ENVIRONMENTAL IMPACT STATEMENT for HAWAII KAI MARINA ZONING

Hawaii Kali, Honolulu District, Island of Oahu, Hawaii

September 1985

SUBMITTED PURSUANT TO CHAPTER 343, hamal REVIBED statutes.
ENYIRONMENTAL IMPACT Statement regulations

F.d. Rodriquez, prEsident ENVIRONMENTAL COMMUNICATIONS, INC. ENVIRONMENTAL CONSULTANTS FOR the kaiser development company

TABLE OF CONTENTS
Section Page
I. SUMMARY I-1
II. PROJECT DESCRIPTION AND STATEMENT OF OBJECTIVES II-1
A. Project Location II-1
B. Project Description II-1

1. Marina 7E (A) II-1
2. Marina 7E (B) II-5
3. Marina 8 II-6
4. Marina 11 (A) II-6
5. Marina 11 (B) II-7
6. Kaluanui $2 \& 3$ II-7
7. Kaluanui 1 II-8
C. Statement of Objectives II-8
D. Phasing and Funding II-9
8. Phasing II-9
9. Funding II-9
III. THE AFFECTED ENVIRONMENT III-1
A. Geographical Characteristics III-1
10. Topography III-1
11. Soils III-1
12. Climate III-1
B. Hydrological Characteristics III-2
13. Surface Runoff III-2
14. Flood Hazards III-3
15. Tsunami Inundation III-3
C. Biological Characteristics III-4
16. Flora III-4
17. Fauna III-4
D. Historical and Archaeological Characteristics III-4
18. Historical Summary III-4
19. Archaeological Reconnaissance Area III-5
E. Existing Traffic Conditions III-6
F. Ambient Air Quality III-11
G. Ambient Traffic Noise Conditions III-12
H. Infrastructure and Utilities III-13
20. Water Supply III-13
21. Electrical and Telephone Service III-16
22. Gas III-17
23. Sewage Requirements III-17
24. Solid Waste III-18
I. Public Facilities and Service III-18
25. Police and Fire Protection III-18
26. Health Services III-18
27. Educational Facilities III-19
28. Recreational Facilities III-19
J. Land Use and Regulatory Characteristics III-19
Objective A, Policy 5 thru 10 III-26

TABLE OF CONTENTS
 (continued)

Section -
IV. ANTICIPATED IMPACTS AND MITIGATIVE MEASURES IV-1
A. Impacts on Geographical Characteristics IV-1
B. Impact on Hydrological Characteristics IV-1
C. Impact on Biological Characteristics IV-5
D. Impact on Archaeological Sites IV-5
E. Impact on Traffic Conditions IV-6
Study Assumptions and Analysis Framework IV-6
Recommended Transportation Program IV-111. Ridesharing Program
IV-112. Proposed Roadway Modifications
IV-11Effectiveness Measures
IV-14
Implementation Schedule IV-17
Ridesharing Measures Ridesharing Measures IV-17Roadway Modifications
F. Impact on Air Quality IV-18
IV-18Air Quality Impact of Project Construction
Air Quality IV-18
IV-19
Indirect Air Quality Impact of Increased Traffic IV-20
Short Term Mitigative Measures IV-20
Long Term Mitigative Measures IV-21
G. Impact on Noise Environment IV-22
H. Impact on Infrastructure and Utilities IV-24
I. Impact on Public Facilities and Services IV-24
J. Impact on Economic and Social Characteristics IV-25

1. Economic Impact IV-25
2. Social Impacts IV-25
K. Impact on State Plan and Functional Plans IV-30State Education Plan \& State Higher Education Plan
IV-31State Housing Plan
State Health Plan IV-31
State Conservation Lands Plan IV-32
IV-32State Agriculture Plan
State Historic Preservation Plan IV-33
IV-33State Transportation Plan
IV-33State Recreation Plan
IV-34State Energy Plan
IV-34State Tourism Plan
IV-35
State Water Resources Development Plan IV-35
V. ANY PROBABLY ADVERSE ENVIRONMENTAL EFFECTS WHICH CANNOT BE AVOIDED V-1
VI. ALTERNATIVES TO THE PROPOSED ACTION VI-1
A. No Action Alternative VI-1
B. Single Family Residential Alternative VI-1

TABLE OF CONTENTS
 (continued)

Section Page
VII. THE RELATIONSHIP BETWEEN LOCAL AND SHORT-TERMUSES OF MAN'S ENVIRONMENT AND THE MAINTENANCE ANDENHANCEMENT OF LONG-TERM PRODUCTIVITY AND IRREVER-SIBLE/IRRETRIEVABLE COMMITMENTS OF RESOURCESVII-1
VIII. AN INDICATION OF WHAT OTHER INTERESTS AND CON-SIDERATIONS OF GOVERNMENTAL POLICIES ARE THOUGHTTO OFFSET THE ADVERSE ENVIRONMENTAL EFFECTS OFTHE PROPOSED ACTIONVIII-1
IX. LIST OF NECESSARY APPROVALS IX-1
X. LIST OF CONSULTED PARTIES X-1
XI. COMMENTS RECEIVED ON DRAFT EIS XI-1
XII. REFERENCES XII-1
XIII. APPENDICES
Appendix AEnvironmental Aspects of Storm Water Runoff
Appendix BArchaeological Reconnaissance of the Proposed Marina ProjectKaluanui 1, 2, and 3 (Hawaii Kai)
Appendix CHawaii Kai Transportation Management Study
Appendix D
Air Quality Study for the Marina Zoning RequestsHawaii Kai, Oahu
Appendix EHawaii Kai Marina Traffic Noise Study
Appendix FA Social Impact Analysis of the Marina Zoning Project Proposedby Kaiser Development Company in Hawaii Kai, City and Countyof Honolulu, Hawaii

LIST OF FIGURES

Figure		Page
1.	Project Location	II-2
2.	Project Site Plan	II-3
3.	Transportation Analysis	IV-8
4.	Census Tracts	IV-26
LIST OF TABLES		
Table		Page
1.	Summary of Development Data	II-4
2.	Classification and Cross Reference of Sites	III-7
3.	Hawaii Kai Trips Inbound on Kalanianaole Highway	III-9
4.	Comparisons of Existing and Future Traffic Noise Levels in Hawaii Kai	III-14
5.	Existing and Future Distances to 65 and $60 \mathrm{~L}_{\mathrm{dn}}$ Contours	III-15
6.	Public Parks and Recreation in Hawaii Kai	III-20-25
7.	Estimated Storm Water Runoff Volume and Constituent Changes due to the Proposed Hawaii Kai Development Marina Zoning Project, Oahu Hawaii	IV-3
8.	Recommended Ridesharing Program	IV-12
9.	Recommended Roadway Modifications	IV-13

SUMMARY	
Action:	Chapter 343 applicant action for zoning change
Project Name:	Hawaii Kai Marina Zoning
Accepting Authority:	Department of Land Utilization, City \& County of Honolulu
Project Location:	All portions of the project are located within the Master planned community of Hawaii Kai in the
	Honolulu District of Oahu. The project sites are bounded by Kaluanui Ridge, Hawaii Kai Drive, Kuapa Pond and Lunalilo Home Road. All parcels are currently vacant and unused.

six to seven years from approval of the zoning is 2,400 with the precise sequencing dependent upon market conditions. Of this number, about 470 will be low-density units (A-l zoning) and about 1,930 will be medium-density units ($\mathrm{A}-2$ zoning). The estimated population increase of 5,270 that will be generated by the development fits within the growth allocation for East Honolulu established in the Oahu General Plan and the East Honolulu Development Plan.

Probable Environmental Impacts:

1. Environmental impacts (short-term) will include dust, noise, and traffic disruptions due to the grading and construction on the project site. These impacts will be mitigated to a large extent by adhering to the Grading Ordinance, air quality standards, and construction noise standards and regulations.
2. The project will commit the sites to urban use therefore, all other uses will probably be foreclosed. However, the land is planned and committed for such urban use in the East Honolulu Development Plan.
3. The existing infrastructure, e.g. telephone, electricity, sewerage systems and internal roads, is available or will be made available to adequately accomodate the proposed project. Air and noise quality will be impacted due to increases in vehicular traffic, however, rideshare measures proposed by the developer should minimize these impacts.

A. Project Location

The project is located within the master planned community of Hawaii Kai, Honolulu District Oahu, Hawaii (Figure 1). Kuli'ou'ou valley is located to the west and Koko Head crater lies east of the project area which is in the west or "marina" side of Hawaii Kai. Kuapa Pond, also referred to as the Hawaii Kai Marina, is a central feature of the project area.
B. Project Description

The project involves rezoning of approximately 97 acres to either A-1 Low-Density Apartment or A-2 Medium-Density Apartment from existing $\mathrm{R}-6, \mathrm{P}-1$ and $\mathrm{Ag}-1$ zoning districts in accordance with the East Honolulu Development Plan Land Use Designations for the areas. The seven separate parcels, which constitute the total ${ }^{-}$ project, are identified in Figure 2. The estimated number of apartment units to be constructed over a period of six to seven years from approval of the zoning is 2,400 . Of this number, about 470 will be low-density units (A-1 zoning) and about 1,930 will be medium-density units ($\mathrm{A}-2$ zoning). The estimated population increase of 5,270 that will be generated by the development fits well within the growth allocation for East Honolulu established in the Oahu General Plan and the East Honolulu Development Plan. Specific project densities and development constraints, are discussed, when each tract is profiled and are sumarized in Table 1.

1. Marina 7E (A) is the peninsula of land in the middle of the marina across from the Esplanade and Kaimala Marina. A-1 zoning with a 30^{\prime} height limit is requested for this parcel.

Conceptual plans show approximately 250 units on the 20.16acre site. Proposed development will consist of two-story buildings with surface parking.

This parcel is land created by filling in a portion of the original Kuapa Pond. The existing ground varies from 6 to 10 ft . (MSL), except where it slopes down to approximately 3 ft . (MSL) adjacent to the existing marina wall. There is currently a large amount of material stockpiled on the site from dredging that was completed in 1982. The stockpile varies from 7 to 10 ft . in height above the ground and will be removed prior to development of the parcel. All required utilities are available within the adjacent streets.
2. Marina 7E (B) is that portion of land on the makai side of Wailua Street and the west side of Lunalilo Home Road. A-2 zoning is requested for this parcel. Although the East Honolulu Development Plan would allow development to a 60 ft . height, applicant proposes to limit development to 40 ft . due to community concerns. Conceptual plans show approximately 260 units on the 14.39 -acre site. The proposed development will consist of three-story buildings with surface parking.

This parcel is almost entirely land created by filling in a portion of the original Kuapa Pond. The existing ground varies from 6 to 10 ft . (MSL), except where it slopes down to approximately 3 ft . (MSL) adjacent to the existing marina wall. There is currently a large amount of material stockpiled on the site from dredging that was completed in 1982. The stockpile varies from 7 to 10 ft . in height above the ground and will be removed prior to development of the parcel. All required utilities are available within the adjacent streets. A large open unlined drainage ditch conveying storm runoff waters from Lunalilo Home Road to the marina will probably be realigned and improved with underground concrete pipes and/or box culverts as part of the on-site work.
3. Marina 8 is located on the mauka side of Wailua Street and the west side of Lunalilo Home Road. A-1 zoning with a 30 ft . height limit is requested for this parcel. Conceptual plans show approximately 120 units on the 9.3 -acre site. Proposed development will consist of two-story buildings with surface parking.

The parcel is nearly flat with an elevation ranging from 10 ft . (MSL) near the existing roadways to 2 ft . (MSL) near the shoreline. A marina wall will have to be constructed along the shoreline when the area is developed. This will require some excavation/dredging adjacent to the boundary to construct the shoreline protection structure (i.e., marina wall). Some fill will be required behind the shoreline structure to raise the existing ground level up above the potential flood level to an elevation of $6+\mathrm{ft}$. (MSL). There is also a large existing sewer force main line that runs through the parcel, portions of which may have to be relocated when the area is developed. All required utilities are available within the adjacent streets.
4. Marina 11 (A) is the portion of land on the mauka side of the Kuapa Kai shopping center. A-2 zoning, with a 60 ft . height limit is requested for this parcel. Conceptual plans show approximately 300 units on the 8.727 -acre parcel. Proposed development will consist of six-story buildings with parking structures.

This parcel is amost entirely land created by filling in a portion of the original Kuapa Pond. The existing ground varies from 6 to 9 ft . (MSL), except where it slopes down to an elevation of approximately 3 ft . (MSL) adjacent to the existing marina wall. All required utilities are available within the adjacent streets.
5. Marina 11 (B) is the narrow portion of land on the east side of Hawaii Kai Drive from the mauka boundary of Marina 11 (A) to the Wailua Street bridge. A-1 zoning with a 30 ft . height limit is requested for this parcel. Conceptual plans show approximately 100 units on the 8.427 -acre parcel. Proposed development will consist of two-story buildings with surface parking.

This parcel is also almost entirely land created by filling in a portion of the original Kuapa Pond. The existing ground varies from 6 to 9 ft . (MSL), except where it slopes down to an elevation of approximately 3 ft . (MSL) adjacent to the existing marina wall. All required utilities are available within the adjacent streets. There are two existing drain lines under Hawaii Kai Drive that discharge storm runoff through the parcel via two unlined ditches. When the area is developed, it is anticipated that pipes and/or box culverts would be installed to eliminate the ditches.
6. Kaluanui 2 and 3 is located on the mauka side of Hawaii Kai Drive and is makai of the Post Office. A-2 zoning, with a 60 ft . height limit, is requested for this parcel. Conceptual plans show approximately 350 units on the 13.86 -acre site. Proposed development will vary from six-story buildings with parking structures at the back of the parcel to two and/or three-story buildings with surface parking adjacent to Hawaii Kai Drive.

The front of the parcel is nearly flat, ranging from 10 to 20 ft. (MSL). The back of the parcel begins to slope up as the end of Mariner's Ridge is encountered. A permanent system to divert storm runoff from Mariner's Ridge will have to be installed to convey the runoff to existing drainage facilities in Hawaii Kai Drive. All other utilities are available within Hawaii Kai Drive.
7. Kaluanui 1 is located across Hawaii Kai Drive from the Anchorage along the eastern slope of Mariner's Ridge. A-2 zoning with a 150 ft . height limit is requested for this parcel. Conceptual plans show approximately 1,020 units on the $22.92-$ acre site. The proposed development will consist of 15 -story buildings with parking structures located behind the buildings up against Mariners Ridge.

Except for the back of the parcel (west and north sides) where the eastern slope of Mariner's Ridge is encountered, most of the parcel is nearly flat with an elevation ranging from 10 to 20 ft . (MSL). All required utilities are available in the adjacent Hawaii Kai Drive. There is a temporary silt basin at the northern end of the parcel to handle the storm runoff that flows down to the parcel from the large gully at the northern end. A storm water diversion system will also be installed along the western boundary along the bottom of Mariner's Ridge.

C. Statement of Objectives

It is Kaiser's intent to build and market quality apartment housing units in keeping with the Hawaii Kai master planned community. Open space, generous setbacks, lush landscaping marina orientation, quality architecture and construction, and ample off-street parking, are all aspects of the development that are characteristic of Hawaii Kai. These elements will be maintained in the proposed development.

A comprehensive transportation management program is being recommended by the developer in connection with the zoning. The program, featuring among other things, a number of rideshare measures, supports and implements important Honolulu General Plan Transportation Policies.

D. Phasing and Funding

1. Phasing

It is anticipated that the proposed project will take six to seven years to complete from approval of zoning, depending on market acceptance and economic conditions. The sequence of development is not yet established and must remain somewhat flexible to meet market demand. It is anticipated, however, that each parcel will be developed in phases. Development may also alternate from the first phase of one parcel to a phase of another parcel before complete development of any single parcel. This will allow flexibility to shift from low-rise to mid-rise development, at different price levels as the market demand varies.
2. Funding

The applicant/developer, as master developer of the project, will secure private funding for applicable portions of the project.
A. Geographical Characteristics

1. Topography

The seven individual parcels range from filled lands recovered from the dredging and filling of Kuapa Pond, to the hard ground below Kaluanui Ridge (also known as Mariner's Ridge). The sites adjacent to the Marina are generally level, while the Kaluanui $1,2, \&$ 3 parcels have varying topography ranging from 20^{\prime} to 80^{\prime}. All the higher structures (maximum 150 feet) are to be built at the base of Kaluanui Ridge with a minimum of cutting and grading. This serves to greatly minimize any impact upon the views of existing residents. This concept was successfully used in the development of the Mauna Luan and the other medium-density high rise buildings located against the other side of Kaluanui Ridge. The proposed buildings will be smaller (150 feet rather than 200 feet) than the Mauna Luan. The sites are vacant at the present time and are serviced by existing utilities and interior road systems.

2. Soils

Soils within the project area consists of fill land, mixed and Koko silt loam. The fill land, mixed consists of areas filled with material dredged from the pond or hauled from nearby areas. The Koko silt loam is generally within 21 to 6 percent slopes. Permeability is moderate. Runoff is slow, and the erosion hazard is slight. The available water capacity is 2.1 inches per foot of soil. Lualualei type extremely stony clay is the predominant soil on the upper slopes.

3. Climate

The climate is near constant with prevailing trade winds from the East-Northeast and typical temperature ranges from 65-86 degrees Fahrenheit. Annual rainfall is approximately $20-35$ inches per year.

1. Surface Runoff

Approximately 80% of the proposed devlopment area is underlain by mixed fill, which was primarily derived from dredging the original Kuapa Pond, an ancient Hawaiian fish pond. The material is thus, primarily of alluvium origin which is generally only moderately permeable. The remaining approximately 20% of the development area consists of Koko soil, a fairly permeable material. The project site is presently covered with a varying amount of grasses and brush, principally California grass and Haole Koa. The mean annual rainfall in this area is approximately 35 in . (DOWALD, 1981). The proposed development involves use of a considerable length of marina shoreline. A large area on the eastern portion of the proposed development, across from Kaiser High School, consists of berms constructed around its periphery serving as the settling! dewatering basin for part of the dredged material removed from the 1982 dredging of Kuapa Pond.

Inasmuch as there is no water quality information for storm water runoff from the predeveloped (1985) project area itself, nitrogen and phosphorus levels of $1.10 \mathrm{mg} / \mathrm{L}$ and $0.11 \mathrm{mg} / \mathrm{L}$, respectively, were used for the present (1985) conditions. These values, which were based on information published by Loehr (1972), were derived from nitrogen outputs of $3 \mathrm{lb} /$ acre-yr and phosphorus outputs of one order of magnitude less; an annual rainfall of $35-\mathrm{in}$. ; and a rainfall-runoff coefficient of 0.3 .

Representative suspended solids values in storm water runoff from the predeveloped (1985) project area are again difficult to determine, inasmuch as it is commonly presumed, by mainly indirect methods, that the majority of the annual suspended solid load is carried by the heavy storm water runoff events which tend to occur on an infrequent basis. For the present study, the concentration
of suspended solids was based on composite measured and estimated suspended solids load per unit area from various Oahu streams, including those out of the entire Kaneohe Bay Drainage Basin, as reported by Jones et al. (1971). Following this reasoning, the suspended solids concentration value for predeveloped conditions for comparative purposes was set at $1,500 \mathrm{mg} / \mathrm{L}$.

Quality data for urban storm water (post-development conditions) is sparse, both locally and nationally, Loehr (1974) compiled urban storm water runoff quality data collected from thoughout the United States, as well as from a few international locations. As expected, the data are diverse. Locally, Fujiwara (1973) reported urban storm water quality data collected from storm drains in different drainage areas of Honolulu, and these results were used to stimulate post-development runoff quality, which were, respectively, $0.60,0.57$, and $250 \mathrm{mg} / \mathrm{L}$, for nitrogen, phosphorus, and suspended solids. Attention is likewise drawn to the heavy metal content in residential runoff, especially with respect to iron, chronium, copper, lead, and zinc.

Drainage from the existing urban areas presently flow into Kuapa Pond via City and County systems. Capacity is adequate to accommodate increased flows from the proposed project.

2. Flood Hazards

The project sites lie outside of the 100 -year flood boundary according to the Floodway flood boundary map and has been listed as an area of undetermined, but possible, flood hazards by the FIRM flood insurance rate map.
3. Tsunami Inundation

The project sites do not lie within Civil Defense Tsunami Inundation Zones.

C. Biological Characteristics

1. Flora

The predominant vegetation in the project area consist of kiawe, koa haole, weedy species and exotic plants that are common on the ridge crest, slopes and undeveloped areas around the marina. Grasses are especially dense in areas that have been bulldozed or where silt has recently been stockpiled. The vegetation reflects the semi arid climatic conditions of the area. There are no endangered species located on any of the project sites.

2. Fauna

The urban uses of adjacent areas limit the potential of wildlife habitats for endangered birds; however, the shallow, gentle sloping intertidal shoreline areas still provide shelter, resting and feeding areas for migratory shorebirds and other exotic birds. Certain waterbirds still utilize the marina despite the presence and activities of man, such as ducks observed in the quiet residential areas of the marina, migratory shorebirds observed in vacant lots, and Golden Plovers and Aukuu observed in the upper basin.

The presence of endemic Hawaiian wildlife is limited in the project areas due to the extensiveness of land alterations. Rodents, mongoose and feral dogs and cats may be found in the inland areas along with the possibility of the Hawaiian Bat and owl in the upper ridges.
D. Historical and Archaeological Characteristics

1. Historical Summary

The first known sighting of Maunalua Bay by Europeans is recorded by Nathaniel Portlock in 1786 when he and Captain George

Dixon went ashore near Point Dick (Koko Head). Later they rowed along the coastline in search of a spring from which to obtain water and landed "amidst a vast number of the inhabitants" in the general vicinity of Kuapa Pond (Portlock as quoted in Takemoto et al. 1975). Subsequent writings by Mathison (1825) and Chamberlain (1826,1828) in the early 1800 s also mention the inhabitants of the area and villages that are located near Kuapa Pond. Davis (1985) believes that the village mentioned by Mathison, which contained 100 houses, was the same village research area. The villages mentioned by Chamberlain, however, were thought by Davis (1985), to be located on a causeway separating the pond from the sea, and inland at the head of Kuapa Pond on the eastern shore near Pahua Heiau.

As noted by Davis (1985), the years between 1825 and 1860 are also of importance historically, since Maunalua was an anchorage for whaling ships and inter-island traders. It was here that they provisioned their boats with sweet potatoes.

A number of interesting references to the Maunalua area and Kuapa Fishpond are also found in traditional legends and historical literature. These references are addressed in both Takemoto et al. (1975) and Kelly et al (1984).

2. Archaeological Reconnaissance Area

The archaeological reconnaissance area was limited to the portion of the project that is hard ground, as apposed to lands created by the developer. The field work was conducted in the Maunalua area, District of Kona, Island of Oahu, Hawaii in portions of Royal Patent No. 4475 and in portions of Land Commission Award 7713, Apana 30 (TMK 01:03:09:08). The reconnaissance area, situated on the eastern slopes and adjacent flatlands of Kaluanui Ridge and Kamilonui Valley, contained ca. 36 acres. Kaluanui 1 is bounded
by Hawaii Kai Drive on the east, Kaluanui Road on the south, and Kaluanui Ridge on the north and west. Kaluanui $2 / 3$ is bounded by Hawaii Kai Drive on the south, Kaluanui Road on the northeast, and by the slopes of Kaluanui Ridge on the north.

The project area did not contain any sites listed on either the National Register of Historic Places or the Hawaii Register of Historic Places. During the field survey, nine archaeological sites and six possible sites were identified, mapped, and recorded (Table 2). One of the sites is an historic habitation area; the remaining sites are inferred to reflect pre/proto historic utilization of the area. Three of these are caves, two are platforms (one associated with a free standing wall), one is a large terraced platform with associated petroglyphs, one is a series of low terraces which may be a complex of modified natural stone cavities. Six additional natural stone cavities were also identified, though it is uncertain whether these contain cultural material.

E. Existing Traffic Conditions

Travel in the East Honolulu corridor is served by a single major traffic artery, the Kalanianaole Highway. Kalanianaole Highway connects the East Honolulu residential communities to Interstate Route $\mathrm{H}-1$ and the major Honolulu employment centers, and to Windward Oahu. The residential nature of the area results in a heavy directional flow of commuter travel in the Ewa and Koko Head directions on Kalanianaole Highway during the morning and evening peak travel periods, respectively.

Kalanianaole Highway is a divided highway in a 120 -foot wide right-of-way from the $\mathrm{H}-1$ Freeway to Kirkwood Street. The divided section has three lanes in each direction Ewa of West Hind Drive, and three Ewa and two Koko Head direction lanes between West Hind Drive and Kirkwood Street. Between Kirkwood Street and
Table 2. Classification and Cross Reference of Sites

Field No.	State No. 50-80-15-	Kaluanui Area	Site Type	Site Condition	Abbreviated Recomendation
0001	2900	2/3	Terraced Platform	Dense vegetation Excellent integrity	Test and Preserve
0002	00427 ${ }^{1}$	2/3	Terraces	Dense vegetation Poor condition	Test and Evaluate
0003	$2902{ }^{2}$	2/3	Cave	Minimal disturbance	Total Excavation
0004	2905	2/3	Natural Cavity	Undisturbed	Total Excavation
0005	2903	2/3	Wall and Platform	Minimal disturbance	Test and Excavate
0006	2904	2/3	Platform	Minimal disturbance	Test and Excavate
0007	2906	1	Historic Habitation	Abandoned and collapsed	No Further Work
0008	$2908{ }^{3}$	1	Cave	Excavated - artifacts in backfill	Total Excavation
0009	2907	1	Walled Cave and Platform	Minor cultural disturbance	Total Excavation
0010	2901	1	$\begin{aligned} & \text { Dirt-filled } \\ & \text { Natural Cavity } \end{aligned}$	Cultural disturbance	Total Excavation
$\underset{\mathrm{D}, \mathrm{E}}{\mathrm{~A}, \mathrm{~B}, \mathrm{C}}$	none	1, 2/3	Natural Cavity	Undisturbed	Locate and Sample

[^0]Hawaii Kai, the roadway is a four-lane undivided highway, with left-turn lanes provided only at East Halemaumau, Hawaii Kai Drive, Keahole Street and Lunalilo Home Road.

Current roadway facilities and public transit services along Kalanianaole Highway are intensely used throughout the morning and evening peak travel periods. Travel conditions on Kalanianaole Highway, as evidenced by travel speeds recorded in studies by the Oahu Metropolitan Planning Organization, are similar to those for other Ođuu travel corridors.

Peak direction travel on Kalanianaole Highway by Hawaii Kai residents and visitors amount to 2,800 and 2,200 vehicle trips during the morning and evening peak traffic hours, respectively. Hawaii Kai trips comprise slightly over one-half of the peak hour traffic at the Ewa end of Kalanianaole Highway. The Hawaii Kai trips inbound on Kalanianaole Highway during the morning peak hour, both by automobile and public transit, are summarized in the following Table 3.

Travel Mode	Vehicles	Persons	Percent of Total Persons
Auto Drivers	2,800	2,800	54.4
Auto Passengers	0	1,400	27.1
Subtotal	2,800	4,200	81.5
Express Bus	12	570	11.1
Local Bus	7	380	7.4
Subtotal	19	950	18.5
TOTAL	2,819	5,150	100.0

The high automobile occupancy (average 1.5 persons per vehicle) largely reflects parents driving their children to school enroute to work. A portion of local bus passengers are also school relateddestined principally to Niu Intermediate School or Holy Trinity School.

In the evening peak traffic period, the return trips to Hawaii Kai are spread over a longer period with a resultant lower peak onehour volume.

Kalanianaole Highway peak direction traffic flow was measured by 15 -minute time increments for the highest volume location at Ainakoa Avenue. During the morning peak commute period, inbound traffic
flow reaches volumes of 1,050 to 1,200 vehicles each 15 -minute period between $6: 30$ and 8:30 a.m. During this period, traffic movement along Kalanianaole Highway is limited by the capacity of the Kalanianaole/Kalaniiki/Waieli Street intersection at Kalani High School, which produces the long traffic queues evident on school days.

Peak direction traffic volumes during the morning peak hour have reached the present roadway's capacity at the traffic "bottleneck" near Kalani High School at the Ewa end of Kalanianaole Highway. During the evening peak hour, the peak direction traffic volumes are approaching the capacity at several locations along the fourlane section in the Niu Valley-Kuliouou areas. These constraints have encouraged changes in corridor travel characteristics to accommodate recent travel increases. Travellers during peak periods have changed their time of departure, thus lengthening the time periods which experience heavy (peak) traffic volumes, and have increased use of public transit and ridesharing. In fact, Hawaii Kai and East Honolulu usage of public transit is among the highest on Oahu, with nearly 20 percent of the morning peak hour, peak direction trips made by bus. This reflects the success of the Hawaii Kai express bus services.

To permit more efficient use of the Kalanianaole Highway facility, the Hawaii Department of Transportation (State DOT) has implemented a reversible lane operation between Hawaii Kai and Interstate H-1 during the morning peak hour. Use of the reversible lane between Aina Haina and Interstate $\mathrm{H}-1$ is restricted to high occupancy vehicles (HOV) to encourage use of buses and carpooling.

The State DOT plans to increase the capacity of Kalanianaole Highway by widening the roadway to provide two additional lanes within the median. These lanes will be reserved for HOVs, with both lanes operating inbound towards Honolulu during the morning
peak travel period and outbound during the evening peak period. Engineering design is currently underway on the Kalanianaole Highway project, with completion of construction expected in the mid-1990s.

The principal problems observed in Hawaii Kai during the morning peak is the large volume of makai direction commuter traffic which follows a route using Lunalilo Home Road, Wailua Street, Hawaii Kai Drive and Keahole Street. This route results in an Ewa-direction right-turn movements of almost 1,200 vehicles from Lunalilo Home Road to Wailua Street, and a similar number of left turns at the Hawaii Kai Drive intersections with Wailua and Keahole Streets. The left-turn volumes are approaching the capacity of the two Hawaii Kai Drive intersections, given the present physical layout and traffic controls, since the left-turn movement is made from a single lane.

The return movement in the evening peak hour results in right turn volumes of more than 900 vehicles at the Hawaii Kai Drive intersections with Keahole and Wailua Streets. The lower volume and the fewer conflicts with the right turn movement enable the evening movement to be made with less disruption. The afternoon return movement does result in a heavy mauka-bound left turn (830 vehicles) from Wailua Street to Lunalilo Home Road. However, two left-turn lanes are provided to accommodate this movement.
F. Ambient Air Quality

There are no ambient air quality monitoring stations within the immediate vicinity of Hawaii Kai. Under prevailing wind conditions there is no industrial activity upwind for thousands of miles and it is reasonable to assume that present air quality is quite good. The only significant sources of man-made air pollution in the area are motor vehicles travelling within the Hawaii Kai development or on nearby Kalanianaole Highway. There is no agricultural activity requiring open field burning on east Oahu.

Natural air pollutant producers which could affect Hawaii Kai air quality include the ocean (sea spray), plants (aero-allergens), dust, and perhaps a distant volcanic eruption on the Island of Hawaii. Concentrations of air pollutants from these kinds of sources should be fairly uniform for most Oahu locations.

The nearest long term air pollution monitoring station to Hawaii Kai is located in Waimanalo on the windward side of the Koolau Mountains, and only particulates are measured at that location. For the past 15 years, 24 hour and annual averages of particulate measurements at Waimanalo have been running about half the allowable State of Hawaii $A Q S$ and in fact, the station location was specifically chosen to provide an estimate of background particulate levels in the air arriving over Oahu.

G. Ambient Traffic Noise Conditions

The existing traffic noise environment along the Hawaii Kai roadways which would service this project are in the "Moderate Exposure, Acceptable" and "Significant Exposure, Normally Unacceptable" categories. This condition is typical for residential subdivisions on Oahu where the first row of homes fronting a subdivision roadway are setback between 50 to 75 feet from the roadway's centerline. Traffic noise levels along the first row of homes fronting a major roadway generally represent the worst case (or highest) levels for homes of a subdivision. Traffic noise levels at interior lots (second row of homes from the roadway, for example) are generally in the "Minimal to Moderate Exposure, Acceptable" category, with 5 to $10 \mathrm{~L}_{\mathrm{dn}}$ lower noise levels resulting from shielding and distance effects. An exception occurs for mid- and high-rise structures which are not shielded from the roadway by intervening low-rise units.

Results of calculations of existing traffic noise levels along the six Hawaii Kai roadway sections of interest are shown in Tables 4 and 5. In the tables, Lunalilo Home Road and the Hawaii Kai Drive sections inland (mauka) of Wailua Street are indicated as toward the north. The section of Hawaii Kai Drive between Wailua and Keahole Streets is labeled as the middle section. The traffic volumes used for each roadway section represent averages of the intersection volumes. Average speed, vehicle mix (or classification), and hourly traffic variation data were estimated from the traffic study. The traffic noise levels shown in the tables only apply when unobstructed line-of-sight conditions exist to the roadways. These conditions would generally occur at the first row of homes fronting the roadway, within any open space or parking lot, and at the upper levels of a mid- or high-rise structure. The setbacks of the proposed Marina homes are generally adequate for the existing traffic noise levels, since the majority of the proposed homes are located outside the existing $65 \mathrm{~L}_{\mathrm{dn}}$ contours.

H. Infrastructure and Utilities

1. Water Supply

Developments in Hawaii Kai are served by three interconnected water systems, depening on their elevations. The low level system has a spillway elevation of 170 and serves those developments that are 100 feet or more below the spillway elevation. All of the units proposed by the marina zoning application would obtain water service from the low level system.

There is adequate existing water storage capacity in the low level system in Hawaii Kai for all existing, ongoing developments, future developments on currently zoned land and the marina zoning parcels. The low level system has four existing reservoirs with a total capacity of 7.0 million gallons. The existing developments

TABLE 4
COMPARISONS OF EXISTING AND FUTURE TRAFFIC NOISE LEVELS IN HAWAII RAI

LOCATION

SPEED VPH (MPH)

EXISTING PM PR. FR. TRAFFIC:
Lunalilo Home Road (North)
Lunalilo Home Road (South)
Wailua Street
Havail Rai Drive (North)
Hawail Kai Drive (Middle)
Reahole Street

30	1880
30	995
35	1520
35	390
35	1620
35	1435

64.26	56.19	62.65	66.94
61.49	53.43	59.89	64.16
65.21	56.87	62.71	67.8
59.30	50.96	56.80	61.6
65.49	57.15	62.99	67.82
64.96	56.62	62.46	67.29

66.92
64.16

520
390
1620
.49
56.62
67.1
61.6

1994 PM PR. ER. TRAFFIC:

	30	2570	65.61	57.55	64.01	68.28
Lunalilo Home Road (North)	30 30	1335	62.77	54.70	61.17	65.4 \%
Lunalilo Home Road (South)	30 30	1335 2180	64.90	56.83	63.30	67.
Wailua Street	30 30	2180 890	61.01	52.94	59.41	63.68
Hawaif Kai Drive (North)	30	2580	65.63	57.57	64.03	68.30
Hawail Kai Drive (Middle)	30 30	2460	65.42	57.36	63.82	68.

Note: Assumed traffic mix of 98% Auto, 1% Medium Trucks, and 1% Heavy Vehicles

TABLE 5

EXISTING AND FUTURE DISTANCES TO 65 AND $60 \mathrm{~L}_{\mathrm{dn}}$ CONTOURS

STREET SECTION	$\begin{gathered} 65 \mathrm{~L}_{\mathrm{dn}} \\ \text { EXISTING } \\ \hline \end{gathered}$	$\begin{aligned} & \text { (FT) } \\ & \text { FUTURE } \end{aligned}$	$\begin{aligned} & 60 \mathrm{~L}_{\mathrm{dn}} \text { SETBACK } \\ & \text { EXISTING } \end{aligned}$	$(F T)$ FUTURE
Lunalilo Home Road (North)	67	83	144	179
Lunalilo Howe Road (South)	44	53	95	114
Wailua Street	74	74	159	159
Hawail Kai Drive (North)	30	41	65	88
Hawail Kai Drive (Middle)	77	83	166	179
Keahole Street	71	80	153	172
NOTES: All setback distances assumptions. $L_{\text {dn }}$	e to th d to be	way cen to PM	```See Table 2 Leq.```	for tra

connected to this system and unoccupied units in ongoing projects (Marina 10B, Golf Course 4, Kuapa Kai Center, Anchorage, etc.) that will be connected to this reservoir will require a total of 5.265 MGD. The current BWS standards require one gallon of storage for every gallon per day (gpd) of demand. Therefore, there is currently an excess reservoir capacity of 1.735 MG .

The approval of the zoning application would result in approximately 470 low density apartment units and 1930 medium density apartment units. Using the BWS standards of $400 \mathrm{gpd} / \mathrm{unit}$ for low density and $300 \mathrm{gpd} / \mathrm{unit}$ for medium density results in a total additional demand of . 767 MGD . Even considering future projects on lands that are already zoned (Golf Course 5 and 6 , the future regional shopping center), there is adequate existing reservoir capacity.

There are existing waterlines adjacent to each of the marina zoning parcels. The existing waterlines were sized to accommodate a much larger number of residential units (as per the 1966 DLUM) and are, therefore, believed to have adequate capacity. All new waterlines to extend service within the parcels and any existing waterlines that need to be replaced due to inadequate design capacity, if any, will be at the developer's cost.

Since there are no sources for water within Hawaii Kai, the developer will work with BWS to provide an adequate source. The availability of water has never been a problem in the development of Hawaii Kai, and we do not anticipate that it will become a problem.

2. Electrical and Telephone Service

Both the Hawaiian Electric Company and Hawaiian Telephone Company are expected to provide services to the project site as the respective areas are developed.

3. Gas

Service for those developments requiring gas will have to be coordinated with HIRI Engineering to insure that proper connections can be made at time of construction.

4. Sewage Requirements

Wastewater from Hawaii Kai, Kuliouou Valley and a portion of Paiko is conveyed via a system of gravity lines, sewage pumping stations and force mains to the East Honolulu Community Services Inc.'s Treatment Plant on the east side of Koko Head. This is a private secondary treatment facility with an existing capacity of 3.9 million gallons per day (mgd). Effluent is discharged through a $36^{\prime \prime}$ diameter ocean outfall at a depth of approximately 40 feet.

The total population currently served by the treatment plant is approximately 30,000 . The existing average daily flow is 3.0 mgd . This results in a per capita flow of 100 gallons per capita per day (gpcd), including infiltration. approximately 1,050 unoccupied units in ongoing projects will add approximately .41 mgd to the existing average daily flow. This is calculated by multiplying the projected population increase (using the City and County design standards of 4.0 residents/unit for single-family and 2.5 residents/ unit for multi-family) by 100 gpcd . The 2,400 units proposed in the marina zoning application would add approximately .6 mgd more. If approximately 400 marina zoning units are occupied each year from 1986, then the capacity of the existing treatment plan may be reached by the early 1990s. Planning is underway to expand the capacity of the treatment plant by .7 mgd to a total of 4.6 mgd . Construction of the expansion would take approxiamtely one and one-half years and it would be initiated so that it could be completed at least six months before required to allow adequate start-up time. At this time, construction is not expected to start prior to mid-1988. All costs for this expansion shall be paid for by the East Honolulu Community Services, Inc.

All other facilities (gravity sewer lines, force mains, sewage pumping stations and the ocean outfall) have sufficient capacity for the projected wastewater flows.

5. Solid Waste

The project area will be regularly serviced by City and County refuse collection or private refuse collection companies. Collected wastes will be transported to public landfills.

I. Public Facilities and Services

1. Police and Fire Protection

An estimated population increase of approximately 5,270 new residents is projected for the fully developed project. Based on the current Oahu police force staff to population ratio of 2.5 to 1,000 and an estimated total addition of 13 officers and support staff would be required to service the area.

The Hawaii Kai Fire Station, which consists of an engine company and a hook-and-ladder unit, is located in the immediate vicinity, across Lunalilo Home Road. The Wailupe Fire Station is also located in the general vicinity. It is anticipated that the proposed project will be accomodated by existing facilities.

2. Health Services

Three health care facilities are located within the immediate project areas with the Kaiser Clinic located in the Hawaii Kai Towne Center and Straub Clinic located at the Koko Marina shopping center, and the Hawaii Kai Emergency and Family Medicine.

Emergency services are offered by the Hawaii Kai Fire Station and an ambulance is stationed at the Wailupe Fire Station. The nearest hospitals are the Kaiser Hospital in Waikiki and Queens Medical Center in Honolulu.

3. Educational Facilities

The project area is located within a triangle of three public elementary schools; Hahaione, Kamiloiki and Koko Head. The closest intermediate school is Niu Valley and the nearest high school is Kaiser High on Lunalilo Home Road,

4. Recreational Facilities

Hawaii Kai has an abundance of public and private recreational facilities either in or abutting the community. The following Table 6 lists facilities, public and private, has been provided to DLU as part of the Zoning Application.

J. Land Use and Regulatory Characteristics

The proposed project is consistent with and will implement the land use policy of the City and County of Honolulu for East Honolulu as established in the Revised General Plan for Oahu and the East Honolulu Development Plan ("EHDP"). All of the tracts to be rezoned are designated for medium and low density apartment use on the EHDP Land Use Map. The State land classification is Urban and the affected parcels lie outside the special management area.

In addition, the recommended transportation program supports and implements the following Honolulu General Plan Transportation policies:
TABLE 6 PUBLIC PARKS AND RECREATION IN HAWAII KAI
A. EXISTING PUBLIC PARKS AND RECREATIONAL FACILITIES

(pənu!quos) 9 a əqe⿻

No proposed improvements yet.
 11. Koko Head Stables
12. Koko Head Firing Range
13. Kalama Valley Community Park
UNDEVELOPED PARKS

1. Koko Kai Beach Parks and Access
a. Lot 4, Koko Kai 1
bile Plan 750 \dot{m}
EXISTING PARKS

1e70.

Total

HAWAII KAI AREA

$\frac{\text { PUBLIC PARKS AND FACILITIES }}{\text { HAWAII KAI AREA }}$
Table 6 (continued)

UNDEVELOPED PARKS.
Koko Kai Beach Parks Koko Head Park

OTHER RECREATIONAL AREAS
Koko Head Botanical Gardens Koko Head Stables Koko Head Firing Range SCHOOL PLAYGROUNDS

Existing: Kamiloiki Elementary School Hahaione Elementary School Koko Head Elementary School.
PRIVATE RECREATIONAL FACILITIES IN HAWAII KAT
130 acres
47 acres
260 acres
6.2 acres
wading pool, tot lot, six tennis
-suoox butpoour pure syzeq puns 's7xnos Boat ramp, parking, landscaping.
Table 6 (continued)
130 acres
47 acres
260 acres
6.2 acres 122 units
56 units
135 units
433 units
111 units
146 units
291 units

Handball court.

Swimming pool and patio $w /$ kitchenette.

Swimming pool, recreation room, weight
lifting room, ping pong room, social
rooms. Swimming pool, recreation room, weigh
lifting room, ping pong room, social
rooms. Swimming pool, recreation room, weigh
lifting room, ping pong room, social
rooms.
Swimming pool.

> Two large swimming pools, wading pool, putting greens, large pavilion, barbeque pits, tot lot, handball and volleyball courts and clubhouse w/ exercise rooms, showers, saunas and locker rooms. Swim ing pool, recreation room, weight

[^1]GOLF COURSES

1. Hawaii Kai Championship
(18 holes - regular)
2. Hawaii Kat Executive
(18 holes - par 3)
HAWAII KAT MARINA

PACIFIC ISI.ANDS CLUB

$\dot{\infty}$

D. E.
 MARINA PARK 2 (Hancock's Landing) PRIVATE RESIDENTIAL FACILITIES

$\dot{4}$

1. Golf Course 1 (Queen's Gate

Golf Course 1 (Queen's Gate
and Queen's Point Hahaione 1-B (Village Green) Hahaione 1-B (Village Green) Hahaione 1-D (Heritage House)

Hahaione 1-D (Mana Luan)
2.

4. Hahaione 1-D (Mauna Luan)
5. Hahaione 1-D (Naniwa Gardens)

7. Kamiloiki 3B-4 (Mariner's Village Three)
Presently landscaped garden and
walkway (ultimately to be developed
into a 2.4-acre park).
(Swimming pool and patio.
(Swimming pool, boat ramp and patio.
(Swimming pool.
(Swimming pool.
Swimming pool and pavilion.
Swimming pool, meeting room and
kitchenette.
clubhouse (meeting rooms, party hall
and children's playroom), swimming
pool and boat ramp.
Boat ramp near Hawaii Kai Drive,
southwest of Kuapa Isle.
Handball court, picnic area.
Boat ramp.
Clubhouse (sauna bath, shower and
kitchenette), swimming pool and two
open play areas.
Swimming and Jacuzzi (whirlpool) pool
Sauna bath, putting green, shuffle
board, swimming pool, wading pool,
tennis courts and pavilion.
Table 6 (continued)
1 acre
189 units
64 units
39 units
134 units
s7ṭn $60 Z$
s7tun 16
s7tun $D Z I$
s7ṭun IS
s7ṭun 09
9. Marina $1-\mathrm{E}$ (Marina Palms)
10. Marina $1-\mathrm{E}$ (Colony Marina)
11. Marina $1-\mathrm{E}$ (Villa Marina)
12. Marina $1-\mathrm{E}$ (Koko Head Villa)
13. Marina $1-\mathrm{F}-1$ (The Moorings)
14. Marina $1-\mathrm{H}$ (Gateway Peninsula)
15. Marina $2-\mathrm{B}$ (Kuapa Isle)
Marina Park 1 Marina 4 (Marina West)
Marina 5 (Marina Hale)
Marina $7 C$ (Koko Isle)
Marina 7D (Kaimala Marina)

8. Luna-Kai Marina Park
9. Marina 1-E (Marina Palms)
10. Marina 1-E (Colony Marina)
11. Marina 1-E (Villa Marina)
12. Marina 1-E (Koko Head Villa)
13. Marina 1-F-1 (The Moorings)
14. Marina $1-\mathrm{H}$ (Gateway Peninsula)
15. Marina $2-\mathrm{B}$ (Kuapa Isle) (1)
16. Marina Park 1
17. Marina 4 (Marina West)
18. Marina 5 (Marina Hale)
19. Marina 7C (Koko Isle)
20. Marina 7D (Kaimala Mar
21. Marina 7D (Esplanade)
Clubhouse (kitchenette), boat ramp and
dock and swimming pool.
Swimming and Jacuzzi pool, handball
court, exercise room, two sauna baths,
kitchenette with activity room,
putting green, garden area and jogging
track.
22. Marina $8 \& 9$ (Mariner's Cove)
23. Mt. Terrace
TOBle 6 (continued)
410 units
TOTAL UNITS SERVED BY PRIVATE RESIDENTIAL FACILTIIES $=\underline{2,891}$

Objective A.

Policy 5

Improve roads in existing communities to reduce congestion and eliminate unsafe conditions.

Policy 7

Promote the use of public transportation as a means of moving people quickly and efficiently, of conserving energy, and of guiding urban development.

Policy 9

Promote programs to reduce dependence on the use of automobiles.

Policy 10

Discourage the inefficient use of the automobile, especially in congested areas during peak hours.

IV. ANTICIPATED IMPACTS AND MITIGATIVE MEASURES

Impacts of the proposed project can be viewed in the short-and longterm. Short-term impacts, beneficial and adverse, generally result from construction-related activities. Consequently, these impacts should last no longer than the duration of the construction. Long-term impacts, beneficial and adverse result from the implementation and operation of the proposed project.

A. Impacts on Geographical Characteristics

Impact on the physical terrain of the proposed parcels of land should be minimal since the proposed parcels consist of either hard ground or fill lands. Also, they are generally level and will require only typical site preparation. Cutting and filling will be kept to a minimum.

B. Impact on Hydrological Characteristics

Associated with urban development projects such as the proposed are alterations in surface water runoff resulting from increasing the area of impervious surfaces, through development of roof tops, roadways, parking lots, and the like. Interest in these runoff changes is generally a result of concern over two factors -- one, public safety, and two, environmental impact. The first factor requires the identification of changes in peak discharge rates. It is the second concern, environmental impact resulting from increased runoff volume and sediment and nutrient loads, and its probable effect on subsequent receiving waters (Kuapa Pond) that is reported.

From an assemblage of baseline hydrologic and water quality data, an estimate of the existing and projected volume and quality characteristics of surface water runoff are made along with projected impacts.

The estimated storm water runoff and constituent changes due to the proposed Hawaii Kai Marina Zoning Project are shown in Table 7. The values presented, it must be emphasized, are for comparative purposes only, and are not intended to be representative of the accuracy implied by the practice of reporting results to one decimal place.

As can be readily observed in Table 7, the storm runoff volume for the $1 \mathrm{yr}, 1 \mathrm{hr}$ duration storm for post (full development is 21 times greater than predeveloped 1985) conditions; however, as the storm duration and recurrence interval increases, this difference reduces to less than $11 / 2$ to 1 . Among other factors causing this difference is that as the intensity and duration of the storm increases, the ability of the soil to accept water decreases which approaches the less permeable conditions that would normally occur under fully developed conditions (from roofs, sidewalks, etc.).

As would be generally expected, the greatest calculated incremental storm runoff volume (34.4 acre-ft/event) resulted from the 100 -year storm with a 24 -hour duration. These values (acre-ft/event) represent a volume of water and should not be confused with peak discharged per unit of time (e.g., cfs). Peak discharge rates are required for engineering design or proposed drainage facilities and ascertaining the capacity of existing facilities, while total runoff volume provides a more realistic estimate of impact on water quality.

Besides the changes in the volume of storm water runoff, the quality of the various constituents being transported is of equal, if not more importance. However, estimates of water quality constituents resulting from significant storm runoff that occurs at the most only a few times a year is very perplexing, especially since information on this subject essentially only became available at both the local and national level in 1970's.
TABLE
Etimated Stori Weter Runoff Volume and Conatituant Change dee so the Proposed Hawail Kai Development Marina Zoning Project, Oahu, Imwali

Storm ${ }^{\text {a }}$			Storm Water Runoff											
Duration hr	Recurrence Interval $y r$	Quan- tity in	Hydraulic			Nitrogen ${ }^{\text {b }}$			Phosphorus ${ }^{\text {c }}$			Suepended Soilde ${ }^{\text {d }}$		
			Development		$\begin{aligned} & \text { AF } \\ & \text { event } \\ & \hline \end{aligned}$	Development		1b	Development:		$\frac{1 b}{\text { evelit }}$	Deyelopment		$\begin{aligned} & \text { ton } \\ & \text { prente } \end{aligned}$
			$\begin{gathered} 1980 \\ \text { AF } \\ \text { event } \end{gathered}$				$\begin{aligned} & \text { Full } \\ & \text { 1b } \\ & \text { event } \end{aligned}$		$\begin{aligned} & 1980 \\ & \text { 1b } \\ & \text { event } \end{aligned}$	$\begin{aligned} & \text { Fuil } \\ & \text { Ib } \\ & \text { event } \end{aligned}$		1980 ton Event	Full ton event	
1	1	1.6	0.4	8.4	$+8.0$	1.1	13.7	+ 12.6	0.1	13.0	+ 12.9	0.77	2.84	+ 2.07
1	5	2.4	2.1	14.5	+12.1	6.4	23.6	$+17.2$	0.6	22.4	+21.8	4.34	4.91	$+\quad 2.07$ $+\quad 0.57$
1	10	2.7	3.1	16.8	+13.7	9.2	27.4	$+18.2$	0.9	26.0	+ 25.1	6.26	5.71	- 0.55
1	25	3.2	4.9	20.7	+15.8	14.6	33.8	+19.2	1.5	32.1	+30.6	9.99	7.04	- 2.95
1	50	3.5	6.1	23.1	+17.0	18.3	37.7	+ 19.4	1.8	35.8	+ 34.0	12.51	7.85	- 4.66
1	100	3.8	7.5	25.5	+18.0	22.3	41.6	+19.3	2.2	39.5	+37.3	15.22	8.66	- 6.56
24	1	3.9	7.9	26.3	+18.4	23.7	42.9	$+19.2$	2.4	40.7	$+38.3$	16.15	8.93	- 7.22
24	5	7.3	27.2	53.7	+26.5	81.3	87.5	$+\quad 6.2$	8.1	83.2	+38.3 +75.1	55.46	18.24	- $\quad 7.22$
24	10	9.0	38.5	67.5	+29.0	115.0	110.0	- 5.0	11.5	104.5	+93.0	78.42	22.92	- 55.50
24	25	11.0	52.4	83.7	+31.3	156.8	136.5	- 20.3	15.7	129.7	+114.0	106.91	28.44	-78.47
24	50 100	13.0	67.0	100.0	+33.0	200.2	163.0 189.5	- 37.2 $-\quad 55.2$	20.0	154.9	+134.9	1136.52	33.96 39.40	-102.56

[^2]The summation of nitrogen, phosphorus, and suspended solids loads from both present (1985) and projected (full) residential development for storms of 1 - and 24 -hour duration at recurrence intervals of 1-, 5-, 25-, $50-$, and 100 -years are shown in Table 7. The incremental changes per storm event for the present and projected development conditions for the various duration and recurrence interval storms indicate that from the least to the greatest amount of rainfall: nitrogen increases for the $1-\mathrm{hr}$ duration storms and then decreases when the intensity ($>10 \mathrm{yr}$ recurrence interval) of the storms increase; phosphorus increases from $12.9 \mathrm{lb} /$ event to nearly $156 \mathrm{lb} /$ event; and suspended solids shows increases of 2.07 and 0.57 tons/event, respectively, for the $1-y r$ and $5-\mathrm{yr}$ recurrence interval storms ($1-\mathrm{hr}$ duration) and then decreases thereafter to about 127 tons/event for the $100 \mathrm{yr}, 24 \mathrm{hr}$ duration storm. The effect of the incremental hydraulic difference between the pre-andpost development conditions is also directly correlated with the water quality constituents.

It must be emphasized that the constituent values are only for comparative purposes, and should not be taken as absolute values. Overall then, the output of nitrogen is about the same and phosphorus is expected to increase in the runoff, while suspended solids, except for the lower intensity/duration storms, should tend to decrease between pre-and-post developed conditions. The decreased amount of exposed soil in residential areas tend to decrease the quantity of the suspended solids loads at the higher intensity/duration storm events even though the total quantity of storm water increases.

The hydrologic and water quality aspects of the surface water runoff were only considered for the present and projected conditions. However, increases in constituents loads will undoubtedly result from construction activities, especially if a significant storm occurs during the interim period between earth moving operations and soil stabilization completion. The impact of construction activities can be minimized by adhering to strict erosion control measures.

C. Impact on Biological Characteristics

All proposed parcels are presently vacant and as such, they provide habitat for exotic species of mammal and avifauna. During the clearing of these parcels, the wildlife will be disturbed and seek refuge elsewhere until construction has been completed. Also, existing vegetation will be cleared and replaced by landscaping. There are no known endangered plants or rare species located on the parcels.
D. Impact on Archaeological Sites

A total of nine archaeological sites and six natural stone cavities possibly containing cultural material were recorded within Kaluanui 1,2 , and 3. The sites and the natural features include: three caves, one free standing wall with associated platform, one platform, one terrace platform complex, one terrace complex, one modern historic habitation area, one modified natural stone cavity complex and six possible burial areas within natural stone cavities.

Document review, field inspection, and analysis indicate that while all the sites and natural cavities will be directly or indirectly impacted to some degree by the proposed development. Most of the impacts are indirect because all but one or two of the sites are in steep, non-buildable areas. The developer will conduct appropriate salvage excavation prior to any construction activities. Recommendations include preservation and testing of the major site, a large terraced platform with associated petroglyphs indicating a prehistoric high status habitation area. Other recommendations are testing and reevaluation on one site, salvage excavation on seven sites, and monitoring of selected areas during subsurface construction. It is also recommended that intensive survey be conducted on the slope of Kaluanui Ridge to locate additional natural cavities which may contain cultural materials. These should be sampled and reevaluated regarding the need for further research. No further work is recommended for the modern habitation site.

The developer has concurred with recommendations for recovery and preservation of the terraced platform and has initiated restoration and preservation of the site.
E. Impact on Traffic Conditions

Study Assumptions and Analysis Framework

The analysis of future travel needs and development of recommended rideshare and roadway programs reflect the following assumptions and guidelines:

- The travel forecasts assume incremental development and completion of the additional Hawaii Kai developments in 1994 and use this as the analysis year. Actual economic and real estate market conditions may shorten or lengthen this development period.
- The travel analysis assumes that TheBus public transit service to Hawaii Kai will increase proportionate to the future population increases and demands.
o Current and 1994 highway conditions were assessed through a volume capacity analysis of the key intersections along Kalanianaole Highway and within Hawaii Kai for both the morning and evening peak traffic hours. These peak traffic hours are the one-hour morning and evening periods which experience the largest volume of traffic at each intersection, and which thus should represent the most severe congestion and delays at that location.
\circ The State of Kawaii Department of Transportation (State DOT) is presently planning a major roadway project along Kalanianaole Highway wich would add two traffic lanes for high occupancy vehicles (HOV) in the roadway median between the $\mathrm{H}-1$ Freeway and Hawaii Kai. This study's analysis does not incorporate the highway capacity increase which would result from construction of the State DOT median HOV lane project, Ne improvements recommended herein thus do not depend upon implementation of the State long range project to accommodate the projected travel increases.
- The recommended improvements have been selected to be compatible with the longer-range development of the State DOT median HOV lanes project.

Future travel needs within the Hawail Kai community and along the Kalanianaole Highway corridor between Hawaii Kad and the $\mathrm{H}-1$ Freeway have been dentified. This assessment reflects increased travel anticipated frome 1) additional residential and commercial development within Hawail Kai; 2) other new developments identified in the East Honolulu, area; and 3) increased tourist/recreational travel along Kalanianaole Highway.

The additional Hawail Kai development being analyzed consists of two categories of projects. The first group includes parcels which have been previously aned for residential use by the City and County of Honolulu ${ }^{(1)}$, The second group, referred to hereinafter as the Marina Zoning parcels, includes projects for which the Kaiser Development Company is now requesting approval of zoning in order to implement the Development Plan. Location of the additional Hawaii Kai development is depicted in Figure 3. For purposes of this transportation analysis, the following unit counts are being used:

	Previously Zoned Additional Development	Projects
Single-family Residences Under Construction	Marina Zoning Projects	
Vacant Zoned Lands	611	0
Multi-family Units	66	0
Offices (sq. ft.)	100,000	2,400
Commercial Space (sq. ft.)	233,000	0

This study recommends implementation of a transportation program which would accommodate the increased travel needs identified for the Kalanianaole Highway corridor. The proposals include both a program of ridesharing measures to encourage increased use of buses, vanpools and carpools, and roadway modifications to provide sufficient capacity at traffic bottlenecks.

[^3]1. The increases in Hawaii Kai traffic on Kalanianaole Highway, based on current travel mode useage, is estimated as follows:

Land Use	Morning Peak Hour		Evening Peak Hour	
	Towards	Towards	Towards	Towards
	Honolulu	Hawai Kai	Honolulu	Hawaii Kai
Residential:				
Zoned Tracts	+430	+90	+150	+370
Marina Zoning	+460	+ 90	+190	+340
Zoned Commercial ${ }^{(3)}$	-100	$+100$	$\underline{-180}$	$\underline{-330}$
Net Increase	$+790{ }^{(1)}$	+280	+160	+380 (1)
Current Trips	2,800	800	1,050	2,200

The expanded commercial development would attract many of the Hawaii Kai resident work and shopping trips which are currently made to the central Honolulu area, thus limiting the traffic increase on Kalanianaole Highway.
2. Without the recommended improvements, the Kalaniiki Street intersection would continue to constrain traffic movement on Kalanianaole Highway during the morning peak hour, with the additional traffic exceeding the intersection capacity by approximately 8 percent.
3. Without the recommended program, the increased traffic volumes on Kalanianaole Highway during the evening peak hour would exceed the intersection capacity at East Halemaumau, Kuliouou/Elelupe and Keahole Streets.
(1)

Additional employment centers such as retirement community, commercial, high tech or other job creating uses that are presently being considered for other Hawaii Kai areas could further reduce the peak hour traffic shown above.

Within Hawaii Kai, the present major roadways would be sufficient to accommodate the increased traffic, with the exceptions of the Hawaii Kai Drive intersections with Keahole and Wailua Streets. During the morning peak hour, the heavy makai direction leftturns at these intersections would exceed the capacity of the present single left-turn lane.

Recommended Transportation Program

The forecasts and findings were used to identify a transportation program to serve the increased travel needs for the proposed developments in Hawaii Kai as well as other identified East Honolulu developments and increased tourist/recreational traffic along Kalanianaole Highway. The proposed measures include implementation of an aggressive ridesharing program to promote higher vehicle occupancies, and therefore, more efficient use of the present roadway. A series of roadway modifications have also been identified to improve traffic conditions at those identified "bottleneck" and problem locations.

1. Ridesharing Program

The proposed ridesharing program, as outlined in Table 8, is intended to supplement TheBus services by providing new types of service, or direct service to new destinations not presently available. The broad range of recommended measures would expand rideshare accessibility to both present and new residents of Hawaii Kai.
2. Proposed Roadway Modifications

These projects are directed towards locations which would constrain future traffic flow. The proposed program emphasizes use of roadway projects which require minimum taking of right-of-way and use of government eminent domain powers, and which could be implemented within a two to three year period. These projects are identified in Table 9.

$\begin{aligned} & \text { ANNUAL } \\ & \text { OPERATfNG } \\ & \text { COSTS } \end{aligned}$
\$40,000
Varies
\$7,000 to
\$17,000
,
0
\$25,000 to
\$30,000

\$25,000
subsidy
per bus
\$35,000
subsidy
per bus

IMPLEMENTATION
COSTS
RESULTS
Increases usage of services
by 5%
Encourages 40% increase
in express bus use,
Estimated potential for
ll vanpools.
Permit increased resident
access to bus services.
Encourage use of bicycles
to access bus services.
Estimated potential for
5 buspools.
Would greatiy reduce bus
travel times over present
service and attract
increased patronage.
RECOMMENDED RIDESHARING PROGRAM

| DESCRIPTION |
| :--- | | Person to initiate, administer |
| :--- |
| and promote rideshare |
| measures and services. |
| Distributed to new Hawaif Kai |
| residents for one year |
| following move in for use |
| on express buses. |
| Purchase of vans for vanpools |
| in Hawaii Kai. |
| Provide parking and shelter |
| for bus rides, vanpoolers, |
| and carpoolers, |
| Phase 1 - 140 spaces |
| Phase $2-210$ spaces (total) |
| Install at major bus stops. |
| Buspools from neighborhood |
| to work location on monthly |
| subscription basis. |
| Provide 3 express buses to |
| Downtown Honolulu and |
| and Waikiki/Ala Moana. |

Transportation Manager

for Hawail Kai
Free Bus Passes
to New Residents
Provide Park-and-Ride
Facility
Bicycle Lockers
Vanpools
Hawail Kai
Express Bus Club
Aina Haina - Niu
Valley - Kuliouou
Express Buses
(a) Preliminary cost estimates reflect 1984 unit cost factors.
(b) Land costs not included in estimate.
$\operatorname{costS}^{(a)}$
$\$ 1,000,000$
10,000
140,000
350,000
20,000
20,000
485,000

LOCATION	DESCRIPTION	RESULTS
Pedestrian Overpass at Kaland High School	Construct over Kalanianaole Hwy. near Iki Place. Relocate makai bus stop to Iki Place and prohibit crossings at Kalaniiki and Laukahi Streets.	Increases signal green time available to Kalanianaole Highway traffic at Kalanitki and Laukahi Streets.
Waikui Street Kalanianaole Hwy.	Allow left-turn from Waikui St. in morning peak period.	Reduces left-turns and traffic queue lengths on Waiell St.
Kalanianaole Hwy. at Keahole St.	Widen the Koko Head direction to provide a second left turn lane to Keahole Street.	Reduces left-turn blockage of lanes and reduces delays to leftturn and through traffic in afternoon.
Hawail Kai Drive at Keahole St.	Realign intersection to improve Keahole St./mauka Hawaif Kai Dr. approaches as the "through" street.	Improve traffic flow through intersection for heaviest morning and evening movements.
Hawail Kai Drive at Wailua St.	```Restripe Wailua St. to provide two Ewa direction lanes.```	Provides two left-turn lanes for heaviest morning traffic movement.
Kalanianaole Hwy. Four-Lane Section	Improve makai-side bus pullouts at East Halemauamu St. and Kullouou Rd.	Permits buses to currently stop in through lane in afternoon.
Keahole Street	Widen to provide left-turn lanes; install and interconnect traffic signals.	Facilitates ingress-egress for park-and-ride facilities and Towne Center development. Interconnection reduces vehicle stops at signals.

[^4]The program elements would complement the planned development of the State DOT's long-range corridor improvement project. Conversely, the transportation program can be implemented and would be sufficient to accommodate the increased development independent of the State DOT's Kalanianaole Highway project.

Effectiveness of Measures

The recommended transportation measures would accommodate the travel growth on Kalanianaole Highway that would result from the zoned and requested Hawaii Kai development, as well as the growth from other increases in corridor activities. This would be accomplished through a combination of fewer vehicle trips as a result of the ridesharing measures, and increases in corridor traffic capacity as a result of the roadway modifications at the "bottleneck" locations.

Implementation of the rideshare program is estimated to encourage a 20 percent increase in Hawaii Kai resident use of buses, vanpools, and carpools as compared to a continuation of current travel mode use. The estimated number of rideshare program participants and the reduction in vehicle trips on Kalanianaole Highway is summarized in the following table. The estimates are for peak hour, peak direction travel at full implementation of the program.

Measures	Additional Riders		Reduction In Auto Trips	
	Morning	Evening	Morning	Evening
Free Bus Passes	60	40	30	30
Park-and-Ride 30				
Parking Spaces	70	55	55	45
V anpools	110	85	65	50
Express Club Bus	200	160	110	85
Aina Haina/Niu 8				
Kuliouou Express	120	80	60	40
Bicycle Facilities	10	10	5	5
Transportation				
Manager	50	40	35	25
Total	620	470	360	280

During the morning peak hour, the "bottleneck" location would be the ${ }^{--}$ Kalanianaole Highway intersection with Kalaniiki Street. As indicated in the following table, the rideshare measures, increased HOV lane use, pedestrian overpass, and traffic operation modifications would provide an equivalent increase in vehicle capacity to more than offset the estimated travel increase. These measures would permit movement of the additional trips through the bottleneck section while maintaining traffic flow similar to today's conditions.

The critical location during the evening peak hour would be the East Halemaumau Street intersection on the four-lane section of Kalanianaole Highway. The increase in the peak direction traffic (towards Hawaii Kai) is estimated at 140 vehicles, with implementation of the ridesharing measures. This increase can be accommodated within the capacity of the present facility.

Morning Peak Hour	Evening Peak Hour
Peak Direction	Peak Direction
At Kalaniiki	At East Halemaumau
(Vehicle Equivalents)	(Vehicle Equivalents)

Traffic Increase
without Measures:
Hawaii Kai 690 360
Other Developments 80 10
Recreation Trips 0 30
Total 770 400
Compared toCapacity Increase:
Rideshare Measures 360 260
Increase HOV Lane Use 120Roadway Modification375$855 \quad 260$$\begin{array}{ll}\text { Total } & 855 \\ & -85\end{array}$+140 (4)
Other Kalanianaole Highway intersections have sufficient capacity toaccommodate both the morning and evening increases in peak hourtraffic.
(4) Still can be accommodated within the capacity of the intersection.

This analysis does not include the additional lanes proposed in the State DOT's median HOV lane project. The two additional lanes would increase the peak direction traffic capacity at Kalaniiki Street during the morning peak hour and at East Halemaumau Street during the evening peak hour.

Implementation Schedule and Costs

A tentative implementation schedule has been developed for the ridesharing and roadway measures which would generally provide additional capacity or increased ridesharing to offset the travel increases from the anticipated phasing of the new Hawaii Kai projects. The implementation schedule is based upon granting of final approval of the zoning request in mid-1986 and is subject to change. Actual implementation will be schedule to parallel the occupancy of the new residential units.

Ridesharing Measures

- The Transportation Manager would initiate rideshare coordination and marketing in mid-1986.
- Free bus passes would be distributed to initial occupants of the new Hawaii Kai residential developments between 1987 and 1994.

Vanpool program would be initiated in 1987 and expanded as the number of drivers and riders increases.

- An initial 140-space park-and-ride facility would be opened in late 1987. Additional spaces would be added as needed, with 70 more spaces planned for 1990.
- The Hawaii Kai Express Club buses would initiate service in 1988, with service expanded to meet resident needs.
- The Aina Haina-Niu-Kuliouou express bus service would be initiated in 1991.
- Additional HOV lane permits should be issued by State DOT to increase HOV lane use during the morning peak hour by 120 vehicles.

Roadway Modifications

- Complete construction of the Kalani High School pedestrian overpass in 1988. In conjunction with the overpass, reactuate the Ainakoa Avenue/Waikui Street traffic signal during the morning peak period and allow left-turns from Waikui Street onto Kalanianaole Highway.
- On Hawaii Kai Drive, realign the Keahole Street intersection, and restripe the Wailua Street intersection in 1987.
- Provide double left turn lanes from Kalanianaole Highway to Keahole Street in 1990.
F. Impact on Air Quality

Air Quality Impact of Project Construction

During the site preparation and construction phases of this project, it is inevitable that a certain amount of fugitive dust will be generated. Field measurements of such emissions from apartment and shopping center construction projects has yielded an estimated emissions rate of 1.2 tons of dust per acre of construction per month of activity. This figure assumes medium level activity in a semi-arid climate with a moderate soil silt content. Actual emissions of fugitive dust from this project can be expected to vary daily depending upon the amount of activity and the moisture content of exposed soil in work areas.

One major generator of fugitive dust is heavy construction equipment mitigated by completing and paving roadways and parking
areas as early in the development process as possible. Because most construction will be taking place in close proximity to existing residential areas, dust control will have to be an item of special concern throughout the construction phase of the project.

Heavy equipment at construction sites will also emit some air pollutants in the form of engine exhausts. The largest equipment is usually diesel-powered. Carbon monoxide emissions for large diesel engines are generally about equal to those from a single automobile, but nitrogen dioxide emissions from this type of engine can be quite high. Fortunately, nitrogen dioxide emissions from other sources in the area should be relatively low and the overall impact of pollutant emissions from construction equipment should be minor compared to levels generated on major roadways nearby.

Air Quality Impact of Increased Energy Utilization

Estimating about 1,000 square feet average size for the 2,400 multifamily units now planned for the marina zoning project yields a total of 2.4 million square feet of floor space. Energy consumption rates at the power plant for all-electric apartments are about 72,000 BTU per square foot. Thus, this project would require about 30,000 barrels of oil if the demand were to be met totally by burning fuel oil.

The major impact of burning fuel oil to meet this increased energy demand will be increased levels of sulfur dioxide and particulates in the vicinity of existing power plants, primarily the Kahe Power Plant on the Waianae coast.

This energy requirement could be reduced substantially by the installation of solar water heating on all new units. It is also possible that the new demand could be met by means other than burning fuel oil. Generation of electrical energy by wind power and by using ocean thermal energy conversion are two such possibilities.

Indirect Air Quality Impact of Increased Traffic

Once construction is completed the proposed project will not in itself constitute a major source of air pollutants. By serving as an attraction for increased motor vehicle traffic in the area, however, the project must be considered to be a significant indirect air pollution source.

Motor vehicles, especially those with gasoline-powered engines, are prodigious emitters of carbon monoxide. Motor vehicles also emit some nitrogen dioxide and those burning fuel which contains lead as an additive contribute some lead particles to the atmosphere as well. The major control measure designed to limit lead emissions is a Federal law requiring the use of unleaded fuel in most new automobiles. As older cars are removed from the vehicle fleet lead emissions should continue to fall. In fact, the Federal Environmental Protection Agency is currently advocating that lead be removed from all automobile fuel as soon as possible.

Federal control regulations also call for increased efficiency in removing carbon monoxide and nitrogen dioxide from vehicle exhausts. By 1995 carbon monoxide emissions from the vehicle fleet then operating are mandated to be little more than half the amount now emitted.

Short Term Mitigative Measures

As previously indicated the only direct adverse air quality impact that the proposed project is likely to create is the emission of fugitive dust during construction. State of Hawaii regulations stipulate the control measures that are to be employed to reduce this type of emissions. Primary control consists of wetting down loose soil areas. An effective watering program can reduce particulate emission levels from construction sites by as much as 50 percent.

Other control measures include good housekeeping on the jobsite and pavement or landscaping of bare soil areas as quickly as possible.

Long Term Mitigative Measures

Once completed, the proposed Marina Zoning projects are expected to have little direct impact on the air quality of the surrounding region. Indirect long term impacts in the form of increased air pollutant emissions from power plants serving new residences in the project area can be mitigated somewhat by planning and implementing solar energy design features to the maximum extent possible.

Other indirect long term air quality impacts are expected in those areas where traffic congestion can potentially be worsened by the addition of vehicles travelling to and from the proposed project. Project planners can do very little to reduce the emission levels of individual vehicles, but the traffic management study for the project describes in detail a multifaceted ridesharing program that could be implemented to significantly reduce traffic volumes along the main traffic corridor between Hawaii Kai and downtown Honolulu. The traffic management study also provides detailed descriptions of roadway improvements that could significantly alleviate traffic congestion in the vicinity of the major 'bottlenecks' along Kalanianaole Highway.

The State of Hawaii Department of Transportation has proposed additional road-widening measures to decrease traffic congestion along the Kalanianaole Highway corridor. Carbon monoxide modelling conducted as a part of the air quality study indicates that the ridesharing and intersection-specific roadway improvements desbribed in the traffic management study for the project would be adequate to ensure compliance with State and National air quality standards even if the proposed State projects never materialize.

Because the stringent national vehicular emissions reduction program now being pursued is entirely the project of eminently changeable government regulations, it is always possible that economic conditions or other factors could lead to an early abandonment of this program. If that were to occur, then the projected pollutant levels presented in the air study could be too optimistic. On the other hand, this analysis did not consider the possibility that technological innovation may lead to new vehicular power systems that produce few or none of the currently regulated atmospheric pollutants.

In any case, this study indicates that currently proposed mitigative measures for traffic congestion along the Kalanianaole Highway corridor should be sufficient to meet existing air quality requirements as well.
G. Impact on Noise Environment

Predictions of future traffic noise levels were made using the year 1994 traffic volume predictions of the traffic study. It should be noted that the future traffic noise levels represent the combined influence of previously approved projects within Hawaii Kai plus the current Marina zoning project.

Although not examined in detail, future traffic noise level increaases along Kalanianaole Highway attributable to the Marina zoning request were calculated. In respect to traffic noise increases, the Marina Zoning project will not produce measureable changes along the highway. This is due to the relatively low traffic volumes predicted for the project as compared to the current high traffic volumes on the highway. Predicted traffic noise level increases by 1994 were calculated to be less than 1 dB along Kalanianaole Highway.

Traffic noise increases resulting from both the Marina zoning parcels and other approved development projects in Hawaii Kai will range from 0.03 to 2.05 dB within the Hawaii Kai roadways of interest, and will be less than 1 dB along Kalanianaole Highway. In calculating the project-related noise increases, it was assumed that 37 percent of the total increase in traffic volumes was attributable to the Marina zoning parcels. This percentage is midway between the 32 to 42 percent range estimated in the traffic study.

In absolute terms, future traffic noise levels along the low volume north section of Hawaii Kai Drive should not exceed $65 \mathrm{~L}_{\mathrm{dn}}$ at 50 ft setback distance from the roadway centerline. Therefore, existing and planned residences along this section should remain in the "Moderate Exposure, Acceptable" noise exposure category.

Future traffic noise levels along the high volume roadways will exceed the FHA/HUD standard of $65 \mathrm{~L}_{\mathrm{dn}}$ at existing and planned residences immediately adjacent to Lunalilo Home Road, Wailua Street, Keahole Street, and the middle section of Hawaii Kai Drive between Wailua and Keahole Streets. These units are predicted to be in the "Significant Exposure, Normally Unacceptable" noise exposure category, and sound attenuation measures will be required in order to comply with FHA/HUD noise standards. Of the 2400 Marina Zoning units, approximately 60 units fall into this category based upon the present conceptual site plans. The remaining 2340 units are in the acceptable categories. Existing residences along Lunalilo Home Road will continue to be in the "Significant Exposure, Normally Unacceptable" noise exposure category, but increases in future traffic noise levels will be difficult to perceive.

Traffic noise impacts resulting from the Marina zoning parcels will be associated more with final siting of the Marina units rather than with the added vehicular traffic generated by the Marina project. The majority of the planned Marina units are within the "Moderate

Exposure, Acceptable" and "Minimal Exposure, Unconditionally Acceptable" noise exposure categories. Therefore, the project should not result in serious adverse noise impacts which are not correctable.

Possible noise mitigation measures which would minimize noise impacts on existing and future Hawaii Kai residences in the proposed Marina project area include measures such as; increasing the setbacks of future homes in the Marina parcels; constructing sound attenuation walls where adequate setbacks cannot be achieved in future or existing homes; reducing posted speed limits below 35 MPH so as to reduce future traffic noise; incorporating special sound attenuating window design features in upper-story homes which cannot be shielded by sound attenuating walls; and air conditioning affected spaces. The applicability of each mitigation measure depends on other considerations besides noise, such as economic cost, aesthetics, and technical feasibility.
H. Impact on Infrastructure and Utilities

Drainage, potable water supply, sewerage, telephone and electrical systems are currently available on adjacent sites. Master planning for a community of a population larger than presently allowed has insured capacity for expansion. Approvals by the appropriate government agencies will be sought during the zoning application review process. Refuse collection will be reviewed by the Department of Public Works and in the event that private collection is required, this service will be arranged.

I. Impact on Public Facilities and Services

There are existing fire and police protection services available to the established Hawaii-Kai community. Review by these agencies on the anticipated demand for expanded services will be coordinated during the review of the zoning application. Since the
project phasing is scheduled for approximately seven years, the timing can be such that increased services can be provided on a timely basis. No significant adverse impacts are anticipated.
J. Impact on Economic and Social Characteristics

1. Economic Impact

Economic impacts due to the short-term construction activity that will result from the rezoning of the affected parcels will greatly enhance the economy by the millions of dollars spent for labor, materials, and other development oriented expenditures over the course of this project. This activity will create revenue for the State through additional excise taxes. The exact number of jobs to be attributed to the implementation of the project is undetermined at this time. The phasing schedule must remain flexible to meet market conditions and financing costs which can inhibit or increase buyer demand. The completed development will substantially add to City \& County real property tax revenues.

2. Social Impacts

For purposes of this report, the Hawaii Kai community is comprised of the four census tracts used by the U.S. Bureau of the Census CT 1.02, 1.03, 1.04, and 1.05 . All but 120 of the proposed 2,400 housing units would be located in census tracts 1.03 and 1.05 ; the 120 units would be in tract 1.04 (Figure 4).

Hawaii Kai is a unique community in many ways. Its advantages include a well-planned, self-contained community in a desirable natural environment. It is made up of a fairly homogeneous population in terms of socio-eoncomic characteristics and background. Statistics confirm that taken as a whole, it is a more affluent, well-educated population, with an almost equal mix of local-born

people versus those born in other places. Other indicators of the homogeneity and productivity of its residents include the significant findings regarding age, education, occupation, labor force, and income factors.

It is a profile of a community which includes fairly young households (with an average 3.4 people per household), where most adults fall in the 35 to 54 age bracket, and where most children are between 5 to 19 years of age. Hawaii Kai has a large percentage (73\%) of employable people and its unemployment rate is the second lowest in this county. The affluence of the residents is reflected in the high median incomes; the large number (82%) who own their homes and drive their own cars to work (88\%); and the sizable proportion who send their children to private schools (37\% for grades $K-8$, and 35% for grades $9-12$).

The nature and degree of social impact and social change in a community will depend upon the type and size of the development, as well as the community's capacity to adapt and adjust to change.

The proposed development involves only housing, not a mixed development. The additional 5270 people resulting from the 2,400 housing units will mean an eventual 18% increase in population, from approximately 30,000 to 35,000 people. While this is a rather large increase, the mitigating factor is that the increase will be gradual, as the development will be incrementally phased over a seven year period and attuned to the needs and demands of the marketplace. The projected population increase falls within the Oahu General Plan's population guidelines for this area.

Hawaii Kai's greatest growth spurt was in the decade of the 1970 s, when its population slightly more than doubled (1048). The greatest social impact and change would have occurred during that period. The population increase has leveled off to about 5% in recent years, and the anticipated gradual growth may well average out to this rate of growth.

The apparent stability of this community, reflected by its "coming of age ${ }^{\text {l }}$ maturity, as well as its homogeneous middle and uppermiddle class population with similar social values and norms, lend support to the assumption that its residents have good capacity to adapt and to adjust to change.

The most important variables in social impact assessment are the community's lifestyle and the quality of life. Of great concern is what effect a particular development will have upon them.

Most of the people who live in Hawaii K ai made a concious choice to do so because of the advantages that the area offers. These advantages include the stability, amenities, and quality of life that are commensurate to their above average socio-economic status and that the residents have made financial and emotional commitments and are strongly motivated to maintain and enhance the existing lifestyle.

Moving into a well-established and prestigious residential area, it is anticipated that the new population will possess similar socio economic characteristics. They would have similar social values and goals, and behavior norms that will be consistent with those of the existing population. Therefore, conformity and the desire to continue and maintain the quality of life can be expected. The gradual, rather than rapid, influx of new residents will favorably help in their assimilation into the community.

Some social changes will occur, however, as any development produces change. The one major factor which would impact on the lifestyle and quality of life of residents in Hawaii Kai and adjacent areas is the increased vehicular traffic which additional residents will generate. The existing traffic congestion on Kalanianaole Highway is exacerbated by the residents' basic dependence on private rather than public transportation. Increased traffic would impact
on the lifestyle and the quality of life as people make further adjustments to their daily schedules of living. The major mitigating factor will be the transportation management system that the developer, the City and the State will jointly implement to accomodate the increased traffic. The transportation program has been discussed earlier in this report. A second mitigating factor will be the ability of Hawaii Kai residents to adapt and adjust to more ridesharing alternatives.

On the issue of benefits for the community and its residents, the "economic costs versus benefits" ledger tilts in favor of the development although the exact numbers of jobs it will create is undetermined due to its planned phasing and flexible construction schedule, the project will contribute to the economy through the millions of dollars that will be spent on labor, materials, and other development-oriented expenditures. Beyond that, tax revenues would be generated through the potential new jobs that an increased population will require, as well as increased sales taxes and property taxes.

As Hawaii Kai is a residential community, the development would not directly impact the visitor industry or the visitor population.

Another economic benefit is that 2,400 units will be added to the island's housing inventory. Locations, Inc.'s Oahu Residential Market Study confirmed that there is a current shortfall in housing units on Oahu, particularly affordable housing. The study also identified Hawaii Kai, Makakilo, and Mililani to be the most feasible areas for future housing development.

Flexibly geared to meet market demands, the proposed 2,400 units would provide quality housing in a quality environment, and would be aimed at attracting a wide variety of buyers. As low to medium density units are cheaper to build than detached single dwelling houses, the intent is to make more affordable housing available, particularly to first-time buyers.

Depending on a person's or a community's social and economic values, there are plausible arguments for both preservation of the status quo and growth. Both have advantages and disadvantages, with clearly identifiable socio-economic benefits and costs.

One resolution is to have selective, high quality developments which will preserve those values considered to be the most valuable to the people affected, while providing social and economic benefits. These would include well-planned and implemented projects, architecturally and tastefully appropriate to the environment, which would have minimal social impact on the community.

Evaluated in the context described above, the proposed Marina Zoning project appears to be such a development. The integrity and commitment of Kaiser Development Company is evidenced by the quality development of the Hawaii Kai planned community over twenty four years - a long period of time. This is a significant factor as it provides greater assurance that the proposed development will protect environmental concerns for continued aesthethic quality and adequate open space. Also, that the developer will be sensitive to the concerns and needs of the residents, will work with government to find appropriate solutions to problems such as traffic congestion, and provide appropriate amenities which will not only maintain, but enhance the existing lifestyle and quality of life of its residents.
K. Impact on State Plan and Functional Plans

The Hawaii State Plan has been prepared for use as the primary planning tool in directing the planning process for Hawaii's long and short-term goals. By setting the overall theme and directive, twelve functional plans were created as extentions of the State General Plan. These functional plans specify objectives, policies, and implementing actions to address these concerns. These plans were reviewed to determine their relationship to the Marina Zoning project. Each plan is reviewed and evaluated below.

STATE EDUCATION PLAN \& STATE HIGHER EDUCATION PLAN

This plan relates to educational functions, respective school systems, growth and goals. Office procedure (records in a computer system), target groups, personnal developments, and school sites are discussed. As related to the proposed project, demand for educational facilities will be increased, however, existing facilities will accomodate this increase.

STATE HOUSING PLAN

Relating to the East Honolulu District, the Plan states:
"The county intends that East Honolulu continue as a suburban, low density residential area with development confined to the low ridges and inner valley floors. Some medium density residential will be permitted. Aina Haina to Kuliouou is considered a stable community area and its present character should be enhanced.

There are no obvious siting problems between the proposed developments and the development plan. Most of the proposals for this area are in Hawaii Kai. One possible conflict is that of the 6,370 units proposed for the area, 23% are multi-family units. This may be somewhat more than anticipated by the development plans. A conflict of greater consequence given the present traffic problems for the area is that the full build-up of units proposed would result in a 51% increase over the 1978 population by 1985."

The Marina Zoning will result in a population increase of 5,270. Almost 30,000 people reside in Hawaii Kai today. The zoning implements the East Honolulu Development Plan.

STATE HEALTH PLAN

The primary purpose of the State Health Plan is to serve as a guide for State and County agencies and the private sector in outlining environment related and health care objectives for Hawaii.
"More specifically, the plan's objectives, policies and implementing actions are intended to 1) prevent disease and promote healthful lifestyles and environmental conditions; 2) ensure and promote appropriate provision and access to health care for the total community; 3) protect society from potential dangers (e.g., epidemics, hazardous environmental conditions or violent persons); and finally, 4) prevent environmental degradation and enhance the quality of the air, land and water."
"The State Health Plan focuses primarily on public health programs under the jurisdiction of the State Health Department."

As the State Health Plan relates to the proposed project, health and medical care facilities (emergency and routine) are located within the immediate area and are expected to accomodate the additional population of the project.

Environmental concerns covered in the State Health Plan have been addressed in the air and noise quality studies and utilities sections of this document. Utility impacts such as sewerage and drainage, as it affects water quality, are expected to create only minor impacts that are normal for projects of this nature. Mitigation of these impacts are the responsibility of the developer and will be addressed as necessary. Air and noise quality impacts, as reported in their respective studies, are also minor in nature.

STATE CONSERVATION LANDS PLAN

This relates to conservation lands and does not address this project site.

The Hawaii State Plan states its two primary objectives as 1) increased viability in the sugar and pineapple industries, and 2) continued growth and development of diversified agriculture throughout the State. More specifically, the State Agriculture Plan identifies the major issues and problem areas affecting agriculture, which are the underlying needs and requirements of the commodity industries for resources such as land, water, capital, labor, and transportation; and for government support to agriculture in the areas of farm management, cultural practices, pest control, handling and processing, livestock production, marketing, waste management, and government regulation.

As the Marina Zoning project relates to the State Agriculture Plan, a portion of the project area will be taken out of agricultural use, however, the area is not well suited for agriculture and is not expected to have any impact on State agriculture. Furthermore, no agricultural activity has taken place for over the last 20 years. As stated earlier, the agriculture zoned areas of the project site are vacant and essentially surrounded by urban uses.

STATE HISTORIC PRESERVATION PLAN

The Historic Preservation Plan, reviews the procedures and identifies areas where archaeological salvaging or preservation are desireable. Procedures for developments include preparing an archaeological survey, preserving sites considered of value, and coordination of salvaging and preservation with the State Historic Sites Office. In this regard, the Marina Zoning project has complied with these procedures.

STATE TRANSPORTATION PLAN

The general objectives of this plan are outlined in these two statements:

An integrated multi-modal transportation system which services statewide needs relating to the efficient, safe, and convenient movement of people and goods.

A statewide transportation system supportive of planned growth objectives throughout the state.

Although the State Transportation Plan does not single out the Hawaii Kai/Marina Zoning area for any specific highway development or improvement policies and actions, the development will increase vehicular traffic in the general area. For this reason, an extensive traffic study has been conducted and mitigative measures recommended. These measures, which include roadway modifications and rideshare methods, are presented in an effort to meet the general objectives of the Plan.

STATE RECREATION PLAN

The State Recreation Plan reviews the demands and actions that need to be taken to fulfill existing and future recreational demands. Specifically, in the East Honolulu District, the Plan acknowledges the demand for recreational activity and the varing availability for community-oriented park acreage. In this respect, although available parks within Hawaii Kai are adequate, additional park space is planned for a portion of the development.

STATE ENERGY PEAN

The Hawaii State Plan defines two major energy objectives:

Dependable, efficient, and economical Statewide energy systems capable of supporting the needs of the people; and

Increased energy self-sufficiency for Hawaii.

Specific information on projects do not relate to or address the Marina Zoning project site. Other policies and objectives are broad and relate to energy conservation and use of energy sources other than fossil fuels.

Energy conservation methods will be investigated for use in the project pertaining to the latest energy savings devices and installations which should result in some cost reduction as well as being conservation actions. Rideshare transportation measures, if implemented, should also conserve a considerable amount of energy and fossil fuel.

STATE TOURISM PLAN

This plan relates to tourism actions and does not address or relate directly with this project.

STATE WATER RESOURCES DEVELOPMENT PLAN

The primary objectives of the State Water Resources Development Plan are:

Regulations of the development and use of water to assure adequate supplies for the future;

Development of water resources to meet municipal, agricultural, and industrial requirements, and the reduction of flood damage; and

Preservation of water-related ecological, recreational, and aesthetic values and the quality of water resources.

This plan acknowledges that municipal water supply service is primarily a County function. To this extent, the developer has coordinated with the Board of Water Supply in addressing Marina Zoning's water needs. The proposed water system development for the project is not expected to be of any significant impact.

Water quality impacts on the adjacent marina and shoreline areas are expected to be minimal and in conformance with the objectives of the Plan.

PROBABLE ADVERSE EFFECTS
V. ANY PROBABLE ADVERSE ENVIRONMENTAL EFFECTS WHICH CANNOT BE AVOIDED

The following adverse environmental effects (both short- and long-term) cannot be avoided.
(1) The site-clearing and construction work will result in temporary fugitive dust, some disruption to traffic, and noise.
(2) Traffic will increase from the number of additional cars utilized by new residents of the proposed development. Additional impacts associated with increased traffic include potential air and noise quality deterioration. However, the developer's traffic consultant's findings indicate that implementation of the transportation management system, including the suggested roadway modifications will adequately accommodate the traffic to be created by the proposed development and rideshare measures proposed will minimize impacts considerably.
(3) The need for utility services will increase.
(4) The need for public services for fire and police protection, schools, and public recreational facilities will increase slightly.

For the purpose of this EIS, two alternatives to the proposed development were considered. These alternatives were: (1) no action alternative, (2) single family residential use only. These alternatives both of which are inconsistent with the City's East Honolulu Development Plan, are described and evaluated below. In view of the City's land use policy for the parcels, neither alternative provides a realistic option.

A. No Action Alternative

If selected, this alternative would result in no action being implemented. The impact of this alternative would be that the project site would remain as is. Eventually, the weeds and grasses would cover the entire lot and create visually undesireable and hazardous areas which would not be consistent with the surrounding areas.

This alternative was not found to be viable because its non-use would render the properties useless to developer and landowner. This "No-Action" alternative would be detrimental to the Hawaii Kai planned community. A tremendous waste of in-place infrastructure and utilities would result in terms of public facilities already built by the developer being under-utilized. In addition, No-Action would represent a blow to rational long-term land planning. City and State government would suffer also because employment, tax revenues, and housing supply would be lost.

B. Single Family Residential Alternative

This alternative, which would consist entirely of detached single family dwellings, has been rejected by the City for policy reasons. The cost of this type of dwelling would be beyond the reach of many home buyers and fewer housing units would be added to the deficient inventory.

VII. THE RELATIONSHIP BETWEEN LOCAL SHORT-TERM USES OF MAN'S ENVIRONMENT AND THE MAINTENANCE AND ENHANCEMENT OF LONG-TERM PRODUCTIVITY AND IRREVERSIBLE/IRRETRIEVABLE COMMITMENTS OF RESOURCES

It is anticipated that the construction of the proposed project will commit the necessary construction materials and human resources (in the form of planning, designing, engineering, construction labor, landscaping, and personnel for the sales, management, services, offices, and maintenance functions). Some of the construction materials could be reused if and when the structures are demolished; however, at the present time and state of our economy, it is felt that the reuse of much of these materials is not practical. Labor expended for this development is not retrievable. However, labor will be compensated during the various stages of the project by the developer, commercial businesses, and the building's management.

The appearance of the project sites will be altered from its present open space, vacant appearance to that of a completed residential community. Because flat terrain surrounds some of the project sites, the development will be highly visible but visually integrated with the surrounding areas.

Air and noise quality will be adversely affected by this proposed project, but will remain in compliance with State standards. Ambient air and noise quality in the area is relatively good. However, the proposed development will result in greater number of vehicles going to and from the project areas resulting in vehicular pollution emissions.

The project development will result in a commitment of land for a longterm period. Once low and medium density residential use is established, it is unlikely that the land will be reverted to a lower usage in the long-term future. Commitment of land for these purposes will also foreclose the future land use options of the land, such as recreational use, open space, agricultural use. However, it should be noted
that City planning of this land for apartment use has been approved and the present rezoning application implements the plan also and even if the proposed project did not occur, the high cost of the land (inherent in the zoning) would likely foreclose these lower land intensity uses.

The project development will, in the short- and long-term, result in residential uses which will likely benefit future homeowners, the landowner and private businesses.

The requested zoning is consistent with and will implement the land use policy of the City and County of Honolulu for East Honolulu as established in the Revised General Plan for Oahu and the East Honolulu Development Plan. The proposed project is also consistent with the current State land classification of Urban.

The developer intends to build and market quality apartment housing units in keeping with the Hawaii Kai master planned community. Open space, generous setbacks, lush landscaping, ample off-street parking, marina orientation, quality architecture and construction are all components which will reflect the continued quality of Hawaii Kai which will benefit both present and future residents of the community.

IX. LIST OF NECESSARY APPROVALS

Abstract

A change of zone request seeking $A-1$ and $A-2$ Apartment Zoning is currently being processed by the Department of Land Utilization for the designated project parcels. These changes, which will be consistent with all other land use regulations currently in effect, are all that are necessary for the planning requirements of the proposed project. Engineering approvals for subdivision, Drainage, Grading, and Utilities will be processed in their normal sequence.

X

CONSULTED PARTIES

City and County
Board of Water Supply
Honolulu Fire Department
Department of Parks \& Recreation
Department of Land Utilization
Building Department
Department of General Planning
Honolulu Police Department
Department of Transportation Services
Department of Public Works
Department of Housing and Community Development

State
Department of Land \& Natural Resources
Department of Planning \& Economic Development
Department of Social Services \& Housing
Department of Transportation
Water Resources Research Center Office of Environmental Quality Control Department of Education
Department of Health
Environmental Center

Community Organizations

Hawaii Kai Neighborhood Board \#1 Quincy Kaneshiro Dr. Robert V. Hallision Stafford - Amis Morse Bill Walden Mary Wilkenson Al Kirchner Debra Willis Anthony W. DePaul Bill W. Kohlmann E. Schuyler Lott Rev. David Kennedy Allan Wanamaku Roy L. Benhan Robert K. Takei Jr. John T. McCarthy
Date of
Comment

Date of Response

NRN
NRN
7/01/85
-
NRN
7/01/85
7/01/85
-
7/01/85
7/01/85

7/01/85
6/05/85 NRN
6/18/85 7/01/85
6/18/85
-
6/25/85
7/01/85

6/18/85
NRN
7/01/85
6/14/85
7/01/85

$6 / 03 / 85$	$7 / 01 / 85$
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-

Organizations and Agencies Consulted (Continued)

Community Organizations	Date of Comment	Date Response
American Lung Association	-	-
Outdoor Circle	-	-
Hawaii Kai Communities Council	-	-
Neighborhood Board \#2	-	-
Bill Edwards - Koko Isle Association	$05 / 21 / 85$	NRN

$$
\begin{aligned}
& \text { Environmental Communications, Inc. } \\
& \text { P. } 0 \text {. Box } 536 \\
& \text { Honolulu, Hawait } 96809 \\
& \text { Gentlemen: } \\
& \text { We have reviewed the Envirommental Impact Statement Preparation } \\
& \text { Notice for the proposed Marina Zoning Project at Hawail Kai and have no } \\
& \text { comments at this time. } \\
& \text { FKK: Im/KAW } \\
& \text { NO RESPONSE NEEDED }
\end{aligned}
$$

> -
> cirv AND countro or honolutu June 20, 1985

Mr. F.J. Rodrigues

Environmental
P. O. Box
P.
Ond
Honolulu, Hawaii 96809
Subject: EIS Preparation Notice
Gentlemen :
Marina Zoning Project at Hawaii Kai, Oahu

No respowse nemen

$$
\begin{aligned}
& \text { Environmental communications, inc. } \\
& \text { Page 2 } \\
& \text { June } 7 \text {, } 1985
\end{aligned}
$$

Environmental Commanications, Inc.
P. O. Box 536
Honoiulu, hawait 96809
Dear six:
Enviconmental Impact statement (EIS) Preparation Notice,
Kaiger Developent Company, Marina Zoning, Hawaii Kai
We have reviewed the subject zis preparation Notice and
offer the following recommendations:

$\frac{\text { Item ILI. } \frac{1}{2} \cdot \frac{\text { Trafic Generation on }}{\text { Kalamianaole Highway }}}{}$

We recommend that analysis be included to provide
quantitative answers to the following questions:

1. What will be the impact of the 2,400 additional

Kalanianaole Highway during the morning rush

tratfic (4:00
Kai to Downtown Honolulu, (b) total costa/day
for vehicle opecation and divers time loss.
and (c) air pollution, and (d) noise.
 resules anticipated. For example, how many fewer
as a result of fully operational ride sharing?

Kalanianaole Highway as a result of parking and
riding the bus to bowntown llonolular
$\cdot z$

Dear Mr. Clegg:
 Chief Planning Officer

July 1, 1985

We are in recelpt of your comments dated June 7, 1985 on the Hawali Kai Marina
Zoning Environmental Impact Statement Preparation Notice. We respond in the
following:

1. The impact of the additional housing units on the traffic conditions existing presently on Kalanianaole Highway are being analyzed by the retained
iraffic consultant, Wilbur Smith associates. Particular emphasis is being air pollution and noise also will be addressed in the draft EIS. The of costs/day for vehicle operation and driver's time reauling from the total many other factors. These were to quantify since they depend on Management Study because one of the requirements of the study was to
 The proposed traffic measures are design currently is.
2. The proposed traffic measurea are designed to mitigate the adverse will be provided with the draft EIS. These are provided in Appendition
 presently fa being discussed wising requirement for the Mepartment of Housing Zoning
Development. An assessment on the Comanity Development. An assessment on the manner in which the requirement
whobemet is expected within the time frame of the Zoning Application
procesa. process.
We look forward to your department'm comments on the draft EIS on these matters.

Very truly youra,
Environmental Commanications, Inc.
P. O. Box 536
Honolulu, Hawall 96809
a reasonable means of recapturing the economic beneftt conferred by
favorable land use allocations and distributing that benefit for the
general public benefit.
We are currentiy reviewing our pollcy relating to the ten flof percent
set aside and wil inform you of any specific policy adjustment we
adopt.
We would welcome the opportunity to assist the developer in formulating
a program to provide these units. Please have the developer contact
Hr. James Miyagi of this Department at $523-4264$.
Thank you for bringing this application to our attention.

Environmental Conmunications, Inc.
June 18,1985
page 2
June 18,
Page 2

Thank you for the opportunity to review and comment on the proposed
The plans, programs and projects of the Department of Housing and Comminty, Development include the participation of private developers in
providing housing for the low- and moderate-⿰ncome families. The providing housing for the low and moder and
assistance of private developers is essential to alleviating the demand
for affordable housing units. for affordable housing units.
As a condition to the approval of the proposed rezoning request, we
recombend that the developer be required to set astde ten (io) percrent of the units priced within the range of the low- and moderate-incone
tamilios. This rensirement applies to all zone change, cluster and familiws. This renuirement dpplies to all zone change, claster and
plamed development housing application. Estatishimp such a request is
 Very truly yours,

> Mr. F. J. Rodriguez
> Mr. F. J. Rodriguez
Environmental Commic
P.0. Box 536
> Honolulu, Hawaii 96809
> Dear Mr. Rodriguez:
> Subject: EISPN for the Proposed Marina Zoning Project at
We have reviewed the subject environmental impact statement
preparation notice (EISPN) and have the following comments.
The draft EIS should evaluate the traffic impacts to Kalanianaole
Highway caused by this project and other proposed projects. The Oahu
Metropolitan Planning Organization's Hali 2000 Study indicates that
Kalanianaole thiglway would have undesirable levels of congestion and delays at
morning peak hour travel under six different alternatives including a
assess the relationship of the proposed project to the relevant objectives and
policies of the Hawail State Plan and State Functional Plans.

preparation notice.

ce: Office of Enviromental Quality Control

SNOLLVONOWWOS TVLNGWNOHIANG

$=$

President Communications, Inc.
Environmental Communications,
1146 Fort Street Mall, suite 200
Dear Mr. Rodriguez:

$$
\begin{aligned}
& \text { We look forward to reviewing the traffic analysis based } \\
& \text { on a traffic management program consisting of roadway modi- }
\end{aligned}
$$

fo Director of Transportation
9861 '1 King

$$
\begin{aligned}
& \text { thout the ridesharing measures } \\
& \text { very truly yours, }
\end{aligned}
$$

FJR:ls
orizon uorzeiedoxd sta

Mr. F.J. Rodriguez

$$
\begin{aligned}
& \text { Hawaii Kai, Oahu } \\
& \text { EIS Preparation Notice }
\end{aligned}
$$

Mr. Wayne J. Yamasaki, Director
Department of Transportation
869 Punchbowi Street
Honolulu. Hawail 96813
Dear Mr. Yamasaki:
We are in recetpt of your comments dated June 18,1985 on the Hawaii Kai
Marina Zoning Environmental Impact Statement Preparation Notice. We
respond in the following:
The traffic consultant, Wibur Smith a Associates has been provided with
a copy of your request for the different scenarios with and without the
ridesharing measures.

Thank you for your comments and we look forward to your review of the
draft EiS.
Very truly yours,

Our review of the rezoning proposal for $97+$ acres in Hawait Kai is
projected to generate the following student enrollment:

SCHOOL GRADE | APPROXIMATE |
| :--- |
| ERROLLMENT |

Haithaione Elementary
Koko Head Elementary
Kamiloiki Elementary
Niu Valley Intermediate
Kaiser High
Kaiser High
schools have
All schools have sufficient capacity to accommodate the projected enroli-
ment growth. As the development of the parcels will be phased in on a flexible schedule based on market demand, we would appreciate being kept infomed of
scheduling so the use of classmoms can be adjusted to accomodate these scheduling
students.

Should there be any questions, please contact Mr. Howard lau at 737-4743.

Vernon Honda
Acsistant Supe

July 1, 1985

$$
\begin{aligned}
& \text { Mr. Melvin K. Koizumi } \\
& \text { Department of Health } \\
& \text { P.O. Box } 3378 \text { : } \\
& \text { Honolulu, Hawail } 96801 \\
& \text { Dear Mr. Kolzumi: }
\end{aligned}
$$

the Board of Water Supply as the proposed project will be coordinated with Natural Resources as the consulted agency of record. Wepartment of Land Administrative Rules.

Your concerns on potable and non-potable sources of water and possible
cross connection are being reviewed by the developer and insure that in the event this may take place, adequate controls are initiated
to prevent any contamination. Thank you fory contamination.
on the draft Eis.为 FJR:ls

June 14, 1985

$-z-$

Mr. Fred J. Rodriguez

Archaeological Sites

The preparation notice states that there are no known historical or archaeological
tes of significance in the area. The description provided and figure 2 indicates that the proposed area will include construction on the mauka side of Hawail Kai Drive between Center). There are a number of archaeological sites in that area, particularly the area just Koko Head of the Pacific islands Club. We believe the Bishop Museum has conducted work there and should be consulted. It is our understanding that rock walls, house sites,
and a well are present on the site. and a well are present on the site.

Constructon Impacts
We note that construction is likely to take 7 years. One of the more serious of the prevailing strong trade wind in this area, and the fine texture of the tredged spoil
 be employed.

Special attention should be given to avoid pollutants entering the marina during the construction phase. Past experience has indicated that inadequately controlled runoff
from freshly graded areas produces significant silting in the marina. Wastidown of

Since most of the marina frontage houses are built on compacted fill, it is especially important to minimize biasting or pite criving. If either type of construction operation is
anticipated, a soils engineer should be consulted for potential effects on nearby
structures.

We appreciate the opportunity to comment on this preparation notice and look
June 14, 1985
The proposed rezoning of several parcels ($97+$ aeres), in the Hawaii Kai Marina area to permit approximately 2,400 residential thits will result in considerable increase in the
traffic on Kalananaole Highway and adjacent streets. We note that the increase in traffic on Kalanianaole Highway is to be analyzed in the Eas. We call attention to the need for analysis of increase in traffic on the tributary streets also. At the present time the left turn entry into Kuapa Kai Shopping Center by cars traveling makai is hazardous due to the
short sight distance of cars coming over the hill traveling mauka. The intersection at Hawaii Kai Drive and Keahole Street is particularly hazardous and several accidents have occurred at that intersection. Similarly, the intersection of Wailua Street and Hawain Ka Drive is hazardous at peak hours and will certainly be more so with the addion of the
traffic from the 2,400 tmits. The DEIS should discuss appropriate measures to mitigate the increased traffic risks.
pedestrian/Bicycle Safety
Pedestrian/Bicycle Safety
We also call attention to the need for an extension to the outside of the Keahole
Street Bridge for pedestrians and bicycle use. The present sidewalk area is very narrow, Street Bridge for pedestrians and bicycle use. The present sidewalk area is very narrow,
the munber of iongers and bicyclists is great, and the potential for accident on that bridge the munber of joggers and bicyclists is great, and the potential for accident on that bridge
extremely high. Since Keatole Street will bear the major impact of this development,
consideration should be given for ways to improve the existing hazardous conditions, lest consideration should be given for ways to improve the existing hazardous conditions, lest
they become critical with the added fraffic.
 \section*{\section*{
 \section*{\section*{ Environmental Center. The following comments are offered for your consideration in the Environmental Center. The following comments are offered for your consideration in the Traffie Traffie

 - Mod

 preparation of the Environmental Impact Statement.
Traffie

 EIS Preparation Notice
Hawaii Kai Marina Zoning Project

 EIS Preparation Notice
Hawaii Kai Marina Zoning Project

 Honolulu, Oahu

 Honolulu, Oahu

 preparation of the Environmental Impact Statement.

 preparation of the Environmental Impact Statement.

 }

 }
0

20

We are in receipt of your office's comments dated June 14, 1985 on the Hawail Kai Marina Zoning Environmental Impact Statement Preparation Notice and we
respond in the following:

July 1, 1985
Environmental Center
2550 Campus Road. Crawford 317
Honoluha, Hawanl 96822 Dear Dr. Cox:
4. Construction Impacts - are to be discussed in the draft EIS and we have Hawail Kai will coordinate the various impacts of fugitive dust, surface runoff, and possible blasting or pile driving with the architectural
consultants as well as the construction contractors
Thank you for your continuing concern and we look forward to your comments
on the draft EIS. Yours very truly,

 Was located in the 5 acre site (also extending into development fract
Kaluanui 2) and restoration and preservation activities are under
 consultants as well as the construction contractors on the drand FJR:Is
about crime, housing, employment, ground lease rent problems, schooling,
water and sewer services, electrical power dependability, and all other water and sewer services, elect.
aspects of life in Hawaii Kat.

QHK: dias

There are certain intersections at which the banning of left-turns, at alt
hours will improve traffic safety on Kalanianaole Highway. Some of these situations are: 1) The taming of all left-hand turns from Kalanianade
Highway into Hawaii koa Ridge; 2) The banning of all left turns into Hawaii ha Street in Nim Valley; 3) The banning of all left turns directly
into the parking lot of the Nu Valley Shopping Center; 4) The hamming of into the parking lot of the Nu Valley Shopping Center; 4) The banning of
all left turns at Elelupe Road, and Kawaihae Street, until adequate left-
hand deceleration and storage lanes can be created. hand deceleration and storage lanes can be created. The additional development in Hawaii kat should not be permitted until

The "jug-handle" left-turn arrangement for Hawaii boa Ridge should be
Additional pedestrian overpasses over Kalantanaole Highway should be
constructed in Anna Haifa, Nita Valley, and at the Holy Trinity Church.
 Kalantanaole Byway has been cited as the problem most needing rectifican
dion. This overall concern is greater than general community concerns
Environmental Communications, Inc.
June 3,1985
page 2 implemented as soon as possible.
constructed in Anna Hanna, Nisi Valley, and at the Holy Trinity Church.
-

SNOLHONA TVLNGWNOHIANG

 suly 1

Mr. Quincy H. Kaneshiro 612 Kapaia Street Honolulu, Hawaii 96825

Dear Mr. Kaneshiro
Dear Mr. Kanesh 9625
We are in recelpt of your comments on the Environmental Impact Statement
Preparation Notice dated June 3, 1985 and we respond aa follows:
We are in recelpt of your comments on the Environmental Impact Statement
Preparation Notice dated June 3, 1985 and we respond as follows:
We share your concerns over the traffic situation at Hawaii Kai and Kalanianaole
Highway and concur in your evaluation that the improvements are long overdue. Historically, the traffic your evaluation that the improvements have not kept pace with are long overdue increased capacity on the traffic corridor into honolulu.

We appreciate the traffic mitigation measures identified in your letter that you
indicate have already been discussed at various meetiogs but not mented. Three of the four measures (adjustments to the timing at traffic tights and banning of left turns at certain intersections and implementing the jug
hande left turn for Hawait Loa Ridge) can be considered ongoing operational
 at any time. We have forwarded a copy of your letter to the State Department
of Tranaportation and the City ${ }^{\text {a }}$ County Department of Transportation Services for thetr review.

The Transportation Study prepared for the Marina Zoning project identifies a number of roadway modifications to accommodate future trafflc increases. One pedestrian bridge fronting Kalani High School.

The Transportation Management Study proposes that the traffic mitigation measures for the Marina Zoning (both roadway modifications and rideshare
measures) be phased with development such that all increase of traffic will be accommodated. A proposed mplementation schat alle increase of traffic will be
portation study that in the Transportation study that will be appended to the draft EIS. It must be pointed
out, however, that prohbiting development in Hawaii Kai until highway impacts
are made is not considered an acceptabie alternative by the developer. Thank you for your comments and we look forward to hearing from you on the Very truly yours.
Very truly yours. draft EIS.

May 21, 1985

Kaiser Development Co.
P. O. Box 25007
Hawail Kai, Hawaii 96825
Subject: Heights of blits Maka of Kuapa Kai Shopping Center

Organizations/Agencies
City and County
Board of Water Supply
Building Department
Dept. of Housing \& Community
\quad Development
Dept. of General Planning
Dept. of Land Utilization
Dept. of Parks \& Recreation
Dept. of Public Works
Dept. of Transportation
Services
Fire Department
Police Dept.

State

Dept. of Agriculture 7/25/85
Dept. of Accounting \& General Services
Dept. of Defense
Dept. of Health
Dept. of Land \& Natural Resources
Dept. of Planning \& Economic Development
Dept. of Social Services Housing
Dept. of Transportation
Office of Environmental Quality Control

7/22/85
7/17/85
8/05/85
7/31/85
8/01/85
8/26/85
7/29/85
7/24/85
NRN
NRN
7/18/85
NRN
8/08/85
8/26/85
8/2/85
8/26/85
8/26/85
-

7/29/85
State Energy Office
7/09/85
Environmental Center, U.H.
Marine Programs, U.H.
Water Resources Research
Center, U.H.
8/22/85

7/26/85

Date Comment Received	Date of Response
7/24/85	NRN
7/18/85	NRN
8/09/85	8/26/85
7/30/85	8/26/85
8/23/85	8/26/85
7/19/85	8/26/85
7/23/85	8/26/85
* 8/23/85	8/26/85
* 8/27/85	NRN
7/19/85	NRN

8/06/85

* 8/28/85

8/02/85
7/18/85
8/26/85
NRN

- 8/23/85

8/05/85

8/26/85

NRN

Organization/Agencies (continued)

Federal
Army-DAFE (Facilities Eng.--
USASCH)

Navy
Soil Conservation Service
U.S. Army Corps of Engineers
U.S. Coast Guard
U.S. Fish and Wildlife Service

Date of	Date Comment
Comment	Received

Received

7/15/85
$7 / 25 / 85$
-
7/29/85
$7 / 30 / 85$

Organizations/Agencies

HAWAII KAI
TRANSPORTATION MANAGEMENT STUDY
Prepared for
Kaiser Development Company
by
Wilbur Smith and Associates

Figure

Sumarary of findings and recomandations
The purpose of this study is to Identify future travel needs within the
Hawail Kai communty and along the Kalanianaole Highway corridor betwe Hawali Kal and the H-1 Freeway. This assessment reflects incridor between anticipated from: 1) additional residential and conmercial development utthin Hawail Kai; 2) other new developments identified in the East fonolulu area; and 3) fincreased tourist/recreational travel along Kalanianaole Highway

 categories of projects. The first group includes parcels which have been y zoned for residential use by the city and County of Honolulu ${ }^{(1)}$.解作 as the Marina Zoning parcels. approval of zonting which requesting the additional Hawail Kai development is depleted in Figure f. For of this transportation analysis, the following unit counts are being used: (2) | PREVIOUSLY | MARINA |
| :---: | :---: |
| ZONED | zONING |
| PROJECTS | PROJECTS |

$$
373
$$

Multi-family Uinte
Offices (sq. ft.) 100,000
Commercial Space (sq. ft.) 233,000
additional development
Singie-famfly Residences
Under Construction
Vacant Zoned Lands
(a)

This study recoumends implementation of a transportarion 0
This study recomends implementation of a transportation program which
would accommodate the increased travel needs Identified for the Kalanianale Highway corridor. The proposalis include th identified for the Kalanianacle sures to encourage increased use of buses, vanpools and of ridesharing meamodifications to provide sufficient capacity at traffic bottlenecks and roadway -(I)
Vacant residentialiy zoned lands, tracts under construction and
constructed but unsold mits, e.g. Commotore condominium, are within this
group.
Actual developaent may differ. The number of units represents a real-
istic development program, and thas a realistic transportatentance The analysis of future travel needs and developtant of recompended
rideshare and roadway programs reflect the following assumptions and guide－ lines：
The travel forecasts assume increwental development and completion of the additional Hawall Kai developments in 1994 and use this as the analysis year．Actual economic and real estate market condi－ thons may shorten or lengthen this development period．
The travel analysis assunes that TheBus public transit service to Hawall kai wthl increase proportionate to the future population increases and demands．
－Current and 1994 highway conditions were assessed through a volume－ capacity analysis of the key intersections along Kalanianaole Highway and within Hawali kai for both the morning and evening peak traffic hours．These peak traffic hours are the one－hour morning and evening periods which experience the largest volume of traffic at each intersection，and which thus should represent the most severe congestion and delays at that location．
The State of Hawati Departant of Transportation（State DOT）is presently plaming a major roadway profect along Kalanianacle Highway which would add two traffic lanes for high occupancy vehi－ cles（HOV）in the roadway median between the H－1 Freeway and Hawati Kal．This study＇s analysis does not incorporate the higtway capa－ city fincrease which would result from construction of the State Dor median Hov lane profect．The fmprovements recommended herein thus do not depend upon implementation of the State long－range project to accommodate the projected cravcl fincreases．
The recommended improvements have been selected to be compatible with the longer r－range development of the State not median hov lanes protect．
A number of significant findings resulted from the analyses of current and forecast travel．These findings were used to determine the type and location of proposed improvements．
1．Peak direction travel on Kalanianaole Highway by Havaif Kal residents and visitors amount to 2,800 and 2,200 vehicle trips during the morning and evening peak traffic hours，respectively．Hawait Kat trips comprise alightiy over one－half of the peak hour traffic at the ewa end of Kalan anaole Highway．
2．Hawaif Kal and East Honolulu usage of public transit is among the highest on Oahu，with nearly 20 percent of the momning peak hour，peak direction trips made by bus．This reflects the success of the Hawall kai express bus services．
3．Travel conditions on Kalanianaole Highway，as evidenced by travel speeds recorded in studies by the Oatu Metropolitan Planning Organization，are amilar to those for other Oahu travel corridors．
4．During the morning peak hour，the peak direction traffic flow on Ralant－ anacle Highway is ifmited by the capacity constraints and resultant congestion at the Kalaniki street intersection．This intersection has the highest inbound（to Honolulu）volumes and is affected by cross street traffic and pedestrian volumes assoclated with Kalani high School．Other Kalanianaole Highway intersections could accommatate 5 to 30 percent more traffic before reaching the same level of congestion．
5．Less congestion occurs along Kalanianaole Highway during the evening peak hour，but motorists still encounter stop－and－go conditions in several sections．Distuptions to traffic flow primartly occur at three

 result of sidestreet tralfic，pedestrian crossings and buses stopping in －。

$$
\begin{aligned}
& \text { 4. Within Hawail Kai, the present major roadways would be sufficient to } \\
& \text { accommodate the fncreased trefti }
\end{aligned}
$$ Drive intersections with Keahole and Wailia exceptions of the Hawali Kai peak hour, the heavy makal direction left-turns at these intersections wexceed the capacity of the present single left-turn lane.

recomemnded transportation procrah

The forecasts and findings were used to identify a transportation program Kai as well as other identified East Honolulused developments in Hawait tourist/recreational traffic Kalanta sures tnclude tmplementation of an aggressive ridg higher vehicle occupancies, and therefore, motidesharing program to promote roadway. A series of roadway modifications efficient use of the present fmprove traffic conditions at those identified "botcleen identified to locations.

i. R1desharing Program

 future traffic flow thected towards locations which would constrain future traffic flow. The proposed program emphasizes use of
roadvay profects which require mind use of government eminent domain powers, and right-of-way and 1 mplemented within a two to three year period. These protects be identified in Table 2.
(20,

the through lane; and in the Kuliouou/Elelupe Road area as a reault of the
large number of left-turns made from the though la large number of left-turns made from the through lanes
Findings Relative to Future Conditions

1. The increases in Hawaii kai traffic on Kalanianaole Highway, based on urrent travel mode usage, is eatimated as follows:

LAND USE	MORNING PEAK hour		EVENING peak hour	
	Towards Honolulu	$\begin{aligned} & \text { Townidg } \\ & \text { Hawaif Kai } \end{aligned}$	Towards Honolulu	Towards Hawaif Kat
Residential:				
Zoned Tracts	+430			
Marina Zoning	+460	+90 +90	$\begin{aligned} & +150 \\ & +190 \end{aligned}$	$+370$ $+340$
Zoned Commerctal ${ }^{\text {(3) }}$	-100	$+100$	-180	$\begin{array}{r}180 \\ -330 \\ \hline\end{array}$
Net Increase	+790 (3)	+280	+160	+380 (3)
Cucrent Trips	2,800	800	1,050	2,200

The expanded comercial development would attract many of the Hawafi pai resident work and shopping trips which are curcently made to the central way.
2. Without the recommended faprovements, the Kalaniliki Street intersection would continue to constrain traffic movement on Xalanianalersection during the morning peak hour, with the additional traff intersection capacity by approximately 8 percent traffic exceeding the Intersection capacity by approximakely 8 percent.

Without the recomended program, the increased traffic volumes on Kalanicapacity at furing the evening peak hour would exceed the fatersection (

气

Table 1

MEASURE	RECOMENDED RIDESH DESCRIPTION	RING Program RESULTS	$\begin{gathered} \text { IMPLEMENTGTTON } \\ \hline \text { COSTS } \end{gathered}$	$\begin{aligned} & \text { ANNUAL } \\ & \text { OPERATYNG } \\ & \text { COSTS } \end{aligned}$
Fransportation Manager for Hawaii kai	Person to initiate, administer and promote rideshare measures and services.	Increases usage of services by 5%	\$10,000	\$40,000
Free Bus Passes to New Residents	Distributed to new Rawail Kai residents for one year following wove in for use on express buses.	Encourages 40\% increase in express bus use.	---	$\begin{aligned} & \text { Varies } \\ & \$ 7,000 \text { to } \\ & \$ 17,000 \end{aligned}$
Vampoois	Purchase of vans for vanpools in Hawail Kai.	Estimated potential for 11 vanpools.	$\$ 17,000$ per vanpool	0
Provide Park-and-Ride Facility	Provide parking and shelter for bus rides, vanpooiers. and carpoolers. Phase 1-140 spaces Phase 2-210 spaces (rotal)	Permit increased resident access to bus services.	$\begin{aligned} & \$ 570,000^{(b)} \\ & \$ 180,000^{(b)} \end{aligned}$	$\begin{aligned} & \$ 25,000 \text { to } \\ & \$ 30,000 \end{aligned}$
Bicycle Lockers	Install at major bus stops.	Encourage use of bleycles to access bus services.	\$20,000	---
Hawaii Kai Express Bus Ciub	Buspools from neighborhood to work location on monthly subscription basis.	Estimated potential for 5 buspools.	0	$\$ 25,000$ subsidy per bus
Aina Hasna - Niu Yalley - Kuliouou Express Buses	Provide 3 express buses to Downtown Honolulu and and Waikiki/Ala Moana.	Would greatly reduce bus travel times over present service and attract increased patronage.	0	$\$ 35,000$ subsidy per bus

(a) Freliminary cost estimates reflect 1984 unit cost factors.
(b) Land costs not included in estimate.
-7-

Table 2

recommended roadway modifications

1.OCATION	DESCRIPTION	RESULTS	$\operatorname{costs}{ }^{(a)}$
```Fedestrian Overpass at Kalani #igh schoci```	Construct over Kalanianaole Wwy. near Iki place. Relocate makai bus stop to lki Place and pronibit crossings at Kalanijki and Laukahi Streets.	Increases signal green time available to Kalanianaole Highway traffic at Kalandtki and Laukaht Streets.	\$1,000,000 ${ }^{(\mathrm{b})}$
faikuj Straet \& Katanianacle Hwy.	Allow left-turn frow Wakwi St. in merning peak period.	Reduces left-turns and traffic queve lengehs on wadelif St.	10,000
Kalanianacle How, at Keahole St.	Widen the Koko Head direction to provide a second left turn lane to Keahole Street.	Reduces left-curn blockage of lanes and reduces delays to leftturn and through traffic in afternoon.	140,000
Howaif Kai Drive t Keahole St.	Realign intersection to wiprove Reahole St./mauka Hawail Kai Dr. approaches as the "through" street.	Tmprove traffic flow through intersection for heaviest morning and evening povements.	350,000
Hawaif Kaj Drive at Wailua St.	Restripe Wailua St, to provide two Ewa direction lanes.	Provides two ieft-turn lanes for heaviest morning traffic movement.	20,000
Kalankanaole Hwy. Four-lane Section	Improve makaimade bus pullouts at East Halemauamu St. and Ruliovou Rd.	Permits buses to currently stop in through lane in afternoon.	20,000
Keahole Streer	Widen to provide left-turn lanes; install atd intetconnect rraffic signals.	Facilitates ingress-egress for park-and-ride facilities and Towne Center development. Interconnection reduces vehtcle stops at signals.	485,000

[^5]\[

$$
\begin{aligned}
& \begin{array}{l}
\text { The critical location during the evening peak hour would be the East } \\
\text { Halemaumau street intersection on the four- }
\end{array} \\
& \text { Highway. The increase in the peak directur-lane section of Kalanianaole } \\
& \text { mated at } 140 \text { vehicles, with implementation of the widest hawaii Kat) aa } \\
& \text { increase can be accommodated within the capacity of the present facility } \\
& \begin{array}{c}
\text { evening peak hour } \\
\text { peak direction } \\
\hline
\end{array}
\end{aligned}
$$
\]

project.
project.
growth on Kalanianaole Highway that would result from accommatate the travel
Hawaii kat development, as well as the result from the zoned and requested
activities. This would be accomplished through other increases in corridor
trips as a result of the ridesharing measures combination of fewer vehicle
traffic capacity as a result of the roadway modificat fucreases in corridor
locations.
-
percent increase in Halal ai resident use of buses, van to encourage a 20
as compared to a continuation of current travel mode use. and carpools
number of rideshare program participants and the reduode use. The estimated
for peak
for peak hour; peak direction travel at full implementation of the prates are
$\begin{aligned} & \text { ADDITIONAL RiDERS } \\ & \text { REDUCTION IN } \\ & \text { AUTO TRIPS }\end{aligned}$
:
$\begin{aligned} & 8 \\ & 8\end{aligned}$
$70-55$
$n \approx$
$\begin{gathered}\text { Traffic Increase } \\ \text { without Measure }\end{gathered}$
Hawaii ai

$$
\begin{aligned}
& \text { Recreation Trips }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 空 } \\
& \begin{array}{l}
\text { Nev change } \\
\text { Other Katanianaole Highway }
\end{array}
\end{aligned}
$$ -

Additional HOV lane permits should be lssued by State DOT to
increase HOV lane use during the morning peak hour by 120 vehicles.
Roadway Modifications
Complete conatruction of the Kalani High School pedestrian overpass
in 1988 . In confunction with the overpass, reactuate the Ainakoa Avenue/Waikut Street traffic signal during the morning peak period and allow left-turns from Waikul street onto Kalanianaole Highway.
On Hawali kai Drive, realign the Keahole Street intersection, and restripe the Wailua street intersection in 1987.
Provide double left-turn lanes from Kalanfanaole Highway to Keahole street in 1990.
Implementation and operating costs are sumnarized by program measure and
year in rable 3. The funding of the program will not involve any cost to
existing Hawali Kai residents. Operating costs for ridesharing measures
represent the "subsidy" requitement after an offset of the estimated club, bus
and vanpool revenues against the total operating costs.
Total program costs for the 1985 to 1994 period, expressed in 1984
dollars, are estimated follows:

Capital
Operating
$\quad$ Subtotal $\quad$ Subtotal
Capital
(Dperation

Ridesharing Measures

## Program Costs

Roadway Projects

Table 3

-13-

PROGRA: MEASURE	1986	1987	1988	1989	1990	1991	1992	1993	1994	TOTAL
ROADHAY:										
Kalani H.S. Pedestrian Overpass		400	600							1000
Kalamianaole Hwy./Keahole St.		140								140
Hawail Kai Drive/Keahole St.		350								350
Hawail Kai Drive/wailua St.		20								20
Whatki/Kalanianacle Highway			10							10
Kalandansole Bwy./Improve Bus Fullouts			20							20
Keahole St. Widening and Signals		25	460		-					485
subtotal		935	1.090							2,025
GRANE TOTAL	107	$\underline{1,560}$	$\underline{1,248}$	$\underline{150}$	331	$\underline{211}$	302	331	313	4,553


Chapter
IMTRODUCTION
The attractive physical setting, comanity values, and relative proximity
to the major employment centers has resuited in a sizeable and growing residential population within the East Honolulu area. These attributes have led Hawail kai to become a mafor residential community, as have che East Honolulu communtites of Waialae Iki. Aina Haina, Niu Valley and Kuliouou. (See Figure 2.) These East Honolula commanties had grown to 12,898 households in 1980. By the year 2000, the City and County of Honolulu Department of General Planning forecasts that the area will increase to 17,183 households, a 33 percent increase above the 1980 level.
 artery, the Kalanianaole Highway. Kalanianaole Highway connects the East Honolulu residential comanities to Interstate Route $\mathrm{H}-1$ and the major Honolulu employment centers, and to Windward oahu. The residential nature of the area results in a heavy directional flow of comater travel in the Ewa and
 peak travel periods, respectively,
Peak direction tratfic volumes during the worning peak hour have reached the present roadway's capacity at the craffic "bottleneck" near Kalani High School at the Ewa end of Kalanianaole Highway. During the evening peak hour, the peak direction traffic volumes are approaching the capacity of several constraints have encouraged changes in corridor travel characteristics to accomodate recent travel increases. Travellers during peak periods bave changed their time of departure, thus lengthening the time periods which experience heavy (peak) traffic volumes, and have increased use of public transit and ridesharing.


hour. Use of the reversible lane between Aina Haina and Interstate H-1 is
restricted to high occupancy
restricted to high occupancy vehicles (HOV) to encourage use of buses and carpooling.

The State Dot plans to increase the capacity of Kalanfanaole Highway by
widening the roadvay to provide two additional lanes within the median lanes will be reserved for Hovs, with bonal lanes within the median. These Honolulu during the morning peak travel pertiod lanes operating inbound towards peak period. Engineering design is currently underound during the evening Highway profect, with completion of construction expected th the Kalanianaole STUDY PURPOSE AND SCOPE
housing units on approved tracts, and a majin Hawali kai for 373 additional cial facilities within the Marina Businesa Center of office and commerPlanning is also being done for the rematning valong Keahole Street. estimated 611 additional untts. Katser Development Compan lands for zoning to implement the Development Plan in additional is also requesting referred to in this study as the Marina Zoning tracts. tracts could include as many as 2,400 new housing units. The Marina Zoning location.) Development and occupancy of both the zoned wacts and Marina zoning tracts could occur between 1986 and 1994.
this increase in Hawail Kai development and activities needs to accomodate transportation management program to serve these needs. and ta identify a passes three types of measures:

Ridesharing measures intended to attract increased use of buses, vanpools and carpools;

Traffic operational measures and minor roadway modifications to increase capacity of Kalanianaole Highway; and

Roadway modifications to kuprove circulation within Hawail Kai.


 the heaviest one-hour traffic volume at each individual intersection, rather than the use of a comson one-hour period for all locations.

## HAWALI KAI TRAVEL CHARACTERISTICS

 Honolulu corridor with a diverse mix of residential, retail, office and communty facflity uses. Current residential development includes 5,185 singlemamily and 2,270 multi-family dwelling unfts. Other uses include the



The travel resulting from these current activities was used as the basis for the forecast of future travel volumes and characteristics.

## Vehicle Trip Generation Rates

 पכ;

[^6]The travel forecasts include the increases in Hawali kai trips both from the currently zoned tracts and from those tracts (Marina Zing the forecasts also reflect travel from other identified projects along Kalanianaole Highway and from increases in recreational travel to or through the area.

saive noilvzanad diai aาoiran
reasonably reflect current Hawali kai traffic generation during morning and
evening peak hour periods，are presented in Table 4 ．
ng peak hour periods，are presented in Table 4.
Based on these trip rates，
within Hawall kay during the morning estimated 3,500 vehicle trips originated Hawali $\mathrm{K}_{\mathrm{Ai}}$ destinations．These inclade hour，while $1,600 \mathrm{trips}$ axe made to within Hawali Kai or to／from areas outside of Hawail whether made entirely travel totals 4,500 vehicle trips to and 3,000 trips from peak hour residential and commerctal areas．

## Trip Distribution

[^7] $\tilde{\sim}= \pm \infty \supseteq \pm \infty$ $-12-$
The high automobile occupancy (average 1.5 persons per vehicle) largely
reflects parents driving their children to school enroute to work. A major portion of local bus passengers are alao school related--destined principaliy to Niu Intermediate School or Holy Trinity school.
In the evening peak traffic period, the return trips to Hawali kai are spread over a longer period with a resultant lower peak one-hour volume. The evening peak hour vehicle trips to Hawali Kat on Kalanianaole Highway totals

kalanianaole hichiay traffic conditions
Kalantanaole Highway is a divided highway in a 120 -foot wide right-of-way from the H-1 Freeway to kirkwood Street. The divided section has three lanes in each direction Ewa of West Hind Drive, and three Ewa and two Koko Head direction lanes between West Bind Drive and kirkwood Street. Between Kirkwood Street and Hawali Kal, the roadway is a four-lane undivided highway, with left-turn lanes provided only at East Halemaumau, Hawail Kai Drive, Keahole Street and Lunalillo Home Road.
Current roadway facilities and public transit services along Kalanianaole Highway are intensely used throughout the morning and evening peak travel periods. Traffic volumes have equaled or approached the capacity of the critical (bottleneck) intersections in recent years. This has resulted in a "spreading" of the peak traffic volumes over a long period, either by en-

Kalanianaole Highway peak direction traffic flow is depicted in Figure 3


 8:30 a.m. During this period, tratfic movement along Kalanianaole Highway is ifmited by che capacity of the Kalanianaole/Kalaniki/Waichi Street inter-

Travel Mode Chotce
The hali 2000 Study est fmated that approximately 8.7 percent of all
weekday person trips made by East Honolulu residents in 1980 were mate an weekday person trips made by East Honolulu residents in 1980 were made on public transit. This is the highest for any of the eight development plan areas and compares to an 8.2 percent average for Oahu.
Transit use is higher for the morning and evening peak travel periods when work and school trips comprise a major portion of the trips. Mode choice during the peak traffic hour is discussed in the following section.

## Hawall Kai Trips on Kalanianaole Highway

Approximately 2.800 vehicle trips generated by Hawat1 Kal land uses enter onto Kalanianaote Highway for travel inbound towards Honolulu during the morning peak traffic hour. These trips represent 80 percent of the all vehicle trips generated by Hawail ka1 developments in the morning peak hour. Two percent of the trips travel to Windward Dahu via Kalandanaole Highway, while the remaining 18 percent travel to other points within Hawali Kai. The Hawall kal trips inbound on Kalanianaole Highway, both by automobile and public transit, are sumarized in the following table $s$.
Table 5
HAWAII KAI TRIPS inbound on Kal.anianaole hichuay
Morning Peak Hour at Kawathae Street


During the afternoon peak period, peak direction traffic volumes at the
Ewa end of Kalanianaole Highway are sifghty lower than the morning volumes
with slow build up and decline of the volume durfng the peak period. The
peak period volumes extend from $3: 45$ to $6: 30$ p.m.. with 900 to 1,100 vehtcles
each 15 -minute period.

## Volume-Capacity/Level of Service Concept

 intersections with other roadways. An times at its traffic signal-controlled function of the number and width of through andion's capacity is pritarily a and number of buses, proportion of traffic volumes lanes, bus stop location aignal phases, and pedeatrian conflicts. The capactity of an incers or right,
 The quality of traffic service provided by a roperating at capacity.








212 was used to estimate capacicies for each intersection.
Morning Peak Hour Traffic
 (2) Thectim Materials on Hiphway Lapaciry, Cfrculat 212, Transportation

volumes reflect the peak one-hour volume at each location during the morning peak traffic period.

Inbound peak hour volumes to Honolulu increase from approximately 3,000 vehtcles in the Hawaii kai area to some 4,500 vehteles prior to reaching Interatate H-1. of f-peak (Koko Head) direction volumes range between 500 and 900 vehicles. Highest cross etreet volumes occur on the major Hawali Kal

 sections is presented in table 7 . Morning and evening peak hour traffic movements at these key intersections are presented in a separate technical appendix.

Ainakoa Avenue/Waikut Street - The traffic sigrial at this Kalanianaole Highway intersection is set to provide a continuous green indication to both Kalanianaole Highway directions during the morning peak craffic period, thus permitting nonstop flow. Conversely, Ainakoa Avenue and Waikul Street are restricted to only right turns in and out.

This intersection, located adjacent to Kalani Bigh School, is the critical "bottleneck" whtch controls traffic flow on Kalanianaole Highway during the morning peak traffic period. This con-
 where the largest inbound traffic flow to the Honolulu employment centers
 traffic and pedestrian volumes.
 volumes crossing Kalandanaole Highway to reach the school are the primary factors which limit the amount of traffic signal time available to the inbound traffic on Kalanianaole Highway. School begins at 8:00 a.m. with scudents and faculty arriving between 7:00 and 8:00 a.m. This coincides with the peak hour inbound traffic flow on Kalantanaole Highway, which extends from 6:45 to $7: 45$ a.m.

Table 6
intersection level of service concept
LEVEL OF SERVICE A Volume/Capacity Ratiow 0-0.59
Free flow conditions
No vehicle waits longer than one
No vehicle waits
signal indication
LEVEL OF SERVICE B
Stable traffic flow
Motorists rarely wait through
more than one signal indication
LEVEL OF SERVICE C Volume/Capacity Ratiom0.70-0.79.
Stable and acceptable flow but
restricted due to higher volumes
Motorists intermittently walt th
more than one signal indication
Occasional backups behind teft
LEVEL OF SERVICE D Volume/Capacicu Ratiomo.80-0.89

- Extensive delays at times
turners, may wait through one or
more signal indications, but enough
cycles with lower demand occur to
prevent excessive backups
Maneuverability restricted
LEVEL OF SERVICE E Volume/Capacitu Ratio=0.90-0.99
- Very long queues may create lengthy delays, especially for left turning
vehicles
Volune at or near capacity
LEVEL OF SERVICE F Volume/Capacitiz Ration 1.00 or greater
Backups from locations downstream
restrict movement at intersection
approaches
Forced flow conditions
Stoppage for long periods due to
congestion
Valumes drop lo zero in extrene
cases
$-2$

$$
\begin{aligned}
& \text { Kahala-central Honolulu area. } \\
& \text { During the morning peak hour. approximately one-half of the traffic using both }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Most students arriving by pubifc transit alight at the makal side bus }
\end{array} \\
& \text { spectal pedestrian crossing signal phase. Fiedtrian button to actuate the } \\
& \text { spectal "Walk" phase, which stops Kalanianaole Highway traffic found that the }
\end{aligned}
$$

$\begin{aligned} & \text { les between 1:00 and 8:00 a.m. } \\ & \text { The pedestrian crossing phas }\end{aligned}$
percent more time than that neede stops Kalanianale Highway traffic for 40
The combined vehicles and pedestrian volumes associated with traficic.

 the arriving students approach vita autoon istrict. As a result, majority of cross against the inbound traffic flow to reach ous from the west and must of Kalanianale Uighway. heft turns frome the koko Ho the mauka side Kalanianaole llighway are prohibited during the morning peak traftioton on Students approaching via autughtite form this direction reach the school by one of severnt rumtes:

Volume-capacity ratio for this intersection, as calculated using the Circular $212^{(3)}$ procedures, is 1.18 for the morning peak hour. Since the actual capacity, as represented by the observed number of vehicles travelina through this intersection on Kalanianaole Bighuay and Kalanilki/Watel1 streets. exceeds the calculated "theoretical" capacity, the "theoretical" capacity has been adjusted to reflect the observed capacity. This adjustment was also applied to the other intersections along the divided section of Kalantanaole Highway: Ainakoa Avenue, Laukatid Street and hest Hind Drive.

Laukaht Street - Most of the morning inbound traffic from the watalae Iki resident Lal area use Laukah1 street to access Kalanianaole Highway. The large number of right-turns from laukahi Street, which are perwitted from both approach lanes, plus the left-turn traffic from watholo street require a signif tcant amount of signal time. Hovevs, this intersection's capacity than at the Kalanilikl street intersection.

The laukahi Street traffic is affected by the capactity constrant at Kalanitki Street since the queue of Kalanianaole Highway traffic extends to and through laukahi street. The stopped inbound trafitic queue on Kalanianaole Highway frequently blocks and delays the Laukahi street traffic trying to turn trbound on Kalanianaole Highway.

West Hind Drive - West Hind Drive serves as the access potnt to Kalanianaole Highway for inbound traffic to the central honolulu area from much of Aina Haina. West Hind Drive is restricted to right-turns at this T-nntersection, which are made at the same time as the traffic signal perwis movement of the left-turns froments minimizes the required signal time, thus affording most of the signal time to inbound kalanianaole Highway traffic.

Hawati Kai Intersections - The hawali Kai prive, Keahole Street and Luna111o Hone Road intersections accommodate most of the Hawali kai traffic turntng to travel intound on Killantanacle highway. The large right-turn
ibid.
movements, with up to 900 right-turns during the peak hour at Keahole Street, do not cause any significant problems since through traffic on Kalanianaole Highuay and conflicting traffic volumes are comparatively low in this area.

## Eventing Peak Hour Traffic

Peak direction craffic volumes along Kalanianaole Highway durtng the evening peak hour are generally is to 30 percent lower than the morning peak hour volumes at the same location, while the off-peak direction volumes tend to be double the morning off-peak direction volumes. As shown in Pigure 4 , cross street traffic volumes approximate the worning volumies. with the direction reversed. The principal exception is the low traffic volumes on kalanith and waiell streets, which reflect the absence of school-related traffic in the evening peak hour.

Atnakoa/Watkui Streets - This intersection provides sufficient capacity to accomodate the heavy through and left-turn movements onto Koko Headdirection Kalanianaole Highway. Field observations Maltacie Highway is often
 through lanes. The weavting movement 18 adversely affected by the craffic algnals at Ainakoa Avenue and Kalaniki street since the stopped Kalantanaole Highway traffic queue often extends beyond the ramp entrance. This blockage reduces the number of kilauea ramp vehicles that can merge foto the Kalanianaole Highway through traffic and reaults in extensive queuetng of traffic on the on-ramp.

Kalanikik/wateli Streets - This intersection does not experience any problems during the evening peak traffic pertod since school traffic has exitedearlier.

Laukahi/waiholo Streets -- This intersection does not experience any and left-turn to laukahi street ( 290 vehicles). This is because of the
comparatively low opposhg tratfic volunes inbound on Katanianaole Highway and on taukahi and Wainolo streets.

Road，and then travel on Kuliouou Road through the Kalantanaole intersection to reach the mauk area of kulfouou Valley．The route is reasonably direct， but does require a sometimes lengthy watt at the traffic signal．
As a result，most outbound traffic destined to Kullouou Valley now turn left at Elelupe Road： 190 left－turns counted at Rlelupe Road in the evening peak traffic hour versus 20 ＂through＂vehicles counted mauka－bound on Kultouou Road at Ralanianaole Highway．Since there is no left－turn storage lane， vehicles turning left at Blelupe Road stop and walt in the through lane for a
 through lane．Field studtes during the evening peak hour found that stopped

 intersection．This，in effeck，reduces the capacity of Kalanianaole Highway at this location by about 10 percent．
Other Mauka Streets－The problem of left－turn vehicles blocking one of the outbound through traffic lanes also occurs at several other intersections where there is no left－turn storage lane．These include Hawali Loa Street， Moomaku Rlace，and Kavaihae street．The number of these streets and create fewer delays than at Elelupe Road．At Kawathae Street，State Dot plans are to install a traffic signal and prohibit left－turns from Kalantanaole Highway．
Keahole Street－Keahole Street accommodates the largest number of outbound left－turns（ 750 during evening peak hour）from Kalanianaole highway into Hawail kal．The present intersection layout and traffic stgnal timing can accomodate this movement．However，the waiting queue of left－tura vehicles frequently extends beyond the left－turn storage lane，thus blocking a Hawali Kai Drive intersection．
hawali kai roadway conditions
Hawail Kai roadways provide sufficient capacity to accomodate present
traffic volumes during morning and evening peak traffic periods．Morning peak

West Hind Drive－The Koko Head－direction roadway narrows from three
through lanes to two lanes by dropptug the outside（makai）traffic lane at this intersection．The lane reduction，without any extension beyond the intersection，resuits in little use of the outside traffic lane by traffic approaching the intersection．The intersection operates at an acceptable level of service，even with the combtnation of heavy through traffic volumes and lane reduction，since the T－1ntersection and restriction of left－turns from West Hind Drive permits almost continuous Koko Head－direction traffic flow．Koko Head direction traffic is stopped only for pedestrian crossings．

An extremely large number of left turns（ 500 vehicles）are made from outbound Kalanianaole Highway to Hest Hind Drive．However，the intersection can easily acconmodate this volume since there is relatively low opposing inbound traffic on Ralanianaole Highway and West Hind Drive traffic is restricted to right turns．

East Halemaumau Street－At times，this 7 －intersection provides the capacity constraint along the four－lane section of Kalanianaole Highway．The intersection constraint during the evening peak hour is a function of several factors：

## Heavy outbound through traffic volunes；

Heavy left－turn movement from East Nalemaumau Street；
Frequent stops by outbound lacal buses to pick up／discharge passen－ gers，with the stops made in the through traffic lane；and Frequent pedestrian crossings of Kalanianaole alghway through activation of the pedestrian＂Waik＂phase on the signal．The pedestrian walk phase provides approximately three percen more signal green ti
traffic volume．

Elelupe and Kuliouou Roads－Since there is no separate left－turn lane． left－turns have been probibited from Koko Head－direction Katanianaole Highway at Kuliouou Road．The left－turns are intended to be made by a＂jug－handle＂ movement：ripht－turn onto Preoki Drive，proceed on Sumaer Street to Kultouou
tour traffic volumes are presented in figure 5 , evening peak hour volumes in Figure 6. The volume-capacity analyses for the key intersections are included
in Table 7 .
perind is principal problem observed in Hawali kai during the morning peak route using Lunalilio Home Road wall drection commuter traffic which follows a Street. This route results in an Eva-direction right-tuin orive and Keahole 1,200 vehicles from Lunalilo Home Road to Waflua Str-turn movement of almost of left turns at the Hawali Kal Drive fintersection, and a siallar number streets. The left-turn volumes are approaching the with Wallua and Keahole Kai Drive intersections, given the present physical lay of the two Hawaif controls, since the left-turn movement is made fromalical layout and traffic The return
volumes of more than 900 vehicles evening peak hour results in right turn Keahole and Wallua Streets. Thes at the hawail Kai Drive intersections with right turn movement enable the ever volume and the fewer conflicts with the disruption. The afternoon return movement movement to be made with less
 two left-turn lanes are provided to accomodate this move Road. However, delt
plans to Cinstall traffic st Honolulu Department of Transportation Services the next year at the Hawali Kal Drive the heavy directional movement improve operations for intersection will also be restriped and traffic islands
 street; the Ewa approach of Hawall Kal Drive will becproaches as the through volume-capacity analyses in Table 7 reflect these change side street. The Drive-Wailua Street intersection will operate at hevel of Service E during the morning since the heavy left-turn movement whll continue to be made from a
$\varepsilon$ 123deyo
 atation of these developments will be
-39 .

phased throughout the period. By 1994 , the additional development is expected
to total 100,000 square feet of office facilities and 233,000 square feet of
commercial retall uses. Kaiser Development
Kaiser Development Company is requesting zoning approval, in order to the current projects. The tracts includedional residential development beyond herein as the Marina Zoning tracts, include in the zoning requests, referred to estimated to total 2,400 untts. These mine multifamily developments which are located in the areas along Hawail Kai drive aidily projects will be primarily Hawafi Kai Marina. $\quad$ Kawail Kai Drive and Wallua Street adjacent to the

 a continuation of current in Table 4 (Chapter 2 ). These trip rates reflect erated by present residential areas aracteristics. The number of trips gen-










 Vehicle Trip Distributton

[^8]$-07-$




GOYצ3d SISさTHNF $7661-5861$



1. The additional residential units would make the same number of trips within Havaif kai to the existing convenience stores, service
estabilishments, and schools and comunity facilities as does existing residential units.
2. The origin/destination of trips from the expanded Marina Business Center office/resall development would be as projected in the 1977 traffic study for the profect: ${ }^{\text {( })}$

$\begin{aligned} & \text { activities. This adjustment is appropriate since the expand } \\ & \text { expected to include a department store andfor other retall }\end{aligned}$

> additional job opportunities.
> The trips to and from the central Honolulu area, where residents
residents is estimated as follows:

[^9]Table 9

Land use category	Morning peak hour		evening peak hour	
	To The Project	$\begin{aligned} & \text { rom The } \\ & \text { roject: } \end{aligned}$	To The Prolect	$\begin{aligned} & \text { Prom The } \\ & \text { Project }^{\text {(b) }} \end{aligned}$
new restidences in zoned tracts				
Single Family	205	525	605	355
Multifamily	5	15	15	15
Subtotal	210	540	620	370
$\underset{\substack{\text { expansion } \\ \text { Center }}}{\text { of marina business }}$				
Shopping Center	$\begin{array}{r}90 \\ 190 \\ \hline\end{array}$	50 20	480 40	500   180
Subtotal	280	70	520	680
subtotal. por approved pronects	490	610	1.140	1,050
residential projects in marina zoning tracts				
Low Rise Multifam1ly	45	190	190	$\begin{array}{r}90 \\ \hline 80\end{array}$
Medium Density Multifamily	185	380	380	
subtotal for marina zoning	230	570	570	470
total increase	720	T,180	1,710	1,520
(a) All vehicle trips ewding at the new profect.   (b) All velitice tips berinning at the new profect, whether dest fned to points within or ourside of Hawali kai.				

within or outside of Hawall kai.


## Transit Trips

Transit trips were assumed to increase proportionate to the fncrease in
total Hawail kai trips Peak dire total Hawail Kai trips. Peak direction transit trips to and from Hawail kai during the morning peak traffic hour would thos be:

with these increases in patronage.
other kalanianaole highway traffic increases
sources of increased travel on Kalanfanaole Highway are increased potential recreational travel and the travel from continued development of Hawail hoa Ridge and Walalae iki.
future traffic conditions without mitication measures,

 increased recreational activity, were added to existing traffic volumes to


 Highway, and up to 310 vehicies to the Koko Head direction volumes. The evening peak hour increases on Kalanianaole percent of these estimated increases would be generated by the Marina Zoning parcels.
 would exceed the capacity of the Kalanianaole highway intersections at
 the Table 11 volume-capacity analysis summary, the projected volumes would
 Without mitigation actions, these increased traffic demands would result in
increased travel delays and congestion. Since the existing roadway capacity cannot accommodate the profected peak hour volume, approximately 600 to 650 motorists would have to travel either prior to or after the peak hour, either voluntarily by choice or tnvoluntarily through increased delays.
During the evening peak hour, the projected increases in through traffic would exceed the Kalanianaole Highway intersection capactites at Kalanifki, Laukahi, Rast Halemaumau, and Kullouou Rosd. The evening increase would exceed the intersection capacities by 200 to 250 vehicles.
Traffic in the Hawall kat development areas would increase by an average of 35 to 40 percent above present peak hour volume as a result of the infint development and Matina Loning profects. Hawaif Kai Drive during the minning peak hour. During evening peak hour, the profected increase in the ieft-tarn movement from Kalanfanaole Highway to Keatole Street would exceed the intersection capacity.

Tourist/Recreation Trips
Increased courist/recreational trips were developed from the findings of the recent islandwide study and forecasts of tourist travel. ${ }^{\text {(2) }}$ Twenty (20) Koko Head direction tourist/recreation vehicle trips were added on Kalantanaole Highway in the morning peak hour. In the evening peak hour, Kalantanaole Highway traffic was increased by 100 and 30 vehicle trips in the Ewa and Koka Head directions, respectively, which amounts to a 50 percent increase above existing tourist travel.

## Other East Honolulu Developments

The Hawati Loa Ridge and Watalae tiki single-family residential developments are the only identiffed developments outside of Hawali kai which are expected to contribute traffic to Kalanianaole highway. Based upon a continuation of the present construction/sales rate of 12 residences per year for each, these two developments would add 108 residences each by 1994.

Based on the single-family trip generation rate and an $85 / 15$ percent split in traffic between points Ewa and Koko Head of the developments, the resultant traffic increase in 1994 is estimated as follows:

## morning peak hour evening peak hour

 우린


Hawail Kai Drive/Kawaihae street as it is at present. This would reduce the number of local stops made within Hawali Kal and reduce trip time by about five minutes. The portion of Hawail kai Ewa of Keahole street should be served by a separate express ine.

- Two or more of the additional express bus trips should originate in the Kaluanui axea along Hawail Kay Drive to serve this proposed major reaidential area.
 the park-and-ride site to ensure that capacity (and seats) are avallable to riders boarding at the facility.
 cial center, as well as to the park-and-ride/transit center.
description of rideshare program measures
 appeal to the various preferences and/or objections expressed to current services; such as ride comfort, access to bus, seat availability, directness and speed of service. The messures incorporated in this program have been
 for these measures have been based an analysis of similar operations in these other areas, and adjusted for Honolulu conditions.


## Free Bus Passes to All Nev Residents

To encourage new hawait kat residents to try public transit, free express bus passes would be provided for a period of one year following their move-in. The bus passes would be avallable to occupants of all newly-constructed units in Hawali Kat.


Usage levels have been based on the 1980 park-and-ride atudy patronage
profections (2) and adjusted to reflect the increased population of Hawall Kai,
plus spaces needed for vanpool and carpool parkers. The estimated reduction
in vehicle trips was based on 80 percent of the additional riders being
attracted from peraons who would otherwise drive to work or school. The
larger proportional attraction of automobile drivers reflects the implied
availability of an automobile for the trip by persons who would drive to a
park-and-ride facility.
Vanpool program
A vanpool provides direct door-to-door service in 8 to is-passenger vans
for comuters between their neighborhood area and their place(s) of work. The
vanpool can generally provide service to a major employer or to several
employers within an employment center in a shorter trip time as compared to
bus service, and can provide service to cmployment sites too small to warrant

It is proposed that a special public transit monthly pass be employed that would be valid only for use on express busea. This pass be employed ilmit use of the passes to commaters and atudents who tend to travel during to those traffic periods, thus concentrating the impact on automobile travel congestion occurs. Issuance of aighway during the periods when highway spectal agreement with the city and county of Honolulu.

Implementation of free fares or substantial fare reduction the cities (Denver, Colorado; Salem, Oregon; Amherst, Maine; Auburn, New York) have found increases in patronage of 40 percent or more above the previous ridership levels. Accordingly, peak hour express bus ridership rates for residents of new residential projects were increased by 40 percent for the fict year after occupancy of the unit. One-third of these riders were (to continue using transit after the one-year free bus pass ends enalnder would shift to other modes. Estimates of vehicle travel those who theredide of the additional riders attracted from those who otherwise would drive, and one-third from automobile passengers.
Park-and-kide Factlity

Hawali Kai was proposed as a transit station/park-and-ride site for any
planned East Honolulu rail transit line and, more recently, as and site for express bus services. ( ${ }^{(1)}$ Ine and, more recently, as a park-and-ride Keahole Street. The potential for a parkoposed site should be located on the approximately 20 automobiles which are parked daily on Hawaif kai Drive adjacent to the express bus stop near Wallua Street, and acattered numbers at other express bus stop locations.

The proposed park-and-ride facility is reconamed to be developed in two
phases. Facility description and operation includes:

(1)

Driver is reaponsible for rider recruitment, fare collection, locations of substituke driver during vacation or illness, and maintaining rider usage and financial records. The Hawali kai Transportation Coordinator (page 57) would seek exployers who would sponsor a vanpool(s) through full or partial payment of vanpool costs.
privers would operate vehicle under a terma of agreement with the program sponsor.

Costs/Pees - Purchase cost for the vans may be up to $\$ 17,000$ each, with an expected four-year 11fe. Operating costs will approximate $\$ 180$ to $\$ 250$ per $\$ 40$ per month would be required to cover operating and vehicie replacement costs, dependent upon the vanpool size (8 to 12 riders).

Vanpool Usage - Vanpool programa sponsored by employers have been extremely successful in attracting usage by their employees. The more successful programs--such as the Tennessee Valley Authority (Knoxville), Newport News. Shipyard, Ralph Parsons (Pasadena)-generally attract use by 10 to 15 percent of their employees. Almost all programs attract at least 1 to 2 percent.

Third-party vanpool programs are generally directed to serving comnuter cravel to many locations within a metropolitan area. Programs include those operated by Golden Gate Bridge District ( 137 vans); Rides for Bay Area Commuters ( 70 vanpools, San Francisco), Coumuter Computer in Los Angeles (137 vans). Golden Gate progran, the vanpools capture one-half percent of all dally work trips made from Marin and Napa Counties into San Francisco.
 already be geographically limited at one end--the residential end. The program is further targeted at those who travel during a narrow time period, the peak one-hour traffic period, thus further concestrating the potential market for participants. Nevertheless, it is appropriate to assume the cravel characteristics and commuter participants' rate would approximate those for relatively low volume empleyer-operated systems.
direct bus service. Formation of a vanpool usually requires that 8 or more interested persons have similar work hours and employment locations. Vanpools generally fall within three categories: 1) employer-sponsored; 2) third-party sponsored, such as a non-profit organization or transit district; and 3) owner-operator "for profit" vanpools. In each, the vanpool operator (driver) usually receives free use of the vehicle, uhile the passengera are required to pay a monthly "fare" that covers part or all of the vanpool costs.

Vanpool programs have been one of the most successful forms of ridesharing throughout the United States. In 1981. 600 employer and third-party aponsors operated over 12,000 vanpools carrying 125,000 comaters each day. Vanpools have been increasing annually in popularity, with the number doubling every five years. Corridor travel factors which contribute to the success of vanpools are: 1) one-way trip which exceeds 12 to 15 miles; 2) corridor congestion and/or expensive and limited parking at the destination; 3) indirect or inadequate transit service; and 4) sufficient employer or employment center size to have 10 to 12 persons from the same area with stwilar, fixed work schedules.

For Hawall Kal, the vanpools would be used either to serve a major employer, or to serve an employment center which does not have dixect bus service from Hawall Kai, such as the International Airport, Iwilet, Pearl Harbor/Hickam A1r Force Base, Fort Shafter, and Kakaako areas. The program would be prowoted through the active recruitment of vanpool operators and a would be prowoted through the active recruitment of vanpool operators and and follows:
vanpool operators (drivers) would be actively recruited with emphasis on congenial, entrepreneurial individuals.

Initial van purchases would be provided at a subsidized cost to the operator.

Start-up operating costs would be subsidized for the first several months while riders are recruited.
months while riders are recruited.
Rider fees would be levied to cover operating costs, plus the
purchase of a replacement vehicle. purchase of a replacement vehicle.
Given the home-end concentration, it is conservatively estimated that
 use Kalanianale Highway during the peak traffic hour. This would be equivaler use by one-half percent of all Hawali Kai work trips. The est imated reduction in peak hour automoblie trips is based on one-half of the vanpool carpool or bus passent from automobile drivers and one-half from efther catpool or bus passengers.

## Hawali Kai Express fus Club (Buspools)

Hawaif kat Expresp express bus service would be organized and operated by an resident-officers of the club, with club wections managed and promated by areas of Hawall Kai. The Express clut club sections organized for different to commuter/members on a dafly basis, with payment express buspool service This premime Kai end and would make a 11 mited center) end. Riders would belong to an individual buspoot same bus each day and, if desired, with an assigned seat. General operation would be as follows:
Bus service would be provided by private contractora selected on a bid basis and in conformance with specifications for vehicles and operating requif rements.
comfort items, and conditioned, with high-back seats and other officers.
Schedules, neighborhood stop potnts, and destination stops would be determined by club officers based on the requirements of members in
Club officers would market the buspool services, revieu applications
and approve prospective riders, collect monthly rider fees (fares), and establish operating policies relative to smoking, drinking,
besignated club captains on each bus would be responsible for handing daily problems.

Kakaako areas which, combined, equal the express bus potential for Downtown Honolulu. Other potential employment centers for service would be the Downtown and the Atrport/Hickam/Pearl Harbor areas.

As with the vanpool program, use of buspools would be targeted for comaters travelling during the peak traffic hour to the above markets. The estimated market peak hour potential would amount to four to five buspools for the Waikiki-Ala Moana-Kapiolani Boulevard-Kakaako area and one to the Atrport-Pearl Harbor area. In addition, the advantages of the premium, subscription buspool service could attract sufficient use to Downtown Honolulu to warrant service.

For this analysis, a club bus program with five buspools is proposed for
Hawail Kat. These could serve five percent of the peak hour commuters to these areas, which is approximately one-half of the current market share of express bus services for Hawail kat commiter trips to Dountown.

## Atna Hatna/Niu/Kuliouou Express Bus Service

Express bus service to these communities is presently limited to a aingle bus trip between Aina Haina and Downtown Honolulu. The potential market for improved express bus service should be similar to or greater than the express bus ridership in the Hawaif kai area. Using the Hawail kai ridership rate, expanded express bus services could potentially attract an additional 300 passengers in the morning peak hour.

The proposed express bus service would add three additional express bus
trips during morning and evening peak periode to serve this area with all three trips occurring during the morning peak hour and two trips in the evening peak hour. Each bus would be routed to initiate service in kuliouou Valley and then make a limited number of stops in efther Niu Valley or Aina Haina, then proceed nonstop to the destination (central business district or Waikiki-Ala Moana area).

Based upon service by a private bus operator, the annual cost would amount to $\$ 44,000$ per bus for each of the three buses, and an annual subsidy
of $\$ 35,000$ per bus. This reflecta a $\$ 35$ per hour cost for 5 hours per day, and an average revenue of $\$ 15$ per month for riders.

Ridership each way ahould average 40 or more passengers per bus, for a
total of 120 or more passengers. One-half or more of these riders should be attracted from automoblle drivers, with the balance attracted from local bus or automobile passengers.

## Bicycle Factitites

Bicycle storage lockers would be provided at the park-and-ride facility
and at selected but atope to encourage use of bicycles to access the transit terminal and bus services. These factilities would generally consist of storage lockers placed in public, highly-visible locations, such as the Koko Marina and Hahalone Shopping Centers, and Hawali Kal Post office. Locations and number of lockers would reflect resident request and usage.

Access to individual lockers would be assigned to commeters or students who are regular bus ridera (pass holders) and who would use their bicycle for access to the bus.

## Hawall Kal Trapsportation Manager

Initial inplementation of the ridesharing programs for hawait kal would be expedited and effectiveness improved by the empioyment of a Transportation Nanager. The attention that such an individual can give to the recruitment of vanpool drivers and initial buspool riders. the marketing of transit services, and the solicitation of assistance from the employers of Hawali Kai residents, would generally result in a more rapid increase in ridesharing to a higher eventual level of use than would be realized without such a person. Use of a Transportation Manager in other communities has generally produced a 5 percent In the rideshare weasures. The role of the transent of any other changes in the rideshare weasures. The role of the transportation manager would
include:

Assist in start-up of buspools, such as preparation of bid
specifications, negot iate service contracts, and assist in
specifications, negot date service contracts, and assist in formation
of initial selection of officers for the Express Club.
2. Recrutt drivers, arrange vehicle acquisitions, and develop service
guidelines for vanpools.
3. Update and disseminate buspool, vanpool and other xidesharing
4. Prepare and distribute brochure to local realtors and leasing agent for their distribution to perspective home purchasers or renters. mochure would describe public bus services and the rideshare filled out toclude a travel information form. This form would be identify rideshare potentials for information needed to assist and potentials for each new restdent.
5. Visit new residents to acqualnt them with the rideshare prograw and to solicit information for use in rideshare matching. information on a regular basis to Hawali kai residents and business
employees.
The rideshare program vehicle travel reductions would offaet a portion. of
the "trend" travel incressea profected for the new Hawail Kai developmenta, as discussed in Chapter 3. Implementation of the measures would reduce estimated
increasea in peak direction travel as follows:

 -

## xmplementation program


Implementation of the rideshare program would be timed to parallel the
traffic increases which would result from anticipated development phasing of
the new Hawail Kai residential cracts. The schedule would also be fnfluenced
by residential acceptance and use of each program measure. Greater or lesser
use of an individual measure may result in accelerated or alowed
implementation of that measure.
The anticipated implementation achedule is outined for each measure in
Figure 7. Key factors affecting the schedule are:
(a) Estimated impacts at full implementation in 1994.

$$
\begin{aligned}
& \text { total }
\end{aligned}
$$

Initial preparation of plans for 1 mplementation would begin in 1986. Actual procurement of services would be initiated foll final approval of the zoning request, which is expected in wid-1986. rer needed at the beginning of the progran to organize and intiate many of the other programs. The position could be phased out or level of effort reduced in the later program years when most measurea have been implemented and most developments occupied.
 tional tracts are developed during the $1986 \sim 94$ period.
The vanpool and club bus eleaenta would be Inittated during che
eararly years of the progras and expanded se varranted by comanuter
use. The estimated capital costs needed to fuplement the program measures are
summarized by year in Table 13. Estimated program costr total $\$ 967,000$ as
expressed in 1984 dollars. These capital cost items include:

- Design and construction of 210 -space park-and-ride facility. No
land costs are included.
- Purchase and placement of 40 bicycle storage lockers.
- Acquisition of il vans.
Acquistion of microcomputer, ridesharing and related software,
and related office ftems for use by the Transportation Coordinator.
Operating costs, identified in Table 14 , reflect the net cost or subsidy
requirement aftex subtraction of fare revenues from passengers of the vanpool and express bus services. Estimated operating costs for the progran, expressed in 1984 dollars, would total $\$ 1.5$ million over the $1986-94$ pertod.










[^10]Chapter 5
The tmplementation of the proposed ridesharing measures would offet a significant portion of the traffic increase which would otherwise be generated by the new Hawali kal developments. The resultant increase in Hawail Kat traffic, combined with additional traffic from other new developments and recreation activities, would increase Kalanianaole Highway volumes by 4 to 15 percent at different locations during the peak traffic hours.
As discussed in Chapter 2, the Ewa portion of Kalanianaole fighway is presently operating at capacity during the morning peak hour, and morning or evening traffic volumes at several other locations within hawail Kal and on Kalanianaole Highway are approaching the capacity of key intersections. Localized roadway and traffic operational measures have been 1 dentified for those locations which would be significantly affected by the future traffic increases.
$$
\text { projected } 1994 \text { peak hour traffic with rideshare progray }
$$
The magnitude and composition of the estimated increases during the
morning and evening peak hours are summarized in Table is for two locations on Kalanianaole Highway: Kalanifki and Kawathae Streets at the Bwa and Hawait Kal ends of the corridor, respectively. The Hawali Kat traffic incrase represents the combined traffic from the infill completion of zoned tracts now being developed, expansion of the Marina Business Center, and development of 2,400 housing units in the Marina zoning tracts. The increase "wichout rideshare" reflects the continuation of the present travel mode usage. The rideshare program impact is offset against this "trend" increase in order to
determine a net increase attributable to Hawali Kai development.
Hawail Loa Ridge and Watalae 1 kl development traffic and increased tonc1st and recreational traffic have been added where appropriate.
 hour. The increase would angount 10480 and 360 vehictes in the

peak (inbound towards Honolulu) and off-peak directions, respectively. Evening peak hour increases would be lower due to; 1) the longer pertod and lower hourly volumes characteristic of the evening peak period; and 2) the increased proportion of trips which would remann within Hawail kai as a result Center.
The 1994 traffic volumes projected for Kalanianaole Highway, after implementation of the rideshare measures, are presented in Figure 8.
Kalanianaole highway traffic conditions
The analysis of traffic conditions along Kalanianaole Highway reflects the exiscing roadway factifities and craffic controls, plus the inclusion of planned new craffic signals at Hawail Loa Ridge Drive and Kawathae Street. This analysts does not reflect the capactity increases which would result from completion of the State DOT's median HOV lane uidening project.
The analysis of morning conditions is based upon a peak hour volume of 320 vehtcles using the contraflow High Occupancy vehicle (Hov) lane, which is the same as 1984 use. As part of the rideshare program, it is proposed that 120 additional peak hour buses, vanpools and carpools be allowed to use the Hov lane.
A sumary of the volume-capacity relationship and anticipated service levels for the key intersections are presented in Table 16.
Morning Peak Hour
 centered on the Kalaniiki/Waieli and Laukahi/Watholo Streets intersections with Kalanianaole Highway.
Kalaniliki-Waleli streets - Fwa direction traffic is projected to increase
by 410 vehicles during the morning peak hour, with hawaif Kai contributing 330 vehicles. Stace the ktlandiki Street futersection curreatly operates at
capacity on achool days, the additional volume could not be accommodated
duing the peak hour without roadvay or traffic operational modifications, or
change in Kalani High School operations.
The most economical measure to improve traffic conditions during the classes to 9:00 A.M. as opposed to change the start of Kalani High School arrival of most faculty and student traffict 8:00 A.M. This would delay Kalani High School to the B:30-9:00 A.M. period pedestrian crossings of traffic volumes are considerably lower during thod. As shown in Figure 4. improve traffic volume-capacity ratio to 1.00 for the mornting peak hor解
Alternative physical and traffic operational modifications which could be pedestrian overpass, diversion of part or sill could include construction of a

 Kilaues off-ramp. Ladahi Street - The combined fncrease of the Kalanianaole Highway
traffic and the Waialae thi traffic on Laukahi Street would approximate the capacity of this intersection. Traffic delays would be expected to increase


East Hind Drive to Kavathae Street ~ The four-lane section of Kalani-
anaole Highway would be able to accommodate increased traffic
 Traffic volumes may approach ine operation.
Traffic volumes may approach intersection capacity at East Halemaumau
Street. A heavy right-turn volume from inbound Kalanianaole Highway occurs





$-z t-$



Elelupe Road, with chis traffic routed via the fughandle movement to kuliouou Road, would also improve operations. However, this approach would require the
uidening of Kuliouou Road to provide two mauka direction lanes through the intersection.

Keahole Street - The increased number of left-turn vehicles from Kalanianaole Highway to Keahole Street would result in a longer queue of vehicies waiting to turn left, and an increase in traffic delays at this intersection. The operating conditions at the Hawali kal Drive and Lunalilo Home Road intersections would not perwit a sufficient number of these left- turn vehiclea to be routed to these intersections to ellminate the problem at Keahole street.

hawail kai roabyay compitions

The princtpal traffic increases in the Hawail kai area would occur along Wailua Street, Hawail Kai Drive and Keahole Street adjacent to the Marina Zoning parcels. Profected morning and evening peak hour traffic volumes are depicted in Figures 9 and 10, respectively, for the major roadways in the Hawali Kai area.

As indicated in Table 16, the projected traffic volumes would exceed the capactity of the Hawati Kai Drive/Wallua Street intersection during the morning peak hour period. The mafor movement is the Honolulu-bound left-turn traffic, which would still be restricted to use of a single lane after the planned installation of a craffic signal at the intersection. Two left-turn lanes are necessary to accommodate the morning makai-direction movement.

The Hawail Kai Drive/Keahole street intersection would provide sufficient capacity to accommodate the proposed traffic if the intersection approaches are realigned to make Keahole Street-mauka Hawali Kai Drive the through movement. Without realighment, the volume-capacity ratio would increase to 1.25 .

The right-turn from Lunalifo Home Road to Wallua Street would be approaching capacity with the 1994 morning peak hour traffic. The intersection
 efther a continuous right-turn or a double right-turn movement from Lunalifo Home Road.



SAunSvan nollvolimm azsodoad
10 SLJvakI JIadvai
41 21qua
proposed mitigation measures
Based on the analyses of 1994 traffic conditions, a series of roadway and operational modifications are recommended for those locations where the traffic increases uould significantly affect traffic operations. These modifications could be implemented independently of the planned state DOT Kalanfanaole Highway Hov lane widenting project. Traffic impacts of each modification are sumarized in table 17. In developing a recomended program, measures were selected, where possible, to: 1) minimize any taking of right-of-way for the fmprovement; and 2) retain 1ts usefulness after construction of the state dot Kalantanaole Highway Hov widening project.

## Kalantanaole Highway

The improvements proposed to mitigate the impact of the additional Construct a pedestrian bridge crossing over Kalanianaole Highway midway between Kalanilki and Laukahi Streets, in the vicinity of $\mathbf{i k i}$ place, and relocate the makal side bus stop from Kalanilki street to the overpass. An automoblie passenger drop-off area could also be provided at the pedestrian bridge.

With construction of the overpass, both the Koko Head and Ewa side cross walks should be removed and pedestrian crossing prohibited across katanianaole Highuay.

 should be changed and the traffic stgnal controls modified to permit the left turn movement from Waikni Street during the morning peak pertod. This would permit diversion of a portion of the Wateli Street left turn traffic to waikui street, thus reducing the signal time required for the through traffic on Waleli Street and reducing
 carpool vehicles (Chapter 4). This would shift approximately 120 vehicles from the numal inbound through lane to the Hov hane.
intersection. The driveway access to the Marina lif parcel should be aligned as the fourth leg of this intersection opposite the Ewa side Hawali Kai Drive leg of this intersection. This would permit traffic aignal protection for vehicles exiting the development and to avoid a short offset between the Marina 1lA driveway and the Hawail Kal Drive-Keahole Street intersection. Hawaii Kai Drive and Wailua Street - This intersection experiences a
problem similar to the Keahole Street intersection, with Waflua Street and the makai leg of Hawail kat Drive serving the major traffic movement. The City plans to install a traffic signal, but the major movement would stili be restricted to a single lane.

Improvement at this intersection should include the striping of the
 and one lane in the mauka direction. The inside Ewa-direction lane would

 easterly to the Wailua Street bridge.
 Keahole street to provide access to the proposed parkmandwride facility and




 development.

Traffic signals should be installed at both intersections to facilitate bus ingress-egress to the park-and-ride facility, and motorist egress from the Towne Center commercial development.
 Keahole Street and the planned traffic stgnals on Hawaii Kai Drive at Keahole and Wallua Screets, the number of traffic stgnals on the realigned keahole

As shown in Table 17, the cumulative effect of these measures should more than offiset the estimated increase in traffic.

Laukahi-haiholo Streets -- The pedestrian overpass and incresse hov lane usage proposed for the Kalaniliki Street intersection would also improve future pedestrians at an at Laukahi street. These changes, plus the restriction of pedestrians at grade crossing across Kalamianaole Highway, would largely offset
the increase in the inbound through traffic during the morning peak hour.

Four-Lane Kalanfanaole Highway Section - Improve bus pullouts are proposed for the makal stde bus stops at East Halemaumau Street and Kulfouou Road. This would permit local buses to pullout from the through lane when stopping to board or discharge passengers at these bus stops and thus reduce future lane blockages and the resultant vehicle delays.

Keahole Street - A second left-turn lane should be added on Kalanianaole Highway for traffic turning onto Keahole Street. This lane would require widening on the mauka side of Kalanianaole Highway to provide the additional storage lane and the roadway width transition. Additional right-of-way would be required.

## Hawail XaI Intersections

 currently approaching its capacity constratnts during the morning peak traffic pertod. Keahole Street has become the mafor access roure to/from the Mariner's Ridge, Mariner's Valley, and Kalama Valley areas, which would restilt in increase makal direction traffic turning left at this intersection. The Ewa segment of Hawaii Kai Drfve acconmodates relatively minor traffic volumes, with a major portion also turning makai onto keahole Street.

The City plans to restripe and add tratfic islands to the intersection to
allow Keahole street and the mauka leg of Hawaii kat brlve to function as the through streot. A traffic signal should be installed at this intorsection. The intersection could also be realigned to improve traffic flow through the

XII. ADDITIONAL REFERENCES

University of Hawaii, Department of Geography; Atlas of Hawaii, Second Edition; 1983
U.S. Army Engineer District, Honolulu; Final Environmental Statement for the Department of the Army Permit Actions in the Hawaii Kai Marina; July 1975
U.S. Army Engineer District, Honolulu; Informational Supplement to the Final Environmental Statement for the Department of the Army Permit Actions in the Hawaii Kai Marina, Oahu, Hawaii; November 1976

United States Department of Agriculture Soil Conservation Service; Soil Survey of Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii; August 1972

Department of General Planning, City and County of Honolulu; Proposed Amendment to the East Honolulu Development Plan Fiscal Year 1 $\overline{983-84}$ Annual Review; December 1983

$$
\begin{gathered}
\text { ENVIRONMENTAL ASPECTS } \\
\text { OF } \\
\text { STORM WATER RUNOFF }
\end{gathered}
$$

$$
\begin{aligned}
& \text { By } \\
& \text { Gordon L. Dugan, Ph, D. } \\
& \text { Environmental Consultant }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TABLE OF CONTENTS }
\end{aligned}
$$

intronuction

The proposed Hawaii Kai Marina Zoning Project, covering an area of
97.8 acres, is located in the Hawail Kai area near Koko Head, on the eastern tip of Oahu, as shown in Figure 1. The project as concetved, will require zoning changes from $\mathrm{Ag}-1$ restricted agriculture, preservation, and $\mathrm{R}-6$ residential to low density $(A-2)$ and medium density $(A-2)$ apartments. As separated by major city streets, as can be noted in Figure 1.
 mixed fill, which was primarily derived from dredging the original Kuapa Pond, an ancient Hawailian fish pond. The fill material is thus, primarily of alluvium origin which is generally only moderately permeable. The remaining approximately $20 \%$ of the development area consists of Koko soil, a fairly permeable material. The project site is presently covered with a varying anount of grasses and brush, principally Californiagrass and Haole Koa. The mean annual rainfall in this area is approximately 35 in . (Dowald, 1981). As can be noted in Figure 1, the proposed development involves a consider-
 proposed development, across from Kaiser High School, had berms construc(setting/dewatering basin for part of the dredged material removed from the 1983 dredging of Kuapa Pond.

- oxd uparay 8uraq si se yons suaford quawdoparap uequn yitm parepossy posed are alterations in surface water runoff resulting from increasing the area of inperviuos surfaces, through development of roof tops, roadways,
parking lots, and the like. Interest in these runoff changes is generally a parking lots, and the like. Interest in these runoff changes is generally a
result of concern over two factors -- one, public safety, and two, environ-
 discharge rates, the magnitudes of which are necessary for designing adequate drainage structures to prevent flooding, while the second concern
 ment, nutrient, and other constituent loads, and the effects these will have

over a given rainfall-intensity range. However, in order to circumvent a major portion of the unavoidable error created by using a constant rainfallrunoff coefficient, a method developed by the Hawaii Environmental Simutation Laboratory (HESL) of the University of Hawaii was utilized to determine representative storm water volumes under varying conditions (Lopez, 1974; Lopez and Dugan, 1975).
The HESL method is based on an incorporation of U.S. Soil Conservation Service (SCS) data and U.S. Weather Bureau data from the "Rainfall-Frequency Atlas of the Hawaiian Islands" (1962). The SCS data involves the use of soil maps (Foote et al., 1972) and SCS-derived curve numbers moisture cond empirical data, including precipitation, soil and changing soil


 conditions, the HESL method utilized information published by Miller and Viessman (1973).
Once the increase in surface water runoff volume had been established, it was necesary to determine the funoff quality for pre- and post-develop-
 runoff from the predeveloped (1985) project area itself, nitrogen and phosphorus levels of $1.10 \mathrm{mg} / \mathrm{L}$ and $0.11 \mathrm{mg} / \mathrm{h}$, respectively, were used for the
 yr and phosphorus outputs of one order from nitrogen outputs of $3 \mathrm{mb} /$ acreyr and phosphorus outputs of one order of magnitude less; an annual rainfall
of $35-\mathrm{in}$; and a rainfall-runoff coefficient of 0.3 .
Representative suspended solids values in storm water runoff from the proposed predeveloped (1985) project area are again difficult to determine, inasmuch as it is commonly presumed, by mainly indirect methods, that the majority of the annual suspended solid load is carried by the heavy storm

a/Storm water samples collected on Aupuni Street near Nuhelewai Stream.
* Values obtained from Fujiwara (1973).
water runoff events which tend to occur on an infrequent basis. For the present study the concentration of suspended solids was based on composite Oahu streams, including those out of the entire Kaneohe Bay Drainage Basin, as reported by Jones et al. (1971). Following this reasoning the suspended solids concentration value for predeveloped conditions for comparative pur poses was set at $1,500 \mathrm{mg} / \mathrm{L}$.

Quality data for urban storm water (poot-development conditions) is sparse, both locally and nationally. Loehr (1974) complles urban storm water runoff quality data collected from throughout the United States, as well as from a few international loctions. As expected, the data are diverse. from storm dralns in different drainage areas of Honolulu, as shown in Table 1. For the present study, his results were used to simulate post development nitrogen, phosphorus, and suspended solids. Attention is likewise drawn to the heavy metal content in residential runoff, especially with respect to iron, chromtum, copper, lead, and zinc.

Applying these concentrations to the poat-development runoff volues. the projected sediment and nutrient loads from the project site could then be
estimated.

#  



（296t）mpu＊

	\％6．85	78．391	\％．3nt	－ 69	37	6.8	¢， 88	\％．9\％	$\cdots \times$	\％	$3 \times 8$	0.31	001	72
35 30	96．85	ZS．9EI	6． $28 t+$	6 6）	0.02	cter	$0 \cdot 891$	こ「0\％	O§£ ${ }^{\text {¢ }}$	0－00t	0：29	0＊Et	05	72
－ $\mathrm{y}^{8} \mathrm{~S}$－	70．82	15901	$0^{\circ} \mathrm{VII}+$	6．62I	USt	¢＇0z	5．9EI	8.951	¢．18＊	¢ 28	－ 25	0.11	$5 \%$	72
	でずもら	2t＊ 82	0＇£6＋	¢ trot	G．If	$0 \cdot 9$	0＇0tt	$0 \cdot ¢ 51$	$0.6{ }^{\circ}$	5.49	5.85	0.6	01	72
2\％$\underbrace{5}$	72.81	94＊85	［＇ci	2＇c8	1．8	ご9	S． 68	を． 18	S．92＊	Lร	で記	¢＊	5	72
ごい		9195	§ 8 ¢	二0\％	$\nabla^{\prime} z$	で6L＋	6＇zp	－ $\mathrm{S}^{\text {c }}$	－ $81+$	を＇9	6.2	$6 \%$	1	76
95．9－	99．8	でくら！	¢ $6+$	S． 68	でて	\＆61＋	9．t	をとこ	0．81＋	ら¢	$\mathrm{g}^{\circ}$	$8{ }^{\circ} \mathrm{E}$	001	1
$99^{\circ} \%$	$98^{\circ}$	しらで	008 ＋	8． $5 \Sigma$	9．1	\％6I	46		O． 21		1＇9	$5 \cdot E$	05	1
$56^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{L}$	65.6	908＋	1．28	G\％	7．6r	3＇E	9， tl	$8{ }^{\circ} \mathrm{Ft}$	100	6． 7	と「E	52	I
59.0	H＇S	98.9	1－5\％＋	0.98	6.0	$\mathrm{Z}^{+81}+$	$\nabla^{\prime} \angle$	て＇6	LGI＋	3．91	\％＇g	$1^{*} 2$	01	1
450	16.7	VF\％	8．！\％	＊2z	9.0	ぞM＋	9\％2	4.9	I＇zit	¢ $\dagger 1$	T＇z	$7^{*} \%$	5	1
$20 \cdot 2+$	168 $8^{\circ}$	$26^{\circ} 0$	$6 \cdot 2 I$＊		10	9＇21＋	L®E	「1	0．8＊	78	1.0	$9 * 1$	1	1
$\frac{107607}{407}$				$\begin{gathered} 2 \mathrm{man} \\ 91 \\ 1 \mathrm{n}_{4} \end{gathered}$	$\begin{gathered} \frac{217+92}{91} \\ 0061 \end{gathered}$	$\frac{\text { anama }}{41}$	$\begin{gathered} \frac{21120}{91} \\ 1105 \end{gathered}$	$\begin{gathered} 29492 \\ 91 \\ 0961 \end{gathered}$	$\frac{2+13 x^{2}}{34}$		$\begin{gathered} \frac{1+2 \mu}{3 y} \\ 0861 \end{gathered}$	ut	1K	14
	Jutien	［8x－7		76	\％ 7 dra			OT3NaC		305040	I3axa			－ Cl
poptios peptertang			9 mmorytioun			$9^{1630123}$			311 maph			-uFno		
												$\mathrm{m}^{3015}$		

##  

$z$ ม75Y
$\qquad$

values presented，it must be emphasized，are for comparative purposes only， and are not intended to be representative of the accuracy implied by the practice of reporting results to one decimal place．This was done primarily for convenience of calculations and balancing．

The changes shown in Table 2 are those occurring only within the 97.8 acres covered by the proposed project site．No attempt was made to com－ pare these changes with cntributions from the entire or contributing drainage area．In this situation，a comparison of the project site area to its entire draiange area would aignificantly negate apparent changes caused by the landuse change within the project site．

The mixed fill area which covers about $80 \%$ of the proposed site does
not，because of its potential heterogeneous nature，have the previousty dis－ cussed assigned SCS curve numbers that were based on the four classified groups（i．e．A，B，C．and D）．However，the project＇s alluvium fill ts con－ sidered to be representative by Class $C$ solls．For conservative purposes， an average curve value for Class B（ 20 Koko Soll）and the presumed Class C for the $80 \%$ fill was assumed．

As can be readily observed in Table 2，the storm runoff volume for the $1 \mathrm{yr}, 1 \mathrm{hr}$ duration atorn for post（full）development is 21 times greater than predeveloped（1985）conditions；however，as the storm duration and recur－ rence interval increases，this difference is that as the intensity and duration proachere increases，the ability of the soil to accept water decreases which fully developed conditions（from roofs，sidewalks，etc．）．

As would be generally expected the greatest calculated incremental storm
runoff volume 34.4 acre-ft/event) resuited from the 100 -year storm with a 24 hour duration, as shown in Table 2. These values (acre-ft/event) represent a volume of water and should not be confused with peak discharge rates which represent the maximum volume of storm water runoff discharged per unit of time (e.g., cfs). Peak discharge rates are required for engineering design or proposed drainage facilities and ascertaining the capacity of existing facilities, while total runoff volume provides a more realistic estimate of impact on water quality.
Quality
Besides the changes in the volume of storm water runoff, the quality of the various constituente being transported is of equal, if not more importance. However, as previously mentioned estimates of water quality constituents resulting from significant atorm water runoff that occurs at the most only a few times a year ts very perplexing, especially since information on this subject essentially only became available at both the local and national level in the 1970 's.
The summation of nitrogen, phosphorus, and suspended solids loads from both present (1985) and projected (full residential development for storms of 1- and 24 -hour duration at recurrence intervala of $1-, 5-.10$-, $25-$, $50-$, and 100 -years are shown in Table 2. The incremental changes per storm event for the present and projected development conditions for the various duration and recurrence interval storms indicate that from the least to the greatest amount of rainfall: nitrogen increases for the l-hr duration storms and then decreases when the intensity ( 10 yr recurrence interval) of the storms increase; phosphorus increasee from $12.9 \mathrm{lb} /$ event to nearly $156 \mathrm{lb} /$ event; and suspended solids shows increases of 2.07 and 0.57 tons/ event, respectively, for the $1-y r$ and $5-y r$ recurrence interval storms ( 1 -hr duration) and then decreases thereafter to about 127 tons/event for the 100 yr, 24 hr duration storm. The effect of the incremental hydraulic difference between the pre-and-post development conditions is also directly correlated with the water quality constituents.

It must be emphasized that the constituent values are onty for comparative purposes, and should not be taken as absolute values. Overall then, the output of nitrogen is about the same and phosphorus is expected to increase in the runoff, while suspended solids, except for the lower intensity/duration storms, should tend to decrease between pre-and-post deve-
 tend to decrease the quantity of the suspended solids load at the higher intensity/duration storm events even though the total quantity of storm water increases.

The hydrologic and water quality aspects of the surface water runoff were only considered for the present and projected conditions. However.
 activities, especially if a significant storm occurs during the interim period between earth moving operations and soil stabilization completion. The inpact of construction activities can be minimized by adhering to strict erosion control measures.

Other water quality constituents of general concern include biocides and heavy metals. Typically, the biocides in general use tend to break down more readily in comparison to the more long lasting types of a few years ago; consequently, except for agricultural runoff, the types and concentrations are usually considered insignificant. On the other hand heavy meatals do apparently increase somewhat as a result of urbanization, however, the possible long-term effect, if any, that increased heavy metals may have upon the biological lofe of the receiving waters (Hawaii Kai Marina and the fronting ocean) at the concentrations expected in residential xunoff (Table I) is presently undefined.
sansamsay

Division ofWater and Land Development. 1982. "Medium Rainfalls: State of
Hawaii, 1982." Circular C88. Dept. of Land and Natural Resources, State of Hawaii.

Foote, D. E., et al., 1972. "Soil Survey of Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii," U.S. Dept. of Agriculture, Soll Conservation Service.

Fujiwara, T.D. May 1973. "Characterization of Urban Stormwater Discharge from Seprate Sewers," M.S. Thesis, Department of Civil Engineering, University of Hawaii, Honolulu, Hawail.

Jones, B.L., R.H. Nakahara, and S. S. W. Chinn. 1971. NReconoaissance Study of Sediment Transported by Streams, Island of Oahu, "Circular C33. U.S. Geological Survey in cooperation with the Division of Water and Land Development, Dept, of Land and Natural Resources. State of Hawali.

Loehr. R. C. December 1972. "Agricultural Runoff," ASCE Journal Sanitary Engineering Division, Vol. 98, SA6, pp. 909-925.

Loehr, R. C. August 1974. "Characterstics and Comparative Magnitude of
Non-Point sources," Journal Water Pollution Control Federation, Vol.
46. No. 8, pp. 1849-1872.

Loper, N. C. January 1974. NEstimating the Effects of Urbanization on Small Watershed Peak Discharges," Working Paper WP 73-001 Hawaii Environmental Simulation Laboratory, University of Hawaii, Honolulu, Hawaii.

Lopez, N. C. and C. L. Dugan. August 1978. Estimating Peak Discharges in Small Urban Hawailan Watersheds for Selected Rainfall Frequencies, ${ }^{n}$
Technical Memorandum Report No. 58, Water Resources Resources Research Center, University of Hawail, Honolulu.
ABSTRACT




 testing on one of the sites, testing and reevaluation on one site, during subsurface construction. It is also recomaended that intensive
 sampled and reevaluated regarding the need for further rese
further work is recomended for the historic habitation site.


## Patricia Price-Beggerly and J. R. McNeNil

## 

J. Stephen Athens, Ph.D.
Archaeological Consultant:
Honolulu, Hawaid

## May 1985

$\wedge$

[^11]$11 i$
The scope of work for this research was ifimited to a preliminary
document review and surface archaeological reconnaissance. Subsurface
An archaeological reconnaissance is essentially a walk-through survey of a defined area in which the landscape is visually inspected to with a review of previous investigations, documents, and maps, this procedure allows the researcher to evaluate the gignificance of possible cultural resources and to determine the likelihood that these resources
may be disturbed or damaged by construction and/or development activ. ities. In addition, recomandations can be realistically formulated for
any additional archaeological research that might be necessary.
With respect to the present project, the purpose of the reconnais-
sance survey may be sumarized as follows: 4. To identify, locate, and report To identify, locate, and report all surface archae-
ological and historical resources within the defined
area.
 ficance.
3. To recommend actions to mitigate possible impacts
which these resources may incur due to the proposed

 of the significance of the resources from a cultural and scientific
point of view, (3) an analysis of artifacts and perroglyphs documented during the present research, and (4) reconaendations concerning the need
for further archaeological investigations. The purpose of the recom-
 by the proposed development of Kaluanui 1, 2, and 3.









 Description of Reconnaissance Area

The predominant vegetation in the survey area is koa haole
Leaccena Ieucocephala), klawe (Prosopis palita), a basili-1ike, shrub (Ocimuma gratissinuu), and numerous species of grasses (Photos 1 and 2).
The vegetation, particularly the grass, that appear to have been bulldozed or where landfill has recently been
introduced.
 to be useful for homesitean, truck crops, and pastures. Lualualei ex-
trewely stony clay (LPR) is the predominant soil on the upper slopes. It is considered to be prone to erobion and unauitable for agriculture
unless the stones are removed. The flathands are composed of nixed Landfill (FL) (Foote at al. 1972). The flathands are composed of mixed Solls
bacteround investicmitows
Three extensive reviews of archaeological, historical, and tradi-
tional hiterature and documents pertaining to the Maunalua, $0^{\prime}$ ahu are have been produced recently. These are by Takemoto et al. (1975), Kelly
et al. (1984). and Davis (1985).

The first, "Historical/Cultural Easay Report on the Kuapa Pond
Area" (Takemoto et al. 1975) was prepared for the U. S. Aray Corps of Engineers. It addresses, specifically, the immediate area of the kuape Pond which borders the proposed development area and, more generally,
the 'ili of Maunalua. The tasks Included:

$$
\begin{aligned}
& \text { 1. A recoanaissance survey of the literature, documents, } \\
& \text { and other historic knovledoe of that }
\end{aligned}
$$

and other historic knouledge of the subject area, i.e.
Kuliouou Beach and Kailakel Valley on the west Kalama Valley on the east.
2. Hiatorical research, including a tranalation of Havaigrapha, and the identfication of agricuiltural plato-
habitation areas, pond atructures and neenticned by nineteenth century travelers to the area. additionaliy, the analysis and interpretation of the

The secand report, "Cultural Resources Overview for the Queen's
Beach Park Feasiblity Study. Maunalua, Kona, O' ahu" (Kelly et al
1984), prepared for Beach , prepared for the department of Parks and Recreation, City and
County of report, adding to the knowledge presented by Takemoto et Manalua. This divided into three sections: (1) the legends of Maunalua, 0 , ${ }^{\text {ahu, }}$ (2) an
archaeological assessent (3) historical notes, which though focused on Quean's Beach, also
include other places in include other places in Maunalua.

The third document "A Research Design for Pahua Heiau at Kamilonut
in Maunalua, Southeastern Dahu" (Davis 1985) is further investigation and reatoration of Pahua is intended to direct setting, and propious archaeological investigations associated historical traditional religious structure.

In the Takemoto ot a1. (1975) repart, archaeological inveatigation
was confined to document and 11 terature review. However, the method was confined to document and Miterature review. However, the wethodMcAllister's rudimentary. This apparently consisted of reviewing Hawali Survey records (survey conducted ca. 1970). This investigation,
research area. The villages mentioned by Chamberlain, however, were
thought by Davis (1985) to be located on a Casseway separating the pond from the sea, and inland at the head of Kuapa Pond on the eastern shore
As noted by Davis (1985), the years between 1825 and 1860 are also of importance historically, since Maunalua was an anchorage for whaling
ships and inter-island traders. It was here that they provisioned their shaps with sweet potatoes.
A number of interesting references to the Maunalua area and Kuapa
Fishpond are also found in cradictonal legends and historical literaFishpond These references are addressed in both Takenoto ot al. (1975)

## Previous Archaeological Research

McAllister's 1930 survey is the earliest record of systematic Mcilister a
archaeolosical research in che project area (197), n,d.). He notes
three sites within the lamediate vicinity of Kaluanui 1, 2, and 3: Hawea Hetau (Site 42); dwelling site at the mouth of Hahaione Valley possible pigpen, and a stone faced well; and Reahupua-o-Maunalua Fishpond [Kuaps Pond] (Site 49). Portions of all of these sittes have been visited during the present research. The Kuapa Fishpond iles to
the west and south of Xaluanui $2 / 3$ and to the south of Kaluanui 1. Site 43 is directiy west of Kaluanit $2 / 3$, and the preaent reaearch auggests
that Site 42 is located within the boundariea of Kaluanui $2 / 3$. The firat scientific excavations in the vicinity of the present
Hect area were also conducted by McAllister in the 1930s. He placed two pits into the dwelling platform of Site 43. From these excavations
he recovered ash, charcoal, historic glass, fish scales, kukui shells, marine shelis, and a pounder.
The next subsurface research was conducted on Site $0-5$ (State Site No. $50-80-15-2908$ ) which is located within Kaluanui 1 This excavation
was undertaken during 1962 and 1963 under the direction of Dr. Winelm G. Solheim If (1965). A detailed description of the excavation is
located in the "Results of the Reconnalssance" section of this report. Additional surface and subsurface research mas conducted on
Mc.Alister's Site 43 in 1966 and 1967 by Dr. Donn Bayard (1969), then a graduate studeat at the University of Hawail. Bayard notes that he was not familiar uith McAllister's work at the time of this fieldwork. His
Site 0-16, therefores. incorporates some of the features described by NcAltster, but oufts others. Bayard describes $0-16$ as consisting of a with five cairns formed of large rocks with pebble fill, a stone wall, and two additional cairna farther up the slope to the east of the stone
enclosure (Bayard 1969). Dutside the major site area and situated on

nuaber of artiffacts recovered from Site $0-16$ are housed in the Archaeo-
logy Laboratory of the University of Hawaii.


Additional information regarding sites excavated in the Maunalua
area may be found in Kenrieth P. Emory and Yoshihika Sinoto's Oahu Exca-
An English translation (Mann and Cumins n.d.) of the Land
Comaisision Award 7713 to Victoria Kamanalu wae exhibited during the
Engineering Week Display displayed by the firm of Austin, Tsutsumi and ABsociates, Sulte 900,745
Fort Street Mall, Honolulu, Has Fort Street Mall, Honolulu, Hawail.

A sketch, dated May 1883, of the Kuapa Fishpond is included in the
field book of George E. Jackson, Surveyor. A copy of this field book is
located at the State of Hawali, Historic. Preservation Office.
of aerial photographe dating from 1952 through 1977 were consulted at
the time of the surveq. Rescarch efforts were concentrated in areas
that thad not



The slopea of Kaluanui Ridge were inspected between ca. 6 to 21 a
(20 to 70 ft) elevation above mean sea level. This area was less steep than Roluanuy 1 , and did not contanin any recent soli area was less stephes. Dense
vegetation covers approximately $90 \%$ of the slopes. Sample size on theee vegetation covers approximately $90 \%$ of the slopes. Sample size on chese
slopes was ca. 80Z. slopes was ca.

## Sweeps of the flatlands of this area were made on foot to assess the presence or absence of cultural resources (see Figure 3). A series of aerial photographis dating from 1952 through <br> the land area was covered by foot survey. Kaluanui $2 / 3$ <br> the land area was covered by foot survey. Kaluanui $2 / 3$


The slapes of Kaluanui Ridge vere visually inspected up to an
elevation of ca. 18 m ( 60 ft ). Systematic transects were not possible
due to dense yoner elevation of ca. is mo (to ft). Systematic transects were not possible
due to dense vegetation, extremely steep. slopes, vertical bedrock
cliffs, and recent unstabie soil avalanches. A total of 50 to $60 \%$ of






$$
\begin{aligned}
& \text { cates the area had been subject to recent landfill and was a construc- } \\
& \text { tion firmas maintenance shop and storage yard. The foot survey covered }
\end{aligned}
$$

 Mithonowncy
The fieldwork was divided into three tasks, as follows:

1. Reconnaisance.
2. Vegetation clearance.
3. Recording:



## Vegetation Clearance

 Extremely dense vegetation was partialiy cleared from five sites.This was necessary to facilicate identificition, documentation, and This was necessary to fachicate identification, documentation, and
photography. Field nuabers were assigned to each atite. State of Hawait
Historic Register site numbers were later assigned to the field numbers Historic Register site numbers were later assigned to the field numbers
after coapletion of fieldwork. Croas reference of these numbers is provided in this report (Table 1). Site nuabers were not given to unsites.

$$
\mathrm{Cl}-\mathrm{A}-\mathrm{C}
$$

Sites and featurea were measured, described, and photographed. Bearings and back sights were taken to selected control pointa with a Beaunso Opticicl Sighting Compass and checked with an Embeeco Compass
Suarto
Boan Bearing Monocular. Bearings, adfusted to true north, may vary by an
unknowi factor due to the presence of high voltage powerlines along the roadvays of Kaluanui 1,2 , and ${ }^{3}$ and on the slopea of Kaluanui i.
Elevation data were recorded from readings obtained from a Thommen altimeter. The altimeter was calibrated to sea level each morning and
checked for variation in the evening upon coapletion of the day's work. All elevation data in this report should be considered as an approximation of elevation
mental fluctuation.

[^12]modified by the addition of petroglyphs. These include charactecizations of humana, animals, ond petroglyphs. These include characteriza-
surface of the site sybophic representations. On the mately 15 mm ( 50 ft ) elevation is a " $\left(\mathrm{c}^{\prime \prime}\right.$ " shaped feature (Feature approxi"the northwest composed of single stacked stones on the short side. In the northwest corner the boulders are layered to form a 'cupboard-1ike'
compartment. Feature 4 measures $1.6 \times 1.26 \times 3.05 \mathrm{~mm}(64 \times 50 \times 111$ There are petroglyphs located approximately $4.5 \mathrm{mam}(15 \mathrm{ft})$ east of this
feature and two areas of abraded pahoehoe lie between Feature 4 and
three pleces of volcanic found on the surface of the site includes spheroids, five bosalt flakes, three historic glass fragments, a metal
.22 caliber shell cast two pieces of coral and one shell fragment.

The site is situated on a ridge toe couprised of talas and basalt bounded on the east and south by stockpiles of large, it to 3 . (3 to 10 ft ), boulders and piles of rubbish which include vehicles and other
large discarded theas. On the west an abandoned roed retaining wall and terraces. Seaward of the road are partions of the
Kuapa Pone Kuapa Pond and archaeological Site $0-16$. (McAllister's Site 43). The
northern boundary ts less vell known at this time due to the presence of very dense thorny vegetation.

During preliminary reconnaissance, vegetation obscured at least $80 \%$
of the stte, Including the walls, terraces, and esssociated features.
Identified Identified vegetation includes: night blooning cereus (Hylocereus

 (Ocimum 8rattissimum), and various grasses such as Rhynchelytrum shepens
and Chloriss sp. Vegetation was cleared from approxinately 20 of the site to facilitate identifying, mapping, phatographing, and recording
the various features of the structure.

This site is a well preserved, large, impressive, complex platform
with assoclated terraces, walls, petroglyphs, and an enclosury
Little is known about this previously unrecorded site's history or function; however, its location, size, construction detalls. and com-
plexity suggest it ras asgociated with individuals of high status or
places and/or events of

It is considered to be a highly significant site worthy of preser-
vation based on: 1. Its potential to gield scientific data maportant to
the history and prehistory of the Hawailans.

## resuls of the rromanssance

A total of nine archaeological sites and six natural stone cavities
possibly containing cultural materital were recorded within Kaluanui 1 , possibly containing cultural matertal were recorded within Kaluanui 1 ,
2, and 3. The sites and the natural features are described below; they
inclute include three caves, one free standing wall with associated platform,
one platform, one terrace platform coaplex, one terrace complex, one modern historic habitation area, one nodified natural stone cavity cone-
plex and six posaible burial areas within natural stone cavities.

## 



This site, a large $26 \times 34 \mathrm{~m}(85 \times 112 \mathrm{ft})$ terraced platforn, 1 s
located on che lower seaward extremities of the Xaluanui (Meriner's)
Ridge toe approx emety Ridge toe approximately $185 \mathrm{~m}(610 \mathrm{ft}$ ) northward of the Hawail (Mainer's) certion of merker " $\Delta$ " at a bearing of 320 degrees TN . The modified
portione extends from approximataely $6 . \mathrm{m}\left(20{ }^{\circ} \mathrm{ft}\right)$ above mean sea level to approximitely 15 m ( 50 ft ) elevation.

The culturally constructed exterior perimeter of the site is a re-
taining wall fabricated of basalt boulders between 23 and 160 co ( 9 to 64 in ) where exposed. This wall functions
to contain naturally and culturall then to contain naturally and culturally transported soils and sediments in a
relatively level configuration. the either on top of che natural pahoehoe lava outcrop or on the surrounding talus slope. Enclosed within the perimeter retaining wall are two areas
of paving (Feature 3 and a component of Feature l) and three levels of terracing (Feature 1). The eastern terrace paving (Feature 3) measures subangular blacky basalt cobbles and is iocated on the upper surface of
 cobbles and swall boulders haid upon portions of threr subrounded
terraces. The lower two terraces (Eeature associated stones while the upper terrace is an elaborated lava outcrop (Feackure 2). Possibly the most outstanding architectural feature of this site ta
a curve which was constructed
into the seaward portion of the reter acurve The stones in this curved portion of the wall are extremely well
filted and form a straight almost perpentcular rior face. This architectural feature appears to be unique, as no other example of similar features in dry-stacked walls could be located by the
authors in the archaeological literature of Hawail. Cultural features located on top of the platform (Feature 2) in-
clude a basalt cobble paving and localities where the pahoehoe has been
with a mixed open to closed canopy of koa haole (Leucaena leucocephala)
and kiawe (Prosopis pallida) with an understory of ca. 1 to 2 in ( 3 to 6 ft ) grasses and shrubs.

Preliminary historical research suggests that the site may be the
remnants of the Havea Helau. This helau was mentioned by Thrum in a
1906 publication of the Hawalian Alwanac and Annual. He stated the 1906 publication of the Hawatian Ahwanac and Annual. He stated the of the stone for building walls (Thrum 1906a:45). McA11ister (1971),



During recent archaeological research in Hawaii Kai, Bertell Davis located a reconnaissance. Using McAllister's map and notes and the W. P. Thompson and E. H. map, transects Although extremely disturbed, the hetau has certain characteristics, described by McAllister (1971, n.d.), that might
enable identification of the structure if it still exists. These include quantities of coral on the surface, basalt aligruents, terraces,

 mapping and description of teatures associated with tas sote. possible.
 represent a remnant of a
namely Hawea heiau. Due to the limited nature of the present research it is premature to determine the signficance of this site in its present condition-or to even state this is a portion of the Hawea helau., os o little is left of the structure recorded by McAlister (1971). Uness
future research locates additional portiona of the heiau its value for future research pretive purposes, 18 winimal. From the standpoint of its research


2. Its integrity and potential value for interpretive and cultural purposes.

Its uniqueness as represented by the masterfully fitted curve on the exterior retaining wall which adds

to knowledge of Hawailian architectural techaiques.
4. Its value as a representative of petroglyph art on o'ahu. The petroglyphs also make since only fourteen petroglyph sites have been since oniy tour teen
recorded for the island of ofahu, and the location of three of thesse is unknown at.
Neller, peraonal comenication).

A high status site (Havea Heiau) is believed to be located within A high status site (haves
the research area. Site so-80-15-2900 however, 'is not situated where a
map drawn by W. P. Thompson and E. H. in 1932 places the Hawea Helau. map drawn by W. P. Thompson and E. H. in 1932 places the nerclate with McAllister's ( n .d.) field drawing for a site he believed to be Hawea Heiau, nor does it contain enemener terrace and abuindant coral within the on Havea, i.e., a pit in the lover terrace
welle and on the surface of the terraces.
$\begin{array}{ll}\text { State Site No. } 50-80-15-00427 & \text { Field No. 0002 } \\ \text { Survey Area: Kaluanui } 2 / 3 & \text { Mcallister No. } 42 \text { (Hawea Helau?) }\end{array}$ Figure No. 3

Terraces with Assochated Basalt Boulder Alignaments
This site is located approximately 175 m ( 578 ft ) from the center-
Line of Hawaii Kai Drive along a bearing of 100 degrees on from the
U.S.G.S. Kuapa signal located on Kaluanu (Mariner's) Ridge.
The exposed portion of the site consists of two terrace reanants
which are bounded in chree areas by non-contiguous suall basalt boulder The exposed portion
which are bounded in three areas by non-contiguous small basalt boulder
alignaents. The terrace surfaces consist of alluvial sediaents, fragments of slightly weathered coral, and two areaa of subangular co sab-
 alang the margins of the terraces.

The site ts aituated on an alluvial outwash which is bounded on the
by a ridge and on the west by an erosional channel which appears to east by a ridge and on the west by an erosional channel which appears co indicate grosa modern alteration of the landscape. South and touthweat of the aite are stockpiles of large, the the east a virtual mountain of rubbish phes has been deposited. A roadbed (Kaluanui Road) has been
landfill has along the inferred northern boundary of the site and a
constructed alo constructed along the haferred northern boundary of the site and a
concrete-lined chanel has been conatructed at the base of the roadbed.

During the reconasissance, visibility of the ground surface was
very poor due to the presence of dense vegetation. The site was covered
State Site No. $50-80-15-2902$
Survey Area: Kaluami $2 / 3$
Cave
This site is a large cave with a two section opening. It is
located on the Kaluanui Rtdge slope approximately 18 ( m ( ft ) above mean sea level. The overhang measures 7 in ( 23 ft ) across. There is a
$1.7 \mathrm{~m}(5.5 \mathrm{ft})$ distance between the ficor and the bottom of the overhang and the associated ledge is 2.5 m ( 8 ft ) deep. A passageway extenda a
minimum of 3.5 m (11 ft) into the nountain from the cave opening. The exposed ledge floor is composed of fine-grained wind blown sediments, and basalt bedrock. There was no apparent subsurface disturbance, however there was a rotted piece of canvas on the
ledge floor, the tube contained two $2 \times 4 \times 88 \mathrm{ft}$ lengths of rotted lumber was present on the talua slope below the cave opening.
This cave may be Feature E of Site 0 - 16 identified by Bayard (1969)
in his $1966-67$ research.
Vegetation on the slopes below the cave is quite danse and includes
kiawe, koa haole, shruh and grasses.
The function of this cave is unknown at this time. It is large
enough to have been utilized by the early Hawailans as a habitation
and/or burial area.
If the cave contains buried cultural material, it would afford an
excellent opportunity to address taportant questions regarding the influence of a semi-arid ecosystem on human behavior and conversely, the
tupact wich human manipulation of partions of the hapact which human manipulation of partions of the environsent may have
had on the ecosyateam. It may also yield data which can be utilized to
establish the establish the time duration, and intensity of occupation and associated
cultural behavior of the iumediate area as well as to help place it in a
regional cole regional context.

## State Stte No. $\quad 50-80-15-2905$ Survey Area: Kaluanui $2 / 3$

## Natural Stone Cavity

This feature is an erosional cavity located at an elevation of ca.
27 an ( 80 ft ) in the vicinity of a basalt stone wall (State Site No. $50-1$ $80-15-2903$ ). The cavity was probably formed by the eraste Site No. $50-$ outcrop during a higher sea stand. It measures $95 \mathrm{~cm}(3 \mathrm{ft})$ high and is
a minimum of 2.5 meep $(8 \mathrm{ft})$.
Vegetation in the immediate area includes dense grasses and shrubs. No cultural material was found either within the exposed portion of
the cavity or on the slopes below it. This cavity has been designated a
tion, and intensity of occupation and associated cultural behavior within this area, as well as
place the site in a regional context.

## 

Possible Platform
This site appears to be the remnant of a basalt platform. It is located on a moderately steep portion of the talus slope of Kaluanui
Ridge between Site $50-80-15-2902$ and Natural Stone Cavity E. It lies Ridge between 726 ft ) from the Hawail Drive centerline marker " $\Delta$ " at a the base of the retaining wall.

The most doainant feature of che site is a concentration of angular
to subangular basalt boulders and cobbeses which forma paving. This paving abuts an alignment of subrounded basalt boulders on 1 to downht11
margin which fanctions as a retaining wall. The total aite seasures ap-


The predominant vegetation upon the site is dense grasses and The predominant vegetation aponed with an open canopy of
strub. The turrounding area is coveren
koa heole treea with an understory of dense shrub and grass.

A coil of risted barbed wire was found lying on the inferred
paving. No traditional artifactual material was found within this area.
The size, condition. location, and construction of this site
augesta it may represent the reanant of structural foundation for a field house. Very little time or effort would have been needed to construct the feature as it is fairiy small and is formed of materials
which are abundant in the tmadiate area.

The site is significant because in the context of other sites within this area it contains the potential to yield data regarding settle
ment, land use, econooft, and habitation patterns associated with the traditional Hawailian culture. It may also provide material which can be
radiometrically analyzed to establish the time, duration, and fatensity radiometrically analyzed to estabish the time, duration, and
of occupation of this area and help place it in a regional context.
Fishing equipment was represented by six siakers, one octopus lure point, six worked plices of bone inferred to bee fishhook octopus lure
fishhooks or hook fragments, and a turtle stell netive
In addition to the perforated dog teeth noted above, five other
ornaments were found: three cone shell beads and two perforated shells inferred to have been used in leis.
A preliminary distribution analysis of the artifacts produced by
Bayard (1965) indicates that the majority of the artifact recovered from the upper layers of the site, sen artifacts (42) were and clear stratigraphic provenience was available for only eight arti-
facts.
Preliminary analysis of the artifactual and economic data leads forced the inhabitants of the cave to rely heavily southeast $O^{\prime}$ ahu collecting of seafood for their subsistence. He suggests that the early
occupation of the cave functioned as a permanent habitation area much like a dwelling structure

During our brief visit to this site thirty-six pieces of volcanic 8lass were collected from the surface of the backfill dirt. Although a few speciaens of this material were collected during the 1960 s research, aeology until later. A preliminary analyzis of recod in Hawaifan archis presented in the "Artifact Analysis" section of this document.

 a significant archaeological resource.

$$
\begin{aligned}
& \text { Field No. } 0009 \\
& \text { Figure Nos. } 2 \text { and } 6 \\
& \text { Photo Nos. } 12 \text { and } 13
\end{aligned}
$$

This site is a modified cave complex which is located at an eleva-
tion of 24 to 30 m ( 80 to 100 ft ) on the talus slope of Kaluanui Ridge It can be reached by following a bearing of 306 degrees TN from the intersection of Hawaii Kat Drive and Onohi Street for a distance of ap
proximately 70 in ( 231 ft ).
There are nine components in the complex which include: two form, an area of paving and/or entrance blockage, and four natural stone

## State Site No. 50-80-15-2907 Survey Area: Kaluanui 1

## Modified Cave (Cavity) Complex

 cavities locate upsiope from the cave entrances.No midden ar artifacts other than the cultural manipulation of the
cavities were found in the proximity of this site.
The form, location, and the inferred cultural modification of this The form, location, and the inferred cultural modification of
site suggest that these cavities may contain human burials which are site sugsidered significant both scientifically and culturally.

Field Nos. A, B, C, D, E
Figure Nos. 2 and 3
Photo Nos. 14 and 15
A number of natural stone cavities and cavity complexes were
located during the reconnaissance in addition to the stone cavities
 cion and map location of all these cavities was not possible in view of
 most of the basalt outcrops located above ca. 9 ( 30 ft ) elevation.
The outcrops are the major land form on the upper slopes of Kaluanut 1 ,

 Maps (Figures 2 and 3).

[^13]

Atop the basalt outcrop is Feature 2 which measures $80 \mathrm{~cm}(26 \mathrm{in})$
ac coss and $2.3 \mathrm{~m}(7 \mathrm{ft})$ long. This feature appears to be a paving of angular and subangular basalt cobbles; it may, however, function to block or camouflage an additional entrance to the cavities partially
exposed on the face of the outcrop. Four additional natural stone cavities are located upslope of this site. None of these appear to be
culturally modified but they may contain subsurface cultural material.

Preliminary analysis of this site suggest a that it may have functioned both as a habitation and a burial area. This complex is con--
sidered a significant site based on its potential to yield formation sidered a significant site based on its potential to gavin cultural patterns associated with this immediate area plus information which will help us place it in a regional context. in-
formation may also be gained regarding technology, settlement pattern, land use, subsistence in a semi-urid environment, and Hawaitan mortuary practices. Further, it my yield material for dating analyses, which
would provide information on the time, duration, and intensity of occupatios. -

State, Site No. $50-80-15-2901$
Survey Area: Kaluanui 1
Modified Natural Stone Cavity Complex
 of Site $50-80-15 \mathrm{~m} 2908$. The complex contains an unknown number of nat-
urally occurring erosional cavities which have been formed at the base of a basalt outcrop. These natural features have been culturally packed
with sediment e which partially obscure the conformation of the cavities.

Predominant vegetation on this portion of the slope includes koa Predominant vegetation on
haole, dense grass, and shrub.
,



## Field No. 0010 Figure No. 2




$$
\text { State Site No. } 50-80-15-2900
$$

Thirteen artifacts were collected from the surface of various
features of this site. Feature 1 yielded two historic and three
pre/proto historic specimens.
Artifacts associated with historic utilization of the area include Within a diamond molded tato the base and a the letter " $C$ " contained
casing with the letter "p" then brass shell indicates that it was recentiy manufactured by the Peters Firearma Com-
pany.
Artifacts presumed to represent pre/proto historic utilization
collected from Feacure 1 include two basalt flakes and one piece of volcanic glass. One of the basalt flakes is a very large one piece of
96 man wide, 56 man long, 96 min wide, 56 ans thick), triangular shaped flake/core which displays a of battering. The location, size, weight, density, and battering scars imagediate vicinity, or possibly, it is a core from which flakes were
manufactured. The sen the and 20 aura thick. The second basalt flake measures 48 ma long, 32 mas wide, percussion, seven flake scars, and inferred use-wear acars on two of its
margins. The remaintag artifact collected from this feature is a margins. The remaintag artifact collected from this feature is a vol-m
canic glass flake which contains two flake scars.

[^14]\[

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$
\]

State Site No. 50-80-15-2900 Survey Area: Kaluanui 2/3
Artifacts associated with





 $x 9$ man) which has two polished surfaces. This polished flake may be a
fragment froa an adde or chip from one of the basalt mirrors recovered

The basalt flake measures a maximum of 22 man long and 18 mun wide.
One of the pleces of volcanic glass contains only slight evidence of
cultural manipuliation; the second one, while still retaining two cortex
surfaces, has seven clear flake scars. Additional historic materials were noted on this feature but not
callected. They include a non-diagnostic historic glass fragment and

The collected basalt spheroid measures a maximum of 55 man , and is
made of vesicular basalt with many fine pores. $A$ notable amount of
oxidation is present on the surface which was exposed to sunlight.
The larger of the two basalt flakes measures a maximum of 55 man. The larger of the two basalt flakes measures a maximun of 55 mak.
it contains five flake scars and two of its margine are possibly damaged by use. The second basalt flake measures a maximum of sam across its
longest axis. It appears to be debitage, but there may be use-wear

One piece of volcanic glass was recovered near the petrogiyphs in
the vicinity of Feature 4. The maximum length of the spectionen is 28 mana. the vicinity of Feature 4. The maximuid length of the specimen is 28 man.
A striking platform, \& bulb of percuastion and seven flake scars are
obserwable on its surface and cortex remains on two of the facets.

$$
\text { Survey Area: Kaluanui } 1
$$

Forty-one pre/proto historic artifacts were callected from the surface of the beckfilh of this cave. This faventory includes thirty-
six pieces of volcanic glass and five basalt flakes. The specimens of volcanty glass range from large ( $39 \times 27 \times 22$ man) chunks of raw material flake scars on their surfaces and posisibly functioned as cores. An ad-
ditional large piece show no evidence of cultural manipulation.

Little can be sald regarding the possible geologic source of this volcanic glass collection, as sources of volcanic glass have not been be simplar to the outer surface of a pahoehoe lava flow. i second unusual specimen is a medium aize $(29 \times 9 \times 29 \times 20 \times 8$ man), trapezoidal
basalt flake which has a fine $(3 \times 20$ man) band of voicanic glass along one of the margins. A bulb of percusaion and portions of the cortex are also evident on this flake. The preaence of these two specimens in this
site way indicate that volcanic dikes were not the only geologic
featurea being exploited by the early hawailang to obtain this raw featurea being exploited by the early Mawailians to obtain this raw
material.
somewhat unique since only fourteen petroglyph sites have been recorded
for the island of 0 'ahu and the location of three of these is unknown at this time (Neller, personal comeunication; Cox 1970). An additional
group of images was found in a nearby area, group of images was found in a nearby area, during the present research,
on a stone incorporated into the walls of a rectangular feature witht Site 0-16. This feature, excavated by Bayard in 1966-67 (Bayard 1969), was dentified by mecinister (1971) in the 1930 to be an historic
pigpen. The petroglyph stone, and others within the pigpen walls may have been removed from Site $50-80-15-2900$ during the construction of the irom existing structures to be tncorporated into new structures, was,
and is, a well documented practice.
A defintive study of Hawaitan petrogiyphs offered by Cox (1970) is
heiptul in analyzing these images. In his research, a number of characteristics associated with the location, distribution, stylistic varia-
tion, and possible temporal use of this art form are presented.
Cox suggests that the mafority of these features are located on
fields of pahoehoe lava or large rounded bouldera. They are usually
found in clusters and are elmost always limited to the dry sides of islands.
The method of producing the glyphs appears to be restricted to four
techniques. Pecking or incising by the use of a sharp inetrument and
bruising or abrading the stone with a blunt tool.
Glyphs are known to exist in a variety of configurations. Most numerous are human figures. Sone of these appear to represent super-
natural beings, especially those with fantastic heads or Also frequent, are symbolic dots and circles which are found in various groupings such as rows, circles or concentric relationships confined
within boundaries. Antmals are also represented in glyphs, these include images of dogs, curtles, birds and chickens. The rarest of glyphe
are those of fish. Cox (1970:32) indicates that, "in only two or three are diacinguishable."
Several petroglyph varieties have been identifted on Site $50-80-15$ -
2900 (Figure 5, Photos 7 and 8 ) and the adjacent Site 0-16 (McAlister's Site 43). In concurreace with Cox's finding, the most numerous images
ident ified on Site $50-80-15-2900$ are those of human figures (Petrogiyphs $3,4,6,7,11,12$, and 13). Also abondant, are dots and circlea, but, other than those assoctated with Petroglyph 9 it is unclear whether
these symbols are correlated with other glyphs. An unusually high percentage, ${ }^{19 \% \text { (three figures), of glyphs on the Kaluanuk sites are of }} \begin{aligned} & \text { fish. The presence of such a large percentage of "rare" } \\ & \text { fish glyphs }\end{aligned}$
 the Kuapa Fishoond. If this was so, however, one wight expect fish
petroglyphs to be present at other fishipond sites. The fish glyphs an petroglyphs to be present at other fishpond sites. The fish glyphs on
Site $50-80-15-2900$ are represented by fine-lined, incised glyph (Petroglyph 5) which appears to have been incised with a metal tool, and
 located on the boulder incorporated in the rectangular feature of Site (Petroglyph aditional animal figure is represented by a dog $81 y p h$
2ats another glyph ar a right angle (Perrogithen 2b), although this glyph is a linear style it corresponds in form to the
dog petroglyphis present in Nuunu Valley (McAllister 1971)

Figures which have been inferred to represent supernatural images have also been identified on Site 50-80-15-2900. These include a posfigures found on a boulder in Moanalua, $0^{\prime}$ atha ( $C$ ox 1970:76; McA11ister
1971:Plate 10 ) 1971:PLate 10). A second image is inferred to be a representation of
the traditional Hawaikan god Lono (Pecroglyph 9 ). This glyph corresphads closely to Lono figures identified at Puako and Puuloa, Hawal' 1 . Dar. The often have dots or circles spatially related to the trogse.
These figures closely resembe These figures closely resemble the wooden taage of Lono which was
adorned with white kapa streamers and carried about the island durting the Makahiki processions as illustrated in Malo (1951) , further supernatural feature may be represented by Petroglyph 1 which appears to
have an elaborate head-dress attached to an unusually shaped head.

It has not been possible, as yet, to establish other than a rela-
tive time sequence for petroglyph art, That the art form continued into historic times, is evidenced by numerous the art form continued into
culture introduced after European cicting material ships, guns, anchors, numbers, and letters. The goats, horses, sailing
nitial introduction of the practice of petroglyph art into the Howilian cuiture, however, is
unknown. In an atteapt to establish a chronologic order in images could be placed, cox offers a relative time sequence based on research conducted in other design media such as kapa sequing, sculpture,
and feather work. He states, "the Hawailian artists were on an ever and feather work. He states, "the Hawaiian artists were on an ever
ascending developmeat in perfection of techniques, refinement, and elaw boration of forms" (Cox 1970:57). In his evolutionary modet, and elam
limited to art forms where the image is an end image begins with a symple the image is an end to itself, the form of images are elatorated through time to more complex forms whe abstract convey
 He further suggests, that through time, petrogiyph' styles assuae curved foundary lines and tuscularity this evolution culimiates in relief
figures which are inctsed below the surface of the stone.

From a stylifsic atandpoint, the glyphs located on these two sites
fall within Cox's continuum of simple to complex. Six of the glyphs the earliest period of Cox's sequence. These petroglyphs (Petionlyphs the earliest period of Cox's sequence. These petroglyphs (Petroglyphs
$1,2 \mathrm{a}, 3,4,7$ and 13) are simple linear angular figures. Four addi-

PGTrucimph amalisisis
Fifteen petraglypho have been identified on the pahoehoe lava out--
crops which are incorporated into Site $50-80-15-2900$. These images are
PGTrucimph amalisisis
Fifteen petraglypho have been identified on the pahoehoe lava out--
crops which are incorporated into Site $50-80-15-2900$. These images are
PKTROGLYPH ANMLYSIS
Fifteen petraglyphs have been identified on the pahoehoe lava out-
crops which are incorporated into Site $50-80-15-2900$. These images are

This pattern--the total lack of sites in lowland areas of Kainilonuit
Valley-extends across the valley mouth where extensive modern devel-
 former pre-European use of the valley. These include: one heidu (Pahua Hefau), a small rock shelter (McAlister site
terraces (Davts 1985). Travelling westward, littie is left of the large early Hawaiian settlement deptcted on Jackson's 1884 map and reported by
McAllister (1971: 69), which existed at the mouth of Hahaione Valley.


 its traditions and history. This makes it ened or preserved.
The proposed development, as indicated on the Draft Conceptual Plan, is expected to directly or indirectly fiapact or destray nine
archaeological sitites and six possible sifes located within or adjacent to the developuent area. The recommendations offered below, will help
witigate the adverse effects which construction, development, and subsequent occupation will have on these sites.
Historical research should be continued, concurrent with the archHistorical research should to locate sources which are useful in
aeological field research, the reconstructing the history and prehistory of this area, but which have
not been noted by Takemoto et. al. (1975), Kelly et al. (1984) or this

 duplication of effort, the bibliography
tional figures (Petroglyphs $6,8,11$, and 12) are typical of the next
ing sented by triangular outlines. The third level of Cox's development
model is represented by Petragiyph 2b which appears to be a human figure with a curved body and a bird-head. The recent histortce end point of tools to incise the fish petroglyph (No. 5) and by the possithe representation of a recentiy introduced antmal assoctated with a human figure
(Petrogiyph 8). This latter image appeara to be a human figure seated on an animal. A atiatlar historic depiction of a mounted rider is loc-
ated at Anaehoomalu, Hawat'i. The Havai'i petroglyph, hovever, is more ated at Anaehoomalu, Haval't. The Haval' i perroglyph, hovever, is more
elaborate and quite clearly indicates the artiat's intent to depict a

It is premature to attempt to propose a definitive date for the




YHOM rayzind on $\cdot L$


- Ciontrodan afiryidoidde us uf pasetd pus posomax aq prnous


a Idars par amezont es







## - suoticans













a

ว7Enteat put 3sad ‘Z

Testing, when noted below, is defined as limited sub-surface excav-
ation to deterane the presence or aboence of buried cultural deposits, ation to decerman the presence or absence of buried cultural deposits,
and a saple of their vertical and horizontal limits. This phase of investigation should include dating of appropriate samples and preliminary
analyses. Recomaendations for future archaeological field research have been
In all categories which include excavation in this table, it is highly recomonded that a research dasign be formulated prior to excavam fon,
purpose, methodology, and goale of subsequent research. Future investigation night addreac, but need not be limited to, questions of the
following nature: Is there evidence of large acale geomorphological
change asaciated with human habitation of this area? 2. How did the early Havaitans culturally adapt to a
semi-arid enviroment? 3. What were the sectlement, aubsistence, and land use these patterns different from those in adjacent areas
or areas of similar environemt?
4. What is the chronologic framework of human utilization of this ares? How does this compare to the regional
framework?
5. What was the nature of the occupation of this area by madtional havalians? Does the data reflect per-
manent long-teru habitation or was the area exploited
during brief eeesonal occupation? Does the archaeo during brief seasonal occupation? Does the archaeo-
logical record suggest that all classes of early
Hawailians lived here, or is there differentiation Hawallang lived here, or is there differentiation
bosed on statua, age, or gender?
6. What is the function of each site? What is its
7. What type of technology was used to exploit this ecosystemp Does it differ from technology used on other
areas which have a simullar environent? Does it differ from technology used in other areas which have time? What are these changes?
8. Is there evidence of trade with other areas of Hawait
or Polynes1a? Where did the occupants of Site $50-80-$
$15-2908$ (U.H. O-5) obtain their volcanic glass? $15-2908$ (U.H. 0-5) obtain their volcanic glass? $\infty$

$$
\text { Survey Area; Kaluanut 1, 2, and } 3
$$

(pargipomun) setathey auoas tramen
These fleld numbers designate natural stone cavities which may contain human remains or other cultural material. They are, generaliy, the slopes of the project area. Thick vegetation grows on the downhill slopes and in crevices adjacent to the cavities thus obscuring the from
view. The proposed developinent will probably not directly impact these features. Indirect impact is expected, however, due to the subsequent
It. is recommended that an intensive examination of the slopes be conducted to Identify and locate the sampling universe of thege feeco decernine if human burlails or other cultural materdal are located within the mampled features. The information gatned from the sampling further recommendations regarding the unsampled features.

[^15][^16]
Lamb, W. Kaye, editor
Voyage of George Vancouver 1791-1795, Vol. 2. London:
Hakluyt Society.
\[

$$
\begin{aligned}
& \text { Jackson, George E. } \\
& \text { I883 Unpubished field book sketches of Kuapa Fishpond, Oahu, } \\
& \text { Hawail. Filed in Historic Preservation Office, State of } \\
& \text { Hawail. }
\end{aligned}
$$
\]


 1971 Kaluanui $2 / 3$ Subdivision. Grading plan.
Stringer, David G.
n.d. Kaluanui I Subdivision. Topagraphic plan.
E. H. and W. P. T.
 2.

Wehster, William
1851 Plan of the Land of Maunalua in Oahu the Property of
Victoria Kamamalu. Registered Map 980. Koko-Head, Hawali. Scale $1: 24,000$. With historic site
notations from Historic Preservation Office. notations from Historic Preservation office. Koko-Head, Hawaii, Orthophotograph. Scale 1:48,000. Koko-Head, Hawail. Scale 1:24,000. 1959
1978 1978
1983

43

$$
\begin{aligned}
& \begin{array}{lc}
\text { DACE-1-95 } & \text { Jan. 1952 } \\
\text { DACE-1-111 } & \text { Jan. } 1952 \\
\text { DACE-1-112 } & \text { Jan. } 1952 \\
7284-17 & \text { ca. } 1977
\end{array} \\
& \begin{array}{l}
\text { Aerial Photographs } \\
\text { R. M. Towill Corpor }
\end{array} \\
& \text { 边 }
\end{aligned}
$$





Figure 4.







Photo 7．Site $50-80-15-2900$ Feature 2．Petroglyph 4
is to the right of Petroglyph 5 ，emphasized with
chalk．Tape is extended $50 \mathrm{~cm}(20 \mathrm{in})$ ．



[^17]




Photo 14. View of Field No. E showing setting. Cavity
opening is at base of meter stick ( 20 cm fincreants).



July 15, 1985
no response needed

department of housing and communty development
Citr and county of honolulu
August 26, 1985 Mr. Alvin K.H. Pang, Director
Deparment of Housing and
Community Development
650 South King Street
Honolulu, Hawaii 96813
Dear Mr. Pang:
We are in receipt of your department's comments dated August 7, 1985 on the
proposed Marina Zoning, Hawaii Kai, Oahu. We respond as follows:
 The availability of affordable housing units to comply with your department's The availability of affordable housing units to comply with your deparmant's
program will be negotiated during the review and processing of the project's
zoning application. Please be assured that the applicant will comply in a satisfactory manner to your department's requirementa





## MEMORANDUM




Mr. John P. Whalen, Director
Juiy 29,2985
Page 3 Kalanianaole Hignway.

We requested quantification in the Eis of the impacts of
the 2,400 additional housing units on the 2,400 additional housing units on Kalanianaole Highway
during both the morning and ovening peak traffic in terms
of four variables: (i) travel time from Hawait kai to of four variables: (1) travel tiage from Hawiic kai torms
Downtown Honolulu, (2) total cost/day for vehicle operations and driving time. (3) air pollution, and (4) travel time, total costs/day. and the impact of increased tratfic on air pollution. However, the Draft Eis states Zoning "by 1994 were calculated to be less than 1 dB along
Kalanianaole Highway." We request that the final eis provide the missing data concerning the impact of the added
2.400 housing units on Kalanianaole Highway:

Estimated increases in travel time from Hawail Kai to
Downtown Honolulu during the morning peak hour traffic. 2. Estimated increases in travel time from Downtown Honolulu to Hawail Kai during the evening peak hour
traffic.

1.     * traffic.

Mr. John P. Whalen, Director
July 29.1985
Page

In Appendix $C$ (Transportation Management study, Wilbur Smith and Associates. April 21. 19es) the EIS presents
recommendations for a series of roadway and operational be concelived. without consideration for the impact on the affected residents in the immediate area. For example, one
of these inprovement $n$ to malinitanole Highway trafic is morning peak period." The idea is to divert aportion of the waieli street traffic to Waikui street to reduce signal time for through traftic on Walele strest. However, Waikui
street is a narrow residential treet approximately 1. 200-foot long which parallels kamehameha Highway.

Anowing lett turne at the Waikui and kalanianaole highway
intersection during the peak period will attract many drivers from Kalanianaole highway hoping to bypase a three-
block trafic jam: this will create a morning back-up of traftic along waikui street making it very dificult for they live on. We requast that in the Final eis. the series be reexamined to evaluate adverse impactis on residents of
the immediately adjacent areas instead of oniy the traffic engineering considerations to move more vehicles/hour on
Kalanianaole Highway. W

 dow sound.
Attention mar. Fred podrigues Environmental communications. Inc.
P.O. Box 536
Honolulu, Hawali 9680 .

Yea Jos 23.003 Y. Ebis
Wilbut Smith and Assaciales, Inc.


[^18]
## Mr. Staniey Fuilmoto <br> Kaiser Development Company 7120 Kalaniansole Highway p.0, Box 25007 <br> Honolulu, Hawaii 96823

Subject: Response to Comments on Hawaii Kai Marina Zoning Draft
Dear Mr. Fujimoto:
August 7, 1985
First, during the momning peak traffic period, waikui Sureet is currently used
"iug handle" route for outbound (koko Head direction) trattic turning left to Kalaniki Street. Approximately 150 vehicies currently tum right onto waikui Street trom Kalaniaraole Highway duiring the morning peak hour and use Waikui Street for this putpose, with most of the vencies destined to Kalani high School.
Permiting a left-tum from waikui Street is expected to a tiract 30 to 50 telt-fum vehicies out of the 125 vehicles thas currently tum lett at Waikui Street during the
moming peak hour. This increase of 1 car every It 2 minutes in the Ewa moming peak hour. This increase of t car every to 2 minutes
direction should not significantly affect residents along waikui Street.
Secondly, it is highly unlikely that any inbound Kalanianaole Highway motorists would use waikui Street to bypass the congestion at Kalaniki Street.
The Laukahi-Waiholo 5 treet intersection provides the only location from which inbound motorists can tum to reach Waikui Street. Once drivers have reached Laukani Street, they would expect to travel through the Kalariiki intersection
bboitleneck" on the next signal cycle and without any further shops. Thus, they bottieneck" on the next signal cycle and without any further siops. Thus, they
would reach the H-1 Freeway within \$t 2 minutes once they arrive at Laukahi
Sireet.
 a much longer, more circuitous route. Lefit-turns are prokibited from Kalanianaole
Highway onto waiholo Street. Thus, the "by pass" motorists would tum right onto

## Mr. Stantey Fujimota August 7, 198s Augus Page 2

Therefore, the analysis was performed for 1984 and forecast 1994 tratific
Lind.



The analysis indicates the following impacts on the average travel time
between Hawaii Kai and Ainakoa Avenue: increase
Irom all

$\frac{\text { New Development }}{(M i n u t e s)}$ | Current |
| :--- |
| Travel |
| Time (1) |
| (Minutes) |



$\begin{array}{c}\text { Increase } \\ \text { from } \\ \text { Marina Zoning }\end{array}$
(Minutes)

Nominal
.10


 intersection to the upst
delay and travel time.



## Mr. Stanley Fujimoto August 7,1985 Page

During the evening, increased delays at the East Halemaumau intersection vould contribute about to percent of the travel time increase with the remainder
pread among the other intersections.
Increase in Conts - The travel time analysis indicates that the Marina zoning projecas wouges in travel speed cause only a very travel time and travel speeds. cosst per mile, with most of the additional costs to nesulting fromit increased sasoline consumptiow due to more irequent stopping and starting, and tonger
periods of idling-
Previous reterences (2) on the value of travel time suggest that wnall changes
(increase or decrease) in travel time (under 5 minutes) have litte value to the (increase or decrease) in travel time (under 3 minutes) have little value to the
motorist. The suggested 1977 values were is and 21 cents per hour for work and
nonwork trips, respectively.
For this analysis of Kalanianaole Highway trips, we have used the following
assumptions:

- A time value of $\$ 10$ per hour per adult in the vehicies. This reflects the approximate average wage rate tor East Honolulu residents (in 1980),
and implies that all trips are valued as work trips.
- An occupancy of 1.2 adults per vehicle; children are not included in the
- An average gasoline cost of $\$ 1.50$ per gallon.
The cost analyses was limited to the peak hour periods since these would represent the major portion of any increase in delays, and due to the insufticiency of data
needed to evaluate other hours. The average cost per peak hour veticle trip was estimated using the above assumptions and the EZT-POSSIT an alysis of travel tumes,
delay times, number of stopi, and full consumption. The average increase in peak hour travel
Kalanianaole Highway drivers is estimated as follows
Kalanianaole Highway drivers is extimated an follows costs per one-way trip for Kata
(2) Manuat on User Benefit Analysis of Highway and Bus Transit Improvements,
American Asociation of State Highway and Transportation OTlicials
(AASHTO), 1977.

$$
\begin{aligned}
& \text { CITY AND DEPATMENTOFLANOUTLIZATION } \\
& \begin{array}{l}
\text { Envirgnmentil Communications } \\
\text { P.O. Sox } 536 \\
40 \text { onolulu, Hamaii } 96809
\end{array} \\
& \text { Dear Mr. Roariguez }
\end{aligned}
$$

## Mr. John P. Whalen, Director


We have revieved the oraft EIS for the Hawa ii Kat Marina Zoning and make the
following comenents and recommenation.
The oraft eis has not addressed the recreational fmpact that the proposed zoning would have on our public park system in Hawail kat. We are especiafly density of housing units in a close proximity.
furthermore, the report has not responded to the matter of now compliance with
the City's Park Dedication Ordinance No. 4621 would be accomplished.
The apolicant should contact our Department to discuss the recreational impact
and park dedication requirements of their zoning project
Should you have any questions, please contact Mr. Jason fuen at extension 4884.
dom d. Mefota
10n 1. NekoIA, Director
IIN:ag
ce: Mr. F. J. Rouriguez
Envirommental Commun


IE7/85-3045
PL. 2.0327

$$
585 T \text { ' } z \text { Jun5nv }
$$




no response needed


## MEMORANDUM

To:	Mr. John P. Whalen, Director Department of Land Utilization City and County of Honolulu
Subject:	Draft Environmental Impact Statement (EIS)   for Hawaii Kai Marina Zoning   $\mathrm{R}-6, \mathrm{P}-1$ and $\mathrm{Ag}-1$ to $\mathrm{A}-1$ and $\mathrm{A}-2$   Kaiser Development Company   Hawail Kai, Oahu   TMK: 3-9-08: por. 13, 16   3-9-09: por. 13   Acres: 97

[^19]
co:'Environmental Communications, Inc.
JUL 291935

NO RESPONSE NEEDEO

IIf
$$
\text { SUL } 171985
$$

AUG 81985
AUG 21385



Tie fonorakle Jotn litalen
arecrat
intecter
erartolet of lard litilization
:conct thy sures
waic:a:





Acurert.
Sesv enily vours,
Mrunowey F. Tomencl
whent :. keith


Auguat 26, 1985 Me. Letitia N, Uyehara, Director
Office of Environmental Quality
Control
550 Halekawila Street, Room 301
Honolulu, Hawail 96813


We are in receipt of your office's comments dated July 29. 1985 and we
reapond in the following: The traffic consultant retained for the project. Wilbur Smith associates identified several mitigative measures that could be employed to reduce the
 Thank you for your comments.


$$
\begin{aligned}
& \text { The proposed zoning changes will allow the construction op } \\
& \text { additional residential units which will add to the traffic } \\
& \text { on Kalanianaole Highway. The environmental impact } \\
& \text { statement indicates that by lig4 the level of service will } \\
& \text { be further degraded from an already congested condition. } \\
& \text { We suggest that any roning change that will increase the } \\
& \text { density of Hawaii kai consider the implementation of a } \\
& \text { mitigation measure that mill improve the level of service } \\
& \text { on Kalanianale Highway. }
\end{aligned}
$$

Vćc: F. 3. Rodriguez

FJR:ls

$$
\begin{aligned}
& \text { Sincerely, } \\
& \text { Ontín } \\
& \text { Letitia } \begin{array}{l}
\text { Director }
\end{array}
\end{aligned}
$$

for your review is an Envirormental Impact Statement (EIS) that Attached for your review is an Environsental io Chapter 343 , Hawil fevised Statutes and the Rules and Regulations of the Environmerital Quality Commasion:

ILIE:	Draft EIS for Mawhll Kai Marina Zoning
LCCAIION:	
CLASSIFICATION: Hamail Kai, Monolulu District, Oahu	




Your coments or acknowledgnent of no comments on the EIS are welconed.

Please sumilt your reply to the accepting authority or approving agency: | Your comments or acknowledgent accepting authority or approving agency: |
| :--- |
| Please subult your reply to the |
| $\qquad M r$. John P. Whalen, Director |

Dept. of Land Utilization, CEC Hinl.
650 South King Street
 If you have no purtier use for this eis, please return it to the office 98 Thark you for your participation in the EIS process. Evengy division 40 pespmise necoea
Please send a copy of your reply to the proposing party: Mr. F. 1. Rodriguex


## vatoum *d uyor •uW <br> Sewage Requirements

The DEIS states that planning is underway to expand the capacity of the treatment from the ongoing and proposed Services, Ine. to accommodate the added wastewater We would recommend as tailures, untreated sewage has been discharged into the marina We would reeommend as part of the expansion project that standby generators be installed
 Waste/Waste Disposal

Although the DEIS makes reference to available infrastructure/public facilities, it facilities which will be needed to acceased solid wastes which will be generated and the
Oahu are nearly at inch inereases. The existing land Public Facilities and Servi. The FEIS should incorporate discussion on this issue as well. Public Facilities and Services

The DEIS states that: "The nearest hospitals are the Kaiser Hospital in Waikiki and
Queens Medical Center in Honolulu" (p. M-19). Plans call for Kaiser Hospital to move it

 statement in the DEIS as it presently stands is both incorrect and inew. The recurate. The downeed Water

Although the DEIS cites sufficient infrastructure to accoln modate the proposed
development, it doas not address sources or alternative sources of potable water. In light
of recent/seasonal water sthortages, the size and location of thi of recent/seasonal water shortages, the size and location of this potable water. In light
availabitity a critical issue. Currently, the 8 , 000 t availability a critical insua. Currently, the 8, 8 ,000+ existing residential population in
Hawaii Kai receive potable water from the Board of Water Supply's Honolutu in
Windward sources. Purthermore Her
 the aquifer. The FEIS Hhould incoreos are rapidly approaching a the sustaninable cyientrol of
alternative sources of potable water. Traffic
expected to occur on the Kalanianaole Highway during morning and the additional traffic The statement is made that: "These measures stould pernit movement of peak periods.
 peak traffic conditions on Kalanianaole Higelway and what can be anticipated with the
proposed development. Presently, Kalanianaole Highwy the a

The above eited Draft Environmental Impaet Statement has been prepared to
 Regional Planning; Jim Wrepared with the assistance of Peter Flachsbart, Unban and
offer the following comments Martha Diaz-Colon, Environmental Center. We General Comments
The most serious issue identified by our reviewers involves the increase in traffic
congestion that the proposed development will have on Kalanianaole Highway. Many of the methods suggested as mitigative measures to alleviate the traffic problems involve
changes in community tifestyle, such as van por changes to the feeder roads themselves such as straightening curves or installing sighals Implementation of these mitigative measures before construetion of installing signals. situation. We urge that implementation of these measures be considered prior to initiation of the construction.

## Noise

- The DEIS states: "The setbacks of the proposed Marina homes are generally
adequate for the existing traffic noise levels, since the majority of the proposed are located outside the existing $65 \mathrm{~L}_{\text {a }}$ contours" ( p . MI-13). The effects of traffic noise on existing homes located along the affected corridors should be discussed more problem that is already perceived by some residents as intolerable. - EVMO
Archaeology
Our University archaeological reviewerss are not available at this time so our
 has been cited as an "ili of the athupua' of Waimanalo." According to a surviving
kamaina of Maunalua, sweet potatoes were grown in the valleys and on the coastal plain The village at this place, traces of which may still be seen, was wawamalu. Other reatures attributing to its historical significance inclade: The panua heiau now and
restoration), the hawea heiau, petroglyphs, ponds and a well. Several sites exist mauka of
 with the office of Historic Preservation.


## Recreation/Parks/Open-Space

Although the DEIS eites an abundance of public and private recreational facilities in
and abutting the Hawaii Kai community, there is no mention of the impacts to those and abuting the hawain kal community, here is no mention of tae impacts to thase open-space and park Ordinance No. 4621 be implemented into the design synthesis for the
proposed project? Please note that many aeres of Hawaii Kai park space are minimally useable because of the rugged topography.

## Pedestrian/Bicycle Safety

The bEIS has not addressed our previous concern (June 14, 1985) for pedestrian/ bicycle access. The Keahoie Street bridge ewa sidewatk is $48^{\prime \prime}$ wide. However, the guard
 the bridge, has little safety factor against relatively fast moving traffic. The increase in
traffic on Keabole Street that will be generated by this development will increase that risk. The entire community of Hawaii Kai is notorious for its joggers and bicyclists. Many national and international running and eycing events focus in hawail kai. Keahole Street bridge would be minimal and the salety greatly improved.
We appreciate the opportunity to comment on this. DEIS.



	3					S＊95	ET	を゙		NOH	
			0	0	68	$0^{*} 己 Z$	6	\％	sn9	standixy	
						C＊ 5	TE	09		roodxe	
L＇99	$0 T$	51	0.02	2	GE	5＊29	59	701	¢ane	76世n83y	
$\%$	$\begin{gathered} \text { pease } \\ \text {-on } \end{gathered}$	－बTa＊   －ON	$\%$	－paoaxa －OK		\％	$\begin{gathered} \text { - pasex } \\ \text { onn } \end{gathered}$	$\begin{gathered} \text { sdizut } \\ \cdot 6 \mathrm{~N} \end{gathered}$	apon	Tonel4	
	\％uTuI0\％			บข04．			8410304				
	＊48 5 发										






 on Kalanianaole Highway (Chapter 3) and conditiona with the proposed
development and mitigation measures (Chapter 5). In the final report, development and mitigation measures
the Transportation Management Study, we are adding a section at thee
end of Chapter 3 that address what future trafic conditions would be end of Chapter 3 that address what future traffic conditions would be
with the proposed development and without the mitigation actions (rideshare and roadway projects).

Note that the analysia indicates a maximum existing volume-capacity ratio peak hour. Traffic demands exceed the roadway capacity at this location, phich results in the extensive queuing observed each school day morning. Planning (DGP) report entuled Prelicunary Report on Standards and very Controls Related to Conditions Along Major Highways, " is based on a very
generalized set of assumptions about each roadway corridor. Side street traffic volumes and traffic signal operations, which in large part determine roadway capacity, are assumed to be unitorn for the tranc signal-
controlled intersections in all corridors in the DCP report. Applying the


## Mrs. Jacquelin N. Miller August 26, 1985 <br> August 26, 1985 Page

The computer analysta alao providen an estimate of increased fuel consumption price of $\$ 1.50$ per gallon for fuel, the increased cost per Using an average trip on Kalanianaole Highway would be as follown: | Morning |
| :--- |
| Peak Hour |

##  <br> $\$ 0.01$

Note that these fuel costa reflect tncreased delay and atops on the cross atreets
as well an on Kalanianaole Highway.
The increased traffic could affect the fire and paramedic service emergency vehiclen operating from the Wailupe Station. Any impacts would emergency
bimited to the morning peak period from Hawait be on the four-lane aection to Kirkwood, which would expertience an estimated lane section in the evening peak hour. During the morning on this fouremergency gervices will still be able to use the inbound Hov lane where most
of the vehicie queuing and congested conditiona occur conditions should continue for everergency vehicles to the Reasonably free flow
during both the morning and evening peak direction s. Air
8. Air Quality: Your comment on the potental impact on motorists from $\mathbf{C O}$ Exposure to Motor Vehicled Exhaust in Two Microenvironments Using
Personal Monitory" (July, 1985) was untortunat Air consultant'y review and comment. Barry Root has been provided a copy of your comment and aloo the table as provided asen an provided a
definitive responce to not available however a July, 1985 study. Root atates an follows: © There are several serious forparative considerationa which make the results of the atrady Invalid
atruction an Envifonmental Impact Study involving a proposed contruction project.
Foremost among these considerations is the fact that State of Hawall
ambient air quality standardm as established by Public Health Regu-
Iations. Chapter 43, and the
 moving vehicle. Ambient air quality standard were quality inside a
 protect public health and weifare., quality standards are designed to
for comparid to use these values
隹

Mrs. Jacquelin $N$. Miller
August 26, 1985 Page


It was most interesting to note, however, that the bicycle riders include of Hawaii ambient air quality standards. This implies levels above State quality along the Hawail Kai commuting corridor is currently within air for this area are suitably conservative." We would defer to the the EIS

9. Economic Benefits: The applicant iant current study.

Economic Benefits: The applicant is required to meet certain ordirances
adequate Parks and Recreation facilities, and the State Department of
Education bas commented in the EIS Preparation Not Education has commented in the EIS Preparation Notice that the ability
to provide adequate educational facilities will be phased as the project
schedule in fmplemented. Adequate infrain schedule in implemented. Adequate infrastructure is currently available
due to Hawail Kai's Master Plan and community services for sewerage
drainage, and internal dranage. and internal street circulation.
10. Aesthetics/Land Use, All design considerations for structaral improvePlanning for the Marina

Planning for the Marina Zoning limits building heights around the Hawail
Kai Marina to a maximum of 60 . The higher structer against Mariner's Ridge to preserve both mauka and makai views.
11. Archacology; All cultural and historic aites as defined in the study
recommendationa. There has been no comment to date.

13. Pedestrian/Bicycle Safety Thim concern as atated in your comment on The Ensincant, the lateat information tas to how the additional pedestrian the aping can be provided on the Keahole Streat bridge. Thia data
University of Hawaii at Manoa

(0\% HPMPH nymover

量


$$
\begin{aligned}
& \text { oso south King stree } \\
& \text { Honolulu, HI } 96813
\end{aligned}
$$

5
Mr. John P. Whalen, Director
Department of land Utilization
City and County of Honolulu
650 South King Street
Honolulu, HI 96813

-
Dear Mr. Whalen:

The Draft EIS for Hawaii Kai Marina Zoning has been reviewed and we have
no conments.
Thank you for the opportunity to review the
Thank you for the opportunity to review the Draft EIS.



Atr, John P. Whalen, Director
Departinent of Land Utilization
City and County of Honolulu
650 South King Street
Honolulu, Hawaii 96813
Dear Ntr. Whalen:
ENIROMENTAL mPACT STATEME
HAVAII KAI MARINA ZONING



1


HAWAIIAN ELECTRIC COMPANY, INC. PO $80 \times 2750$ - HONOLULU, HAWAII ge. 40
$\operatorname{EvV}_{N / G} 2-1$

ETET

[^20] August 26,1985
Dr. Brenner Munger
Manager, Environmental Department
Hawaifan Electrle Company, Inc.
P.O. Box 2750
Honolulu, Hawail 96840
Dear Dr. Munger:
We are in receipt of your company's comments dated August 6. 1985 and we
respond in the following:
The requested five inch ducts will be discussed with appropriate HEL staff
when the final construction plans for the utilities are completed. As this
proposed project continues through the various land use policy review.
procedures, the applicant will be maintaining contact with the various utilities
involved.


## HAWAII KAI NEIGHBOAHHOOD BOARD NO. 1

Mr. John P. Whalen
Wednesday, Auguse 21, 1985
a copy of Draft E1S's be made more readily available. We understand that
 that your office did not have any addicional copies of the DEIS for our use.
 agreed to make individual comments to your office, as follows, concerning

1. Anchony W. Depaul, Jr: "The transportation system management's 'Ridesharing Program represents a best-case scenario,
wich no cushion or allowance for errors in estinate: participacion, and traffic reduction. Recommenda-
rions in the DEIS, if implemented, would imply in tions in the DEIS, if implemented, would imply in
theory, that the State need not proceed with their expansions plans for Kalanianaole Highway, which is.
totally unacceptable. I am not negative on the Marina developaent; but the highways and infrastruccure should be made to support such development,
and these important items do not exist now I

 submicted a 3 -page report (copy enclosed) at chas
meering, comenting on the DEIS. He advised that

 At che Monday. August 19, 1985 meering of this approved and accepted Mr. DePaul's report.

"I agree with all of Tony's report. The transpor
tation aspect of the DETS is the importint and
critical portion of the entire matrer. I am con critical portion of the entire matter. 1 am con-
cerned as to what the impact of highway construction

 residence plamned in this Marina Zoning? It semsas



[^21]AUG 22185

Qur communicarion with the State Environental Quality Control office revealed that only bo copies of the Dodt els were produced,
 Marina); Bill Walden (Koko Kai); Allan J. Wanamaker (Hahaione Valley); and Quincy H. Kanesiniro Mariner's Cove); Ed Schuyler Lott (West. Marina); Scafford-Anes Morse (East Mary A. Wilkinson (Hahaione/Hawaii Kai Drive High-Rise Condotainiums). Although the 8 members represented a quorum for official business, the members
present agreed not to submit comments as a Board, because several of the
 Hawaif Kai Neighborhood Board received only one copy of the Draft ELS, and sharing this single copy among 15 personts was not possible. Several members only approxitiately 5 copies were abcainable. Re: Review of Draft Environmental Impact Statement
for Marina Zoning, Hawali Kai
Mr. John P. Whalen
Director
Department of Land Utilization
City © County of Honoluiu
650 Sourh King Street
Honolulu, Hawail 96813
Director
Department of Land Utilization
City © County of Honoluiu
650 Sourh King Street
Honolulu, Hawail 96813 Re: Review of Draft Environmental Impact Statement
for Marina Zoning, Hawali Kai Re: Review of Draft Environmental Impact Statement
for Marina Zoning, Hawali Kai Re: Review of Draft Environmental Impact Statement
for Marina Zoning, Hawali Kai Re: Review of Draft Environmental Impact Statement
for Marina Zoning, Hawali Kai Re: Review of Draft Environmental Impact Statement
for Marina Zoning, Hawali Kai Re: Review of Draft Environmental Impact Statement
for Marina Zoning, Hawali Kai Re: Review of Draft Environmental Impact Statement
for Marina Zoning, Hawali Kai Re: Review of Draft Environantal Impact Statement
for Marina Zoning, Hawali Kai
Dear Mr. Whalen: 4 At-Large members, and 11 Sub-District Representatives. There were 8 Board
meabers present at the meeting: Anthony W. DePaul, Ji. (Kalama Valley): Quincy H. Kaneshiro (Lunalile Park, Mauka) ; Alfred Kirchoer (Mariner's qidge members did not have copies of the Draft EIS available to them. The of the Buard did make special efforts to obtain additional copies, but ate


8. Ron Mckee, Resident of the Anchorage subdivision, and a member of the


The high rises planed adjacent to the Anchorage
is of great concern to us. We are concerned that these high-rise condominiums are being put right residences. This is an example of poor planring. We have only a 40 fook wide residential street,
and the impacts of increased amounts of traffic, offostree parking heeds, noise, and overall coners
tion must be consideced."


$$
\begin{aligned}
& \text { Mr. John W. Whaten } \\
& \text { Wednesday. August } 21,1985 \\
& \text { page } 7
\end{aligned}
$$

 was adjourned at 9:15pm.
Pertaining to the overall concept and use of Environmental trapact Statements,
Quincy H. Kaneshino did receive comencs priok to, during, and after the above described meeting that the cost of such EIS's be disclosed to the public. The transportation issue on kalartianale fighway is the major issue in this 4 r . hayme J. Yamasain's letter of fune 18,1989 , requesting a scenario for the
the weight of facts. Given the fact that an overwhelming percentage of Hawaii reductions have to be approached with considerable caution.
(2) Usage of public transit is already the highest on Oahu. Therefore
the "easyn part has probably already been obtained. Each added increment will the "easy" part has probably already be
become increasing difficult to achieve.
(3) Few of the reductions in traffic due to ridestaring will happen
by themselves; they will have to be made to happen. This is the function of the by themselves; they will have to be made to happen. This is the function of
50 peak hour vehicle trips to the employment of the Transportation Manager
in addition to the reductions projected for all ofher measures appears to be double-counting.
5. Even after all the number-crunching, after completion of construction pro-
jects (pedestrian overpass), after implementation of all ridesharing measures, jects., the bottom-line conclusion of the Transportation Management Study is that: a. The Kalanianaole Highway-Kalaniiki Street intersection will be AT
SATURATION during the morning peak hours.
b. Traffic will INCREASE on Kalanianaole Highway during the evening peak hours, worsening an already unsatisfactory situation, even though key intersections may not reach their theoretical saturation.
c. Traffic will increase during the non-peak hours on Kalanianaole High-
way. In other words, Kalanianacle Highway will become more unsatisfactory for longer periods of the day.
It is emphasized that this is as good as it is going to get. Any failure to achieve any specific reduction or any increase in actual traffic loads whll exacerbate this
situation even more. 6. Since the developer has no control over the planned State DOT median reversible tane project, the desire to keep Marina Zoning independent of the
Stare project is understandablei however, from the Hawaii Kai residents' point of
信 view, such a position is totally unrealistic:
a. That the developer has the best of intentions to minimize the traffic
impacts is ackhowledged, however, the risk and burden of any adverse impacts
from an inabinity to achieve any objective will fall most directly on the Hawaii
Kai commuter - not the developer. Kai commuter - not the developer.
b. Further, the Study would have us believe that the developer can
"manage managen our way out of a very difficuit problem that has become increasingty
unmanageable, and in so doing will tend to remove any incentive for the State to move ahead wirh the Kalanianaole Highway improvements. We could easily wind up obaining minor improvements at the expense of the total package to improve
Kalananaole Highway since the Study is effectivety saying that we can tolerate a major development with no significant improvements to the major arteriat
into and out of Hawaii Kai.

## August 15, 1985

1. Section IV of the Draft Environmental Impact Statement (hereafter referred
to as DEIS) profiles the existing Hawaif Kat community as yound households averaging 3.4 people per household, with a large percentage $\{3 \%$, of employable people and the second lowest unemployment rate in the county. These residents
have high median incomes and a large percentage of people who drive their own have high median inc
cars to work $(88 \%)$.
2. The Marina Zoning proposal projects an increase of 5270 persons lan average of 2.2 people per household.) The Deis is extremely vague as to the demo-
graphics of this new population, but anticipates that "the new population will possess similar socio-economic characteristics" as the existing population. Verbal statements by the developer's representatives at the July Neighborhood Board
meeting, however, anticipate that there would be major changes in the demographic characteristics of the new population, and by inference, a population.
that would not go anywhere in the sense of generating additional traffic.
3. The projected demographic changes and the socio-economic impacts in Hawain 3. The projected demographic changes and
Kai should be spelled out in more precise terms and the DEIS shoutd be amended
to include these impacts. White these issues are of significant interest to the Board in terms of the quality of life in Hawaii Kai, from the transportation aspect they are of considerable importance since they are the basis on which
traffic generation is determined.
4. The Transportation Management Study (Appendix C to the DEIS) presents a
nibest casen scenario wherein every assumed condition and consequence has to materialize in order to achieve the desired results, i.e., there is no built-in slack or cushion to accommodate any error in estimates or the significant assumed
conditions on which the study is based; specifically:
a. The projected increases in daily vehicle trips is based on major changes
in the demographics of Hawaii Kai which may or may not materialize. The extremely low trip generation rates do not appear to allow for any variation on
the upside, and do not seem to account for the tendency of our residents to the upside, and
drive their cars.
 to these projections based on an estimation of trips that would be diverted from
Honolulu to the Marina Business Center for work and shopping.
c. The Study recommends an ambitious Ridesharing Program that requires
${ }^{2}$ a $20 \%$ increase in Hawaii Kai resident use of buses, vanpools, and carpools as compared to continuation of current travel mode use." With regard to the Ridesharing reductions in traffic, the following comments are pertinent:

[^22]
 Funds exist in our budget for surveys, and 1 suggest that a comprehensive Wilbur Smith would assist in establishing the reduction progran.
 future, why not try at least a limited introduction now, when roads are of their proposals and it should be a valid test as to future expectCOMPATABLE LIFESTYLES:
Residents I've spoken to do not seem opposed to the type mix of growth
that Hawaii Kai has had to date, i.e., mostily single family and low rise housing. However, most dispute the developer's claim that 2400 medium and hi-rise units will enharice their lifestyle. This is under-
standable to me as my district is nearly all single family homes. HYDROLOGICAL CHARACPERISTICS AND WATER SUFPLY:

[^23]
HAWAII KAI TEIGYBORHOOD BORRD 1:0.1 HONOLULU, HA\&AII 96825
dear board nenters: the anchorage co:tunity association heibers have expressed concert to the board cf directors regardina the pgoposed zonith changes submitted to the city abd county of horolulu by the kaiser DEVELCPIET:T CO:PAPATY.

the maior concers: of the alchonge comurity association is
The mpact upon general thaffic comomots th the east yotolulu area and the ehor:ous ippact it hill have of kalamaitacle highay.
 melit coispamy, states that by the year 1994 hithout liflamitig any recorsemoed deparmett of trausporiatich prcgrahs, treffic holld.
increase at perk traffic hotrs by approxizately 770 aoohtic:al
vehicles. if trie zohitg changes are allored as proposeo a:d
developieit batigs ail adoiticial 5270 lem resloeits, hoh is it that oialy 770 adoithema vericles wotld ee gemenated of an alreapy OVER-USED AMO probleii ridoét Kalamilaiacle hichtay? (gaseg of 5270 people aho 770 vehicles that coiputes to e.a perschs per vehicle)
29 Jut Y
HAWALI KAI UEIGHBORHOOD BOARD NO.
HOHOLULU, HAWAII 96825
further coicerns about the traffic congestion raises the question about entrgency services beimg uiable to insure rapid and effective respohses in the hawail wai area. the increased traffic congestion created by the proposed zoming chaiges is but one, the most importait one, conceri we haye regaroing deyelopient plans as proposed. other objections he have are insufficient compared to the traffic cohgestion. traffic is a problen today without adoing one adoitional car in hawail kall!!!!

We ask that the neighborhood boaro carefuly consider the
zommg chacige package as proposed by kaiser developmeit cotipany and address the problems it will create if accepted as proposed. he understano that there is no easy aisher to this matter and suggest that each area that is belimg asked to rezoie be considered separately by the neighborhooo boaro. in revieuing the seven parcels reguested for zonimg chamges
We fiud that the number of uats rabgé fron 100 umits in :arina 11 (b) to 1020 umits it kallanuif I. We suggest and reconieno that the number of uiuts per parcel be reduced or if feasible, be spread: iore evemly so that no one area is inpacted more than abother.
BOARD OF DIRECTORS
Mr. Quincy H. Kaneshiro, Chair
Neighborhood Board No.
August 15, 1985
Page 3
consultant is using for the Marina Zoning may well be overstating
the trips that will be generated.
One final note. The Hawaif Kai Transportation Management Study
indicates that the entire program will cost in excess of
 being held regarding the various contributions of Kaiser, the
state and the city to the program. please remember, this is a State highway. However, Kaiser intends to contribute substan-
tially. Very truly yours,
Dan Davidson
Manager, Land use
cc: Board Members

The theoretical amount of trips (vehicles) to be generated using
the above listed rates are as follows:

Mr. Quincy H. Kaneshiro, Chaix Neighborhood Boa
August 15, 1985
Page 2

Using the same $80 \%$ figure, 3,151 of these vehicles would travel on
Kalanianaole Highway from Hawail Kai at Kawaihae Street without the commercial expansion. The actual number of vehicles traveling down Kalanianaole Highway during the school year and during the
morning peak hour is 2,800 . Therefore, the trip factors that the

$$
\cdot
$$

		Unit Type	Trips
		SF	3,165 vehicles
		LDA	533
		MDA	241
		Total	3,939 vehicies
	Using the same 80\% figure, 3, 151 of these vehicles would travel on		
	Kalanianaole Highway from Hawaii Kai at Kawainae Street without the commercial expansion. The actual number of vehicles traveling		
	down Kalanianaole Highway during the school year and during the		
	ornin	hour is 2.	ore, the trip fa





## $5861^{\circ} 1$ Kinc

## Mr. Quincy H. Kaneshiro 612 Kapaia Street <br> ronolulu. Hawaii 96825


September 3, 1985

## Mr. Quincy H. Kaneshiro, Chairperson Hawail Kat Neighborhood Board No.

## Dear Mr. Kaneshiro:

We are in receipt of your comments on the Environmental Impact Statement
Preparation Notice dated June 3, 1985 and we respond as follows:
We share your concerns over the traffic situation at Hawaii Kai and Kalanianaole Highway and concur in your evaluation that the improvements are long overdue. Historically, the traffic improvements have not kept pace with the increased
development in the East Honolulu District and this has led to nearly maximum capacity on the traffic corridor into Honolulu.

We appreciate the traffic mitigation measures identified in your letter that you mented. Three of the four measures (adjustments to the timing at traffic lights and banning of left turns at certain intersections and iraplementing the jugg
handle left turn for Hawaii Loa Ridge) can be considered ongoing operational modifications and are not really dependent on the Marina Zoning project. These
 of Transportation and the City a County Department of Transportation Services
for their review.

The Transportation Study prepared for the Marina Zoning project identifies a number of roadway modifications to accommodate future traffic increases. One
of these modifications is the remaining measure identified in your letter, the pedestpian bridge fronting Kalani High School.

The Transportation Management Study proposes that the traffic mitigation measures for the Marina Zoning (both roadway modifications and rideshare
measures) be phased with development such that all increase of traffic will be accommodated. A proposed implementation schedule is included in the Transout, however, that prohibiting development in Hawaii Kai until highway impacts

Thank you for your comments and we look forward to hearing from you on the

Mr. Quincy H. Kaneshiro Page 2
largely independent of other transportation projects and programs.
Although not included within Appendix $C$, series of additional or
alternative riciestare and roadwey projects were identified as a contin gency action
a) The trip generation factora for the ingle family, low density multi-family, and high density muin-family developments are representative of the travel characteristicu of present Hawaii Kai
residents. To test this, the rates were first applied to existing Hawaii Kai development, with the resultant projections then community. The present dwelling units, morning peak hour trip rates, and total estimated trips are as follows:

## Estrmated Trips



$$
-2
$$

3.165
$\stackrel{m}{m}$
$-241$ 3,939

Past studies have found that 80 percent of these morning peak hour vehicles wouid travel towards town on Kalariatiaole Highway, based on existing levels results in an estimated 3,151 Hawaii Kai vehicles travelling towards Honolulu during the morning peak hour period.

Counts taken during the school year found that the actual number travelling inbound on Kalanianaole Highway from Hawaii amount to 2,800 vehicles in the peak hour. Therefore, the trip rates approxienate or

The trip rate which seems to be under question is the 20 exiting trips per unit
for medium density multi-family units, primarily mince it is considerably lower for medium density mulii-family units, primarily wince it is considerably power of persons who tend to live in these higher density projects, which generally smaller average unit size, fewer bedrooms, and lower costs, tend to be older couples, single persons living alone, or young couples who seek to live in a
7. The Transportation Management Plan includes development of a park-andride facility adjacent to Keahole Street across from the Hawail Kai Towne
Center. Most If not all of the additional public transit services will probably
operate from this facility. Any additional bus operations in the existing operate from this facility. Any additional bus operations in the existing.
residential areas will occur on Lunalio Home Road makai of Wailua Street. and Hawaii Kai Drive Ewa of Keahole Street. These two streets already
accommodate most of the bua routes and are also major traffic arterials.
8. The State has determined that the State highway reserve to not needed a part of the State Highway System. Portions of this reserve are now
programmed for development, including a portion of the Kuliouou $2+3$ programmed for development, including a portion of the Kuliouou $2+$
parcel. The Marina 8 parcel, on the other hand, still retains a road The proposed tranaportation management program would use a series
ridesharing measures and spot roadway modifications to provide sufficien capacity to accomemodate the additional development. The program ia not current traffic flow conditions, nor to replace the State DOT project. implement ite Kalanianacle Highway improvements project.
$\qquad$
Mr. Quiney H. Kaneshiro
Mr. Quincy 3, 1985
September 3,
Page 5


c. The propomed ridesharing program is intended to reduce the proportion of Hawail Kai reaidentw traveling inbound on Kalanianacie Highway during
the morning peak hour from 54 percent drivers/46 percent passengers (cars, vana and buses) to 50 percent each. The study has attempted to
make realintic mppraisal of rideshare program usage and effectiveness as posaible.

1) The estimated effectiveness of the ridesharing measures have been based on honolulu experience where similar services are avalable.
For example, use of the proposes express bus service to Waikiki.
 Kai residents employed in those areas, and the proportion of Hawail
Kai residents who work Downtown and the use the similar existing express services to Downtown. For purposes of conservatism, the
participation rate was halved to reflect the more diverse work hours participation rate was halved to
in the Waikiki-Ala Moana areas.

Where similar programs are not avallable in Honotula, such as the free bus pasmes, experiences where drawn from programs on the that are reflective of low-end to average to low-end rates of

The proposed program and level of effort recognives the difficulty in
attracting additional residents to use of rideshare modes. This has attracting additional residents to use of rideshare modes, this has resulted in the proposal of a broad program of measures to address of incentives and services not currently avallable to hawail Kal,
bus for which there appears a need.

[^24]


[^25]Page 2
Whalen
August 22, 1985

cc Envirommental Comaunications, lac:




61	Stsxivny gatxowow nogyvo unoh yuad so samasay	2
		'
satava		
4	(salss youdajxy	
	gaixonow nogyv do noinvom oniantoni) way xamus	'z
91	NYTd Lnghdotancia	1
s\%upia		
51		
$\ldots$	xy\%wwns	6
11	Satasugn anauviliz	-8
4	bnithgow noisndita gaixonow nogrvo	$\stackrel{4}{ }$
9		$\cdot 9$
$\varsigma$		-
\%		$\cdots$
$\varepsilon$	रurtvio giv lingssud	'
$z$	stavanuas kaitvoo hiv	'
!	NOLLdimosat wospord	$\bullet$
$3^{3} \mathrm{~V}$		NOL.Lex

$$
\begin{gathered}
\text { air quality study } \\
\text { for the } \\
\text { Marima zoning requests } \\
\text { hawait kai } \\
\text { oahlu, hamail }
\end{gathered}
$$

1. Pronect deschiption
Two groups of improvements are planned or proposed for the existing hawail
Kai developaent on eastern Oahu. The first group includes projects which have been previously group includes vancant residentially zoned lande, tracts under This group ind and constructed but unsold units auch as the commodore condominium. The second group, referred to in this atudy as the Marina Zoning projects, includas projects for which kaiser Development Company is now requesting approval of residential soning in order to implement the overain Hawail kai development plan. Location of these proposed additional developaent traffic generation and air quality impact of the proposed Marina Zoning projects, these developmenta are assumed to contain 2,400 multi-family dwelling units.
The purpose of this study is to doscribe existing ambient air quality in the project area, to estimate and evaluate the impact of any increase tod to the or long torm sir pollutant concentration mitigive measures that might be proposed project, anded any adverse air quality mpacts that could be directiy or indirectily attributerd to the project as proposed.
State of Havaii and National Ambient air quality Standards (AqS) have been established for six classes of pollutants as show in Table 1. An AQS is解 neceessary to cause advarse effects. Each of the ragulated polinace environmental degradation when present in autficientiy high concentration.
 AQS are deaignerd to prevent adverse healibility, diminished comfort levels, damage to vegetation, anifals or property, or a reduction in the overall at a aesthetic quality of the atmosphere. State of Hawair AQS have been set the
lowest comparable national limit.
The State of Hawail Department of Health has proposed that Hawail State AQS for particulates and sulfur dioxide be changed to match federal to date Public hearings were held on the proposed
these changes have not been made official.

## 4. direct alr quality impact of projeje construction

[^26]
## 3. present air quality

There are no ambient air quality aonitoring stations within the immediate
vicinity of Bawail kai. Under prevailing wind conditions there is no industrial activity upwind for thousands of miles and it is reasonable to assume that present air quality is quite good. The only significant sources of man-made air pollution in the area are motor vehicles traveling within the Hawail kai development or on nearby Kalanianaole Highway. There is no agricultural activity requiring open field burning on east oahu.

Hatural air pollutant producars which could affect Hawail Kai air quality fnclude the ocean (sea spray), plants (fero-allergens), duat, and perhape a pollutants from these kinds of sources should be fairly uniform for most oabu locations.

The nearest long tere air pollution monitoring atation to Hawali Kai is
locuted in waimanalo on the other side of the Koolsu Mountains, and only particulatea are measured at that location. For the past 15 years, 24 hour and annusl averages of particulate measurements at waimanalo have beefn running保 was epecifically chosen to provide an estimate of beckground particulate levels
in tiving over Oahu.
7. Carbon monoxide dtffusion modeling

In order to evaluate the air quality impact of increased traffic and
decreasing emission rates per vehicle in the context of the proposed Marina Zoning projectal it was necessary to carry out a detailed carbon monoxide modeling study. The study was designed to yield carbon monoxide soncentration values which could be compared directly to allowabie State and National Ambient Air Quality Standards.

Two eritical receptor sites were selected for micro analysis. Site 1 is to the existing bus stop. This intersection the Kalaniliki intersection close the traffic management study for the project identified for analysis because bottleneck to peak morning traffic flow elong Kalanianaole Higheay the making it the location most iopacted by any inerease in traffic volume generated by the proposed Marina Zoning projects. The particular position of site 1 with reapect to the intersection was selected because that spot would be specifically carve the highest levels of automobile-genarated air pollutants, specifically carbon monoxide, under worst case meteorological diffusion
conditions.

Site 2 is located on the makai side of Kalaianale Highway near the East
Halemamau Street intersection, where the most sidnificat ene Halemamau Street intersection, where the most significant evering peak hour
traficic congestion is ifkely to occur. The locations of both sites are indicated on Figure 1.

Expected worst case carbon monoxide concentrations at these receptor sites were computed for the present case (1984), and for study years 1994 and 2004. Future year computations were made for traffic conditions with and without the proposed Marine Zoning projects and for traffic conditions that would be
in the traffic management atudy for the of major mitigative measures suggested
For site 2 all projected worst case carbon monoxide concentrations are
 trafic from the proposed marina loning projects increased traffic the recomnended ridesharing program is likely ootent that carbon monoxide levels with both the proposed project and ridesharing will not be subatantially different than those that would occur without the project.
Average one hour traffic volumes during the peak eight hour period are
 and a 'aeteorological persistence factor' of 0.6 which is recommended in EPA modeling guidelines to account for the fact that meteorological dispersion conditions are more variable (and hence more favorable) over an eight hour period than they are for a one hour pard factor of about 0.5 will yield values
 for carbon monoxide is also one half the one hour standard. Thus all canclusiona reached above regarding the State of Hawaii ons hour standard will hald with respect to the eight hour standard as well.
All carbon monoxide concentrations calculated in the foregoing analysis are well within the less stringent National one and eight hour AQS whether the proposed Marina Zoning is approved or not and no matter which propain if omatway or ridestaring mitigation measures are implemented.
The EPA computer model hiway 2 was used to calculate carbon monoxide concentrations at oach of the
 favorable) atmoapheric condition that is likely to exist in a suburban area such as this.
To simuiate worat case wind conditions a unifora wind apeed of one meter per second was assumed with the worst case wind direction for ach receptor site south southeast and that for site 2 from the northeart. concentrations uere computed al human breathing sone. Background contributions of carbon monoxide from sources or diatant roadways not directly coneidered in the analysis were assumed to be zero.
Results of the peak hour carbon monoxide etudy are presented in Table 2 . For site 1 worst case modeling eatimates of morning peak hour carbon monoxide concentration are slightly above the allowable State of Hawali one hour AqS for the current situation (1984). Traffic growth projections coupl in little emisaion rate reductions for for there fo change to existing roadway change to this or present vehicle use rates even if the proposed Marina Zoning
 change to existing roadway conftguration and no change in current venicie use rates then the worat case peak hour carbon monoxide concentrations are projected to increase to levuela aubatantially above the allowable State of Hawail one hour AQs. Moposed in the traffic management atudy for the project are implemented along with the Marine Zoning projects reault in projectod decrease in carbon monoxide concentration to vith no Marina Zoning prosect trafe, then the reaultant increase in vehicle apeeds and decreased signal waiting times in the peak hour direction on Kalanianaole Highway are projected to resuit hin wordiche
concentrations that are well below state of hawail if
g. mitigative measuaks
As previously indicated the only direct adverse air quality impact that
the propoaed project is likely to create is the emision of fugitive dust during construction. State of Hawail regulations ationiate fugitive dust moasures that are to be employed to reduce this type of emissions. Primary program can reduce particulata mission levels from construction sitering by as much as 50 percent. other control measures include good housekeeping on the jobsite and pavement or landscaping of bare sonl areas as quickiy as possible.

## B. Long term

Once completed, the proposed Marina Zoning projecta are expected to have
little direct iapact on the eir quality of the surrounding repion. Indirect long termimpacts in the form of increased air pollutant emissions indirect plants serving new residences in the project area can be aitigated somewhat by planning and implementing solar energy design features to the maximum extent possible.
where traffic indirect long term air quality impacts are expected in those areas vehicles traveling to and from the proposed project. Project planners can do very littie to reduce the emission levels of individual vehicles, but the traffic managenent atudy for the project describes in detail a multifaceted volumes a lony the wain traffic corridor between Hawit Kaitiy reduce tratfic Honolulu. The traffic management study also provides detailed descript roadway improvements that could aigudy also provides detailed descriptions of the vicinity of the major 'bottlenecks' along Kalanianaole Highuay.
5. Increased traffic generated by the Marind Zoning projects will increase emissions of carbon monoxide and nitragen dioxide along Kalanianaole highway leading to and from Hawail kai. Modeling of current and projected worst case concentrations of carbon monoxide at particularly congested intersections along this corridor has indicated that the most critical location will be carbon rush hour at the Kalanikiki Street intersection. Current worst case carbon allowable State of Hamaii air quality Standards. Estimates for future years at this location show that some form of roadway improvement or change in vehicle
 the point where carbon monoxide standards can be met even if the Marina Zoning projects are not completed. Addition of projected traffic from the Marina Zoning projects will significantly exacerbate this problem unless concurrent mitigative measures are undertaken.
6. The traffic managent study for the project proposes implementation of a multifaceted ridesharing program and construction of a pedestrian overpass





 provide onough traffic congeation relief to meet existing carbon monoxide atandards.
8. National ambient air quality standards for carbon monaxide аиои рия sp, sppueqs of the projected levels of carbon monoxide are higher than allowation no standards even if the Marina Zoning projects were to be approved with no concurrent implementation of mitigative measures.
 open lands in Hawail kai for residential use as part of the Master Developwent Pian for the area. Construction of about 2,400 aultifamily units is planned.
 since there are no major contributing sources of sir pollutant emissions other than vehicles traveling within nearby.
3. Except for short tern dust entasione during the construction phase of the developeent, no aignificant direct air quality impacts are expected. Adequate control measures exist to limit the ecope of this impact, but special care will have to be exerted to insure that previously developed reaidential areas are not subjected to excessive levels of perticulate pollution from
It ipacts are expected to result from new demands
truction activities.
4. Indirect air qua for electrical energy. This impact is most likely to occur in the vicinity of existing power pla particulate and aulfur dioxide can be expected. Maximum use of solar energy deaigns in project dovalonerical mitigate the magnitude of this lapar eventually also play power such as wind or ocean thersal energy conversion may eventually also play a mitigative role in this regard.


4. califohnia depariment of transportapion, knergy and Transportation
5. Wilbur smith and associates, hawali Kai Transportation Management

- उTgve

(Micrograms per Cubie Meter)

Ifyang twnolawn



 based on Title 11, Administrative Rules, Chapter 59. $\stackrel{\infty}{\sim}$



$$
\xi^{\cdots}
$$

\%

hamal mai marina
traffic noise study Prepared for:
Environmental Communications, Inc.
by:
Y. Ebisu \& Associates
April 18, 1985

\[

\]

$$
\frac{\frac{x}{11}}{\frac{1}{2}}-\sim N
$$

iii

$$
\begin{aligned}
& \text { Sumaky } \\
& \text { The existing and future traffic noise levels in the vicinity of the } \\
& \text { Hawail kai marina profect were evaluated for their potential impact on present } \\
& \text { and future reaidences. The influence of predicted traffic volume increases } \\
& \text { from previously approved Hawail kai projecte was fucluded with the traffic } \\
& \text { volume increase associated with the current Marina project zoning request. } \\
& \text { Although the increases in future traffic noise are anticipated to be small. } \\
& \text { existing and future traffic notse levels are approaching or exceeding federal } \\
& \text { noise standarda for residences. }
\end{aligned}
$$

In order to minimize craffic noise impacts on future Marina residenta
and to not preciude federal assistance on the project, furure traffic noise levela were calculated and free-field traffic noise concours constructed. The locations of existing and planned residences in relationahip to these notas contours were used to identify potential impact areas.
Overall, the majority of the proposed project residences will not be fapacted by craffic noise. Exfsting residences whth frgat Lunalifo Home Road will continue to experfence high traffic notae levela with or without the project. Increasea in future traffic notse will be small, and will be difficult to percetve on the exiaring high volume roadways in the project area as well as along Kalanfanaole Highway.

$$
\begin{aligned}
& \text { Traffic notse mitigation measures which could be applied in this } \\
& \text { project are discussed. Because the project generated traffic notse is not } \\
& \text { expected to be significant when compared to extsting plus non-project traffic } \\
& \text { noise, these mitigation measures would be applied primarily for minimizing, } \\
& \text { traffic notee fmpacts on future Marina residents, and for compliance with } \\
& \text { FHA/HuD noise atandards where required. }
\end{aligned}
$$

III.
noise descriptors and their relationship to land use compatibility

$$
\begin{aligned}
& \text { NOISE DESCRIPTORS AND THELR RELATIONSHIP TO LAND USE COMPATIBILTTY } \\
& \text { Two noise descriptors currently used to relate traffic noise levels to }
\end{aligned}
$$

read on a standard Sound Level Meter. In trafific notse evaluations, the

$$
\text { averaging period for the } h_{\text {eq }} \text { descriptor is usually an hour, and more }
$$

 averaging pertod for the $L_{\text {dn }}$ descriptor is 24 hours (by definition). Additionally, sound levels which occur during the mightime hours of 10:00 pM to
 by the $\mathrm{L}_{\mathrm{dn}}$ deacriptor.

Table 1 presents current federal standards and acceptabilify cricerta for reatdential land usea exposed to various ievels of eaviromental noise. As
 areas which are shielded frow high volume atreets. Noise levels typical of

 traffic notse. Residences which front major roadways are generatiy exposed. . levels of $65 \mathrm{~L}_{\mathrm{dn}}$, and as high as $72 \mathrm{~L}_{\mathrm{dn}}$ when the roadway is a high speed
 which are located within interior lots are exposed to lower exterior notse levels of $55 \mathrm{~h}_{\mathrm{dn}}$ or less.

QUALITATIVE,
DESCRIPTIGNS
DOUY-NIGHT



$\bullet$

table 1

NOLSE EXPSOSURE
CLASS

$$
\begin{aligned}
& \text { Source: Reference } 4 .
\end{aligned}
$$

existing traffic nolse environment
The existing traffic notse environment along the Hawati Kal roadways
which would service this project are in the "Moderate Exposure, Acceptable" and "Significant Exposure, Normaliy Unacceptable" categories. This condition is typical for reatdential subdivisions on Oahu where the first row of homes fronting a subdivision roadway are satback between so to 75 feet from the
 of homes fronting a major roadway generally represent the worst case (or bighest) levele for homes of a subdivision. Traffic notise levels at interior


 for widm and high-ribe gtructures which are not shitelded from the roadway by intervening low-rise units. Hawail kai roadway sections of interest are shown in Tables 2 and 3 . In the


 traffic volumes used for each roadway section represent averages of the




 open space or parking lot, and at the upper levels of a mid- or high-rise
> st ructure.
> 8

Table 2


 contours along the Hawali kai roadways of intereat. It ghould be noted that the
 take into accounk the oxe , it can be concluded that existing homes which front Lumalilo Howe load are probably exposed to traffic nolse levela above $65 \mathrm{~L}_{\mathrm{dn}}$. The setbacke of the proponed Marina homea are generally adequate for the existing traffic noime levele, wince the majortity of the proponed homes axe locmed outaide the axiating $65 \mathrm{~L}_{\mathrm{da}}$ contoura.


The relationship of existing and future residences to the future 65 Lin contours are shown in figure 3. The majority of che planned unita associated with the Marina zoning request have ample setback distancaa, and are outeide the $65 \mathrm{~L}_{\mathrm{dn}}$ contours. The number of existing residences along Lunalilo Howe Road within the $65 \mathrm{~L}_{\mathrm{dn}}$ contour is not expected to increase significantly, since the majority are currently withia the existing $65 L_{d n}$ traffic noise contours.
 along Kalantanaole Highway attributabla to the Narina zoning request were calculated. In reapect to traffic notse increasea, the Marina project will not produce measurable changen along the highway. This is dua to the relatively low craffic volumes predicted for the project sa compared to the current high traffic volumen on the highway. Predicted traffic notae level increasea by 1994 were calculated to be less than 1 dB Along Kalantanaole Highway.


$$
\text { the project are } 0.6 \mathrm{~dB} \text { ar lesa for the high volume roadways, and } 0.87 \mathrm{~dB} \text { for the }
$$ ( 2.05 dB ) attributable to the Marina zoning requent.


north aection of Hawail Kai Drive. This degree of change is very smali, and project-related traffic noise increanes will not be measurable on the high volume roadways. Along the north eection of Hawati Kai Drive, perceptible increases in traffic notse will occur, with 0.87 dB of the total increase norch seection of Hawail hai Drive should not exceed $65 \mathrm{~L}_{\mathrm{dn}}$ at 50 ft setback diafance from the roadway centerinine. Therefore, existing and planned reaidences along thit section should remain in the "Yoderate Exposure, Acceptable" nolse exposure catagory.
婘落

Notes: All $L_{\text {dn }}$ values calculated at 50 feet distance from roadway centerine
For planned residences of the Marina project which are within the
existing or future $65 \mathrm{t}_{\mathrm{dn}}$ contours (with vehtcle speed reductions taken into
account), the use of larger setback distances from the roadway centerines is
another possible noise mitigation measure. Tabie 6 lists the required setback
distances to the existing and future $65 \mathrm{i}_{\text {dan }}$ contour lines. If vehtcle speed
reductions are planned in the future, the "Existing" aetback distances can be
used. The use of this mitigation measure ahould be considered when two-story or
higher atructures are involved, since te in more difficule to provide other
noise mitigation meabures for these elevated dwellinga.
The construction of sound attenuation walls if a standard mitigation
measure, particularly for shielding single-story rebidencea from traffic noise.
In general, the wall height requirements become excenalve (tn the order of
10-plus feet) when multi-story residences are involved in traffic noise
mitigation efforts. Por this reanon, this noise mitigation messure ie generally
1 imited to ground floor residential units. For residencea where the increased
setback distance option does not exist, the conatruction of sound attenuation
walle has been videly applied.
$\begin{aligned} & \text { Where none of the above attigation measures are feasible, the } \\ & \text { remaining options are air conditioning the affected reaidential apaces or }\end{aligned}$
sound-treating ventilation opening (windowa) to increame the
exterior-to-interior noise reduction properties. The une of air conditioning
within reaidences if not common, and ie not conaldered a practical option for
subdiviation restidencea. The ume of aound-created window has been applied at
selected mid-rise atructures in Hawali for the purpose of meeting FBA/HUD noise
standords, and is a notue uitigation option for any new home of the project
25
which may exceed those atandards.
(4) "Guidelines for Considering Noise in Land Use Planning and

$$
\begin{aligned}
& \text { Control," Federal Interagency Committee on Urban Noise, } \\
& \text { June 1980. }
\end{aligned}
$$

(5) "Information on Level e of Environmental Noise Requisite to
Protect Pubic Health and Welfare with an Adequate Margin of
Safety," Environmental Protection Agency, EPA 550/9-74-004,
(6) Wilbur Smith and Associates, Cable to Environmental

$$
\text { Communications, Inc., dated April 15, } 1985 .
$$

INTRODUCTION
The worth of a social impact analysis is like that of a science fic-
tion story. It speaks not of what will happen, but of what might
happen, and what these events will mean to people. The lack of precise
social science methodologies precludes the possibility of quantifiable,
accurate forecasts of the social impact of any development. However,
there is value in focusing on and analyaing the critical variables and
key issues as this process enables the drawing of certain conclusions.
Much can be drawn from the social sciences by planners in prepar-
ing an estimate of the social consequences of a given environmental
change. Foremost among change. Foremost among approaches for a qualitative assessment is the (1) a systematic analysis of available demographic data on the socio: economic characteristics of the Hawaii Kai, community; (2) the use of
comparative data, Hawaii Kai as compared to the Honolulu District comparative data, Hawaii Kai as compared to the Honolulu District which
encompasses East Honolulu, and the entire City and County of Honolulu;
and (3) a summary of conclusions rest and (3) a summary of conclusions regarding the probable social impact
that the proposed Marina Zoning project will have on its residents. As



This report is based on: (1) findings derived from social science
theory relative to environmental planning and impact assessment: from government doccments and studies retated to this project; a field/site with respect to the issues and concerns the analysis of these findings
wection 10, Social Impact of Development, of Ordinance $83-6$, City and County of Honolulu economic, housing, public service, and physical/environmental factors.
 Appendix.

## II. SOCIAL CHANGE AND SOCIAL IMPACT THEORY

The following excerpts from professional literature in the field of
environmental planning and impact analysis are presented to provide a
perspective for the findings and conclusions then
 in the structure and function of a social system." (Burdge \& Rogers) Any king of natural resource development, whether small or large,
will bring changes to a community. The degree of social change would depend upon (1) the type and size of the development and (2) the
community in which the project will be built. A large devel example, would affect the entire fabric of the community-its institu-
tions, size, economic base munity size, economic base, social interaction, behavior patterns, com-
and beliefs. A A

## A SOCIAL impact analysis of the

## marina zoning project proposed by <br> Kaiser development company in <br> hawall kal, city a county of honolulu hawall

Prepared for Environmental Communications, Inc. Dianond Head Road
lulu, Hawati 96816
May 9, 1985

Population:
The 1984 State of Hawaii Data Book gives Hawaii Kai's 1983 popu-
lation as 27,021 people. As a fast -growing bedrom" residential com"
munity, this area experienced tremendous population growth in the
decade between 1970 and 1980 . In comparison with a 2 is increase for
Honolulu County and a 12.4 increase for Honolulu District, Hawail Kai's $_{\text {population increased } 1048 \text {. While the subsequent period between } 1980}^{\text {and } 1983 \text { saw only a } 5.58 \text { increase, it was at a faster rate than the }}$
county's 3.38 or the district's 2.36 rate.

Population Growth

## Honolulu District

芯$365,048(+12.48)$ $(8 \varepsilon \cdot 2+) 11 \varepsilon^{*} \varepsilon L \varepsilon$ Kqunon ninowoh


 1983 187,350 (+3.38)
 1.02 and 1.05 experienced slight decreases in the past few years. CT 1.05 $\begin{array}{ll}5580 \\ 5550 & (\cdots .58)\end{array}$
$1983-2054(-.6 \%) \quad 11,912(+10.58) 7540(+5 \%) \quad 5515(-.68)$
Number of Households:
sey rey fremen " 809 'gz yo uotyenndod snsuà 0861 oyt wo paseg 7,518 households, or an average of 3.4 people per household, This
compares to a higher 3.6 people per household in Honolulu County. The breakdown by census tracts reveals that the lowest rate is in tract
1.03 , where most of the high-rise residential buildings are situated.
some of these or have lesser impact on them. The key to assessing the
impact is to look at the community, its history of capacity to adapt and impact is to look at the community, its history of capacity to adapt and
change, and its unique features that will affect its capacity to change. (MicEvoy it Dietr)

Whether change is beneficial to a community depends on its ability
to adjust, cope, and understand the rate of change which could lead to a "dynamic equilibrium" (change which is commensurate to its ability to
cope with it). (Burdge \&ogers)

Measuring the intangible effects of a development is most difficult,
but there is justifiable concern for the social ramifications. The most important social variable to consider is concern for the lifestyle and behavior patterns of the people who will be affected. The other impor-
tant variable is concern for the quality of life. Accordingly, the following questions should be addressed in any social impact assessment:
(1) Will the project adversely affect the lifeatyle of the residents in the community? (2) Will it cause disruptions of well-established patterns of
a substantial number of people? (3) What will be the results in the social structures which exist in the area? (Per K. Johnson)

[^27]Any argument over the costs versus benefits of community growth involves questions such as these: (1) Does the development pattern
require more in service costs than the tax revenue it produces? (2) What are the job levels (skilled or unskilled), wages, salaries, and pro-
fits generated by the development? (3) What are the environmental impacts? (4) What are the non-economic social impacts environmental congestion, overcrowding of schools, disruption of existing ethnic
communities)? (McEvoy : Dietz)
 impact assessment: (1) the current level of unemployment; (2) the
skill level of the unemployed; (3) the capacity level of public services (schools, fire, police, sewers); (4) the demographic characteristics;
(5) the probability of new migration; and (6) the stability and durability of the initial economic stimulus. (McEvoy a Dietz)
M. HAWAII KAI COMMUNITY PROFILE: Socio-Economic Characteristics
(Note: For purposes of this report, the Hawali Kai commanity is comprised of the four census tracts used by the U.S. Bureau of the
Census - CT $1.02,1.03,1.04$, and $1.05-$ see Appendix for census map. All but 120 of the proposed 2,400 housing units would be located in
census tracts 1.03 and 1.05 ; the 120 units would be in tract 1.04 .)

and

$$
\begin{aligned}
& \begin{array}{l}
\text { The Hawaii Kai population, compared to the county and district as } \\
\text { a whole, has a large percentage of employable age persons. Its labor } \\
\text { totals } 73 \% \text { of the total population } 16 \text { years of age and older. Of this } \\
\text { number, } 97.6 \% \text { of the people are employed, with only } 2.4 \% \text { unemployed. } \\
\text { Next to the } 2.38 \text { rate for the Waialae-Kahala community, Hawaii Kai has } \\
\text { the second lowest unemployment rate of the } 33 \text { communities on Oahu. } \\
\text { Honolulu County has a } 4.6 \% \text { rate, and the Honolulu District has } 4.18 \text {. } \\
\text { Occupation: (See Appendix) } \\
\text { Here again, the comparisons }
\end{array}
\end{aligned}
$$

(x!puaddy aas) :6L6T प! auozul
concomitant leveling off in private schoot enrollment. The Depart-
 tinue through the year 2000. Large gains of about
ted at the elementary school level. with a decrease in grades 7

Elementary		1983	1984	1985	1986	1987	1988	1989
Hahaione	-	445	450	454	452	460	496	526
Kamiloiki	-	651	650	677	709	721	755	764
Koko Head	-	334	308	316	319	322	343	360
Intermediate								
Niu Valley   High School	-	813	751	631	601	563	543	565
Kaiser	-	1679	1665	1592	1548	1355	1237	1107

While the above projections do not account for the projected population Increase that would result from this proposed development, the above
table illustrates that the Department of Education's projections for the elementary schools are comparatively insignificant, with decreases pro-
jected for the intermedtate school and high school. In addition, based jected frojected intermedtate school and high schoo. about one-third of school age children in the new population who may be sent to private schools (see below), the
assumption is that the public schools have the physical capacity to absorb additional children.
School Enrollment and Type of School: (See Appendix)

Statistics confirm the preponderance of school age children in
Hawaii $K$ ai in grades $K-12$, which amounts to 788 as compared to the
figures of 728 in the county and 668 in the district. Conversely, the number of college-age children in Hawait Kai,
$23 \%$ for the county and the 308 for the district.

The affluence of families in Hawaii Kai and their higher socioeconomic status are again reflected in the proportionately higher per
centage who educate their children in private schools. The figures are centage who educate their children in private sche.)
double that of the rest of the county. (See table.)
\$35,000 per year in 1979, including 218 with incomes over $\$ 50.000$. In $\$ 35,000$ per year in 238 of total households in the county had incomes over $\$ 35,000$, with only 98 over $\$ 50,000$. The mectian income for residents of for district residents.

Housing:
There are 8,000 existing housing units in Hawaii Kai, of which
1,100 are low density and 1,200 medium density units. The proposed 1,100 are low density and 1,200 medium density unis.
development would add 2,400 units, of which 470 would be low density
and total number of housing units in this area to 10,400 . This represents a 308 increase. Low density units would increase about $15 \%$, while the
percentage of medium density units would double from 158 to 308 of total percentage of housing units.

## - Home Ownership vs Rental: (See Appendix)

There are significant differences, with a high rate of home There are signicant rentals (188). The median incomes of
ownership (828), versus rese
both home owners and renters in Hawail Kai are aloo higher than both home owners and renters in whole and in the county.

## - Need and Demand for Housing:

Residential construction in Hawaii peaked in the 1970 s , and
the 1983 rebound experienced on the mainland has not yet been fett here. The result, according to Location, Inc.'s Oahu Residential Market Study, is a shortage on hasing, (resulting from
low vacancy rates and rapidy increasing rents"
the housing shortage). There is a great need for affordable the housing shortage).
housing on this istand.

[^28]The State Department of Education in its "Enrollment Projec-
tions of the Public Schools in Hawaii - $1984-1989^{*}$ notes that in Hawail as nationwide, public achool enrollment declined in the
decade between 1972 and 1982 . During the same period, enrollment decade between
in private achoote increased in this State. However, the decline
in public school enrollment here has stopped as of 1983 , with a

[^29]
## CONCLUSIONS

1. Hawaii Kai is a unique community in many ways. Its advantages
 terms of socio-economic characteristics and background. Statistics
confirm that taken as a whole, it is a mon
 those barn in other places. Other indicators of the homogeneity
and productivity of its residents include the significant findings regarding age, education, occupation, labor force, and income
factors.
It is a profile of a community which inchudes fairly young house-
holds (with an average 3.4 people per household), where mos adults fall in the 35 to 54 age bracket, and where most children are between 5 to 19 years of age. Hawail Kai has a large per-
 reflected in the high median incomes; the large number ( $82 \%$ ) who
own their homes and drive their own cars to work ( $88 \%$; and the sizable proportion who send their children to private schools ( 378
for grades K-8., and $35 \%$ for grades $9-12$ ).
Public and Private School Enrollment
Hawaii Kai
Honolulu Dist. -
Honolulu Co. -
Gubdis $K-8$
Transportation to Work:
Of the three areas studied, Hawail Kai residents rely most heavily
(See Appendix)

The nature and degree of social impact and social change in a
community will depend upon the type and size of the development, as well as the community's capacity to adapt and adjust to change.

The proposed development involves only housing, not a mixed
development. The additional 2,400 housing units will mean an eventual 30 increase in population, from approximately 27,000 to approximately 35,000 people, While this is a rather
the mitigating factor is that the increase will be gradual, as the the mitigating factor is that ine belloment wincrementally phased over a seven year period and attuned to the needs and demands of the marketpiace. The
projected population increase falls within the Nahu General Plan's projected population fracrease galation guidelines for this area.

Hawaii Kal's greatest growth spurt was in the decade of the 1970's,
, The when its population slightly more than doubled ( $104 \%$ ). The greatest social impact and change would have occurred during
period. The population increase has leveled off to about $5 \%$ recent yeara, and the anticipated gradual growth may well average
out to this rate of growth.

The apparent stability of this community, reflected by its "coming The apparent star maturity, as well as its homogeneous middle and upper-
of age middle class population with similar social values and norms, lend
mit midie class population with smilar social values and norms,
support to the assumption that its residents have good capacity to adapt and to adjust to change.

The most important variables in social impact assessment are the community's lifestyie and the qualiy of hat have upon them.

Most of the people who live in Hawaii Kai made a conscious choice to do so because of the advantages that the area offers. are commensurate to their above average socio-economic ftatus and their values. The high rate of home ownership incicates and are residents have made motivated to maintain and enhance the existing lifestyle.

Moving into well-established and prestigious residential area, it Moving into weil-estabished and population will possess similar socio-
is anticipated that the new por
economic characteristics. They would have similar social values and économic characteristics. They would have similar social vaiues and goals, and behavior norms that win be consistent wing population. Therefore, conformity and the desire to conexisting populiont and maintain the quality of life can be expected. The gradual, rather than rapid, influx of rew r
help in their assimilation into the community.

Some social changes will occur, however, as any development prow duces change. The one major factor which would impact on
lifestyle and quality of life of residents in Hawaif Kai and adjacent Lifestyle and quanty of heas is the increased vehicular traffic which additional residents
will generate. The existing traffic congestion on Kalanianaole Highway is exacerbated by the residents' great dependence on pri tion would impact on the lifestyle and the quality of life as people mitigating factors would be the developer and traffic consultants finding solutions to the traffic problem, and
$K$ ai residents to adapt and adjust to change.

On the issue of benefits for the community and its residents, the "economic costs versus benefifs" ledger tilts in favor of the deve will create is undetermined due to its planned phasing and flexible construction schedule, the project will contribute to the economy
through the millions of dollars that will be spent on labor, mate through the milions of dollars that wit be spent on Beyond that,
rials, and other development-oriented expenditures. Beyon tax revenues would be generated through the potential new jobs
that an increased population will require, as well as increased sales taxes and property taxes.

As Hawaii Kai is a residential community, the development would
not directly impact the visitor industry or the visitor population.

$$
\text { Antif.. nomic benefit is that } 2,400 \text { units will be added to the }
$$

 Market Study confirmed that there is a on Oahu, particularly affordable housing. The study also
units on identified Hawain Kai, Makakilo, and Mi
areas for future housing development.

Flexibly geared to meet market demands, the proposed 2,400 units would provide quality housing in a quality environment, and would
be aimed at attracting a wide variety of buyers. As low to medium density units are cheaper to build than detached single dwelling houses, the intent is to make more affordable housing available, particularly to first-time buyers.
 the project area is already in place, These facilities have the
capacity to adequately meet the increased requirements of a larger populace.
7. Hawait Kai is fortunate in having good institutional resources. Existing educational, recreational and leisure time facilities, and medical-dental resources in the area are
quate to meet the needs of additional residents.

Public safety resources such as fire and police protection, as well as garbage and waste disposal services, are already being pro-
vided. An expansion of services would be required and the devevided. An expansion of services would be required involved.
loper will be reviewing the matter with the agencies invole


$$
\begin{aligned}
& \text { (Source: U.S. Department of Commerce, Bureau } \\
& \text { of the Census, "1980 Census of Population } \\
& \text { and Housing" - PHC 80-2-183) }
\end{aligned}
$$

BIBLIOGRAPHY
Burdge, Rebel J. Rogers, Everett M., "Social Change in Rural
Societies" (Second Edition); Prentice-Hall. Eaglewood Cliffs, New Horsey; 1972.

Department of Education. State of Hawaii, "Enrollment Projections of the
Pubic Schools in Hawaii $1984^{\circ}$ : April 1984 .
Ditto, Robert B. Goodale, Thomas L., Environmental Impact Analysis: Philosophy and Methods*; University of Wisconsin Sea Grant Program;
1972.

Johnson, Per K.. "Social Aspects of Environmental Impact"; article in Locations, Inc. Research and Consulting Division "OAhu Residential
Market Study.

McEvoy, James III \& Dietz, Thomas, *Handbook for Environmental Plan-
State of Hawaii "Data Book 1984: A Statistical Abstract*; Department
of Planning \& Economic Development: February 1985.
U.S. Department of Commerce, Bureau of the Census, 1980 Census of
Population and Housing*: PHC $80-2-183$.

## SOCIAL CHARACTERISTICS OF PERSONS: 1980

AGE

	Honolulu County	Honolulu District	Hawnil Kat	CT $1.02{ }^{\text {(Hitwali Kal Cengus Tracts) }}$ CT $1.03{ }^{\text {CT }} 1.04{ }^{\text {CT }} 1.05$			
Population	762,565	365,048	25,603	2067	10,784	7202	5550
Under 5	60,154=7\%	22,892m 6\%	1,551=6\%	78.m4	628. 6\%	580\% 8\%	267* 5
5-19	185, 014 $=24 \%$	73,860m20\%	7,644-30\%	638m30\%	2988=287	2346-32\%	1672=30
20-34	232, $827=31 \%$	108,559-30\%	5,322=21\%	312=15\%	2396-227	1487-21\%	1127*21
35-84	164, 105=22\%	$81,311=22 \%$	8,225-32\%	690-34\%	3432-32\%	2359 $=33 \%$	1744-31
55-64	65,097* 9\%	40,415-114	1,875=7\%	244=12\%	875=8\%	287= 4\%	469me
65.0 Oer	55,368 ${ }^{\text {c }}$ 7\%	38,011-11\%	986= 4\%	105m 3\%	467. 4	143* 2\%	271* E

TABLE II
PLACE OF BIRTH

	Bonolulu County	Honolulu Dietrict	Hinway Kal	CT 1.02	CT 1.03	CT 1.04	CT 1.02
Hewnii	420,120-55\%	202, 952 m 567	13,360-52\%	673-31\%	4320m40\%	4515-632	3852*6§
Mainland	229, 234 $30 \%$	94,058=26\%	9,880ms8\%	1185-54\%	5220w48\%	2158-30\%	1337 $=24$
Foreign	113,211-15\%	68,038-18\%	2,363= 8\%	328-15\%	1145m11\%	529-7\%	361=7

品品e: Table p-9
S. Census 1980

TABLE III
SCHOOL ENROLLMENT T TYPE OF SCHOOL


TABLE IV
YEARS OF SCHOOL COMPLETED


TABLE $V$
TRANSPORTATION TO WORE

	Honolulu County	Honolulu District	Hawaij Eat	CT 1.02	CT 1.03	CT 1.04	CT 1.05
	369,523	183,677	12,818	982	5482	3515	2860
yrs. \& over	160,523.					$3139 \mathrm{~m} 89 \%$	$2538=89$
Private	282,479=76\%	138,411-75\%	11,321=88\%	882-81\%	4782=87\%	3138-88\%	
Vebtcle			1,053=82	27:38	515*9\%	276=8\%	235-8
Public	37,042=10\%	24,841*14\%	1,053= 0				
Transport.			445	53m 6\%	205m 4	100=3\%	$87=3$
Other	50,002=14\%	20,425m11\%	445= 4	53-62			

Source: Table p-10
U.S. Census 1980

TABLE VI
LABOR FORCE


	Honolulu County	Honolulu District	Hawail Kai	CT 1.02	CT 1.03	CT 1.04	CT 1.05
Employed-16   Yrs. \& older	324,113	179,765	13,081	997	5620	3590	2874
Managerial. Professional Specialty	79,934-16\%	47,551m17\%	5,261=27\%	501*32\%	2512-30\%	1316-25\%	932 \%22
Technical, Sales, Admin. Support	109,521-23\%	62,421=23\%	4,814=24\%	381=25\%	1964-23\%	1369-26:	$1100=26$
Service Occupations	56,939=12\%	32,812m12\%	1,436=7\%	$33=28$	602* 7\%	404* $8 \%$	377=9
Farming, Forestry, Fishing	5,838=1\%	2,148**7\%	59\%.3\%	6=. $5 \%$	42m. 41	-	11*. 2
Precistion, Production, Repair	36,546= 8\%	17.139m 6\%	831= 4\%	57= 4\%	275-3\%	284\% 5\%	215* 5
Operator, Fabricators, Laborers	35,335m7\%	17,694 $=6 \%$	680w 3\%	19*1\%	225m 2\%	197\% 4\%	239* 5
Manufacturing	24,982m 5\%	12,751=5\%	705= 4\%	82m 38	244-37	222m 4\%	157* 4
Wholeale. Retail Trade	78,644m16\%	47,526=17\%	3,702-16\%	220-14\%	1387-18\%	796m15\%	668=16
Profeentons 1   © Related   Servicee	59,927=12\%	34,451=13\%	2,796=14\%	255-168	1244*18\%	719-13\%	578m 14

Source: Table p-11
U.S. Census 1980

TABLE VIII
INCOME IN 1979

	Honolulu County	Honolulu District	Hawail Kai	CT 1.02	CT 1.03	CT 1.04	CT 1.05
Households	230,931	127,326	7,476	652	3422	1936	1466
Less than $\$ 10,000$	48,065-21\%	29,328=23\%	360m 5\%	60= 9\%	191=6\%	$56=3 \%$	53* 4
$\begin{aligned} & \$ 10,000 \\ & \$ 19,999 \\ & \hline \end{aligned}$	61,153-26\%	34,628m27\%	805=11\%	56-9\%	478=14\%	101* 51	170*11
$\begin{aligned} & \$ 20,000 \\ & \$ 34,999 \\ & \hline \end{aligned}$	68, 496=30\%	34,390-27\%	2,584=34\%	130-20\%	1073-31\%	799-41\%	$582=40$
$\begin{aligned} & \$ 35,000- \\ & \$ 49,909 \\ & \hline \end{aligned}$	33,443=14\%	16,415=13\%	2,156-29\%	163=25\%	048-28\%	591=31\%	454:31
$\begin{aligned} & \$ 80,000 \\ & \text { and more } \\ & \hline \end{aligned}$	19,774 ${ }^{\text {m }}$ 9\%	12,565-10\%	1,571-21\%	243m37\%	732*21\%	389=20\%	207=14
Median   Income	\$21,077	\$19.987	\$36,232	\$42,164	\$34,490	\$35,186	\$33,089
Mean   Income	\$25,180	\$25,266	\$39,892	\$47,933	\$36,883	\$38,752	\$35,991
Owner-Occup. Households	115,290-50\%	56,524=44\%	6,163-82\%	579-89\%	2519 ${ }^{\text {a }} 74$	1790-92\%	$1275=87$
Median Income	\$30,248	\$30,747	\$37,813	\$44,090	\$37,339	\$35,201	\$34,623
$\begin{aligned} & \text { Mean } \\ & \text { Income } \end{aligned}$	\$33,893	\$35,696	\$41,634	\$51,098	\$39,551	\$38,406	\$37,482
Aenter-Occup. Households	115,641-50\%	70,802-56\%	1,313=18\%	73-11\%	903-26\%	146=8\%	191*13
Median   Income	\$13,912	\$13,975	\$26,180	\$20,104	\$26,345	\$34,521	\$23,75C
$\begin{aligned} & \text { Mean } \\ & \text { Income } \end{aligned}$	\$16,683	\$16,939	\$30,334	\$22,828	\$29,478	\$42,896	\$26,036



Environmental Commications, Inc.
P. O. Box 536
Honolulu, Hawait 96809 Gentlemen:
We have reviewed the Environmental Impact Statement Preparation
Notice for the proposed Marina Zoning Project at Hawail Kai and have no
comnents at this time.
no response needed
FKK: Im/KAW
Mr. F. J. Rodriguez, President
Environmental Communications, Inc.
P. O. Box 536
Honolulu, Hawaii 96809

Thank you for allowing us the opportunity to review and
conment on the environmental document for the proposed
Thank you for allowing us the opportunity
conment on the environmental document for
rezoning of vacant land for apartment use
Honoluti, hawal sebas
NO RESPNSE NEEDR

## city and county of honolulu


July 1, 1985

We are In recelpt of your comments dated June 20,1985 on the proposed
Hawali Kaf Marina Zoning Environmental Impact Statement Preparation Notice.
We respond In the following: We respond in the following:
The concerns expressed by yo

The concerns expressed by your department on the anticipated impacts that
the proposed zoning application will have on the existing
Hawail Hawail Kai have been reviewed by the developer. The draft EIS will discuss
the avallablity of exdating parks and recreational open space that ar currently available, and their applicability to the proposed zoning requ in the Zoning Application. Your comments on this aspect of the draft EIS
will be appreciated. Thank you for your

Thank you for your comments and we look forward to discussing this further
with you and your staff. Very truly yours,


cc: J. Harada
NO RESPONSE: NEEDED

CITY AND COUNTY OF MONGONOLULUS
June 7, 1985


## Environmental Communications, Inc. P. O. Box 536 <br> \section*{Honolulu, Hawail 96809}

Dear Sir:

Environmental Impact Statement (EIS) Preparation Notice.
Kaiger Development Company, Marina Zoning. Hawail Kai
We have reviewed the subject EIS Preparation Notice and
offer the following recommendations: Item 114. B. 3. Traffic Generation on
Kalanianaole Hiahway

We recommend that analysis be included to provide
quantitative answers to the following questions:

1. What will be the impact of the 2,400 additional Kalanianaole Highway during the morning rush
traffic (7:00
trafic (4:00
6:00 A.M.) and the evening rush in tertas of added: (a) travel time from Hawali
Kai to Downtown Honolulu, (b) total costa/day
for vehicie operation and driverst cime loss,
and (c) air pollution, and (d) noige
Will the proposed traffic management
2. Wil the proposed traffic management program results anticipated. For example, how many fewer


Explain how this estimate is derived. Similarly
 Kalanianaole Highway as a result of parking and
riding the bus to Downtown Honolulu?
July 1. 1985


CITY AND COLGE OfPARTMFNT HONOLULY


June 10, 1985
Mr. F. J. Rodriguez
Envirormental Commications, Inc. P. O. Box 536
Honolulu, Hawali 96809

Dear Mr. Rodriguez:
We have reviewed the EIS preparation notice for the Marina Zoning project
forwarded to us on May 31 , 1985 , and provide the following coments for forwarded to us on May 31, 1985, and provide the following comments for
your consideration.

1. An addition of this magnitude to the residential popula-
tion of Hawail Kar will mean an increase in calls for police service in the area. We cannot anticipate how great this
increase will be; we can only react as it occurs.
2. Such a project will obviously cause further traffic
3. Such a project will obviously cause further traffic connotice points out, "traffic volumes. . are approaching
capacity at several critical intersections would probably contend that the roadway's capacity has
already been exceeded. Therefore, we urge that planning
for for this project include ways to compensate for the in-
creased volume of traffic on the highway.

Thank you for allowing us to coment on this matter
Sincerely,
nOUGLAS G. GIBB
Chief of Police


WARRIN FtrRE
Deputy Chief of police

July 1, 1985

$$
\begin{aligned}
& \text { Mr. Russell L. Smith, Jr. } \\
& \text { Director ind Chief Engineer } \\
& \text { Department of Public works }
\end{aligned}
$$ Department of Public

Sos South King Street
Honolulu. Hamal 96813 Dear Mr. Smith: We are in receipt of your department's comments dated June 10, 1985 on the
Haw all Kail Martina Zoning Environmental Impact Statement ${ }^{\text {Preparation Notice }}$ N and we respond as follows: 1. Sewerage systems. required to accomodate the increased flow developed by existing master sewerage lines in place. Additional interceptor lines are to be dealgned in accordance with City County standards suitable for dedication if necessary. Treatment will be done at the East Honolulu
Community Services, Inc. Sewage treatment plant in accordance with
 2. Requirements for municipal refuse collection indicated in your letter have and architectural consultants.
Thank you for your comments and we look forward to your department's
comment a on the draft EIS.


Env romenental Commntcat ons, inc.

Gentiemen:
Subject:


The plans, prograns and projects of the Department of Housing and providing housing for the low and moderate-incone families. The assistance of private developers is essential to alleviating the demand
for affordable housing units. As a condition to the approval
recomsend that the developer be required to set astde ten request, we
of the units priced within the percent of the units priced within the range of the low and moderate-income
families. This requirement applies to all zone change, cluster and


## July 1, 1985


FJR:Is



Dear rut. Rodrigeree:
Sabject: Eissem for the proposed darina Zoning Project at

 Metropolitan Planning organization's Hali 2000 Study indicates that
Kalanianaole Highway wonld have undesirable levels of congestion and Kalanianaole Highway would have undesirable levels of congestion and delays at
morning peak hour travel under six different alternatives including a transportation system management alternative. The draft EiS should also policies of the Hawaii State Plan and State Functional Plans.

Thank you for the opportunity to review and comment on the subject
preparation notice. very truly yours.
/fent. M. Keith


We are in recelpt of your commente dated June 18, 1995 on the Hawaii Kai


The traffic consultant, Wilbur Smith Assoctates has been provided with a copy of your request for the different scenarios with and without the
ridesharing measures.

Thank you for your comments and we look forward to your review of the Very truly yours,
$=$


July 1, 1985


Mr. F.J. Rodriguez
President
Environmental communications, Ine. Honolulu, Hawaii 96809
Ho

Dear Mr. Rodriguez:
Marina Zoning Project
Hawaii Kai, Oahu
EIS Preparation Notice

We look forward to reviewing the traffic analysis based
fications and ridesharing measures. The analysis should


WHI


$$
\begin{aligned}
& \text { ENVIRONMENFAL, } \\
& \text { COMMUNICATIONG } \\
& \text { IN RODHisut. } \\
& \text { paEsiofnr }
\end{aligned}
$$

The preparation notice states that there are no known historical or archaeological
sites of significance in the area. The description provided and figure 2 indicates that the proposed area will include construction on the mauka side of hawail Kai Drive between the Post Office and the existing Pacific Islands Club (formerly Hawaii Kai Recreation
Center). There are a number of archaeological sites in that area, particularly the area
 and a well are present on the site. Constructon Impacts
We note that construction is likely to take 7 years. One of the more serious concerns will be the dust problems during the initial ground preparation stages. Because
 period. We suggest that the EIS address this issue and the mitigation measures that will
be employed.
Special attention should be given to avoid pollutants entering the marina during the
construetion phase. Past experience has indicated that inadequately controlled runoff construction equipment, including on occasion concrete trueks mand paint sprayers, has
Since most of the marina frontage houses are built on compacted fill, it is especially important to minimize blasting or pile diving. If either type of construction operation is
We appreciate the opportunity to comment on this preparation notice and look
forward to receipt of the Draft ESS. Yours truly,
Doak c. Cox
Director

[^30]June 14, 1985


Mr. Fred J. Roctriguez

## P.O. Hox 536 Honolulu, Hawaii 96809

Dear Mr. Rodriguez:

## ElS Preparation Notice Hawaii Kai Marina Zoning Project Honolulu, Oahu

The above cited preparation notice was reviewed by Jaequelin Miller of the
Environmental Center. The following comments are offered for your consideration in the preparation of the Environmental Impact Statement.

## Traffic

The proposed rezoning of several parcels ( 97 + acres), in the Hawail Kai Marina area
to permit approximately 2,400 residential units will result in considerable increase in the traffle on Kalananaole Highway and adjacent streets. We note that the increase in traffic on Kalanianole Highway is to be analyzed in the EIS. We call attention to the need for
analysis of increase in traffic on the tributary streets also. At the present time the left turn entry into Kuapa Kai Shopping Center by cars traveling makai is hazardous due to the
short sight distane of cars coming over the hill short sight distance of cars coming over the hill traveling mauka. The intersection at
Hawaii Kai Drive and Keahole Street is particularly hazardous and several accidents have occurred at that intersection. Similarly, the intersection of Wailua Street and Hawaii Kai
Drive is hazardous traffic from the 2,400 units. The DENS should discuss appropriate measures to mitigate
the increased traffic risks. Pedestrian/Bicycle Safety
 tre number of joggers and bicyclists is great, and the potential for accident on that bridge
extremely high. Since Keahole Street will bear the matior impact of this development extremely high. Since Keahole Street will bear the major impact of this development,
consideration should be given for ways to improve the existing hazardous conditions, lest
they become critical with the added traffic.

Envigonmental
Communcantons
inc.

## July 1, 1985

Dr. Doak C. Cox, Director
2550 Campus Road, Craw ford 317
Honolulu, Hawaif 96822
Dear Dr. Cox:
We are in receipt of your office'a comments dated June 14, 1985 on the Hawail
Kat Marina Zoning Environmental Impact Statement Preparation Notice and we
respond in the following:

1. Traffic - The applicant's traffic consultant, Wilbur Smith Associates
have prepared a comprehensive traffic impact study on the traffic
generated from the proposed project as well as measures proposed to generated from the proposed project as well as measures proposed to
mitigate this added traffic load on Kalanianaole Highway along with key mitigate this added tranfic hoad on
tributary streets within Hawali Kal.

Responses to your spectfic concerns are as follows:
A. There is a traffic signal at the entrance to Kuapa Kai Shopping and left turns out of the center. The location and deaign at this traffic contrat
standards.
 The City a County is planing to install traffic control signals at
this intersection by the end of 1985 . Further, the Transportation this intersection by the end of 1985 . Further, the Transportation
Management Study has proposed realignment of this intersection to
further improve its safety.





 Your concern will be forwarded to the City ©ounty Department of
Transportation Services for their review.
3. Archaeological Sites - A field survey has been done as part of this EIS

## located in areas to be developed, they will be reviewed with the State

$\cdot \varepsilon$


Environmental Communicatons, Inc*
Hanclulu, Hawait 96809

## Re: Narina Zoning Praject Hawaif Kai, Oathu

## Dear ladies and Gentlemen:

Thank you for your letter of May 31,1985 , advising that an Environmental
Impact Statement Preparatlon Notice has been filed with the Office of Rivo

I am a recently re-elected member of the Hawail Kai Neighborhood Board
No. l, and an active member of the Board's Transportation Committee. and represented the Board in a liason capacity with the Kaiser Developement company

I Wigh to emphasize the urgent need for improvement in thems of traffic
system management along the entire length of Kalanianaule Highway between Hawaif Kai and the H-1 freeway at Walalae. Additionally, physical improvements must be made on Kalanianaole Highway, frior to any further development commencing in Hawali Kai.

Virtually no additional improvements have been made to the Kalanianaole traffic corridor pritor to the present development in upper Kalama Valley,
Kamehame Rrdge, upper Kamiloiki Valley, development of additional commercial activity in the Kuapa Kai shopping Center, development of, upper Kulioucu
Valley for affordaple housing, construction of the new Maunalua Bay Club
 and new development on Hawail Loa Ridge.
Some of the items that are mach-needed. and which have been repeatedly
discussed at transportation forums, commanity meet ings, Neighborhood discussed at transportation morums, conamunity meet ings, Netghbortood
Board meet ings develapers' familartation maet ligs, etc., but which
have yet to be fimplemented and/or constructed are:

1. A pedestrian bridge over Kalanianale Highway, fronting Kalani Hyh School, preferably not near any of the exisiting traffic
sigual lights.
2. Adjustments to the timing of the three sets of traffic iights Highway; extending the "synchronized timing" of the b; 30am to 8:30am traffic period to a "round-the-clock" basis." Much of the aggravat ton for drivers secur during so-cathed "of-peak hours, wherean onfy



June 3. 1985

[^0]:    Mcail (1969) Site No. 0-16 Feature E
    University of Hawail Site No. 0-5

[^1]:    Swimming pool, community room for meetings and socials.

    Clubhouse with kitchen facilities and swimming pool.

[^2]:     development.

[^3]:    (1)

    Vacant residentially zoned lands, tracts under construction and constructed but unsold units, e.g. Commodore condominium, are within this group.
    (2)

    Actual development may differ. The number of units represents a realistic development program, and thus, a realistic transportation analyses.

[^4]:    (b) Preliminary cost estimates reflect 1984 unit cost factors.

[^5]:    (a) Preliminayy cost estimates reflect 1984 unit cost factors
    (b) Mroludes hand costs - \$400,000.

[^6]:    (1) Source: "Trip Generation," Institute of Transportation Engineers, Third

[^7]:    An analysis of distribution of Hawaif Kai trips to areas inside of the East Honolulu corridor was made using the results of the Hall 2000 travel data for 1980，and various telephone and roadside surveys conducted between 1977 and 1984．Based on these sources，the distribution of Hawaif Kai trips is

[^8]:    areas within Hawall kai and to outside lucatlons was based on both an analysts
    

[^9]:    

[^10]:    (a) In 1984 dollars.
    (b) Does not include land costs.

[^11]:    

[^12]:    Field records, photographs, artifacts, and all other materials gen-
    erated during this reconnaissance survey are archived at the office of

[^13]:    These natural features are considered potentially significant since they may contain human burials as well as other cultural material.

[^14]:    One small coral pebble, measuring 17 min maximum, was also recovered
    from Feature 1 .
    Collected from the surface of Feature 2 were three pre/proto
    historic artifacta. These include two basalt flakes and one piece of
    volcanic glass. One small ( 29 ma maxinum) corsil pebble was also
    recovered.
    recovered.

[^15]:    

[^16]:    State Site No. $50-80-15 \cdots 2901$
    Modified Natural Stone Cavity Commplex
    It is unknown if construction within Kaluanui 1 will directly
    iapact this complex. The developaent and subsequent occupation of the iapact this complex. The developaent and subsequent occupation of the
    area is expected to make these cavities accessible to treasure
    hunters'. Since it fs suspected that these filled cavitiea contain burials, further work is appropriate.

    It is recommended that this complex of dirt filled stone cavities
    be excavated to determine if they contain human burials or other
    cultural materials. If burisis are encountered, they should be removed
    and placed in a repository so they will not be subject to desecration or
    misuse.
    Survey Area: Kaluanui 1

[^17]:    Photo 5．View of Site $50-80-15-2900$ Feature 1.
    Showing northwest end of upper terrace wall．

[^18]:    I have reviewed the Department of General Planning (DGP) comments on the responses and information.

    Waikui Street impacts
    The DGP requests that the EIS address the imp pacts on the Waikui Street
    residences that would result from permiting teltt tums fromn Waikui Street onto
    Kalanianaole Highway. DCP suggests that allowing the feft-turn may result in use
    of Waikui Street by Kalanianaoie Highway traticic to typass the three-biock tratic
    jam on Kalanianaole Highway.

[^19]:    The Department of Agriculture has reviewed the subject
    Draft EIs and does not have any comments to offer. Thank you for the opportunity to comment.

[^20]:    Brenner Murnger Pn D PE
    Mandegee
    Envermental Deparment

[^21]:    3. Dan Davidson, manager, hand use, Kiaser Development Company (seated in neluded some single-family residencesi io our (M,riras)
    develophent, but the City rujected this. -
[^22]:    estimates based on a number of hypotheses. They should not and cannot be given

[^23]:    According to Gordon Dugan, who did the hydrological study, phoschates
    and free nitrogen counts-can be expected to rise as a result of the increase in habitation. Effects on our marina and ocean outfall areas

    In view of the severe water shortages we have been experiencing, is the developer planning to seek new sources of water, such as deep vells? offset our already critical supplies?

[^24]:    The program measures will provide premius public transpor-

[^25]:    Dear Mz. Whater.
    viromental Comambations, Inci. Kaviornmental Consuitantsed bor the
    (
    Mr. Joh P. Whalen. Dirocrar
    Dept, of Land ULilization, C \& C Hal.
    Gen South Kiny Strevt
    Honolula, Mawai. 96813

[^26]:     inevitable that a certainamount of fugitive duat will be generated. Field meacurntis of slded an estimated apanion rate of 1.2 tong center const dust per acre of construction per wonth of activity. This figure assumes medium level activity in a semi-arid cimate with a moderate soil silt content. Actual emissions of
     the amount of activity end the moisture content of exposed soil in work areas. moving over unpaved roadways. This problem can be substantially mitigated by completing and paving roadways and parking areas as aarly in the development
    
    
    

    Heavy equipment at construction sites will also emit some air pollutants in the form of engine exhousts. The largest equipment is usually dieselpowered. Carbon monoxide emissions for large diesel engines are generaliy about equal to those from a aingle automobile, but nitrogen dioxide emission from this type of engine can be quite high. Fortunately, nitrogen dioxide
    emissions from other sources in the area should be relatively low and the overall impact of pollutant emisaiona from construction equipment should be minor compared to levels generated on major roadways nearby.

[^27]:    A neighborhood with distinctive qualities and easily defined boundthat a large area with harder to define boundaries and characteristics. Therefore, the "sense of belonging and sense of place" is stronger.
    (McEvoy indet $x$ )

[^28]:    Schools: School in the Hawaii Kai area, with the intermediate school in adjacent Niu Valley. The elementary schools are: (1) Koko Head (CT 1.02);
    $\begin{array}{lll}\text { (2) Hahaione (CT 1.03); (3) Kandloiki (CT 1.04). The high achool is }\end{array}$ - Enrollment Projections - Public Schools:

[^29]:    Commercial - Retail Facilities:
     shops, restaurants, banks and other financial institutions. Future plans call for more commercial growth, including the Hawaii Kai Towne Center.
    Public Safety:

    The location of a City and County of Honolulu Fire Department
    Station in Hawaii Kai, at 505 Lunalilo Home Road, ensures fire protection for this area.

    The Honolulu Police Department has a patrol unit to provide police
    services to Hawaí Kai regidents, The Major in charge of the Patrol Division reports that Hawaii Kai has the lowest number of calls to HPD requesting police help in the entire Honolutu District. An anticipated
    gradual increase in population is not seen as a major problem. Public Utilities:

    In line with the Hawaii Kai planned community, planning and con-
    struction of utilities such as roads, sewers, and drainage were based on that these utilities were designed for is greater than the base population that these utilities were designed for is greater than the population pre-
    sently existing or projected.

[^30]:    ce: OEQC

