MEMORANDUM

TO: Brian J.J. Choy, Director
 Office of Environmental Quality Control

FROM: Don Hibbard, Administrator
 Historic Preservation Division

SUBJECT: Negative Declaration for Board of Water Supply, City and County of Honolulu, Kalihi-Uka Exploratory Well III (OEQC Bulletin X[9]:11)
 Kalihi, Kona, O'ahu
 TMK: 1-4-20: 39

HISTORIC PRESERVATION PROGRAM CONCERNS

We responded to the Draft Environmental Assessment for this project with a request for more information because we could not determine that the proposed project would have "no effect" on historic sites with the information at hand. We have not received the information that we requested and are concerned that a Negative Declaration for this project will permit the project to proceed without complying with the historic preservation review, which is required by law (Chapter 6E) in this case. A copy of our previous comments follows:

The DEA includes a short report of an archaeological surface survey of parcel 1-4-18: 06, which is not the location of the proposed project, and an archaeological monitoring report that describes the fill underneath a small portion of Kalihi road near the location of the proposed project. The DEA does not include an archaeological report for the proposed project parcel, and since our records show that this parcel has not been inventoried for historic sites we have no information on the presence or absence of surface and subsurface historic sites at the project parcel. Thus we have insufficient information to agree with the conclusion in the DEA that "since no artifacts or features were found in the vicinity, no further archaeological investigation is warranted."

MAY 25 1993
Historic records indicate that Kalihi Valley was intensively cultivated and thickly settled in traditional times. A review of our records shows that agricultural and religious structures have been found close to the project parcel. Extensive remains of irrigated agricultural fields are located across the stream and it is believed that an agricultural heiau was located nearby, although this has not been reidentified in many years and might be destroyed.

Since the proposed project will grade a 5,000 square foot area, and since this work would have an "adverse effect" on any historic sites that might be present at the parcel, we believe that the historic preservation review process should be completed for this project. The initial step in this review is an inventory survey of the project parcel to identify any surface or subsurface historic sites.

If you have any questions please call Tom Dye at 587-0014.

TD: bek
FINAL ENVIRONMENTAL ASSESSMENT FOR

KALIHI UKA III EXPLORATORY WELL

TMK: 1-4-20:39

KALIHI, OAHU, HAWAII

Prepared by
Honolulu Board of Water Supply
April 1993
FINAL
ENVIRONMENTAL ASSESSMENT
FOR KALIHI UKA III EXPLORATORY WELL
AT KALIHI, OAHU, HAWAII

Tax Map Key: 1-4-20: 39

Proposing Agency:
BOARD OF WATER SUPPLY
City and County of Honolulu
630 South Beretania Street
Honolulu, Hawaii 96843
Contact: Roy Doi
Tel. 527-5235

FOR KAZU HAYASHIDA
Manager and Chief Engineer

APR 23 1993
Date

Board Members:

Walter O. Watson, Jr., Chairman
Maurice H. Yamasato, Vice Chairman
Sister M. Davilyn Ah Chick, OSF
John Anderson, Jr.
Rex D. Johnson
Malissa Y. J. Lum
C. Michael Street

Prepared by:
BOARD OF WATER SUPPLY
City and County of Honolulu
630 South Beretania Street
Honolulu, Hawaii 96843

April 1993
TABLE OF CONTENTS

1. Introduction .. 1

2. Project Description ... 2
 2.1 Introduction .. 2
 2.2 Project Location ... 2
 2.3 Project Features .. 2
 2.4 Project Construction ... 4
 2.5 Pump Tests ... 5
 2.6 Project Schedule .. 6
 2.7 Project Cost ... 6

3. Affected Environment ... 7
 3.1 Physical Environment .. 7
 3.1.1 Geology .. 7
 3.1.2 Soils ... 7
 3.1.3 Climate and Air Quality .. 7
 3.1.4 Hydrology .. 8
 3.1.4.1 Surface Water .. 8
 3.1.4.2 Groundwater .. 8
 3.1.5 Noise ... 10
 3.2 Biological Environment .. 10
 3.2.1 Flora ... 10
 3.2.2 Fauna ... 10
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Social Environment</td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td>Population</td>
<td>10</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Scenic and Visual Resources</td>
<td>11</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Archaeological and Historic Resources</td>
<td>11</td>
</tr>
<tr>
<td>3.4</td>
<td>Land Use, Land Use Plans, Policies and Controls</td>
<td>11</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Land Use</td>
<td>11</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Land Use Plans, Policies and Controls</td>
<td>11</td>
</tr>
<tr>
<td>4.</td>
<td>Potential Impacts and Mitigation Measures</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical Environment</td>
<td>13</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Geology</td>
<td>13</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Soils</td>
<td>13</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Climate and Air Quality</td>
<td>13</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Hydrology</td>
<td>13</td>
</tr>
<tr>
<td>4.1.4.1</td>
<td>Surface Water</td>
<td>13</td>
</tr>
<tr>
<td>4.1.4.2</td>
<td>Groundwater</td>
<td>14</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Noise</td>
<td>14</td>
</tr>
<tr>
<td>4.2</td>
<td>Biological Environment</td>
<td>14</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Flora</td>
<td>14</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Fauna</td>
<td>15</td>
</tr>
<tr>
<td>4.3</td>
<td>Social Environment</td>
<td>15</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Population</td>
<td>15</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Scenic and Visual Resources</td>
<td>15</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Archaeological and Historic Resources</td>
<td>15</td>
</tr>
</tbody>
</table>
4.4 Land Use, Land Use Plans, Policies and Controls 16
 4.4.1 Land Use .. 16
 4.4.2 Land Use Plans, Policies and Controls 16

5. Possible Alternatives .. 17
 5.1 No Action .. 17
 5.2 Delayed Action ... 17
 5.3 Alternate Sites .. 17

6. Determination .. 18
 6.1 Finding and Reasons Supporting The Determination 18
 6.2 Determination ... 18

7. References .. 19
Appendices

Appendix A - Archaeological Survey by Archaeological Consultants of Hawaii

Appendix B - Archaeological Survey and Monitoring Survey Program by ERC Environmental and Energy Services Company

Appendix C - Consultation Agencies, Organizations and Individuals Consulted Responses Received
CHAPTER 1

INTRODUCTION

Chapter 343, Hawaii Revised Statutes (HRS), requires that proposed actions be assessed to determine potential adverse environmental impacts, and that these impacts be documented. Chapter 200 of Title 11, State of Hawaii Department of Health Environmental Impact Statement Rule, sets forth the requirements for documentation of the environmental impacts. (Ref. 1 and 2)

This Environmental Assessment (EA) has been prepared to meet the requirements of Chapter 343 HRS and Chapter 200 of Title 11 by documenting the environmental effects from the development of the Kalihi Uka III Exploratory Well project proposed by the City and County of Honolulu Board of Water Supply (BWS). Agency and public consultation on this project is documented in Appendix C.

Kalihi Valley II Exploratory Well was drilled in 1991 on parcel 18, Tax Map Key 1-4-18, which is part of the Honolulu Watershed Forest Reserve, owned by BWS. After testing of this well, it was determined that the yield was insufficient to justify development of a production well. Accordingly, this well was abandoned and sealed and the new Kalihi Uka III Exploratory Well has been selected as a potential source of potable water in the Kalihi area.

The environmental impacts from construction and operation of this well have been previously examined in the Final Regional Environmental Impact Statement (EIS) for Development of Wells, Reservoirs, Transmission Lines and Appurtenances at Honolulu, Hawaii (accepted September 1986). Relevant portions of the EIS are incorporated by reference in this EA.
CHAPTER 2

PROJECT DESCRIPTION

2.1 INTRODUCTION

The BWS is responsible for the management, control and operation of the municipal water system for certain areas of Oahu. The BWS’ previous choice, Kalihi Valley II Exploratory Well, proved to be unsuitable for a production well. Therefore, Kalihi Uka III Exploratory Well, located on parcel 39, Tax Map Key 1-4-20, has been selected as the next exploratory well. The BWS will conduct drilling and testing to determine the feasibility of the well for eventual production of potable water.

2.2 PROJECT LOCATION

Kalihi is located in Honolulu at the Ewa edge of the primary downtown commercial district. The Kalihi Uka III Exploratory Well site is about 150-200 feet above Kalihi Stream, just below Likiliki Highway, within a boot shaped lot, in the mauka end of the residential area. Access to the site is via Kalihi Street which abuts the property, near the wooden bridge over Kalihi Stream and over an unimproved road. Figure 1 shows the project location.

Since the well site is already accessible by an existing unimproved road, a separate BWS access road for equipment and supplies used in the exploratory drilling and testing will not be required.

2.3 PROJECT FEATURES

The following table describes the features of this exploratory well site.

<table>
<thead>
<tr>
<th>Item</th>
<th>Kalihi Uka III Exploratory Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax Map Key (TMK)</td>
<td>1-4-20: 39</td>
</tr>
<tr>
<td>Total parcel area (acres)</td>
<td>2.068</td>
</tr>
<tr>
<td>Flood Insurance Rate Map (FIRM)</td>
<td>Flood Zone D</td>
</tr>
<tr>
<td></td>
<td>Areas of undetermined, but possible, flood hazard</td>
</tr>
<tr>
<td>State Land Use District</td>
<td>Urban</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>State Water Management Area</td>
<td>Honolulu</td>
</tr>
<tr>
<td>City And County of Honolulu</td>
<td>Not designated</td>
</tr>
<tr>
<td>Development Plan Public</td>
<td></td>
</tr>
<tr>
<td>Facilities Map (DPPFM)</td>
<td></td>
</tr>
<tr>
<td>City and County of Honolulu</td>
<td>Residential</td>
</tr>
<tr>
<td>Development Plan</td>
<td></td>
</tr>
<tr>
<td>City and County of Honolulu</td>
<td>(R-10)</td>
</tr>
<tr>
<td>Zoning</td>
<td></td>
</tr>
<tr>
<td>Approximate depth to aquifer</td>
<td>350-400 Feet</td>
</tr>
<tr>
<td>Estimated yield of production well</td>
<td>0.25 MGD</td>
</tr>
<tr>
<td>Type of Aquifer</td>
<td>Perched</td>
</tr>
<tr>
<td>Land Owner</td>
<td>BWS</td>
</tr>
<tr>
<td>Nearest Access</td>
<td>Kalihi Street</td>
</tr>
</tbody>
</table>

2.4 PROJECT CONSTRUCTION

An area of about 5,000 square feet will be cleared and graded at the project site to accommodate well drilling and support equipment and necessary supplies. All excess material from the clearing and grading of the project site will be disposed at an approved location. Once the area has been cleared, a temporary fence may be erected to secure the project site.

Clearing and grading operations will be restricted to hours from 7:30 AM to 3:30 PM on weekdays to minimize disturbance. No activities will occur on the project during weekends and holidays.

Once the site has been cleared and secured, a truck or trailer-mounted well drilling rig and other support equipment will be brought to the project site for the exploratory drilling operation. The truck engine or a self-contained engine will be used to provide power for the well drilling rig. A single well hole about 16 inches in diameter will be drilled at the project site to reach the groundwater source.

One of two existing types of drilling methods, either cable tool or rotary, will be used. The cable tool drilling method is performed by repeatedly raising and
dropping a heavy drill bit until the desired depth has been reached.

All waste material from the cable tool drilling operation is bailed from the hole and collected in a pit constructed on the project site or discharged on the surface. In either case, the waste material will be disposed of in an approved manner. The waste material generated from this drilling method does not contain any contaminants. Depending on the depth and lava formations encountered, the well drilling may require up to a maximum of six months to complete.

If the rotary method is used, a drill bit rotating at moderate speed will bore the well while drilling fluid is pumped down the drill stem to the bit at the bottom of the hole. The drilling fluid, bentonite, a fine clay material, is then forced back up the hole carrying drill cuttings to the surface where they are removed from the drilling mud by a screen. The mud is then collected in a mud tank mounted on the side of the drilling rig. The collected mud is recirculated from the mud tank and is not considered a hazardous material. No surface runoff of the drilling mud will be permitted. When the drilling is complete, the drilling mud will be taken away from the project site and disposed in an approved manner. Some drilling contractors use air and foam to lift cuttings rather than drilling mud for the entire operation.

Once the water table is reached, instead of drilling fluid, an air compressor will be used to pump air or an air foam mixture down to the drill bit. This will ensure that drilling mud does not enter the aquifer. This rotary drill method of drilling may require three to four weeks to complete.

Upon completion of the drilling operation, a 10 inch diameter steel casing will be grouted into the drilled hole and a pump will be installed.

2.5 PUMP TEST

Two types of pump tests will be conducted after the drilling operation is completed. The initial test, a step-drawdown or yield-drawdown test, involves pumping water from the well at various pumping rates to estimate the specific capacity (number of gallons withdrawn per foot of drawdown) of the well. The drawdown will be measured for each pumping rate. Once the drawdown has stabilized, the pumping rate will be changed and a new drawdown measured. A step-drawdown test may last up to five hours, and will be performed from about 9:00 AM to 2:00 PM on a weekday.

After the step-drawdown test has been completed, a five-day sustained pumping test will be undertaken. The well will be pumped 5 hours the first day, and 8 hours per day for the next four days. This test is designed to determine the sustainable capacity of the well, monitor water quality, and to measure aquifer parameters by monitoring BWS Well No.2250-01, located about one mile
northeast, or upstream, of the well site. (The sustainable capacity of a well is the rate at which the well can be continuously pumped without adversely affecting nearby existing wells or water quality.)

In addition to monitoring the nearby well, Kalihi Stream will be monitored to identify adverse effects from the pumping. The BWS has contracted the U. S. Department of Interior Geological Survey (USGS) to conduct this monitoring during the test period. USGS Gage No. 2290, located about 1,400 feet downstream of the well site, will be used for this monitoring.

Water pumped during the pump test will be collected and tested for organic compounds as required by the U. S. Environmental Protection Agency (EPA); heavy metals, minerals, hazardous materials, coliform and standard plate count for bacteria. The tests are performed by the BWS and, in some cases, by the State of Hawaii Department of Health. The water pumped during the five-day test will be disposed into Kalihi Stream.

Upon completion of the five-day pumping test, the well driller will then remove the pump, cap the well, and clean the area, removing all excess materials and wastewater withdrawn during test pumping. The well will be capped after testing to prevent misuse of the well such as for disposal of hazardous wastes, sewage, or household garbage. According to the U. S. Environmental Protection Agency Underground Injection Control Section, unplugged or improperly abandoned water wells can easily become receptacles for the disposal of waste which may contaminate the groundwater aquifer.

2.6 PROJECT SCHEDULE

The project schedule will depend upon approval of required permits and other necessary licenses. For planning purposes, the BWS estimates the exploratory well drilling at Kalihi Uka will occur within the Fiscal Year 1992-93.

2.7 PROJECT COST

The estimated cost of the project is $190,000.
CHAPTER 3

AFFECTED ENVIRONMENT

3.1 PHYSICAL ENVIRONMENT

3.1.1 Geology

The island of Oahu is composed of the remnants of two elongated shield volcanoes, the Waianae and Koolau ranges, which are connected by the Schofield plateau. The Koolau volcano is the younger of the two and emerged east, sending lava flows westward to overlap and bank against the Waianae flank. In later periods, changes in sea level and the deposition of sediments contributed to the building of flat coastal plains.

Kalihi Valley is the product of extensive weathering and erosion on the Leeward side of the Koolau Shield Volcano. Koolau basalt makes up the valley walls. Dense vesicular jointed a'a flows of the later Kalihi basalt of the Honolulu Volcanic Series were deposited down the middle of Kalihi Valley, about 10 to 300 feet thick. In places, the Kalihi basalt has been incised by Kalihi Stream. (Ref. 3)

3.1.2 Soils

Soil at the Kalihi well site is classified by the U. S. Department of Agriculture Soil Conservation Service as Lolekaa silty clay, 15 to 25 percent slope. The Lolekaa series are well-drained soils most often found on side slopes of terraces and along drainage ways. These soils develop from old, gravelly colluvium and alluvium. Soil runoff of Lolekaa silty clay is medium, and the erosion hazard is moderate. (Ref. 4)

3.1.3 Climate and Air Quality

The average rainfall in the State is 73 inches per year. Due to its higher elevation, rain gage measurements (State Key No.776.00) taken in upper Kalihi Valley indicate the site receives a mean annual rainfall of approximately 140 inches. There is little variation in rainfall on a month to month basis. Tropical storms occasionally bring heavy rains while the rest is orographic or come from Kona storms, approaching from the southeast. (Ref. 5)

January is the coldest month, averaging 72 degrees Fahrenheit, and August is the warmest, averaging 78 degrees Fahrenheit. Average relative humidity is 72 percent in the mornings and 57 percent in the afternoons. (Ref. 6)

Air quality on most areas of Oahu is generally affected by vehicular traffic,
stationary sources, and prevailing tradewinds. High volumes of vehicular traffic pass within 250 feet of the well site but trees and undergrowth provide a dense barrier against air currents. This factor, coupled with the freshening effects of normal tradewind conditions, produces relatively good air quality at the well site.

3.1.4 Hydrology

3.1.4.1 Surface Water

There are no surface water sources, flood plains, or wetlands on the well site. However, Kalihi Stream has its source above the well site and runs just below the lot, adjacent to the site. This stream is continuous flowing and is designated "Construct-Alter" by the State of Hawaii Department of Health.

According to the State of Hawaii Department of Land and Natural Resources, the stream supports three species of endemic stream fishes (Awaous stamineus, Stenogobius hawaiiensis, and Eleotris sandwicensis) and two species of endemic freshwater crustaceans (Macrobrachium grandimanus and Atyoida bisulcata).

Stream flow data is compiled by the USGS at specific points along some individual streams. Kalihi Stream is one of those gaged by the USGS (Gage 2290) within the Honolulu District. The data obtained on the Kalihi Stream gage, located about 1,400 feet downstream of the well site, is summarized in Table 1. (Ref. 6 & Ref. 7)

The well site is included in the Federal Emergency Management Agency Flood Insurance Rate Map. It is designated as Flood Zone D, an area of undetermined, but possible, flood hazard. (Ref. 6)

3.1.4.2 Groundwater

The Koolau basalt, the principal aquifer in the Honolulu District, underlies a layer of Kalihi basalt and alluvium in the area of the well site. Recharge is transmitted and stored in open spaces within lava tubes, vesicles, clinkers, inter-flow zones, and cooling cracks. Infiltrated rain water can also be perched atop layers of impermeable material such as dense lava flows, solidified ash, or clay-rich sediments. This is the nature of perched water located below the Kalihi Uka III Exploratory Well site. (Ref. 6)

The closest existing groundwater source to the well site is BWS Well No. 2250-01, an artesian well, located about 0.75 miles to the northeast (upstream). The latest records show water withdrawals of 0.1 MGD at this well. (Ref. 8) Water from this source is used by the BWS system.
There are a series of BWS water tunnels (Nos. 2249-01 to 04), constructed during the 1930's, located about 1.25 miles northeast or upstream of the well site. Water recovered from these tunnels is moving through the Kalihi basalt and alluvium toward the floor of the valley. Although the latest water use records indicate flows of about 0.27 MGD from these tunnels, they are no longer used by the BWS as a source of drinking water. (Ref. 9)

TABLE 1

STREAM FLOW DATA for KALIHI STREAM

USGS GAGE NO. 2290

ELEVATION: 464 FEET

<table>
<thead>
<tr>
<th>YEAR ENDING</th>
<th>NO. DAYS MEASURED</th>
<th>MEDIAN MONTHLY MEAN DISCHARGE*</th>
<th>LOWEST MONTHLY MEAN DISCHARGE*</th>
<th>LOWEST RECORDED DISCHARGE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/88</td>
<td>365</td>
<td>2.81</td>
<td>0.93</td>
<td>0.50</td>
</tr>
<tr>
<td>9/87</td>
<td>N/A</td>
<td>0.26</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>9/86</td>
<td>365</td>
<td>3.17</td>
<td>0.52</td>
<td>0.26</td>
</tr>
<tr>
<td>9/85</td>
<td>365</td>
<td>1.13</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>9/84</td>
<td>365</td>
<td>0.94</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>9/83</td>
<td>N/A</td>
<td>1.42</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>9/82</td>
<td>365</td>
<td>4.52</td>
<td>2.71</td>
<td>1.42</td>
</tr>
<tr>
<td>9/81</td>
<td>365</td>
<td>1.34</td>
<td>0.61</td>
<td>0.32</td>
</tr>
<tr>
<td>9/80</td>
<td>365</td>
<td>6.59</td>
<td>0.50</td>
<td>0.23</td>
</tr>
<tr>
<td>9/79</td>
<td>365</td>
<td>1.52</td>
<td>0.49</td>
<td>0.28</td>
</tr>
<tr>
<td>9/78</td>
<td>365</td>
<td>0.87</td>
<td>0.22</td>
<td>0.10</td>
</tr>
<tr>
<td>9/77</td>
<td>N/A</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/76</td>
<td>365</td>
<td>1.57</td>
<td>0.60</td>
<td>0.23</td>
</tr>
<tr>
<td>9/75</td>
<td>365</td>
<td>1.89</td>
<td>0.27</td>
<td>0.16</td>
</tr>
<tr>
<td>9/74</td>
<td>365</td>
<td>3.36</td>
<td>0.99</td>
<td>0.28</td>
</tr>
<tr>
<td>9/73</td>
<td>365</td>
<td>1.18</td>
<td>0.42</td>
<td>0.19</td>
</tr>
</tbody>
</table>

* Million gallons per day

(Ref. 7)

N/A: Not available

-9-
3.1.5 Noise

In most areas of Oahu, including the Kalihi valley area, vehicle traffic is the primary source of noise. At the well site, noise sources consist of birds, wind, running water from Kalihi Stream, and the distant sounds of traffic on Likelike Highway and Kalihi Street.

3.2 BIOLOGICAL ENVIRONMENT

3.2.1 Flora

A field survey of the well site was conducted in November 1992. According to this survey, the well site is densely covered with introduced bamboo. Two indigenous taxa, hau and kamani trees also appear at the site as they do in many other low land sites on all the Hawaiian Islands. Other flora include occasional oak fern, sword fern, lau‘e, taro vine, syngonium, palm grass, red ginger, octopus tree, wedelia, sweet potato, Chinese banyan, eucalyptus robusta, strawberry guava, thimbleberry, coffee, glorybower, albizia, and cayenne vervain.

None of the species found during the survey are Federal (U. S. Department of the Interior Fish and Wildlife Service) or State of Hawaii listed, candidate threatened or endangered plant species. (Ref. 10 and 11)

3.2.2 Fauna

Although a site survey for wildlife was not undertaken, an extensive population of wildlife most likely does not occur on the site. During the field survey, no wildlife or trace of significant fauna was observed. However, the well site could conceivably provide habitat for rats, mice, mongoose, wallabies, feral pigs, feral cats, and feral dogs. None of these species are Federal or State of Hawaii listed, candidate threatened or endangered species.

3.3 SOCIAL ENVIRONMENT

3.3.1 Population

The regional population of Kalihi Valley in 1985 was 17,696, an increase of about 0.5 per cent from 1980 figure of 17,613 persons. These data compare to about 811,100 persons on Oahu in 1985, an increase of 6.7 per cent from the 1980 figure of 762,534 persons. (Ref. 12)

Within Census Tract No. 65 which encompasses the upper Kalihi valley area, the resident population in 1985 was 4,114 persons, an increase of 1.9 percent from the 1980 figure of 4,037 persons. (Ref. 12)
3.3.2 Scenic and Visual Resources

The well site is located near the end of Kalihi Street, below Likelike Highway, in the upper end of the residential area, and on vacant land owned by the BWS. The well site is mostly bamboo interspersed with a variety of mature trees and other vegetation.

The hillsides and dense vegetation of the well site provide a visual relief from the urban development along Kalihi Street and other areas of Kalihi. The hillside location and dense vegetation means that the well site will not be visible from most of the lower areas of Kalihi and from Likelike Highway.

3.3.3 Archaeological and Historical Resources

A check of the records at the Department of Land and Natural Resources Historic Sites Section by Archaeological Consultants of Hawaii, for Kalihi Valley II Exploratory Well project, indicated that there has been no previous study nor sites recorded makai of the Forest Reserve. (Appendix A) In addition, ERC Environmental Energy Services Company had done subsurface monitoring at the stream crossing for the Kalihi Street Installation of 16-Inch Water Main from Maka Place to Kalihi Aerator project and found no evidence of prehistoric resources in the area. (Appendix B) There is evidence that the project area has previously been impacted by the adjacent plant nursery.

3.4 LAND USE, LAND USE PLANS, POLICIES, AND CONTROLS

3.4.1 Land Use

The well site is within the State of Hawaii Land Use District designated as Urban. Public facilities are a permitted use.

3.4.2 Land Use Plans, Policies, and Controls

The Kalihi Uka III Exploratory Well does not appear on the City and County of Honolulu Development Plan Public Facilities Map (DPPFM). The exploratory well does not require an amendment to the DPPFM. However, an amendment will be required if a production well is to be constructed. Under the City and County of Honolulu Zoning Map, the project site is zoned (R-10) which permits the use of public facilities such as an exploratory well. Hence, the exploratory well project is consistent with City and County of Honolulu Land Use Plans and Policies.

The well site is within the Honolulu Water Management Area. This designation is made by the State Commission on Water Resource Management when it can be
reasonably determined that resources in an area may be threatened by existing or proposed withdrawals or diversions.
CHAPTER 4

POTENTIAL IMPACTS AND MITIGATIVE MEASURES

4.1 PHYSICAL ENVIRONMENT

4.1.1 Geology

The exploratory well will require drilling an exploratory well into the subsurface basalt rock to reach the perched water source. Once the exploratory well has been constructed and the five-day pump test completed, the well will be capped. Once capped, there will be no adverse affects to the geologic resources of the area.

4.1.2 Soils

The well site will be cleared of all existing vegetation prior to the well drilling. According to the U. S. Department of Agriculture Soil Conservation Service, soils on the well site are classified as Lolekae silty clay, 15 to 25 percent slope (LoD). The Lolekae series are well-drained soils most often found on side slopes of terraces and along drainage ways. These soils develop from old, gravelly colluvium and alluvium. Soil runoff of LoD is medium, and the erosion hazard is moderate. (Ref. 4) Clearing of the site may cause some erosion, but erosion control measures such as berms will be implemented.

4.1.3 Climate and Air Quality

The site clearing, well drilling and testing will take approximately six months to complete. These activities will create increased dust from clearing and grading the well site and pollutant emissions from operation of vehicles and equipment. To mitigate the effects of site clearing activities, dust control measures, such as water sprinkling, will be implemented by the contractor to reduce dust levels as necessary.

4.1.4 Hydrology

4.1.4.1 Surface Water

Kalihi Stream flows along the lower side of the lot. Partial impacts to Kalihi Stream could occur from decreased flow during the five-day test. Test pumping will occur during the dry summer months when the effect on the stream flow will be most evident. Stream flow will be monitored during development of the exploratory well. The BWS has contracted the U. S. Department of Interior Geological Survey to monitor streams and other water bodies during the test period.
If the monitoring shows stream flow in Kalihi Stream is adversely affected, appropriate mitigative measures acceptable to both the State Department of Land and Natural Resources and the U. S. Fish and Wildlife Service will be implemented. If stream flow is reduced below the "status quo" interim in-stream flow standards established by the Commission on Water Resource Management, BWS may petition the Commission to amend the interim in-stream flow standards for Kalihi Stream.

4.1.4.2 Groundwater

The groundwater resource below the Kalihi Uka III Exploratory Well site is perched and pumping from the resource may affect the existing nearby BWS well, and possibly Kalihi Stream. However, analysis of past stream flow data shows the existing BWS well has not affected flows in Kalihi Stream.

Once the well has been drilled, a five-day (5 hours on the first day, and 8 hours per day for the next four days) pump test will be undertaken to determine the specific capacity, or yield, of the well. The drawdown will be measured at each pumping rate. The test is also used to determine what effect pumping will have on other sources.

4.1.5 Noise

The increased traffic from construction vehicles will not be significant, but may cause some minor short term inconveniences to area residents for the duration of construction. Because the nearest residences border the well site, noise generated during the drilling operations will be intrusive. If the cable tool drilling method is used, noise will result from the drill bit hitting rock (like a pile driver, only much quieter) and from the operation of the diesel engine. If the rotary drilling method is used, the operation will be quieter. In either case, drilling will be restricted to the hours from 7:30 AM to 3:30 PM.

Noise permits will be required from the Noise and Radiation Branch of the Department of Health and contractors must comply with the conditions issued with the permits. Mufflers for noise control will be required for all construction equipment. All noise attenuating equipment will be maintained in proper operating condition and will be repaired or replaced as needed.

4.2 BIOLOGICAL ENVIRONMENT

4.2.1 Flora

According to the field survey, flora at the site consists mostly of bamboo and hau trees. Along the edge of the roadway, there are a number of other species. None
of the species found on the well site are Federal or State of Hawaii listed, candidate threatened or endangered species. The exploratory well will not have a significant adverse effect, loss or destruction, on the flora of this area.

4.2.2 Fauna

During the field survey, no wildlife or trace of significant fauna was observed. However, the well site could conceivably provide habitat for rats, mice, mongoose, wallabies, feral pigs, feral cats and feral dogs. None of these species are Federal or State of Hawaii listed, candidate threatened or endangered species.

4.3 SOCIAL ENVIRONMENT

4.3.1 Population

The well drilling will be contracted by the BWS to a contractor who will be responsible for all aspects of the project, including supplying a drilling crew of 2 to 4 persons. Most likely, the crew members will come from all areas of Oahu, including possibly some from the Kalihi area. However, the crew size is not significant when compared to the population of Kalihi. There will be no adverse effects to the population of Kalihi from the project.

4.3.2 Scenic and Visual Resources

The well site is not visible from Likelike Highway and does not present a significant adverse visual impact to the general populace. However, clearing of the site's dense growth and the ensuing construction activities will be very visible to the several residences which border the area. Visual impact to these residents will be unavoidable but will decrease over time.

4.3.3 Archaeological and Historic Resources

The field investigation revealed no archaeological or historic structures, remains, objects, or artifacts at the well site. There are no structures on the well site listed on the National or State of Hawaii Register of Historic Places. The lack of cultural resources and the fact that this area has previously been impacted by the adjacent plant nursery indicates there will be no significant adverse effects from the exploratory well.

If any historical sites or artifacts are discovered during construction, all work will be stopped immediately, the State Historic Preservation Office will be notified and appropriate mitigative measures will be taken. An archaeological inventory survey of the parcel will be conducted if the exploratory well test results are favorable and a permanent well pump station is developed.
4.4 LAND USE, LAND USE PLANS, POLICIES, AND CONTROLS

4.4.1 Land Use

The proposed well site is within the State of Hawaii Land Use District designated as Urban. The exploratory well will require removal of the existing vegetation for the drilling and support equipment. The road leading to the project site will be kept passable so that the Division of Forestry and Wildlife can access the area for any work required. Once the drilling has been completed and the well capped, much of the well site can be returned in time to its natural state.

4.4.2 Land Use Plans, Policies, and Controls

The Kalihi Uka III Exploratory Well does not appear on the City and County of Honolulu Development Plan Public Facilities Map (DPPFM). The exploratory well does not require an amendment to the DPPFM. In accordance with the City’s Land Use Ordinance, public facilities such as the proposed water system improvements are permitted uses in all zoning designations. Thus, the exploratory well is consistent with City and County of Honolulu land use plans and policies.
CHAPTER 5

POSSIBLE ALTERNATIVES

5.1 NO ACTION

Under the no action alternative, existing pumpage would be maintained and no new water sources would be developed in the Honolulu District. However, the Honolulu District is the most heavily populated area on the island and has the highest domestic water demand. Additional water sources are required to meet present and projected demands. If new water sources are not developed within the district, then water must be transported from surrounding areas. This will result in additional transmission, storage, and pumping costs. Thus, the no action alternative is not considered a viable alternative.

5.2 DELAYED ACTION

The proposed project is currently scheduled for fiscal year 1992-93. Delay of the project would likely increase the cost once construction ultimately begins. Delaying the project would not rule out its necessity in the near future.

5.3 ALTERNATE SITES

The BWS is responsible for management, control, and operation of the municipal water system for certain areas of Oahu. As part of this responsibility, the BWS must identify well sites for exploratory drilling and eventual production of water. A number of factors are considered by the BWS in the selection of potential alternative exploratory well sites, including subsurface geologic and groundwater characteristics, depth of drilling to the water resource, nearby surface water sources, elevation of the site in relation to the distribution system, ease of access, surrounding terrain, natural and cultural resources, and environmental impacts.

BWS previous choice, Kalihi Valley II Exploratory Well was drilled in 1991. Because this well proved to be unsuitable for a production well, it was abandoned and sealed. Kalihi Uka III Exploratory Well site was selected as an alternative site which meets the determining factors established by BWS.
CHAPTER 6

DETERMINATION

6.1 FINDINGS AND REASONS SUPPORTING THE DETERMINATION

The project involves the drilling of an exploratory well and a five-day pumpage test. The area to be disturbed is small and accessible by an existing unimproved road. Upon completion of the testing, the pump will be removed and the well will be capped. Any impacts to the physical environment will be temporary and will not be significant. The dust, noise and silting which may occur during construction will be controlled through accepted construction techniques. No rare or endangered species of flora and fauna are known to inhabit the project site.

6.2 DETERMINATION

In accordance with the provisions of Chapter 343, Hawaii Revised Statutes, and the significance criteria set forth in Section 11-200-12 of Title 11 Chapter 200, Administrative Rules of the Department of Health, this assessment has determined that the project will have no significant impact on the environment, and that an Environmental Impact Statement is not required.
REFERENCES

8. Lao, Chester. Geology Section, Board of Water Supply, Personal communication with John Sakaguchi, Honolulu, February 1990.

APPENDIX A
ARCHAEOLOGICAL SURVEY
BY
ARCHAEOLOGICAL CONSULTANTS OF HAWAII
Mr. John Sakaguchi
Planner
Wilson Okamoto & Associates
PO Box 3530
Honolulu, Hawaii 96814

February 18, 1990

RE: Archaeological Walk-Through Examination of the Proposed Board of Water Supply Exploratory Well Site, TMK1-4-18:06. Located in Kalihi Valley, Island of Oahu.

Dear Mr. Sakaguchi:

At the request of your office, Archaeological Consultants of Hawaii, Inc. Has conducted a surface, walk-through examination of the property described above.

The proposed well site is located just mauka of the residential area on the Likelike Highway side of the valley. The subject property is small (10,000 square fee) and situated in the middle of a bamboo thicket. Visibility was good between the trees and it is unlikely that any features were overlooked.

A check of the records at the Department of Land and Natural Resources, Historic Sites Section, indicates that there has been no previous study of this small piece of property nor are there any previous sites recorded. Our examination failed to produce any surface indication of cultural materials.

The author is aware that a great number of sites are still located in the upper Kalihi area. These are however, located farther upstream and quite a distance from the study area. Most recently a contract archaeological firm (ERC) has been doing subsurface monitoring for Board of Water Supply stream crossings in the general area; according to a briefing presented to Wilson Okamoto & Associates dated January 27, 1990, ERC has to date, found nothing of significance.
Based on the information presented above, it is our opinion that no further archaeological work is necessary at this particular location.

If there are any further questions regarding this report, please feel free to contact me.

Aloha,

Joseph Kennedy
Consulting Archaeologist
APPENDIX B

ARCHAEOLOGICAL SURVEY AND MONITORING SURVEY PROGRAM

BY

ERC ENVIRONMENTAL AND ENERGY SERVICES COMPANY
Archaeological Survey and Monitoring Program

16-inch Water Main
Kalihi Stream Crossing #1
Kalihi Valley, Kalihi Ahupuua, Kona District
Oahu Island, Hawaii
TMK: 1-4-14; 1-4-16; AND 1-4-20

By:
Allan J. Schilz, M.A.

Report for:
City and County of Honolulu
Board of Water Supply
630 South Beretania Street
Honolulu, Hawaii 96843

Submitted By:
ERC Environmental and Energy Services Company
900 Fort Street Mall
Suite 1550
Honolulu, Hawaii 96813

April 1990
ABSTRACT

Under contract to the Board of Water Supply, City and County of Honolulu, ERC Environmental and Energy Services Company completed an archaeological field survey and construction monitoring program in conjunction with placement of a 16-inch water main from Maka Place to Kalihi aerator, Kalihi Valley, Oahu. An agricultural complex (Site 80-14-3980) recorded by Connolly (1980) was relocated and found to be well away from the proposed pipeline construction area, and, therefore, would not be impacted. Trenching for placement of the pipeline in the vicinity of the Kalihi Stream crossing was monitored by an archaeologist. Two earlier layers of pavement and coral/gravel fill were found beneath the present Kalihi Street pavement; no prehistoric resources were encountered during monitoring. No archaeologically significant resources were found within the area of direct or indirect impact during the field survey and none were found during monitoring.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Project Location</td>
<td>1</td>
</tr>
<tr>
<td>Scope of Work</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>7</td>
</tr>
<tr>
<td>Previous Archaeological Work</td>
<td>7</td>
</tr>
<tr>
<td>Land History</td>
<td>7</td>
</tr>
<tr>
<td>Fieldwork</td>
<td>8</td>
</tr>
<tr>
<td>Field Survey</td>
<td>8</td>
</tr>
<tr>
<td>Monitoring</td>
<td>8</td>
</tr>
<tr>
<td>Results</td>
<td>9</td>
</tr>
<tr>
<td>Field Survey</td>
<td>9</td>
</tr>
<tr>
<td>Monitoring</td>
<td>9</td>
</tr>
<tr>
<td>Recommendations</td>
<td>10</td>
</tr>
<tr>
<td>References Cited</td>
<td>12</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Location</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Honolulu, Hawaii 7.5 Min USGS Topographic Map</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>TMK:1-4-14 With Location of Agricultural Complex Site, NO. 50-80-14-3980</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>TMK:1-4-16 With Location of Agricultural Complex Site, NO. 50-80-14-3980</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>TMK:1-4-20</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Strata Profile, Mauka of Kalihi Stream</td>
<td>11</td>
</tr>
</tbody>
</table>
INTRODUCTION

The following report presents the results of an archaeological field survey and monitoring program, Kalihi Valley, Oahu, Hawaii. The Board Of Water Supply proposes to place a 16-inch water main along Kalihi Street from Maka Place to Kalihi aerator. The archaeological program was designed to avoid impacts to previously recorded cultural resources (Connolly 1980), and to mitigate potential impacts to resources discovered during trenching for placement of the pipeline. The area of primary concern was the Kalihi Stream crossing makai of the Honolulu Watershed Forest Reserve. The survey and monitoring program were completed by ERC Environmental and Energy Services Company (ERCE) under contract to the Board of Water Supply, City and County of Honolulu (BWS).

The field survey was conducted by Allan Schilz and Kanalei Shun on October 17, 1989; the monitoring program was conducted intermittently from October 26, 1989 through February 14, 1990 by Allan Schilz and Steven Dies. Monitoring in the vicinity of the Kalihi Stream crossing totalled 16.5 man-hours.

Project Location

The 16-inch main (BWS Job no. 89-96) is proposed along Kalihi Street from the Kalihi Valley 614 reservoir located within the Forest Reserve at Maka Place to Kalihi aerator mauka of Papali Street (Figure 1 and 2). The area of archaeological concern is in the vicinity of the Kalihi Stream crossing makai of the Honolulu Watershed Forest Reserve and includes portions of the lands of Maluawai (TMK:1-4-14), Ouaua (TMK:1-4-16), and Kioi (TMK:1-4-20), Kalihi ahupua’a, Kona District, Oahu Island (Figures 3, 4, and 5).

Scope of Work

Connolly (1980) identified 'auwai and terraces (Site 80-14-3980) during a survey for the proposed Kalihi Valley Park site, but did not locate or map the features. Therefore, there was concern that the current project would impact the site area. The present study consisted of two major tasks: archaeological field survey and monitoring during earth moving activities. The purpose of the field survey was to relocate the features discovered by Connolly (1980) and to mark their boundaries so that they would not be impacted by the proposed construction. Also, there was concern that additional archaeological resources may be located in the vicinity of the project.
The monitoring program focused on the area around the Kalihi Stream crossing because of the proximity to known resources and the potential for buried resources.

BACKGROUND

Previous Archaeological Work

Since the mid-1970s, four archaeological studies have been completed in the general area. In 1976, William Barrera (1976a and b) completed a survey *makai* of the present project (TMK:1-4-13). Barrera recorded four sites: a collapsed terrace, a retaining wall and paved area, a low terrace wall, and an earthen terrace. In 1980, Connolly (1980) conducted a survey for the proposed Kalihi Valley Park. Connolly's survey included portions of the lands of Maluawai (TMK:1-4-14) and Ouaua (TMK:1-4-16). Connolly recorded an upland agricultural complex (Site 80-14-3980) of 20 individual features that included an *ainuwal* system and terraces. Connolly recorded the site, but did not map its location. Aki Sinoto (1988) conducted a field survey for the proposed Kalihi Valley 614 reservoir. Sinoto recorded six historic features (Site 80-14-2004). Sinoto determined that these features are non-Hawaiian and historic/modern in origin (1988:4-5). Three of the features probably relate to the construction of Old Kalihi Street and the remaining three are more recent.

Land History

Kalihi was the location of Ka'ie'ie heiau, presumably within the ili of Kaiieie located immediately *makai* of Maluawai (Pukui, Elbert, and Mookini 1976). According to Beckwith (1970:278-283), Ka'ie'ie heiau was a place of worship for Pele’s sister Kapo.

The ili of Maluawai and Ouaua are depicted on the 1883 survey map of Kalihi Valley (Brown 1883). The 1883 map also shows that, during the Great Mahele of 1848, V. Kamamalu received a Land Commission Award (LCA) for Maluawai (LCA 7713), Kaumuohua received an LCA for Ouaua (LCA 6450:8), and A. Adams received an LCA for Kioi (LCA 803:12).

As noted in both Sinoto (1988) and Connolly (1980), Handy (1940) states that the lower Kalihi Valley was covered with extensive terraces on both sides of the stream. Handy (1940:79) further states that "...in upper Kalihi there are numerous small areas that were developed in terraces."
FIELDWORK

Field Survey

The field survey was completed on Tuesday, October 17, 1989. Initially, the survey focused on the areas adjacent to Kalihi Street and Kalihi Stream. Subsequently, the survey area was expanded toward Kamanaiki Ridge southeast of Kalihi Street and Kalihi Stream. The survey area was expanded in an attempt relocate the agricultural complex recorded by Connolly (1980). This complex was relocated and its location mapped, but a detailed plan of the features was not made because they were well away from the area to be impacted by the proposed trenching and pipeline placement.

Monitoring

As stated above, the monitoring program focused on the Kalihi Stream crossing *makai* of the Honolulu Watershed Forest Reserve. Beginning on October 26, 1989, the progress of the trenching operations were monitored to ensure that an archaeologist was present during trenching near the Kalihi Stream crossing. The dates of the field visits to check on the trenching progress and the dates that the trenching was monitored are presented below.

<table>
<thead>
<tr>
<th>Field visit</th>
<th>October 26, 1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field visit</td>
<td>November 1, 1989</td>
</tr>
<tr>
<td>Monitor</td>
<td>November 8, 1989</td>
</tr>
<tr>
<td>Monitor</td>
<td>November 9, 1989</td>
</tr>
<tr>
<td>Monitor</td>
<td>December 6, 1989</td>
</tr>
<tr>
<td>Monitor</td>
<td>December 14, 1989</td>
</tr>
<tr>
<td>Monitor</td>
<td>January 5, 1990</td>
</tr>
<tr>
<td>Monitor</td>
<td>February 13, 1990</td>
</tr>
<tr>
<td>Monitor</td>
<td>February 14, 1990</td>
</tr>
</tbody>
</table>

By the end of the day, February 14, 1990, trenching had progressed beyond the area of concern and all monitoring was ceased.
RESULTS

Field Survey

The field survey was completed by Allan Schilz and Kanalei Shun on October 17, 1989. No historic or prehistoric resources were found along Kalihi Stream or Kalihi Street. There was, however, a number of junked trucks and cars located along the dirt road leading from Kalihi Street toward Kamanaka Ridge.

The agricultural complex reported by Connolly (1980:8-9) was found approximately 200m southeast of Kalihi Street (Figures 2 and 3). The features noted include a cobble faced 'auwai system and agricultural terraces. The total extent of the complex was not determined by Connolly (1980:8-9), nor was it determined during the present survey. It appears, however, to extend into the Forest Reserve.

Monitoring

As noted above, monitoring of trenching activities took place between October 26, 1989 and February 14, 1990. The trenching mauka of the stream crossing exposed two previous, asphalt-paved roads (Figure 6). Beneath the present road surface is a layer of sand, gravel, and coral fill approximately 30 to 35cm thick. This layer served as the roadbed for the modern road. Beneath the modern fill is a layer of asphalt, followed by a 15cm thick layer of coral bedding and a 25cm layer of sand, gravel, and coral fill. This represents an older surface of Kalihi Street. At a depth of 80cm below the present street surface is another sequence of asphalt-coral bedding-sand, coral, and gravel. This represents the earliest pavement of Kalihi Street. It should be noted that Kalihi Street is depicted on the 1883 Government map (Brown 1883), but it is not known whether it was paved at that time.

Beneath the earliest paved road, at a depth of 130 to 140cm, are two buried telephone cables. The trench that was excavated to bury the cables penetrated the earliest pavement, but not the two subsequent pavements. Indicating the the cables were installed after the first road was paved but before the more recent roads were paved.
Beneath the earliest paved road and the telephone cable trench was brown to yellowish-brown silty clay of the Lolekaa series (Foote et al. 1972:84). As the trench approached Kalihi Stream, the sand content increased and cobbles and boulders from previous stream courses were encountered.

No evidence of prehistoric resources were encountered during monitoring. The upper 140cm had been disturbed and the stratum beneath the earliest roadbed and cable trench consisted, in part, of stream deposit.

RECOMMENDATIONS

No artifacts or features were found in the vicinity of the project during the field survey or the monitoring program. Therefore, no further archaeological investigations relating to the placement of the 16-inch water main along Kalihi Street are recommended.

The agricultural complex (Site 80-14-3980) recorded by Connolly (1980) has been located on the appropriate maps, but a plan map of the complex and its features has not been made. Given the extent of the complex and that little research has been conducted in upper Kalihi Valley, it is recommended that the complex be mapped and evaluated prior to any development in the area.
REFERENCES CITED

Barrera, William, Jr.

1976a Kalihi Valley Archaeological Reconnaissance. Chiniago, Inc.

Beckwith, Martha W.

Brown, J. F.

Connolly, Robert D., III

Foote, Donald E., Elmer L. Hill, Sakuichi Nakamura, and Floyd Stephens

Pukui, Mary K, Samuel H. Elbert, and Esther T. Mookini

Sinoto, Aki

APPENDIX C

CONSULTATION
AGENCIES CONSULTED

FEDERAL AGENCIES

1. Mr. Ernest Kosaka
 Environmental Coordinator
 Fish and Wildlife Service
 United States Department of the Interior
 P. O. Box 50167
 Honolulu, Hawaii 96850

2. Mr. William Meyer
 District Chief
 Water Resources Division
 Geological Survey
 United States Department of the Interior
 677 Ala Moana Blvd., Suite 415
 Honolulu, Hawaii 96813

3. Mr. Warren M. Lee
 State Conservationist
 Department of Agriculture
 P.O. Box 50004
 Honolulu, Hawaii 96850

4. Mr. Daniel W. McGovern
 Regional Administrator
 U. S. Environmental Protection Agency Region I9
 75 Hawthorne Street
 San Francisco, CA 94105

STATE AGENCIES

5. Dr. Bruce S. Anderson
 Deputy Director for Environmental Health
 Department of Health
 State of Hawaii
 P. O. Box 3378
 Honolulu, Hawaii 96801
6. Mr. Keith Ahue
 Chairperson
 Department of Land and Natural Resources
 State of Hawaii
 P. O. Box 621
 Honolulu, Hawaii 96809

7. Mr. Yukio Kitagawa
 Chairperson
 Department of Agriculture
 State of Hawaii
 1428 South King Street
 Honolulu, Hawaii 96814

8. Mr. John Harrison, Ph.D.
 Environmental Coordinator
 University of Hawaii at Manoa
 Environmental Center, Crawford 317
 2550 Campus Road
 Honolulu, Hawaii 96822

9. Dr. Stephen Lau
 Water Resources Research Center
 University of Hawaii
 2540 Dole Street, Holmes Hall 283
 Honolulu, Hawaii 96822

CITY AND COUNTY OF HONOLULU

10. Mr. Donald Clegg
 Director
 Department of Land Utilization
 City and County of Honolulu
 650 South King Street
 Honolulu, Hawaii 96813

11. Mr. Robin Foster
 Chief Planning Officer
 Planning Department
 City and County of Honolulu
 650 South King Street
 Honolulu, Hawaii 96813
12. Mr. C. Michael Street
 Director and Chief Engineer
 Department of Public Works
 City and County of Honolulu
 650 South King Street
 Honolulu, Hawaii 96813

13. The Honorable Donna Mercado Kim
 City Councilmember
 City and County of Honolulu
 Honolulu Hale
 Honolulu, Hawaii 96813

OTHER INTERESTED GROUPS AND INDIVIDUALS

14. Kalihi Valley Neighborhood Board No. 16
 P. O. Box 19063
 Honolulu, Hawaii 96817

15. Mr. Art Mori, President
 Life of the Land
 19 Niolepa Place
 Honolulu, Hawaii 96817

16. Mr. Gary Anderson, Conservation Chair
 Sierra Club
 P. O. Box 11070
 Honolulu, Hawaii 96828
Mr. Kazu Hayashida
Manager and Chief Engineer
Board of Water Supply
630 South Beretania Street
Honolulu, Hawaii 96813

Attn: Mr. Bert Kukola

SUBJECT: KAUII UKE III EXPLORATORY WELL, HONOLULU, OAHU

Dear Mr. Hayashida,

When submitting the Final Environmental Assessment (EA) for the above project, please include a listing of findings and reasons supporting the determination, pursuant to Title 11, Chapter 200 111-200-10 of the Hawaii Administrative Rules. An estimated project cost should also be included.

If you have any questions, please contact Karen Mau at 866-4185. Thank you for your cooperation.

Sincerely,

Brian J. J. Choy
Director

February 22, 1993

Mr. Brian J. J. Choy
Director
State of Hawaii
Office of Environmental Quality Control
220 South King Street, Fourth Floor
Honolulu, Hawaii 96813

Dear Mr. Choy:

Subject: Your Letter of December 22, 1992 Regarding the Draft Environmental Assessment (EA) for the Proposed Kauii Uke Exploratory Well III, TMK: 1-4-20; 39, Kaliihi Street

Thank you for reviewing the Draft EA for our proposed project. We have the following response to your comments:

1. We will submit a listing of findings and reasons supporting the determination with the Final EA.

2. An estimated project cost will be included.

If you have any questions, please contact Bert Kukola at 527-5235.

Very truly yours,

KAZU HAYASHIDA
Manager and Chief Engineer
Dear Mr. Hayashida:

Subject: Draft Environmental Assessment (EA) for Kalihiki Uka Exploratory Well 3, TMC: 1-4-20; 39, Kalihiki, Oahu, Hawaii

Thank you for the opportunity to review the subject Draft EA.

The only comment I might make is that it would be more desirable to continuously pump the well at a constant rate for five to seven days rather than for selected periods of time and rate over a five-day period, as specified. Continuously pumping the well would make it much easier to determine the source of water to the well.

If we can be of further help, please do not hesitate to call 541-2653.

Sincerely,

William Meyer
District Chief

Mr. William Meyer, District Chief
Water Resources Division
Geological Survey
United States Department of the Interior
677 Ala Moana Boulevard, Suite 415
Honolulu, Hawaii 96813

March 12, 1993

Dear Mr. Meyer:

Subject: Your Letter of December 31, 1992 Regarding the Draft Environmental Assessment (EA) for the Proposed Kalihiki Uka Exploratory Well 3, TMC: 1-4-20; 39, Kalihiki Street

Thank you for reviewing the Draft EA for our proposed project.

We agree that continuous pumping would make it easier to determine the source of water to the exploratory well. However, pumping for selected periods of time over a five-day period was specified to reduce the impact of noise on nearby residences.

If you have any questions, please contact Bert Kaulak at 527-5235.

Very truly yours,

Kazu Hayashida
Manager and Chief Engineer
Mr. Kazu Hayashida
Manager and Chief Engineer
City and County of Honolulu
630 South Beretania Street
Honolulu, Hawaii 96842

December 31, 1992

92-457/sno

Dear Mr. Hayashida:

Subject: Draft Environmental Assessment (EA) for Kalihi Uka Exploratory Well III
Kalihi, Oahu, Hawaii

Thank you for allowing us to review and comment on the subject project. We have no comments to offer at this time.

Very truly yours,

BRUCE S. ANDERSON, Ph.D.
Deputy Director for Environmental Health

Dr. Bruce S. Anderson
Deputy Director for Environmental Health
State of Hawaii
Department of Health
P. O. Box 3378
Honolulu, Hawaii 96801

March 11, 1993

Subject: Your Letter of December 31, 1992 Regarding the Draft Environmental Assessment (EA) for the Proposed Kalihi Uka Exploratory Well III,
TMK. 1-4-20: 39. Kalihi Street

Thank you for reviewing the Draft EA for our proposed project.

If you have any questions, please contact Bert Kodaka at 527-5235.

Very truly yours,

KAZU HAYASHIDA
Manager and Chief Engineer
According to our historic sites section, the PA includes a short report of an archaeological survey of parcel 1-4-10-06, which is not the location of the proposed project, and an archaeological monitoring report that describes the fill underneath a small portion of Kalihi road north of the location of the proposed project. The PA does not include an archaeological report for the proposed project parcel, and since our records show that this parcel has not been inventoried for historic sites, we have no information on the presence or absence of surface and subsurface historic sites at the project parcel. Thus, we have insufficient information to agree with the conclusion in the PA that "since no artifacts or features were found in the vicinity, no further archaeological investigation is warranted."

Historic records indicate that Kalihi Valley was intensively cultivated and thickly settled in traditional times. A review of our records shows that agricultural and religious structures have been found close to the project parcel. Extensive remains of irrigated agricultural fields are located across the stream and it is believed that an agricultural house was located nearby, although this has not been re-identified in any years and might be destroyed.

Since the proposed project will grade a 5,000 square foot area, and since this work would have an "adverse affect" on any historic sites that might be present at the parcel, an archaeological inventory and survey of the project parcel is needed to determine if significant historic sites are present. This would be the initial step needed in the Chapter 6 review process.

Our Division of Forestry and Wildlife comments that the activities planned for the project will take place where their progress could be affected. We, therefore, recommend that the road leading to the project site remain accessible in case work needs to be done in the area.

In addition, although the area is quite wet, we recommend that a fire contingency plan be submitted for our approval.

Thank you for your cooperation in this matter. Please feel free to call Ms. Leaman at our Office of Gasoline and Environmental Affairs at 387-9377, should you have any questions.

Very truly yours,

[Signature]

WILLIAM M. KAPPEN

Mr. E. Reynolds

FILE NO.: 93-343
Mr. Keith Alune, Chairperson
Department of Land and Natural Resources
State of Hawaii
P.O. Box 631
Honolulu, Hawaii 96809

Dear Mr. Alune:

Thank you for reviewing the Draft EA for our proposed project. We have the following response to your comments:

1. We note that you have no objection to the exploratory drilling.

2. We recognize the importance of Oahu stream habitats to native aquatic species and therefore, we will have the United States Geological Survey monitor Kailii Stream during pump testing of the proposed exploratory well. If we decide to develop the well for the production of potable water, minimum streamflow requirements will be adhered to and appropriate mitigative measures to protect stream habitat will be implemented.

3. We note your concern that the proposed project could have an adverse effect if historic sites are present at the parcel. However, we conducted an extensive surface survey of the site and found no indications of historic sites or artifacts in the area and since the project requires very little subsurface work relative to the land area involved, we concluded that there will be no significant archaeological impacts. If any historical sites or artifacts are discovered during construction, all work will be stopped immediately, the State Historic Preservation Office will be notified and appropriate mitigative measures will be taken. An archaeological inventory survey of the parcel will be conducted if the exploratory well test results are favorable and we decide to develop a permanent well pump station which will encompass a larger area and will involve more subsurface work.

4. We will keep the road leading to the project site passable so that the Division of Forestry and Wildlife can access the area for any work required.

5. A fire contingency plan will be submitted for your approval.

If you have any questions, please contact Bert Kaloka at 527-5235.

Very truly yours,

Razu Hayashida
Manager and Chief Engineer

April 13, 1993
TO: KAZU HAYASHIDA, MANAGER AND CHIEF ENGINEER
 BOARD OF WATER SUPPLY

FROM: DONALD A. CLEGG, DIRECTOR

SUBJECT: KALIHI UKA III EXPLORATORY WELL
 Tax Map Key 1-4-20:39

The proposed project on the referenced tax map key has been reviewed. We find that it:
(a) Is not within the Special Management Area.
(b) Should you have any questions, please contact the Environmental Affairs Branch at 523-6077.

Very truly yours,

DONALD A. CLEGG
Director of Land Utilization

BOARD OF WATER SUPPLY
CITY AND COUNTY OF HONOLULU
333 SOUTH WAINIHA STREET
HONOLULU, HAWAII 96813

March 11, 1993

TO: DONALD A. CLEGG, DIRECTOR
 DEPARTMENT OF LAND UTILIZATION

FROM: KAZU HAYASHIDA, MANAGER AND CHIEF ENGINEER
 BOARD OF WATER SUPPLY

SUBJECT: YOUR MEMORANDUM OF JANUARY 5, 1992 REGARDING THE DRAFT ENVIRONMENTAL ASSESSMENT (EA) FOR THE PROPOSED KALIHI UKA EXPLORATORY WELL IN THE 1-4-20, 39 KAHII STREET

Thank you for reviewing the Draft EA for our proposed project. We note that the proposed project is not within the Special Management Area.

If you have any questions, please contact Bert Kulika at 527-5235.

JTr

cc: K. Hayashida
 B. Kulika

92-0017
MEMORANDUM

TO: KAZU HAYASHIDA, MANAGER AND CHIEF ENGINEER
 BOARD OF WATER SUPPLY

FROM: BENJAMIN B. LEE, CHIEF PLANNING OFFICER
 DEPARTMENT OF GENERAL PLANNING

SUBJECT: DRAFT ENVIRONMENTAL ASSESSMENT (EA) FOR KALIHI UMA
 EXPLORATORY WELL III. TMK: 1-4-20: 39, KALIHI STREET

December 30, 1992

In response to your memorandum of December 7, 1992, we have reviewed the subject EA and offer the following comments:

1. We have no objections to the proposed project.

2. An amendment to the Primary Urban Center Development Plan Public Facilities Map (DPPFM) will not be required as mentioned in your EA since the subject project is considered minor. However, if a production well is to be constructed, a DPPFM amendment will be required in accordance with Section 24-1.2.(1)(A) of the Development Plan Common Provisions.

Should you have any questions, please contact Tim Hata of our staff at 527-6070.

Ben

BENJAMIN B. LEE
Chief Planning Officer

TO: ROBIN FOSTER, CHIEF PLANNING OFFICER
 PLANNING DEPARTMENT

FROM: KAZU HAYASHIDA, MANAGER AND CHIEF ENGINEER
 BOARD OF WATER SUPPLY

SUBJECT: YOUR MEMORANDUM OF DECEMBER 30, 1992 REGARDING THE
 DRAFT ENVIRONMENTAL ASSESSMENT (EA) FOR THE PROPOSED
 KALIHI UMA EXPLORATORY WELL III. TMK: 1-4-20: 39, KALIHI STREET

February 22, 1993

Thank you for reviewing the Draft EA for our proposed project. We have the following response to your comments:

1. We note that you have no objections to the proposed project.

2. We understand that an amendment to the Primary Urban Center Development Plan Public Facilities Map (DPPFM) will not be required since the subject project is considered minor. However, if a production well is to be constructed, a DPPFM amendment will be required.

If you have any questions, please contact Bert Kukusa at 527-5235.
Memos

TO: KAZU HAYASHI, MANAGER AND CHIEF ENGINEER
BOARD OF WATER SUPPLY

FROM: C. MICHAEL STREET, DIRECTOR AND CHIEF ENGINEER
DEPARTMENT OF PUBLIC WORKS

SUBJECT: DRAFT ENVIRONMENTAL ASSESSMENT (DEA)
KALSI EMA EXPLORATORY WELL III

We have reviewed the subject DEA and have the following comments:

1. We have no objections to the proposed project.
2. If dewatering activity is anticipated during the construction and pump tests, dewatering permits will be required from the State Department of Health as well as the Department of Public Works, City and County of Honolulu.
3. The DEA should address the impact of storm water discharge associated with construction activities on water quality of the receiving waters.
4. The DEA should also state what structural or non-structural best management practice (BMP) will be provided to control and reduce the discharge of pollutants as outlined in the National Pollutant Discharge Elimination System (NPDES) regulations (40 CFR Part 122, Subpart B for municipal storm sewer system).

C. Michael Street
Director and Chief Engineer

March 15, 1993

TO: C. MICHAEL STREET, DIRECTOR AND CHIEF ENGINEER
DEPARTMENT OF PUBLIC WORKS

FROM: KAZU HAYASHI, MANAGER AND CHIEF ENGINEER
BOARD OF WATER SUPPLY

Thank you for reviewing the Draft EA for our proposed project. We have the following response to your comments:

1. We note that you have no objections to the proposed project.
2. We do not anticipate any dewatering activities because the project is located at the 570 ft. elevation.
3. The stormwater runoff that will be associated with construction activity will have little impact because the graded area is approximately 5,000 square feet. However, the contractor will incorporate measures to retain all laden runoff on the project site by the use of swales and berms. The total project area is less than five acres, and therefore, will not require a National Pollutant Discharge Elimination System (NPDES) permit for stormwater runoff associated with construction activity.
4. A Department of Health (NPDPS) permit to discharge effluent from well pumpage tests into Kalahi Stream will be required. If the municipal storm sewer system is utilized, appropriate discharge permits will be obtained from the Department of Public Works. Both Management Practices (BMP) will be provided to prevent or reduce the pollution of State waters. The BMP will be described in detail in the NPDES permit application.

If you have any questions, please contact Bert Kuloka at 527-5235.