company LLC, TMK (2) 3-7-004:001 to explore a collaborative operation with regard to vehicle access from 3rd Street to Lono Avenue, extending 3rd Street through the project site connecting Lono Avenue to Kane Street, as well as establishing access from 3rd Street to Kaahumanu Avenue for the proposed project.

8) Please submit a Zoning and Flood Confirmation Form to the County of Maui Department of Planning Zoning Administration and Enforcement Division for completion. We noticed that the Maui Island Plan designations were not included in your Project Information Summary, and it should be for the Draft EA. Please also address how the project implements the Maui Island Plan.

9) For 201H projects, there are circumstances that would require an EA and we note that the affordable housing component seems to fit those circumstances; but, HHFDC is requiring one, and this should be discussed in the Draft EA.

10) Regarding the mix of uses on site, please give thorough consideration to the volume of existing commercial space in the vicinity. The proposed concept involves approximately 5,000 square feet of commercial space. Should commercial space still be a part of the proposed scope of work, for the Draft EA, please elaborate on the type of commercial enterprises to occupy the space. For B-2 Community Business District zoning, some commercial enterprises require planning commission approval, so it would be helpful for the Department to know the specific type of enterprises proposed to determine whether they are a permitted use, or require additional permit approvals.

11) The relationship of the Kahului Civic Complex to the adjacent Central Maui Transit Hub is critical. Public transit will be best supported through
the proposed mix of uses, which will prioritize access via alternative modes of transportation, and incorporate design features meant to foster pedestrian activity. The proposed project design should consider the way bus transit riders will interface with the Kahului Civic Complex project. If the proposed mixed use project is designed with ground-floor commercial uses, the transit hub will be more convenient and comfortable, and result in the creation of inviting pedestrian spaces, so that the two areas flow seamlessly together. In addition, active ground floor uses with residential uses above the ground floor will result in on-site activity 24-hours per day and this will provide greater security for the Transit Hub. For the proposed development, please consider the installation of regular entrances, transparent windows, and wayfinding signs that help to prioritize alternative transportation options over private vehicle use. Please create pedestrian paths and sidewalks that are safe and directly lead to the Transit Hub. Provide integrated, delineated, and well-lit pedestrian paths that create a safe and efficient pedestrian experience and encourage walking. In addition to appropriate scale, texture and amenities, such as seating and public art or sculpture, will help to create pleasant and thoughtfully designed environment for those who choose to use alternative modes of transportation.

12) Because pedestrians, bicyclists, and transit riders should be the design priority, reducing or eliminating the visual, environmental, and economic impacts of parking lots and structures is of the utmost importance. Please design parking so that it can be used for other purposes like offices or community space in the future, like the Wailuku Civic Center parking structure.

13) Please provide onsite, convenient short- and long-term bicycle parking. Please locate short-term bicycle parking in a visible area and within close proximity to an entrance. Long-term bicycle parking should be provided within a structure. Please ensure that bike parking does not interfere with pedestrian movement or Americans with Disabilities Act (ADA) accessibility.

14) For the proposed development, please note that sidewalks in the TOD areas should be wider and must have a clear pedestrian path no less than five-feet wide. Street furniture, shade trees, bicycle parking, and other amenities should also be considered for project incorporation to support healthy pedestrian environments.

15) Please provide street trees with canopies for shade and heat mitigation. When street trees are not feasible, we encourage awning installation along the frontage.
16) For the SMA Use Permit, please analyze visual impacts from Kaahumanu Avenue toward Haleakala and Kahului Harbor. The building heights should not impact the views, so please locate taller buildings at the rear of the property away from Kaahumanu Avenue and sidewalk frontages.

Thank you for the opportunity to comment on this project. Should you have any questions about the comments in this letter, please contact Staff Planner Tara Furukawa by email at tara.furukawa@mauicounty.gov or by phone at (808) 270-7520.

Sincerely,

MICHELE MCLEAN, AICP
Planning Director

xc: Jordan E. Hart, Deputy Director (PDF)
   Clayton I. Yoshida, Planning Program Administrator, AICP (PDF)
   John S. Rapacz, Planning Program Administrator (PDF)
   Kathleen Aoki, Planning Program Administrator (PDF)
   Pam Eaton, Planning Program Administrator (PDF)
   Tara Furukawa, Staff Planner (PDF)
   Project File
MCM:CTY:TKF:lp
K:\WP_DOCS\Planning\EAC\20200009_KahuluiCivicCenter\EarlyConsultationEA_Comments.doc
March 31, 2021

Mr. Clayton I. Yoshida, AICP
Planning Program Administrator
Department of Planning
County of Maui
2200 Main Street, Suite 315
Wailuku, HI 96793

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai’i

Dear Mr. Yoshida,

On behalf of the Proposing Agency, the State of Hawai’i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated November 9, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. The Department has received State and County funding to develop a Transit Oriented Development (TOD) Corridor Master Plan for 2.5 miles of Kaahumanu Avenue, between the commercial core of Kahului and the civic core of Wailuku. The Plan objective is to connect facilities and land uses that are or can be developed for affordable housing, commerce, commuting to enable better access and connectivity for multimodal transportation. The “Kaahumanu Community Corridor” planning process includes extensive community outreach with residents, business owners and stakeholders, in addition to coordination and collaboration among many county, state and federal agencies and departments. The Kahului Civic Complex is a critical asset, located within the study area for the TOD masterplan, for the Kahului Community Corridor (KCC).

The HHFDC acknowledges that the Project is a critical asset within the Kahului Community Corridor (KCC) study area for the Transit Oriented Development (TOD) Corridor Master Plan.

2. For plan development, please engage with the community to garner their feedback and include vicinity residents within the TOD Corridor areas. For the Special Management Area (SMA) Use Permit process, the Notice of Public Hearing is typically mailed out to neighbors within 500 feet of the property boundary. Because the number of dwelling units within 500 feet is limited in this area, we encourage the Applicant to expand the outreach beyond the 500 foot limits. We note that the KCC has conducted many focus groups, given presentations to community associations and civic groups, and has established a social media presence and interactive website (www.kaahumanu)
community corridor.org. Perhaps they can share information that they have to aid in your community outreach efforts.

The HHFDC will consider expanding the Notice of Public Hearing outreach for the Special Management Area (SMA) Use Permit process beyond the 500-foot limits. The HHFDC will coordinate with the KCC in the Project's community outreach efforts.

3. For the TOD Corridor Master Plan, the buildings must have mixed uses in order to create a vibrant community with easy access to jobs, housing, stores and services. Lower floors at street-level must be reserved for active uses, which will help to create an interesting and inviting streetscape for pedestrians and transit riders. Ground floors should include transparent windows along active frontages to create interesting facades, and improve the pedestrian experience. Primary building entrances must face the street or a public place. Doors and windows should clearly demarcate the public and private realm. Building designs must prioritize pedestrians by providing convenient access to a commercial space and residential lobbies along pedestrian routes. Access to entrances must not be a barrier for pedestrians. Upper floors should be for offices and/or dwellings, which will act as “eyes on the street” security to provide greater safety, and convenient access to a variety of surrounding uses, including the neighboring Central Maui Transit Hub. The proposed mixed-use project concept is consistent with the TOD Corridor Master Plan design objectives and embodies Smart Growth principles, as they relate to land use. We note that this proposed facility is located across the street from a major retail shopping mall, across the street from and next to affordable rentals and densely populated residential areas.

The HHFDC acknowledges that the Project's mixed-use concept is consistent with the TOD Corridor Master Plan design objectives and embodies Smart Growth principles, as they relate to land use. The HHFDC will further take the design recommendations into consideration to ensure that the Project aids in the creation of a vibrant community in consistent with the TOD Corridor Master Plan principles.

4. Please develop the project with an appropriate scale, in consideration of existing, surrounding developments. Because the parcel is so small, it is difficult to envision what the proposed scope of work will look like when fully built-out. In order to be consistent with the TOD Corridor Master Plan, please use appropriate massing to make the buildings relatable to pedestrians. A Site Plan should be developed that promotes the use of smaller “blocks” and offers opportunities for pedestrian connections from adjacent streets.

The HHFDC will consider the scale and massing of the Project design and connectivity, as it relates to existing surrounding developments and the pedestrian experience.

5. Buildings should be set back from the street to enable a continuation of the open landscaped buffer at Queen Kaahumanu Mall and Maui Beach Hotel. Please design yards and setback so that it is more aesthetically pleasing experience to passersby, similar to Maui Beach Hotel. The landscaping and open spaces will offer visual relief. In addition to landscaping, setback area improvements can include: hardscape and pedestrian amenities, such as publicly accessible
seating, shade trees, portable planters, trash and recycling bins and bicycle facilities.

The HHFDC will consider maintaining the open, landscaped buffer and incorporating aesthetically-pleasing pedestrian amenities to match the open, landscaped buffer at Queen Kaʻahumanu Mall and Maui Beach Hotel.

6. Please provide green infrastructure like planted swales and shade trees for heat mitigation and storm water management.

The HHFDC will incorporate green infrastructure in the Project design.

7. Please engage with the adjacent Waterfront Apartment owners, Robert and Mark Day Company LLC, TMK (2) 3-7-004:001 to explore a collaborate operation with regard to vehicle access from 3rd Street to Lono Avenue, extending 3rd street through the project site connecting Lono Avenue to Kane Street, as well as establishing access from 3rd Street to Kaahumanu Avenue for the proposed project.

The HHFDC has reached out to The Waterfront Apartment owners through their property management company, Cirrus Asset Management Inc. to discuss the above-mentioned potential access connections. Per email correspondence (dated February 9, 2021), the owners’ representative clarified that 3rd street is a gated parking lot driveway. The owners are not interested in creating any access connections between the two properties, which would create significant safety and operations problems, as well as significantly reduce the value of the property.

8. Please submit a Zoning and Flood Confirmation Form to the County of Maui Department of Planning Zoning Administration and Enforcement Division for completion. We noticed that the Maui Island Plan designations were not included in your Project Information Summary, and it should be for the Draft EA. Please also address how the project implements the Maui Island Plan.

During the SMA Use Permit process a Zoning and Flood Confirmation Form will be submitted to the Department of Planning, Zoning Administration and Enforcement Division. The Maui Island Plan will be identified in the Project Information Summary and an extended discussion will be included in the Plans and Policies section of the DEA.

9. For 201H projects, there are circumstances that would require an EA and we note that the affordable housing component seems to fit those circumstances; but, HHFDC is requiring one, and this should be discussed in the Draft EA.

A discussion regarding the Project’s requirement to prepare an EA according to the 201H requirement, in addition to compliance with Hawai’i Revised Statutes, Chapter 343 will be discussed in the DEA.

10. Regarding the mix of uses on site, please give thorough consideration to the volume of existing commercial space in the vicinity. The proposed concept involves approximately 5,000 square feet of commercial space. Should
commercial space still be a part of the proposed scope of work, for the Draft EA, please elaborate on the type of commercial enterprises to occupy the space. For B-2 Community Business District zoning, some commercial enterprises require planning commission approval, so it would be helpful for the Department to know the specific type of enterprises proposed to determine whether they are a permitted use, or require additional permit approvals.

The HHFDC acknowledges the existing commercial spaces in the Project vicinity. The HHFDC also acknowledges that certain commercial uses in the B-2 Community Business District zoning designation require planning commission’s approval. The HHFDC is proposing to incorporate community-service oriented businesses in the Project. The DEA will elaborate on the proposed community-service oriented businesses.

11. The relationship of the Kahului Civic Complex to the adjacent Central Maui Transit Hub is critical. Public transit will be best supported through the proposed mix of uses, which will prioritize access via alternative modes of transportation, and incorporate design features meant to foster pedestrian activity. The proposed project design should consider the way bus transit riders will interface with the Kahului Civic Complex project. If the proposed mixed-use project is designed with ground-floor commercial uses, the transit hub will be more convenient and comfortable, and result in the creation of inviting pedestrian spaces, so that the two areas flow seamlessly together. In addition, active ground floor uses with residential uses above the ground floor will result in on-site activity 24-hours per day and this will provide greater security for the Transit Hub. For the proposed development, please consider the installation of regular entrances, transparent windows, and wayfinding signs that help to prioritize alternative transportation options over private vehicle use. Please create pedestrian paths and sidewalks that are safe and directly lead to the Transit Hub. Provide integrated, delineated, and well-lit pedestrian paths that create a safe and efficient pedestrian experience and encourage walking. In addition to appropriate scale, texture and amenities, such as seating and public art or sculpture, will help to create pleasant and thoughtfully designed environment for those who choose to use alternative modes of transportation.

The HHFDC is coordinating with the Department of Transportation to promote walkability and accessibility to and through the Project site from the Central Maui Transit Hub. The HHFDC will consider design features that will encourage multi-modal transportation and foster a safe and efficient pedestrian experience.

12. Because pedestrians, bicyclists, and transit riders should be the design priority, reducing or eliminating the visual, environmental, and economic impacts of parking lots and structures is of the utmost importance. Please design parking so that it can be used for other purposes like offices or community space in the future, like the Wailuku Civic Center parking structure.

The HHFDC will consider designing the proposed parking lot/structure to reduce potential visual impacts and to be utilized for other purposes such as offices or community space in the future.
13. Please provide onsite, convenient short- and long-term bicycle parking. Please locate short-term bicycle parking in a visible area and within close proximity to an entrance. Long-term bicycle parking should be provided within a structure. Please ensure that bike parking does not interfere with pedestrian movement or Americans with Disabilities Act (The) accessibility.

The HHFDC will provide onsite, convenient short- and long-term bicycle parking, which complies with Americans with Disabilities Act requirements.

14. For the proposed development, please note that sidewalks in the TOD areas should be wider and must have a clear pedestrian path no less than five-feet wide. Street furniture, shade trees, bicycle parking, and other amenities should also be considered for project incorporation to support healthy pedestrian environments.

The HHFDC will consider designing wider pedestrian paths (at least five-feet wide) and incorporating pedestrian amenities to support a healthy pedestrian environment.

15. Please provide street trees with canopies for shade and heat mitigation. When street trees are not feasible, we encourage awning installation along the frontage.

The HHFDC will consider providing street trees with canopies for shade and heat mitigation or the installation of awnings along the frontages where trees are not feasible.

16. For the SMA Use Permit, please analyze visual impacts from Kaahumanu Avenue toward Haleakala and Kahului Harbor. The building heights should not impact the views, so please locate taller buildings at the rear of the property away from Kaahumanu Avenue and sidewalk frontages.

The HHFDC will consider locating taller buildings at the rear of the property away from Ka'ahumanu Avenue and sidewalk frontages. The SMA Use Permit will analyze visual impacts from Ka'ahumanu Avenue toward Haleakalā and Kahului Harbor.

Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
KAʻAHUMANU AVE
COMMUNITY CORRIDOR

County of Maui
One Main Plaza
2200 Main Street, Suite 315
Wailuku, Maui, Hawai‘i 96793

June 28, 2021

Mr. Jeff Overton
G70
111 South King Street, Suite 170
Honolulu, Hawaii 96813

Dear Mr. Overton:

We appreciate the opportunity to review and discuss the Kahului Civic Center Mixed-Use Complex conceptual site plan. Thank you for meeting with the Project Management Team for the Kaʻahumanu Avenue Community Corridor Project on June 1, 2021 to coordinate planning for the two initiatives. The County is currently engaged in the development of recommendations in support of a vision for a transit-oriented future for Kaʻahumanu Avenue and surrounding areas. The Civic Center Mixed-Use Complex and adjacent County Transit Hub present an opportunity to catalyze a more transit-oriented, pedestrian-friendly future for Central Maui. The comments below are provided by Maui County staff in response to the Kahului Civic Center Mixed-Use Complex conceptual site plan. The comments communicate requested modifications to the site plan in support of the County’s multimodal vision for the future.

Key Issues

During initial discussions with County staff, HHFDC staff, and members of the design team several key issues were raised related to site access, circulation, and urban design best practices. Concerns regarding the site design of the Kahului Civic Center Mixed Use Complex and County Transit Hub are organized into the eight issues below.

Issue 1: Lack of clarity regarding pedestrian-level ground-floor transparency

The larger issue here is how the first floor of the buildings along Kaahumanu Ave. creates an engaging public space. In addition to providing eyes on the street, this is an opportunity to provide a gathering place for people from the project’s structures, people walking by, and for those who travel from outside the project area. If the building is setback is large enough, there could be both open lawn areas and plaza space for outdoor dining and other organized activities.

Please clarify which building frontages will include ground-floor transparency, and how much transparency is provided? At the pedestrian level, a predominance of glass that provides transparency between inside buildings and pedestrian activity outside on the streets and sidewalks is very important to the vitality of the pedestrian environment.

Glass should be used on the street level to ensure visibility for pedestrian interest and assure obvious “eyes on the street” or a sense of security resulting from indoor and outdoor activity being readily visible. The placement of landscaping or other exterior features immediately adjacent to entrances and window openings should not substantially diminish visibility into or out of buildings. In addition to street frontages, a high level of ground floor transparency should be provided in the DAGS building facing the County Transit Hub/parking deck.
Issue 2: Lack of clarity regarding location of building entrances

Where are building entrances located, both for the multi-family affordable housing buildings and the DARGS offices/library/adult school and ground-floor retail building? Buildings should include entrances on Kane Street and Ka'ahumanu Avenue. Pedestrian paths should connect from sidewalks directly to building entrances.

It would be very helpful to see sections through the site to understand the scale of the structures and how they relate to the streets, sidewalks, and other features in the public realm. Our comments are based mostly on examining the site plan, which does not provide sufficient information about the scale, size, and massing of the structures. As a result, our comments are somewhat limited in scope.

Issue 3: Insufficient pathways for pedestrian circulation

The site plan identifies a series of pedestrian pathways within the site that reveal multiple important gaps in pedestrian connectivity, including the lack of pedestrian connection in the following locations:

- The "greenway" needs to link Kaahumanu Ave. to Vevau St., especially because pedestrians would have to walk through the parking lot, as it is now shown.
- There is only one building entrance access point identified connecting one of the mixed-use buildings to Kane Street. Where are the other entrances located along Ka'ahumanu Avenue, Kane Street, or the internal east-west street within the site?
- There is no sidewalk connection along the eastern edge of the site/School Street. What is the treatment for the eastern edge of the site? Will the eastern edge of the site allow for pedestrian connections through to School Street?
- There are no pedestrian or vehicular connections indicated linking the site to 3rd Street.
- There are no walkways identified through the parking deck to the County Transit Hub or DARGS building. Please clarify the pedestrian connections and access points between the facilities.
- The sidewalk is discontinuous on south side of the new east-west street within the site. Sidewalks should be continuous and complete on both sides of this new internal street.
- There is a lack of clarity regarding sidewalk widths throughout the site. Please provide sidewalk width information for all locations. Minimum recommended width for all street edges is a total of 12 feet, including an 8-foot clear zone and 4-foot furnishing zone.

Issue 4: Large block size and lack of connection to adjacent streets

The distance between Ka'ahumanu Avenue and Vevau Street is approximately 550 feet, and the distance between Kane Street and School Street is approximately 500 feet: these lengths create a super block with no pedestrian connections through the site to access adjacent streets. Every effort should be made to design the site to allow for an east-west connection to 3rd Street to reduce the size of the super block and improve circulation.

Issue 5: Wide driveways and long crossing distances for both access points to the County Transit Hub on Vevau Street

The wide driveways into the County Transit Hub, as shown in the site plan below, present a pedestrian safety issue. The westernmost driveway into the transit center appears to be located within 15 feet of the driveway entry of the DARGS office building, functionally creating a very long pedestrian crossing for pedestrians traveling on the north side of the street. There is a lack of clarity around the location and presence of sidewalks on either side of Vevau Street in the site plan. The driveways appear to have wide
turning radii, creating wide crossing distances for pedestrians and increasing the risk of pedestrian-vehicle collisions at the entrances to the County Transit Hub.

Issue 6: Lack of clarity regarding bicycle circulation and bicycle parking

The site plan does not identify any consideration for bicycle facilities, paths, or bicycle parking within the site. Has bicycle circulation and bike parking been considered? If so, please identify the location of the paths. What is the width of the greenway path between the two mixed-use buildings? Is the path wide enough (15’+) to accommodate both bicycles and pedestrians? Where will bicycle parking be located?

Issue 7: Restricted access to the County Transit Hub created by the property’s perimeter fence

We understand that the perimeter fence of the County Transit Hub is required in a memorandum of understanding (MOU) between Maui County and the State of Hawai‘i. We are concerned that a perimeter fence around the transit hub would significantly hamper pedestrian connectivity and depress transit ridership. With the addition of a perimeter fence, people walking, biking, or rolling to the transit hub would be limited to accessing the Hub via Vavau Street.

We question if a perimeter fence surrounding the transit hub is warranted. Best practices for Crime Prevention Through Environmental Design (CPTED) have shown that superfluous reinforcements of this type can lead to the types of crime they are intended to prevent. We suggest supporting the modification of the MOU between Maui County and the State of Hawai‘i to remove the current request for perimeter fencing around the County Transit Hub.

Additionally, pedestrian connections should be provided and encouraged through inclusion of pedestrian pathways north through the parking deck, west to connect to the DAGS building, and through sidewalks of 12’ minimum along the north side of Vavau Street, in keeping with minimum standards for high-use pedestrian-oriented walkways.

Issue 8: Lack of clarity regarding green infrastructure best practices

There is a lack of clarity regarding the provision of green infrastructure on the site including electric vehicle charging stations and best practices for the infiltration of storm water. We would like to understand how the team is addressing these current and future needs on the site.
Thank you for the opportunity to comment. If you have questions or would like to discuss any of the comments provided, please contact Pam Eaton at (808-270-7214), or Pam.Eaton@co.mauie.hi.us.

Sincerely,

Pamela Eaton
Project Manager
Ka‘ahumanu Community Corridor

CC: Michele McLean, Director, Planning Department
Marc Takamori, Director, Maui Department of Transportation
Linda Munsell, Deputy Director, Department of Housing & Human Concerns
David Yamashita, Senior Planner, Department of parks & Recreation
Phil Andersen, Department of Housing & Human Concerns
Robin Shishido, Hawaii Department of Transportation
Lauren Armstrong, Executive Director, Maui MPO
Dean Minikami, HHFDC
Randy Chu, HHFDC
Stanley Fujimoto, HHFDC
Sergut Berhanu, HHFDC
January 12, 2022

Ms. Pamela Eaton, Project Manager
County of Maui
Ka‘ahumanu Avenue Community Corridor
One Main Plaza, 2200 Main Street, Suite 315
Wailuku, HI 96793

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003 (por.)
Kahului, Maui, Hawaii

Dear Ms. Eaton,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated June 28, 2021 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”).

The HHFDC acknowledges and greatly appreciates the urban design principles and best practices that are advocated by the Ka‘ahumanu Avenue Community Corridor Maui County staff. The HHFDC plans to issue a Request for Proposals (RFP) to seek an eligible developer for the design phase of the Project. The RFP may require these recommended urban design principles and best practices to be considered and implemented by the developer and vetted by the community.

Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Jeff Overton (G70 Principal) via email: jeff@g70.design or phone (808) 523-5866 if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal
Early Consultation Comments and Responses

Organizations and Individuals
October 30, 2020

G70
Attn: Jeff Overton, Principal
111 S. King Street
Suite 170
Honolulu, HI 96813

Mr. Overton,

This letter provides a response to the Early Consultation Request for the Wailuku State Building and the Kahului Civic Complex. Both project sites are located within the study area for the Ka‘ahumanu Ave Community Corridor (KCC), and both projects were submitted to Maui County for Early Consultation on October 6, 2020. Nelson\Nygaard is pleased to support the County of Maui on the KCC planning process, leading the consultant team and working in partnership with the County-led project management team.

The Ka‘ahumanu Ave Community Corridor process includes broad and inclusive community engagement of business owners, residents, and stakeholders. In February 2021, the KCC planning team will host a public event to learn from stakeholders and to inform the development of a community-supported plan for land use and transportation within the study area.

The following response identifies design and redevelopment considerations for G70’s use in developing proposals for the sites located within the KCC study area. We offer our team’s help to develop site concept plans for these redevelopment parcels, and we look forward to working with your team and with the Maui County team to plan for a walkable, connected, and resilient future.

KA‘AHUMANU AVE COMMUNITY CORRIDOR

The Ka‘ahumanu Ave Community Corridor project is an 18-month planning process, which began in June 2020, to study transit-oriented development opportunities along Ka‘ahumanu Avenue and Main Street, as well as for surrounding areas in Central Maui. Ka‘ahumanu Avenue carries 50,000 vehicles a day and connects the county seat in Wailuku with the commercial core of Kahului and the airport. The corridor is challenged to provide an accessible, comfortable environment that serves the island’s growing population and meets Maui’s changing travel needs.

The KCC project will:

- Identify opportunities to connect people to jobs and affordable housing
- Study market potential to improve economic development and redevelopment
- Identify opportunities to increase public transit ridership
- Develop a walking, rolling, and biking network
- Provide greater access to public transit, jobs, nearby medical services (Maui Memorial Medical Center and Kaiser Permanente clinics), schools (UH-Maui College and Baldwin High School), and government services (County, State, and Federal offices)

This study, to be completed in late 2021, will result in a clear framework for funding and implementation to achieve Maui County’s objectives to integrate land use and infrastructure planning, increase the supply of affordable housing, and provide safe mobility options.
• **Street-Facing Frontages and Mixed Uses:** Street-facing building frontages should include transparent ground floor materials and allow for a mix of uses. Locate primary building entrances on the street-facing frontage of the building. Secondary entrances may face parking lots.

• **Opportunities for Activation:** Anticipate the need for additional sidewalk width to accommodate sidewalk furnishing zones and allow for outdoor seating or dining.

**Kahului Civic Complex**

The site edges are too long to create visual interest as a single building. Any buildings with front facades longer than 200 feet should be designed to appear as several distinct buildings with distinct architectural character.

Buildings should form a nearly continuous edge facing the three surrounding streets: Ka‘ahumanu Ave, Kane St, and Vevau St, with the buildings fronting the streets. This could mean that there is a single U-shaped building or multiple buildings with gaps between them, forming a U. All surface parking should then be located toward the center of the block, reaching to its eastern (non-street) edge.

All front doors must face the surrounding streets, with rear doors to the parking allowed. The rear doors may be no more prominent than the front doors, and the front doors must be unlocked whenever the rear doors are unlocked. The front sidewalks and landscape must make the front doors appear to be the primary access to the building.

Sidewalks on Ka‘ahumanu Ave, Kane St, and Vevau St should include an outer planting zone that is 6 feet to 10 feet deep with deciduous canopy trees planted at 40 feet minimum on center, and a clear paved walking zone of at least 10 feet on Ka‘ahumanu Ave and at least 6 feet on the side streets.

**Wailuku State Building**

There is an established deep setback that you may want to respect, and you may want to consider connecting the front parking lot on the adjacent District Court site onto this site directly. That is not the ideal solution: both this building and the District Court should have lawn in front, not parking. But since the parking lot already exists, and is only one bay deep, matching it on the Wailuku State Building site would be acceptable. It would need to be heavily landscaped and detailed like a head-in parking street, not a parking lot, but rather lined with sidewalk and street trees to its east.

The alternative would be to pull the building to the street and place parking behind. This should be studied as well. Given that the site is not large enough to provide more than a fraction of the parking it will require, we would recommend exploring zero parking on site, and satisfying the demand elsewhere with a district-wide parking strategy.

Thank you for the opportunity to comment. We look forward to working closely with you as we advance the Ka‘ahumanu Ave Community Corridor.

Sincerely,

Jennifer Wieland
Principal & Project Manager
March 31, 2021

Ms. Jennifer Wieland
Principal & Project Manager
Nelson/Nygaard
811 First Avenue, Suite 610
Seattle, WA 98104

Subject: Early Consultation for Draft Environmental Assessment
Kahului Civic Center Mixed-Use Complex Project
Tax Map Key: (2) 3-7-004:003
Kahului, Island of Maui, Hawai‘i

Dear Ms. Wieland,

On behalf of the Proposing Agency, the State of Hawai‘i, Department of Business, Economic Development & Tourism, Hawaii Housing Finance & Development Corporation (HHFDC), thank you for your comment letter dated October 30, 2020 concerning the Draft Environmental Assessment (DEA) for the Kahului Civic Center Mixed-Use Complex Project (“Project”). The following responses are offered regarding your comments (italicized below).

1. *The site edges are too long to create visual interest as a single building. Any buildings with front facades longer than 200 feet should be designed to appear as several distinct buildings with distinct architectural character.*

   **Buildings should form a nearly continuous edge facing the three surrounding streets: Ka‘ahumanu Ave, Kane St, and Vevau St, with the buildings fronting the streets. This could mean that there is a single U-shaped building or multiple buildings with gaps between them, forming a U. All surface parking should then be located toward the center of the block, reaching to its eastern (non-street) edge.*

   **All front doors must face the surrounding streets, with rear doors to the parking allowed. The rear doors may be no more prominent than the front doors, and the front doors must be unlocked whenever the rear doors are unlocked. The front sidewalks and landscape must make the front doors appear to be the primary access to the building.**

   **Sidewalks on Ka‘ahumanu Ave, Kane St, and Vevau St should include an outer planting zone that is 6 feet to 10 feet deep with deciduous canopy trees planted at 40 feet minimum on center, and a clear paved walking zone of at least 10 feet on Ka‘ahumanu Ave and at least 6 feet on the side streets.**

The HHFDC will consider the recommended design concepts, landscape design, and architectural treatments during the design phase of the Project.
Your comment letter and this response will be included in the DEA. Thank you for your participation in the environmental review process. Please contact Vi Verawudh, Senior Planner at (808) 523-5866 or via email: viv@g70.design if you have any questions or require additional information.

Sincerely,

Group 70 International, Inc., dba G70

Jeffrey H. Overton, AICP, LEED AP
Principal