BOARD OF WATER SUPPLY

CITY AND COUNTY OF HONOLULU 630 SOUTH BERETANIA STREET HONOLULU, HAWAII 96843 PHONE (808) 527-6180 FAX (808) 533-2714

November 21, 1997

JEREMY HARRIS, Mayor

Kaluanui Well Addition

WALTER O. WATSON, JR., Chairman MAURICE H. YAMASATO, Vice Chairman KAZU HAYASHIDA MELISSA Y.J. LUM FORREST C. MURPHY JONATHAN K. SHIMADA, PhD BARBARA KIM STANTON

RAYMOND H. SATO Manager and Chief Engineer

RECEWED

 $\left(\left(\right) \right)$

Mr. Gary Gill, Director Office of Environmental Quality Control Central Pacific Plaza, 4th Floor 220 South King Street Honolulu, Hawaii 96813

Dear Mr. Gill:

Subject:

Finding of No Significant Impact for the Board of Water Supply's Proposed Kaluanui Well Addition (Previously Referred to as Kaluanui Well III), Windward, Oahu, Hawaii, TMK: 5-3-11: 09

The Board of Water Supply (BWS) has reviewed the comments received during the public comment period which began on September 23, 1997. We have determined that the environmental impacts of this project have been adequately addressed as discussed in the final environmental assessment (EA) and are therefore, issuing a finding of no significant impact. We request that the proposed well project be published as finding of no significant impact in the next Office of Environmental Quality Control (OEQC) Bulletin. In addition, we request a project name change from Kaluanui Well III to Kaluanui Well Addition. The project name was orginally Kaluanui Well III because it was the third exploratory well to be drilled at the BWS existing Kaluanui Well Station. Since this is the production phase of the well project, we request the project name be revised to Kaluanui Well Addition.

Attached are the completed OEQC bulletin publication form and four copies of the final EA for your review.

If you have any questions, please contact Barry Usagawa at 527-5235.

Very truly yours,

97 NOV 25, P2:1

OND H. SATO Manager and Chief Engineer

Attachments

-Keith-Uemura; ParEn, Inc. cc: Poul Induye, MEE Pacific inc

Pure Water . . . our greatest need - use it wisely

1997-12-08-0A-FEA-Kaluanui Well DEC 8 16.37 Addition FILE COPY

FINAL ENVIRONMENTAL ASSESSMENT

Kaluanui Well Addition

TMK: 5-3-11:09

Prepared for

City and County of Honolulu Board of Water Supply

November 1997

Prepared By

M&E Pacific, Inc. Pauahi Tower 1001 Bishop Street, Suite 500 Honolulu, Hawaii 96813

TABLE OF CONTENTS

1.0		LICANT
2.0		ROVING AGENCY1
3.0		SULTATION LIST1
4.0	PRO.	JECT OBJECTIVE AND NEED1
5.0	PRO .	JECT BACKGROUND AND DESCRIPTION
	5.1	Technical Description of Proposed Action2
	5.2	Cost of Proposed Action
6.0	SUM	MARY OF AFFECTED ENVIRONMENT
	6.1	Location and Access
	6.2	Topography and Climate3
	6.3	Infrastructure
	6.4	Land Use Zoning and Ownership4
	6.5	Geology and Hydrology4
	6.6	Soils4
	6.7	Water Quality4
	6.8	Natural Hazards5
	6.9	Archaeological and Historic Sites
	6.10	Biological Resources5
	6.11	Air Quality and Noise
	6.12	Stream Flow
7.0	PRO	BABLE IMPACTS AND MITIGATION MEASURES
	7.1	Short-term Construction Related Impacts7
	7.2	Visual Impacts8
	7.3	Groundwater Impacts8
8.0	ALTI	ERNATIVES TO THE PROPOSED ACTION8
	8.1	No Action8
	8.2	Delayed Action8
	8.3	Alternative Site8
	8.4	Desalination9
	8.5	Surface Water9
	8.6	Reclamation9
9.0	LIST	OF PERMITS9
10.0	DETI	ERMINATION10
11.0	REFE	ERENCES

•

-

.

___`

.

......

_--

•

٠

-

LIST OF FIGURES

- Figure 1: Regional Location Map
- Figure 2: Tax Map Key Location Map
- Figure 3: Site Plan
- Figure 3A: Well Site Improvement Illustration
- Figure 4: Hydrologic Map, Island of Oahu
- Figure 4A: Koolauloa Ground Water Sources
- Figure 5: Archaeological Sites
- Figure 6: Existing Wells Near the Project Area
- Figure 7: Pumping Well Illustration
- Figure 8: Gage Location Map

APPENDICES

- Appendix A: Water Quality and Chemical Data
- Appendix B: Archaeological Investigation
- Appendix C: Botanical Investigation
- Appendix D: Yield-Drawdown Test Data
- Appendix E: Water Source Inventory
- Appendix F: Draft EA Distribution List
- Appendix G: Draft EA Comment and Responses

•

Final Environmental Assessment Kaluanui Well Addition

1.0 APPLICANT

The applicant for the Kaluanui Well Addition (referred to hereafter as the project) is the Board of Water Supply (BWS), City and County of Honolulu (CCH). This Environmental Assessment (EA) was prepared in accordance with Section 343, Hawaii Revised Statutes (HRS) and Chapter 200 of Title 11, Hawaii Administrative Rules (HAR). This EA is required due to the use of state land and county funds.

2.0 APPROVING AGENCY

The approving agency for a determination of significance for this Environmental Assessment is the BWS, CCH.

3.0 CONSULTATION LIST

The following parties were contacted during the preparation of this environmental assessment:

Federal

Department of the Army Pacific Ocean Division, Corps of Engineers

State of Hawaii

Department of Land and Natural Resources Water Resource Management Division Land Division Department of Health Safe Drinking Water Branch Office of Environmental Quality Control Office of Hawaiian Affairs

<u>City and County of Honolulu</u> Board of Water Supply Department of Land Utilization Planning Department Department of Public Works

4.0 PROJECT OBJECTIVE AND NEED

This project will provide the necessary facilities to convert Kaluanui Exploratory Well III into a production well. The proposed action is a part of an overall groundwater

Nov. 1997

BWS, CCH

Final Environmental Assessment	Nov. 1997
Kaluanui Well Addition	BWS, CCH

development program intended to increase the municipal water supply to meet the growing demands of an increasing population. The BWS served a population of more than 900,000 in fiscal year 1995, and the island wide demand was 153 million gallons per day (mgd). These numbers are expected to increase to 973,000 and 183 mgd, respectively by the year 2005 (BWS, 1995). Much of the anticipated growth on Oahu will occur in the Honolulu District which extends from Aliamanu to Hawaii Kai. This district currently has the highest population and water demand.

The BWS would not be able to provide adequately for the future water needs of Oahu's population if the program to develop new water sources is curtailed. Inadequate municipal water supplies could result in future restrictions to development on Oahu as well as regional water shortage within the existing developed areas. The BWS has been developing and testing new water sources in the windward area to meet the growing demand. The new production well is expected to add 1.0 mgd to the BWS distribution system.

5.0 PROJECT BACKGROUND AND DESCRIPTION

5.1 Technical Description of the Proposed Project

The Kaluanui Well Addition is located on a densely wooded slope in Kaluanui Valley, Oahu, approximately 4,800 feet mauka (southwest) of Kamehameha Highway. The exploratory well was drilled and tested for water quality and sustainable yield between April and May of 1996. Based on the test results, BWS has recommended a pumping rate of 700 gallons per minute (gpm), or approximately 1.0 mgd for the production well to avoid aquifer overdrafting. The exploratory well is currently capped.

The preliminary layout of proposed facilities is shown on Figure 3. The actual improvements at the well site are illustrated in Figure 3A. The project mainly consists of the following:

- Installation of a new 700 gpm submersible pump and accessories at the well. The proposed well site area will be approximately 400 square yard. Access to the well site will be limited and for BWS personnel only. The nearby inactive Kaluanui Well I will be sealed and its the pumping unit will be salvaged.
- Construction of approximately 300 feet of 12-foot wide paved access road to the well site.
- Installation of approximately 500 feet of 8-inch diameter water transmission main from the well site to the control building.
- Modifications to the existing control building. Currently the building houses the control system for Kaluanui Wells I & II. As necessary, the building will be modified to accommodate the well Addition. The modifications may include adjustments to the motor control system and supervisory control system.

Final	Envi	ronment	al Assessment
Kalus		Well Add	lition

5.2 Cost of the Proposed Action

The preliminary cost estimate for the construction is \$1,750,000. There are no financial or institutional arrangements or commitments related to developing the well. The well water is intended for small user growth. The well project will be financed through the BWS Water System Facilities Charges for resource development.

6.0 SUMMARY OF AFFECTED ENVIRONMENT

6.1. Location and Access

Figure 1 shows the regional location of the Kaluanui Well Addition (DOWALD No. 3554-06) in Kaluanui Valley in the district of Koolauloa, Oahu. The site is within the Sacred Falls State Park on a portion of Tax Map Key (TMK) 5-3-11:9, owned by the State of Hawaii (Figure 2).

Access to the project area is provided by a dirt road that leads inland from the Sacred Falls trail parking area. There is a paved road branches from the dirt road and leads about 800 feet to the existing control building. The Kaluanui Well Addition is about 350 feet north of the existing control building, and 300 feet away from the paved road. The current dirt access road to the proposed well will be paved in this project.

6.2 Topography and Climate

The project site is located on the lower slopes northwest of Kaluanui Valley. Ground elevations in the project area range from 70 to 115 feet above Mean Sea Level (MSL). The new well ground elevation is 90.8 feet MSL. The slope of the paved access road to the control building varies from 4.0% to 12%. See Figure 3 - Site Plan for contour information.

Oahu has relatively uniform day lengths and a solar angle that results in small seasonal variations. The prevailing wind is the northeasterly trade wind. The average rainfall in the project area is 75 inches per year. Heavier rainfall usually occurs during the months of November to February. Temperatures range from 60 to 80 degree Fahrenheit (University of Hawaii, 1973).

6.3 Infrastructure

Electrical and telephone services are already provided to the proposed well site. Utilities are available at the existing control building located approximately 350 feet to the south. Exploratory well drilling has only been performed at the well site thus far.

6.4 Land Use Zoning/Ownership

The project site is located within the state Agricultural District. The parcel is not on ceded land and is exterior of the county Special Management Area (SMA, 1985). It is currently zoned P-2 General Preservation per Department of Land Utilization. The Development Plan (DP) and DP Public Facilities Map designation of this site will be WELL. BWS will coordinate with State of Hawaii Department of Land and Natural Resources (DLNR, land owner) to access and utilize easement for the new well facilities.

6.5 Geology and Hydrology

The Kaluanui area is on the windward side of Oahu and is part of the northwest rift zone of the Koolau Range which extends from Kailua to Kahuku. From the dike complex of the crest area, the hydrogeologic condition changes to the marginal dike zone and finally to basal conditions near coast. Volcanic dikes are much denser and much less permeable than lava flow and cut across pre-existing lava flows. Dikes are nearly vertical and usually less than a yard thick. Compartments formed by these dikes provide storage for groundwater and infiltrated rainfall in the windward area at high elevations (VTN Pacific, 1988).

The Kaluanui Well Addition is expected to withdraw water from the Koolauloa Basal Aquifer at a rate of 1.0 mgd. The Koolauloa Basal Aquifer is a fresh water lens that is confined by caprock along 11 miles of coast from Punaluu Valley to Kahuku Point (Figure 4). The Koolauloa Basal Aquifer is recharged by dike confined high level ground water and directly by rainfall infiltration. Groundwater flows from high head potential to low potential. Therefore, the general groundwater flow path in this region is from mountain to ocean. The estimated yield of the Koolauloa Basal Aquifer is 35 mgd.

An inventory of wells, owners, permitted uses and pumpage is provided in Appendix F. This list is part of the Oahu Water Management Plan for the Koolauloa region. Existing and proposed BWS and private ground water sources are illustrated in Figure 4A.

6.6 Soils

Soils at the project site are classified by the U.S. Soil Conservation Service as Waikane silty clay (WpC) with 8 to 15% slopes (USDA, 1972). Runoff on this soil is slow to medium, and the erosion hazard is slight to moderate.

6.7 Water Quality

In accordance with HAR, Title 11, Chapter 20, water samples were collected and analyzed for possible contaminants in July 1996. No contaminants were found above the maximum contaminant level as set by EPA and DOH. The water quality results from Montgomery Watson Laboratories of Pasadena, California are included in Appendix A.

Final	Env	ironn	nental	Assessment	
Kalu		Well	Addie	ion	

Nov. 1997 BWS, CCH

There results have been addressed in the engineering report currently under review by DOH.

There are no known sources of contamination upgradient of the proposed well. In addition, there has not been any record of contamination problems in the affected aquifer. The proposed well site should be well-protected since it is located within Sacred Falls State Park..

Microbiological data is not available at this time, however, they will be submitted to the state DOH after the permanent pump is installed. Note that the existing chlorination system will be upgraded if necessary to accommodate the additional flow.

6.8 Natural Hazards

....

Flood hazards have not been determined (Zone D) at the project site according to the Flood Insurance Rate Map of the National Flood Insurance Program. A Department of the Army permit will not be required.

Island of Oahu is in Seismic Zone 1 as designated in the 1991 edition of Uniform Building Code (UBC). In a scale of 1 to 4, structures in this zone require the least amount of earthquake protection. The BWS has adopted the design standards for Seismic Zone 3 for all structures. Design and construction of the proposed facility will be in conformance with BWS standards for earthquake protection.

6.9 Archaeological and Historic Sites

An archaeological survey for Kaluanui Exploratory Well III was conducted in November 1990 (see Appendix B). The survey located a concrete-lined *auwai* (ditch), stacked retaining wall /mound of large basalt boulders, and a double alignment of boulders in the vicinity of the project area (Figure 5). These sites (structures) are related to the agricultural activities (sugarcane cultivation) in the area until the late 1960's. The significance of these sites is related to their research potential only.

The exploratory well and temporary access road were constructed in April 1996, and there was no report of damages to the archeological sites. Since the proposed transmission main will be embedded along the access road, archaeological and historic sites are not likely to be impacted. However, should evidence of archeological sites be uncovered during excavation, all construction work will cease and the State Historic Preservation Office shall be notified immediately to investigate the findings.

6.10 Biological Resources

A botanical investigation of the well site and access road was conducted on November 7, 1990 by Botanical Consultants (see Appendix C). The investigation concluded that the project site is almost entirely covered with introduced or alien vegetation. The tree layer

Final	Env	ironn	nenta	Asse	ssmen
12 alu		117-11	ALL	tion	

of the site is composed of octopus trees (*Schefflera actinophylla (Endl.) Harms*) of 26 to 28 feet, and the understory is made up of Christmas berry trees (*Schinus terebinthifolius Raddi*) of 16 to 20 feet. The ground is covered with a herb layer consisting of leaf litter, seedlings, ferns and other alien species. No threatened or endangered plant species exist in the area.

The project site is not likely to provide an important habitat for any endangered indigenous bird species, since the surrounding area is covered with introduced and alien vegetation. Introduced species of birds present in the area include doves, cardinals, owls, pheasants, thrushes, and white eyes. Introduced species of mammals in the area probably include mongooses, rats, feral cats, and feral pigs (VTN Pacific, 1984). Since the project is located approximately 1000 feet from the Kaluanui stream, stream fauna should not be affected.

6.11 Air Quality and Noise

The project site is located within Sacred Falls State Park, a popular hiking area. The distance to the nearest residence is about 3,500 feet. There will be no significant sources of air pollution or noise from the proposed project. The submersible pump will be driven by an electric motor and placed in an enclosed water well having a 193-foot steel casing. Therefore, the proposed project should not have any significant impact on air quality and noise levels in the area.

6.12 Stream Flow

Kaluanui Stream is the only significant surface water body in the vicinity of the project site. It is entirely located on state land acquired for Sacred Falls State Park. None of its water is diverted for agricultural or domestic use. The shortest distance from the stream to the well site is approximately 1,000 feet.

Kaluanui Stream is perennial at high elevations but is naturally intermittent at low elevations in Kaluanui Valley. The primary source of Kaluanui Stream discharge is dikeimpounded ground water at high elevations. In addition, the stream collects surface runoff from a 3.5 square mile watershed and rainfall stored in unconsolidated surface alluvial material. The basal ground water is not a source of the stream flow.

The revised Environmental Impact Statement (EIS) for the Kaluanui Wells, prepared by VTN Pacific in 1984 addressed the issue of stream flow impact (if any) due to pumping of basal water. According to the EIS, on June 2 and 3, 1982, the U.S. Department of the Interior, Geological Survey (USGS) monitored Kaluanui Stream. The results showed that there was no detectable flow in the makai 3,300 feet of the stream channel below an elevation of 20 feet MSL. The implication is that Kaluanui Stream is perched over the basal aquifer on relatively impermeable alluvium which prevents the basal water from entering.

Final Environmental Assessment	Nov. 1997
Kaluanui Well Addition	BWS, CCH

During the same period, Kaluanui Stream had a flow of about 0.28 mgd at an elevation of 110 feet MSL, but virtually no flow below an elevation of about 25 feet MSL. Apparently, the dry weather flow percolated into the stream bed alluvium. Prior to the pump test on May 23, 1996, the static head of the exploratory well was 16.82 feet MSL. If the basal ground water were able to enter the stream, then stream flow should have been detected by USGS in the Kaluanui Stream below an elevation of 16.82 feet MSL.

Impacts on the stream flow are not anticipated during production. The Kaluanui Well Addition is cased to a depth of 193 feet from the surface (102 feet below MSL). Based on the well completion report, the relative locations of the stream, alluvium, well and the water table are illustrated in Figure 7. The amount of water percolated to the stream bed alluvium is generally small comparing to the water flowing away, especially when the flow velocity is high. The limited amount of water in the alluvium runs parallel to the stream flow in layers since the conductivity in the horizontal direction is much greater than that of vertical. Therefore, the water withdrawn from the basal aquifer is not expected to impact the Kaluanui Stream flow since the intervening layers of relatively impermeable alluvium isolates the two water bodies.

The BWS measured the Kaluanui Stream discharges at five different sites (Figure 8) from May 8 to June 13, 1996. The results showed that the stream flow was not affected during pump test conducted from May 23 to 28, 1996. This is to further prove that the water withdrawn from the basal aquifer will not impact the water flowing in Kaluanui Stream. As necessary, BWS will monitor the stream flows to prevent any potential impacts in the future. Appropriate actions will be taken should any adverse effects occur.

7.0 PROBABLE IMPACTS AND MITIGATION MEASURES

7.1. Short-term Construction Related Impacts

1....

Construction activities will take place within or near existing BWS facilities in a remote area. The only major earth moving operations are the trench excavations for the 8-inch transmission main and the access road construction. The fugitive dust and hydrocarbon emission from heavy vehicles will be temporary and insignificant. Other short term impacts, such as the increase in traffic, dust and noises, will also be insignificant since the scale of construction is small, and the job site is isolated. Soil erosion is a potential adverse impact, but can be minimized by preserving existing vegetation and natural buffer zones. The contractor is advised to use all applicable Best Management Practices (BMPs) and best available technologies to minimize short term construction related impacts as necessary. Additionally, discharges associated with the construction of the permanent pump and connecting pipelines will be disinfected and filtered if necessary to minimize impacts to the State receiving waters.

Final	Envi	ronn	nental	Assessmer	It
Kalu	ហ៤រ ՝	Well	Addi	tion	

Nov. 1997 BWS, CCH

7.2 Visual Impacts

The project site is located approximately 4,800 feet mauka of the Kamehameha Highway. It is surrounded by densely grown trees and vegetation. The discharge piping will have a low profile and the transmission water main will be buried in the ground. These objects will not be visible from Kamehameha Highway. Therefore, the visual impacts of the proposed structures is minimal.

7.3 Groundwater Impacts

Test pumping of the Kaluanui Well Addition was conducted on May 23 through 28, 1996. The observation well was Well 3554-02 which is located in Kapaka Farm approximately 1,300 feet away from the testing well (Figure 6). The Yield-Drawdown test data are included in Appendix D. Although the average pumping rate was 827 gpm, the BWS has recommended a pumping rate of 700 gpm. This is based on the overall increases in mineral levels during pump test indicating that the aquifer may be sensitive to overdrafting. The lower pumping rate should reduce the groundwater impacts significantly. When in production, the BWS will monitor the changes in groundwater level to prevent overdraft of and salt water intrusion into the aquifer.

8.0 ALTERNATIVES TO THE PROPOSED ACTION

8.1. No Action

-

.

<u>,</u> 1

 $t \sim 4$

: • •

1.4

1-1

. .

Implementation of this project will help satisfy the increasing water demand in the Honolulu and Windward districts of Oahu. This action is consistent with the Windward Oahu Regional Water System Improvements plan. The No Action option will impede the overall groundwater development program and potentially cause water shortage in the Honolulu and Windward districts.

8.2. Delayed Action

The delayed action alternative was considered but not pursued because this alternative would delay the BWS's implementation schedule and would have substantially similar environmental outcomes. In addition, this alternative would require higher development costs due to inflation.

8.3. Alternative Site

The proposed Kaluanui Well Addition is located in the close vicinity of the existing control building for Kaluanui Wells I & II. The exploratory well has been tested and proven to have high sustainable yield and water quality. To install the well elsewhere

Nov. 1997 BWS, CCH

.

will require additional drilling and testing. It may also involve costly land purchases and access difficulties.

8.4 Desalination

Desalination will be implemented as groundwater withdrawals approach sustainable yields. A site and technology study is currently under way. While the capital cost of a large-scaled desalination plant per gallon is equivalent to groundwater development in rural areas, the operation and maintenance (O&M) costs at \$3.00 per thousand gallons is 10 times the cost of pumping groundwater. O&M cost directly affects the water rates which should be kept as low as possible.

8.5 Surface Water

A 1996 Surface Water Study indicated that surface water development for potable use was not feasible, given the small, variable flows, environmental impact and the intense regulatory process involved with the instream flow standards and the monitoring requirements of the Safe Drinking Water Act.

8.6 Reclamation

The reuse of sewage effluent is a promising alternative resource that is being actively pursued by the City to replace potable use for irrigation and industrial process water and to relieve the development pressure for high quality groundwater supplies. Public health concerns and high costs for dual water system infrastructure limit the extent of reuse. The city is focusing on the Ewa plains rather than the more costly alternative to redevelop existing urban areas with dual systems. Additionally, the Honouliuli Wastewater Treatment Plant effluent has chloride content very suitable for irrigation. Whereas the Sand Island Plant Chloride content is much too high for irrigation use.

9.0 LIST OF PERMITS

The following permits and clearances may be required as part of this project:

State of Hawaji: Subdivision Application (DLU) NPDES Permit (DOH) Water Use Permit (DLNR) Pump Installation Permit (DLNR) Potable Water Source Approval (DOH)

<u>City and County of Honolulu:</u> Grading Permit (Department of Public Works - DPW) Final Environmental Assessment Kaluanui Well Addition

Nov. 1997 BWS, CCH

Building Permit, if necessary (Building Department)

Other:

f

.

. _

10.0 DETERMINATION

In accordance with Chapter 343, Hawaii Revised Statutes, this Environmental Assessment has characterized the technical and environmental issues of the project, identified potential impacts and their significance. It is anticipated that the proposed project will not significantly impact the environment. Therefore, finding of no significant impact is anticipated, and an Environmental Impact Statement is not required for this project. This determination is based on the significance criteria listed in §11-200-12 of the Environmental Impact Statement Rules. Specifically, these significance criteria are addressed below:

- 1. The proposed project will not result in an adverse commitment, loss, or destruction of any natural or cultural resources. The proposed site is in a remote area covered with introduced grasses and vegetation.
- 2. The range of beneficial uses of the environment will not be curtailed.
- 3. The project will not conflict with the state's long-term environmental policies or goals and guidelines as expressed in Chapter 344, HRS, and any revisions thereof and amendments thereto, court orders or executive orders. The project is in conformance with the Oahu Water Management Plan Hawaii, Hawaii State Water Plan and the County's General and Development Plans.
- 4. The project will not adversely affect the economic or social welfare or the community or state.
- 5. The project will not adversely affect public health. The project will provide high quality groundwater to meet the increasing demand in the Windward and Honolulu districts.
- 6. The project will not involve adverse secondary impacts, such as population changes or effects on public facilities. The proposed project responds to current population trends.
- 7. The project will not involve a substantial degradation of environmental quality.
- 8. The project will not include considerable cumulative effect upon the environment nor involves a commitment for larger actions. The project is consistent with the Windward Oahu Regional Water System Improvements plan.

- ---

-

-

- •

.

- 9. The project will not substantially affect a rare, threatened or endangered species, or its habitat.
- 10. The project will not detrimentally affect air or water quality or ambient noise levels. The pump will be driven by an electric motor and placed in a deep water well. Short-term impacts will occur during the construction phase.
- 11. The project will not affect an environmentally sensitive area such as a flood plain, tsunami zone, erosion-prone area, geological hazardous land, estuary, fresh water, or coastal waters.
- 12. The project does not affect identified scenic vistas or view planes. The project site is surrounded by densely grown trees and vegetation.
- 13. The project does not require substantial energy consumption. The submersible pump will be driven by a 100 horsepower motor.

Final Environmental Assessment Kaluanui Well Addition

Nov. 1997 BWS, CCH

11.0 REFERENCES

Documents reviewed during preparation of this Environmental Assessment:

Department of Geography at University of Hawaii, 1973. Atlas of Hawaii.

- Department of Water Supply, City and County of Honolulu, Annual Report and Statistical Summary, July 1, 1994 June 30, 1995.
- Department of Water Supply, City and County of Honolulu, Oahu Resident Population and Water Demand, 1990 - 2010.
- Federal Emergency Management Agency, 1987. Flood Insurance Rate Map (FIRM) for City and County of Honolulu, Hawaii.

International Conference of Building Officials, 1991. Uniform Building Code.

- Maguire Group, Inc., April 1991. Environmental Impact Assessment for an Exploratory Well and Access Road at Kaluanui, Oahu.
- U.S. Department of Agriculture, Soil Conservation Service, August 1972. Soil Survey of Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii.
- VTN Pacific, August 1988. Final Environmental Impact Statement for the Windward Oahu Regional Water System Improvements, Volume 1.
- VTN Pacific, July 1984, Revised Environmental Impact Statement for the Kaluanui Wells.

-

_

-

٠

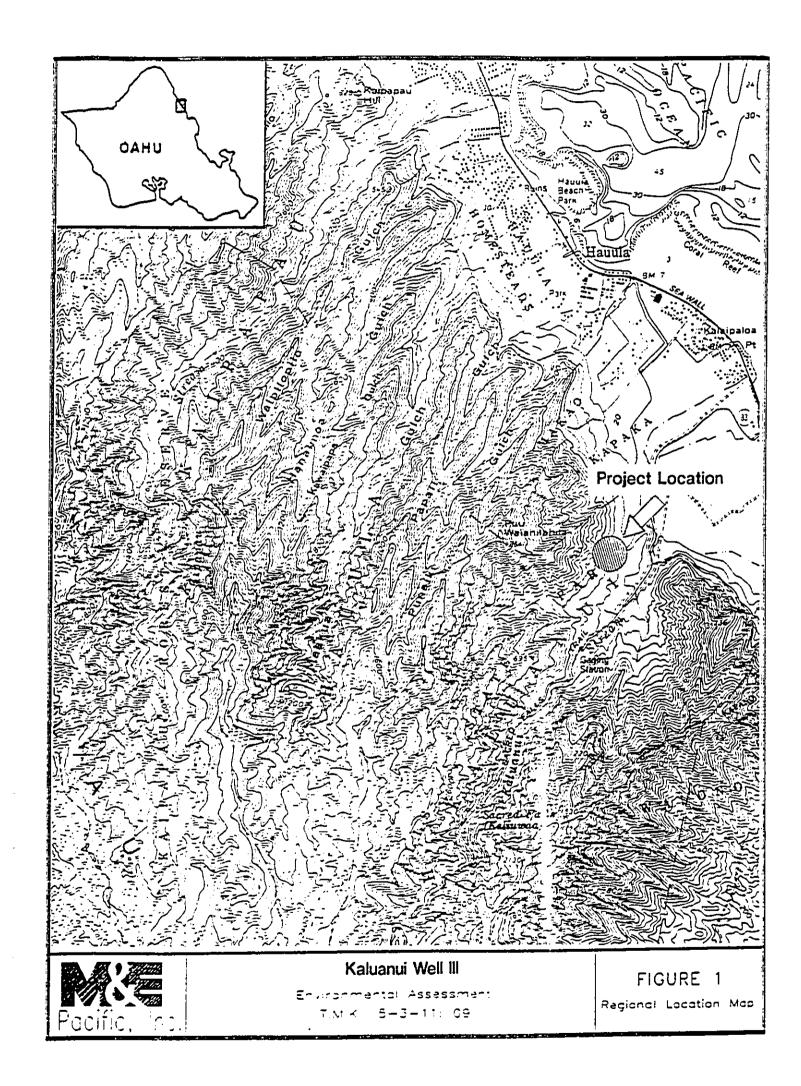
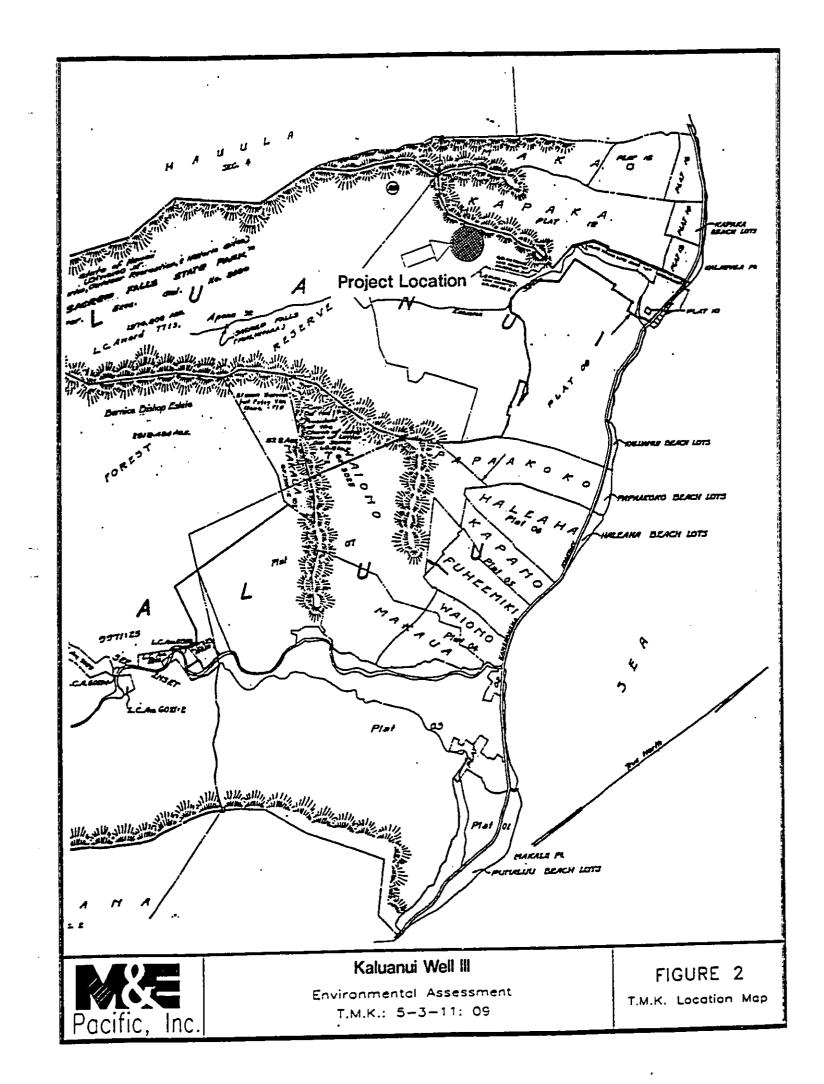
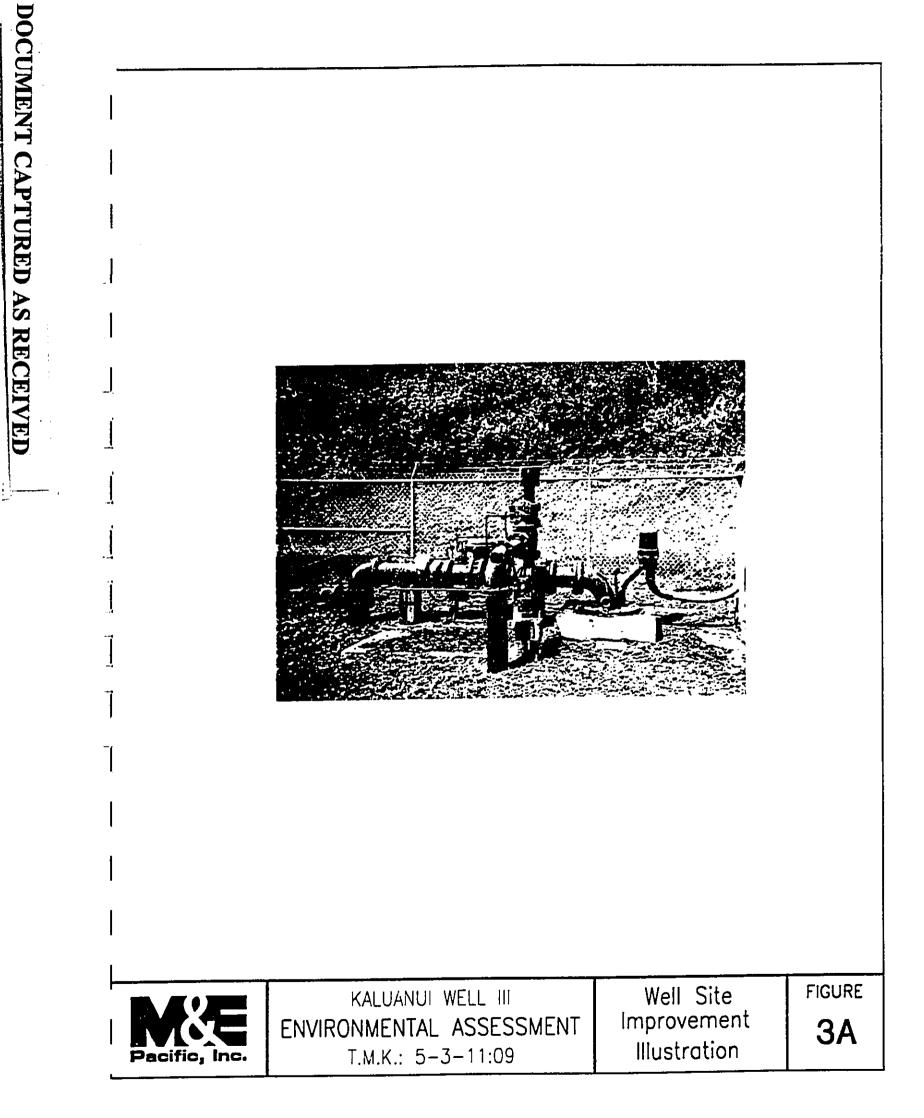
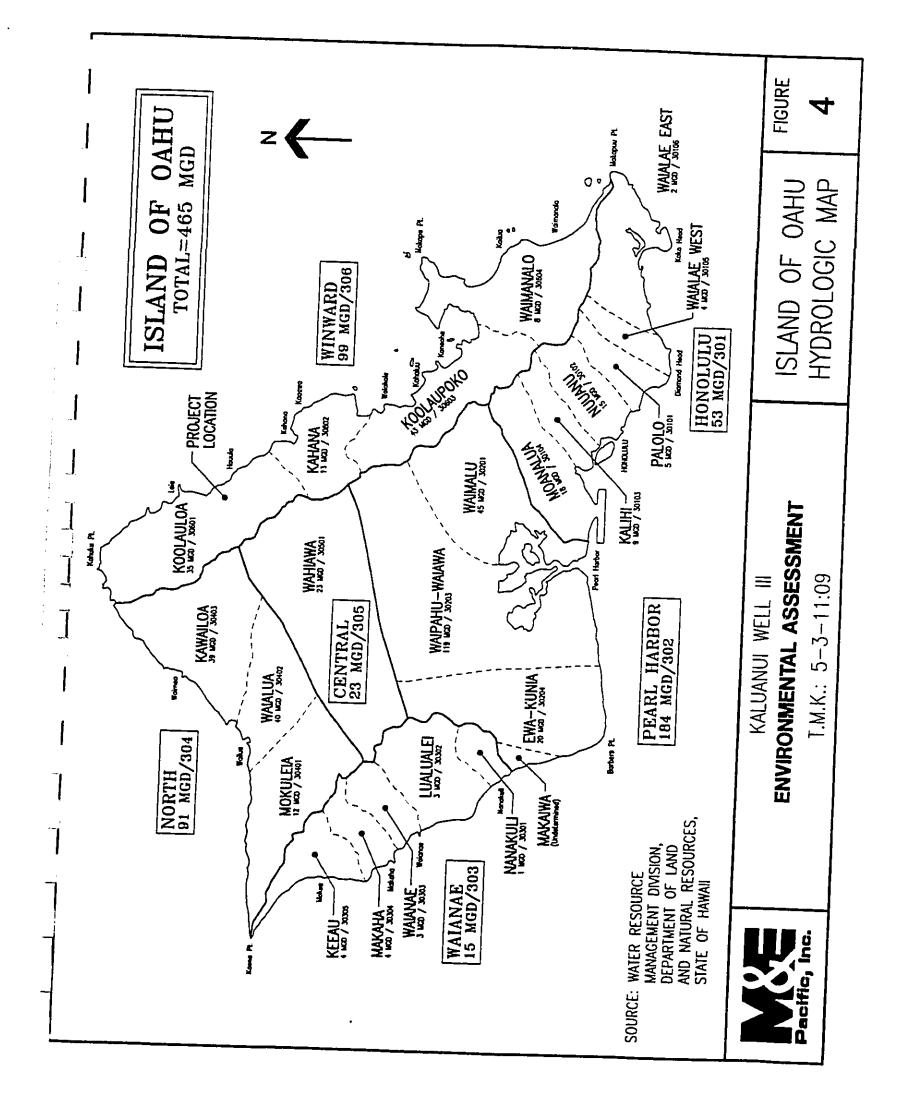

Figures

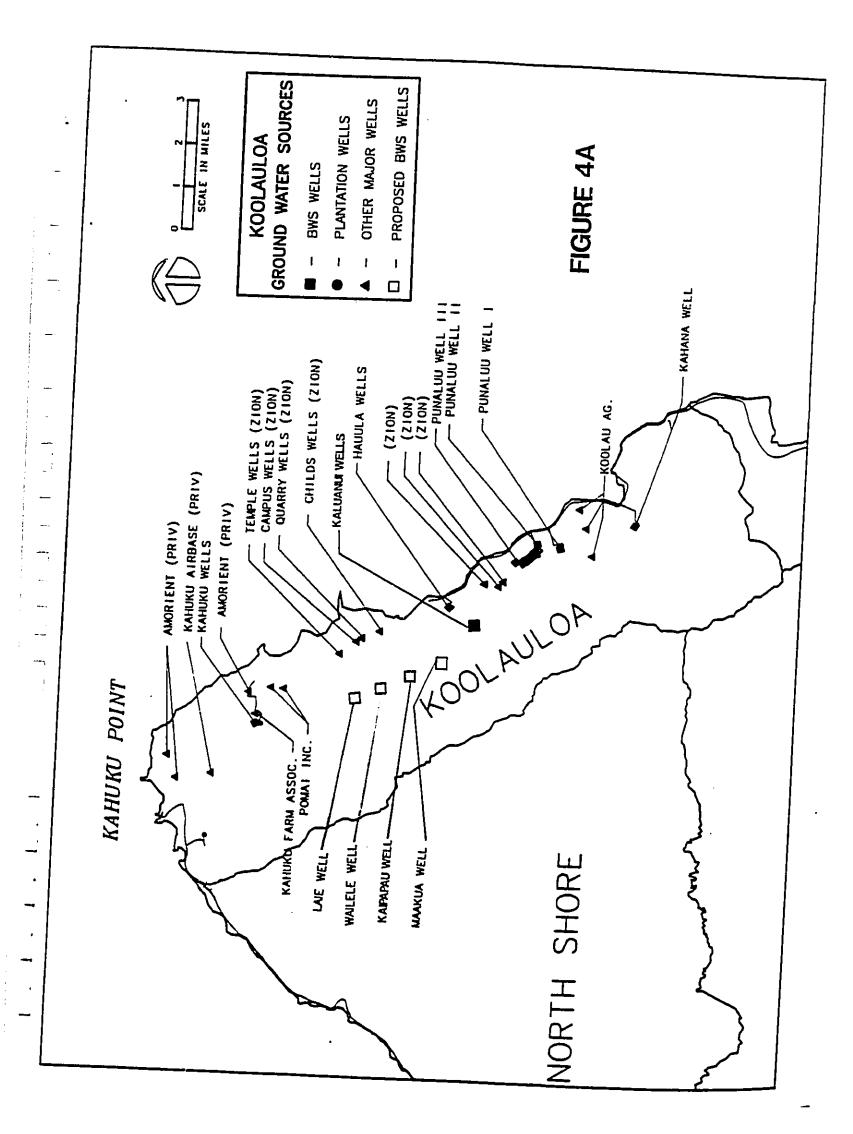
Figure 1:	Regional Location Map
Figure 2:	
Figure 3:	
Figure 3A:	
Figure 4:	
Figure 4A:	
Figure 5:	
Figure 6:	Existing Wells Near the Project Area
Figure 7:	
Figure 8:	Gage Location Map

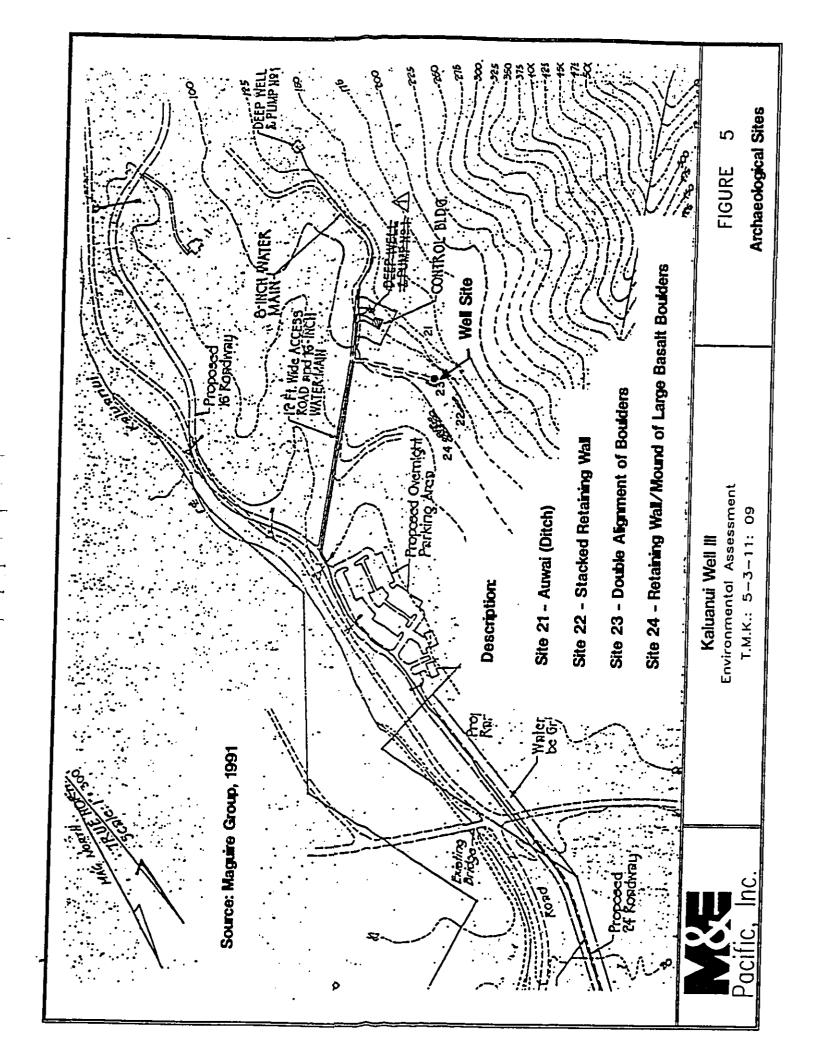

•

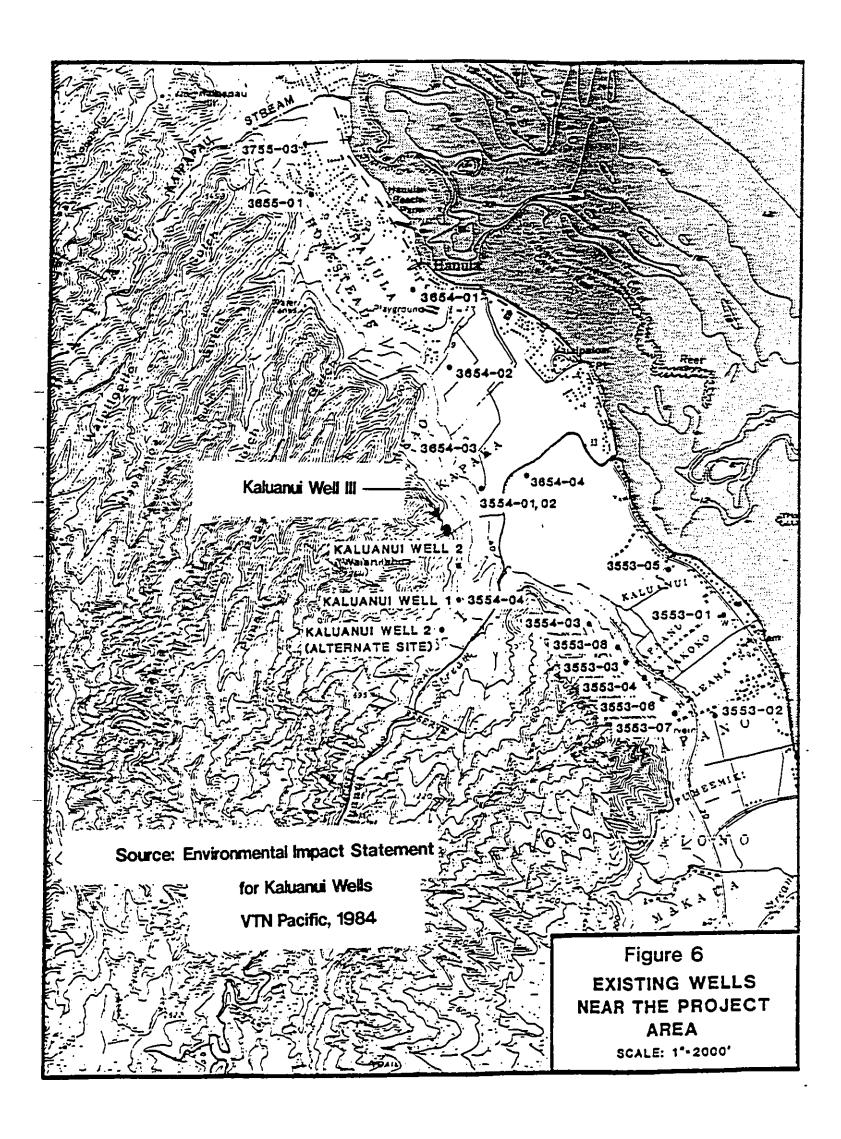
_

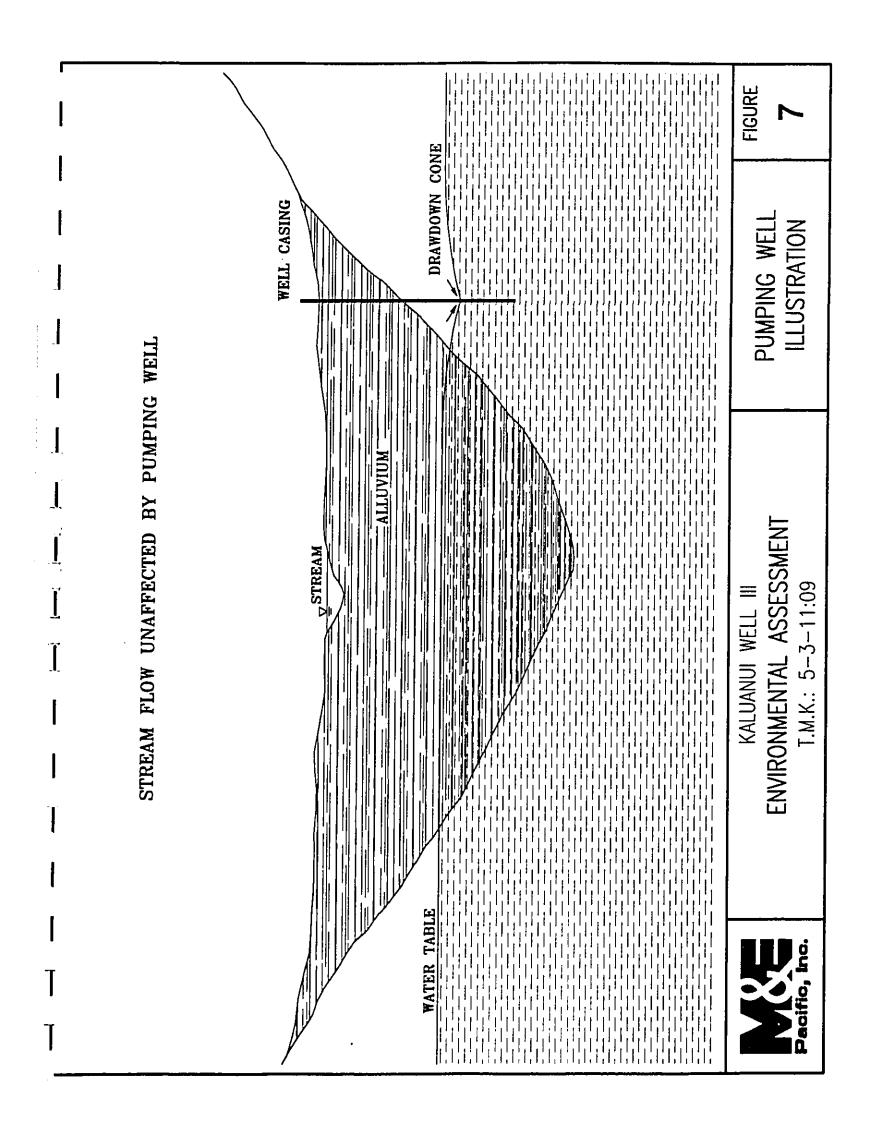

_.




DOCUMENT CAPTURED AS RECEIVED







Appendices

Appendix A:	Water Quality and Chemical Data
Appendix B:	Archaeological Investigation
Appendix C:	Botanical Investigation
Appendix D:	Yield-Drawdown Test Data
Appendix E:	Water Source Inventory
Appendix F:	Draft EA Distribution List
Appendix G:	Draft EA Comment and Responses

- - -

•

AREA Kaluanui Well III (3554-06) LOCATION , 1996 Year May 28 0930 Date collected..... Time collected..... 204,915 Laboratory number..... 17.23 Regional head, feet Specific conductance, 267 micromhos @ 25°C 8.05 pH value 0.03 Turbidity 0 Color IN PARTS PER MILLION 30 Silica 12 8.6 28 Sodium 1.4 95 4.9 Sulfate Chloride 32 **<0.**05 Fluoride 0.68 Nitrate 0.12 Phosphate 0.01 Iron) 0.01 Manganese) 0.01 Copper) 0.01 Lead) 0.01 j.....Less than..... Arsenic 0.01 Selenium Chromium^a 0.01 0.01 Silver 0.01 Barium 0.01 Cadmium Total dissolved solids 213 78 Alkalinity 65 Total hardness IN EQUIVALENTS PER MILLION Calcium (Ca) 0.599 0.707 Magnesium (Mg) 1.237 Sodium (Na) 0.036 Potassium (K) Bicarbonate (HCO₃) 1.557 0.102 Sulfate (SO₄) Chloride (Cl)^b 0.909 0.011 Nitrate (NO3) 5.158 TOTALS

MINERAL ANALYSES

.

~,

~

- -

- -

·---- ·

-

a/ Hexavalent only

b/ Includes fluoride and phosphate as PO4

.

· .

. .

-

....

í. J

-

. .

MONTGOMERY WATSON LABORATORIES

555 East Walaut Street Pasadean, Californio 21101 218 558 5680; Fex: 818 568 6324; 1 809 568 LABS (1 880 568 5227)

•

•

Laboratory Report

for

Honolulu, City of Board of Water Supply Lab

630 S Beretania St

Honolulu , HI 96843

Attention: Ron Fenstemacher Fax: 808 527-6195

Caluanci Well II

MONTGOMERY WATSON LABS. SUBMITTED ON JUN 2 5 1996 HDS Hillary Strayer Hilland

Report#: 27265

MONTGOMERY WATSON LABORATORIES

555 East Wainet Street Pasadena, California 91101 818 568 6480; Fax: 818 568 6324; 1 809 566 LABS (1 800 566 5227) Report Comments #27265

Group Comments

-

---- **、**

-

_

: ~

-

-

_.

- -

(ML525) low spike recoveries for hexachlorocylcopentadiene, acenaphthylene, and aldrin in the LCS. QIR-MS-96-525-9. Result for TCDD analysis submitted by Quanterra Environmental Services. (508) Surrogate recoveries fail high for dibutyl chlorendate surrogate; TCMX recoveries acceptable. Reference QIR-GC-96-091.

٠

Leport Summary of positive results, PR27265

		Result	MDL	UNITS
Analyzed	960530023 · KALUANUI WELL III	(3554-0 6)		
(;/06/96 06/04/96 (;/03/96 (;/03/96 (;/30/96 05/30/96 (;/07/96 06/03/96	Data Entry Chromium, Total, ICAP/MS Data Entry Di-n-Butylphthalate Nitrate Nitrate-N by IC Data Entry Data Entry Calcium, Flame AA	06/10/96 6.6 06/08/96 0.5 0.9 0.2 06/12/96 06/24/96 13	2.000 .500 .440 .100 1.000	UGL UGL MGL MGL

•

-

-- --

.

.....

. .

. .

~

•

-

_--

_

ţ •

÷

-. .

MONTGOMERY WATSON LABORATORIES

555 East Walnut Street Pasadesa, California 91101 618 568 6402; Fax: 818 568 6324; 1 800 566 LABS (1 800 566 5227) Laboratory Report #27265

Samples Received 30-may-1996 10:47:56

.

.

Honolulu, City of Ron Fenstemacher Board of Water Supply Lab 630 S Beretania St Honolulu, HI 96843

Prepared	Analyzed	QC Batch#	Method		Analyte		Rest	ult Unit:	s MDL	Dilutio
(ALUANU	I WELL	TTT (3)	554-06)	(96))530023)	Sampled	on	05/28/96		
	06/03/96	50281		-	Calcium, Flame AA	-	13	mg/	l 1.0	1
	06/11/96	50530	(ML/SM4500-				ND	mg/	ι 0.025	1
36/04/96	06/05/96	50364	(ML/EPA 548		Endothall		ND	ug/	ι 5.0	1
50/04/70	05/31/96	50187	(EPA/ML 340		Fluoride		ND	mg/	ι 0.10	1
- •	06/06/96	50461	(ML/EPA 547		Glyphosate		ND	ug/		1
16/04/96	06/05/96	50431	(EPA/ML 245		Mercury		ND	ug/	L 0.50	1
.0,04,70	05/30/96	50203	(HL/EPA 300		Nitrite, Nitrogen b	/ 10	ND	mg/		1
96/07/96	06/08/96		(EPA 1613		2,3,7,8 - TCDD		ND	PGL	0,54	1
					Latiles by G	:/MS				
05/31/96	06/03/96	50574	(HL/EPA 525	.2)	2,4-Dinitrotoluene		ND	ug/		1
15/31/96	06/03/96	50574	(ML/EPA 525	.2)	alpha-Chlordane		ND	ug/		1
15/31/96	06/03/96	50574	(ML/EPA 525	.2)	Diazinon		NA	ug/		1
05/31/96	06/03/96	50574	(ML/EPA 525	.2)	Acenaphthylene		ND	ug/		1
75/31/96	06/03/96	50574	(ML/EPA 525	.2)	Alachlor		ND	ug/		1
15/31/96	06/03/96	50574	(ML/EPA 525	.2)	Aldrin		ND	ug/		1
05/31/96	06/03/96	50574	(ML/EPA 525	.2)	Anthracene		ND	ug/		1
05/31/96	06/03/96	50574	(ML/EPA 525	.2)	Atrazine		ND	ug/		1
15/31/96	06/03/96	50574	(ML/EPA 525	i.z)	Benz(a)Anthracene		ND	ug/		1
J5/31/96	06/03/96	50574	(ML/EPA 525	.2)	Benzo(a)pyrene		ND	ug/		1
05/31/96	06/03/96	50574	(ML/EPA 525	.2)	Benzo(b)Fluoranthen	•	ND	ug/		1
15/31/96	06/03/96	50574	(ML/EPA 525	i.z)	Benzo(g,h,i)Perylen	2	ND	ug/		1
5/31/96	06/03/96	50574			Benzo(k)Fluoranthen		ND	ug/		1
05/31/96	06/03/96	50574			Di(Z-Ethylhexyl)pht		ND	ug/		1
75/31/96	06/03/96	50574			Butylbenzylphthalat		ND	ug/		1
5/31/96	06/03/96	50574	(ML/EPA 525				ND	ug/		1
-05/31/96	06/03/96	50574	(ML/EPA 525	i.2)	Butachlor		ND	ug/		1
05/31/96	06/03/96	50574	(ML/EPA 525	5.Z)	Caffeine		ND	ug/		1
5/31/96	06/03/96	50574	(ML/EPA 525				ND	ug/		1
	06/03/96	50574	• • • • •		Dibenz(a,h)Anthrace	ne	ND	ug/		1
05/31/96	06/03/96	50574			Di-(2-Ethylhexyl)ad		ND	ug/	1 0. 60	1

•

.

_

, ____

-___

.

MONTGOMERY WATSON LABORATORIES 555 East Walnut Street Pasadena, California 91101 818 568 6480; Fax: 818 568 6324; 1 809 566 LABS (1 800 566 5227)

Laboratory Report #27265

Honolulu, City of (continued)

Prepared	Analyzed	QC Batch#	Nethod	Analyte	Result	Units	MDL	Dilutio
25/31/96	06/03/96	50574	(ML/EPA 525.2) Diethylphthalate	ND	ug/(0.50	1
25/31/96	06/03/96	50574	(ML/EPA 525.2) Dieldrin	ND	ug/l	0.20	1
05/31/96	06/03/96	50574	(ML/EPA 525.2) Dimethylphthalate	ND	ug/l	0.50	1
05/31/96	06/03/96	50574	(ML/EPA 525.2) Dimethoate	ND	ug/l	10	1
)5/31/96	06/03/96	50574	(ML/EPA 525.2) Di-n-Butylphthalate	0.5	ug/l	0.50	1
35/31/96	06/03/96	50574	(ML/EPA 525.2) Endrin	ND	ug/l	0.10	1
05/31/96	06/03/96	50574	(ML/EPA 525.2) Fluorene	ND	ug/l	0.050	1
15/31/96	06/03/96	50574	(ML/EPA 525.2) gamma-Chlordane	ND	ug/l	0.050	1
15/31/96	06/03/96	50574	(ML/EPA 525.2) Hexachlorobenzene	ND	ug/l	0.050	1
05/31/96	06/03/96	50574	(ML/EPA 525.2) Hexachlorocyclopentadiene	ND	ug/l	0.050	1
05/31/96	06/03/96	50574	(ML/EPA 525.2) Heptachior	ND	ug/l	0.040	1
15/31/96	06/03/96	50574	(ML/EPA 525.2) Heptachlor Epoxide	ND	ug/l	0.020	1
J5/31/96	06/03/96	50574	(ML/EPA 525.2) Indena(1,2,3,c,d)Pyrene	ND	ug/l	0.050	1
05/31/96	06/03/96	50574	(ML/EPA 525.2) Isophorone	ND	ug/l	0.50	1
15/31/96	06/03/96	50574	(ML/EPA 525.2) Lindane	ND	ug/l	0.020	1
15/31/96	06/03/96	50574	(ML/EPA 525.2) Methoxychlor	ND	ug/l	0.050	1
05/31/96	06/03/96	50574	(ML/EPA 525.2) Metribuzin	ND	ug/l	0.050	1
75/31/96	06/03/96	50574	(ML/EPA 525.2) Molinate	ND	ug/l	0.20	1
15/31/96	06/03/96	50574	(ML/EPA 525.2) Metolachlor	ND	ug/l	0.050	1
05/31/96	06/03/96	50574	(ML/EPA 525.2) trans-Nonachlor	ND	ug/l	0.050	1
05/31/96	06/03/96	50574	(ML/EPA 525.2	> Pentachlorophenol	ND	ug/l	1.0	1
15/31/96	06/03/96	50574	(ML/EPA 525.2) Phenanthrene	DN	ug/l	0.020	1
15/31/96	06/03/96	50574	(ML/EPA 525.2) Prometryn	ND	ug/l	0.50	1
05/31/96	06/03/96	50574	(ML/EPA 525.2) Propachlor	ND	ug/t	0.050	t
15/31/96	06/03/96	50574	(ML/EPA 525.2) Pyrene	ND	ug/l	0.050	1
15/31/96	06/03/96	50574	(ML/EPA 525.2) Simazine	ND	ug/l	0.050	1
05/31/96	06/03/96	50574	(ML/EPA 525.2) Thiobencarb	ND	ug/l	0.20	1
15/31/96	06/03/96	50574	(ML/EPA 525.2) Trifluralin	ND	ug/l	0.10	1
			(Surrogate) Perylene-d12	87	X Rec		
			AB1803 - E	DB and DBCP				
6/05/96	06/06/96) Dibromochloropropane (DBCP)	ND	ug/l	0.010	1
6/05/96	06/06/96	50365		Ethylene Dibromide (EDB)	ND	ug/l	0.010	1
				1,2-dibromopropane	104	X Rec		-

•

•

...

.--- .

•--

. _

•

MONTGOMERY WATSON LABORATORIES

•

555 East Walnut Street Paszdena, California 51101 818 568 6400: Fax: 818 568 6324; 1 800 566 LABS (1 800 568 5227)

Laboratory Report #27265

Honolulu, City of (continued)

>repare	d Analyzed	QC Batch	# ·Method	Analyte	Result	Units	MDL	Dilutio
			Aldicarb	99				
_	06/04/96	50304		1) 3-Hydroxycarbofuran				
	06/04/96	50304	(ML/EPA 531.	1) Aldicarb (Temik)	ND	ug/l	2.0	1
	06/04/96	50304		1) Aldicarb sulfone	ND	ug/l	0.50	1
	06/04/96	50304	(ML/EPA 531.		ND	ug∕i	0.80	1
	06/04/96	50304	(ML/EPA 531.		ND	ug/l	0.50	1
	06/04/96	50304) Carbofuran (Furadan)	ND	ug/l	2.0	1
	06/04/96	50304	(ML/EPA 531.1) Carbaryt	ND	ug/l	0.90	1
	06/04/96	50304	(ML/EPA 531.1		ND	ug/l	2.0	1
	06/04/96	50304	(ML/EPA 531.1		ND	ug/l	2.0	1
•••	06/04/96	50304	(ML/EPA 531.1		ND	ug/ł	1.0	1
_			(Surrogate) BDMC	ND	ug/l	Z.0	1
-					117	% Rec		
			Diquat an	nd Paraquat				
06/04/96	06/11/96	50534	(ML/EPA 549) Diquat	D			
-26/04/96	06/11/96	50534	(EPA 549) Paraquat	ND	ug/l	0.40	1
						ug/l	2.0	1
06/06/96	04 (11 (0)		Herbicide	s by 515.1				
J6/06/96	06/11/96	50536	C ML/EPA 515.1		ND	ug/l	0.20	•
J6/06/96	06/11/96	50536	(ML/EPA 515.1) 2,4,5-TP (Silvex)	ND	ug/l	0.20	1
06/06/96	06/11/96	50536	(ML/EPA 515.1) 2,4-0	ND	ug/l	0.20	1
06/06/96 06/06/96	06/11/96	50536	<pre>< ML/EPA 515.1</pre>) 2,4-DB	ND	ug/l	2.0	1
06/06/96	06/11/96	50536	C ML/EPA 515.1) Dichlorprop	ND	ug/l	0.50	1
06/06/96	06/11/96	50536	C ML/EPA 515.1) Acifluorfen (qualitative)	ND	ug/l	0.20	1
)6/06/96	06/11/96	50536	C ML/EPA 515.1) Bentazon	ND	ug/l	0.20	1
	06/11/96	50536	(ML/EPA 515.1) Dalapon (qualitative)	ND	ug/l	1.0	•
16/06/96 16/06/96	06/11/96	50536	(ML/EPA 515.1) 3,5-Dichlorobenzoic acid	ND ND	ug/l	0.60	1
	06/11/96	50536	(ML/EPA 515.1) DCPA	ND	ug/l	0.20	1
6/06/96 6/06/96	06/11/96		C HL/EPA 515.1) Dicamba	ND	ug/l		1
	06/11/96		(ML/EPA 515.1) Dinoseb	ND	ug/l ug/l	0.080	1
	06/11/96		(ML/EPA 515.1) Pentachlorophenol	ND	_	0.20	1
	06/11/96		(ML/EPA 515.1) Pictoram	ND	ug/l	0.040	1
6/06/96	06/11/96	50536	ML/EPA 515.1) 4-Nitrophenol (qualitative)	ND	ug/l	0.10	1
			Surrogate) 2,4-Dichlorophenylacetic acid	97	ug/l	5.0	1

•

4

ł

MONTGOMERY WATSON LABORATORIES

Laboratory Report #27265

Honolulu, City of (continued)

555 East Walnut Street Pasadens, California 51101 818 568 6400; Fax: 818 568 6324; 1 800 566 LABS (1 800 566 5227)

Prepared	Analyzed	QC Batch#	Method	Analyte	Result	Unit\$	MDL	Dilutio
<u> </u>			Nitrate b	y IC as NO3 & N			0.10	1
	05/30/96	50205	(EPA/ML 300.0) Nitrate-N by IC	0.2	mg/l	0.10 0.44	1
	05/30/96	50205	(ML/EPA 300) Nitrate	0.9	mg/l	0.44	•
			SDWA Pest	icides				1
	a	50983	(ML/EPA 508) PCB 1016 Aroclor	ND	ug/l	0.10	1
06/05/96	06/07/96	50983	(ML/EPA 508) PCB 1221 Aroclor	ND	ug/l	0.10	
06/05/96	06/07/96		(ML/EPA 508) PCB 1232 Aroclor	ND	ug/l	0.10	1
06/05/96	06/07/96	50983	(ML/EPA 508) PCB 1242 Aroclor	ND	ug/l	0.10	1
06/05/96	06/07/96	50983	(ML/EPA SO8) PCB 1248 Aroclor	ND	ug/l	0.10	1
06/05/96	06/07/95	50983) PCB 1254 Aroclor	ND	ug/l	0.10	1
06/05/96	06/07/96	50983	(HL/EPA 508) PCB 1260 Aroclor	ND	ug/l	0.10	1 .
06/05/96	06/07/96	50983	(ML/EPA 508) Alpha-BKC	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) Alachlor (Alanex)	ND	ug/l	0.050	1
06/05/96	06/07/96	50983	(ML/EPA 508	•	ND	ug/t	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) Aldrin	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) Beta-BHC	ND	ug/l	0.10	1
06/05/96	06/07/96	50983	(ML/EPA 508) Chlordane	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) Chlorthalonil (Drconil, Bravo)	ND	ug/۱	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) Delta-BHC	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) p,p' DDD	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) p,p' DDE		ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) p,p' 001	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) Dieldrin	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) Endrin Aldehyde	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) Endrin	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(HL/EPA 508) Endosulfan I (alpha)	ND		0.010	1
06/05/96	06/07/96	30983	C ML/EPA 508) Endosulfan II (beta)	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) Endosulfan sulfate	ND	ug/l	0.010	1
-	06/07/96	50983	(HL/EPA 508) Heptachlor	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) Heptachlor Epoxide	ND	ug/l		1
06/05/96		50983	(ML/EPA 508) Lindane (gamma-BKC)	ND	ug/l	0.010	1
06/05/96	06/07/96	50983	(ML/EPA 508) Methoxychlar	ND	ug/l	0.050	
06/05/96	06/07/96		(HL/EPA 508) Toxaphene	ND	ug/l	0.50	1
06/05/96	06/07/96	50983	(Surrogate) Dibutyi Chlorendate	132	% Rec		

•

MONTGOMERY WATSON LABORATORIES

Laboratory Report #27265

.

Honolulu, City of (continued)

555 East Walnut Street Pasadena, California 91101 818 568 6400; Fax: 818 568 6324; 1 800 555 LABS (1 800 555 5227)

Prepared	Analyzed	QC Batch#	Method	Analyte	Result	Units	MOL	Dilutio
	· · · · ·		(Surrogate) Tetrachlorometaxylene	124	% Rec	<u> </u>	
			T-22 Inor	g+Gen Min ICPMS Mets				
	06/03/96	50818) Silver, Total, ICAP/MS	ND	ug/l	0.50	1
	06/03/96	50818	•) Aluminum, Total, ICAP/MS	DN	ug/l	25	1
	06/03/96	50818) Arsenic, Total, ICAP/MS	ND	ug/l	1.0	1
	06/03/96	50818	-) Barium, Total, ICAP/MS	ND	ug/l	2.0	1
	06/03/96	50818) Beryllium, Total, ICAP/MS	ND	ug/l	1.0	1
	06/03/96	50818) Cadmium, Total, ICAP/MS	ND	ug/l	0.50	1
	06/03/96	50818) Chromium, Total, ICAP/MS	6.6	ug/l	2.0	1
	06/03/96	50818) Copper, Total, ICAP/MS	ND	ug/l	2.0	1
	06/03/96	50818) Iron, Total, ICAP/MS	ND	ug/l	50	1
	06/03/96	50818) Hanganese, Total, ICAP/HS	ND	ug/l	2.0	1
	06/03/96	50818) Nickel, Total, ICAP/MS	ND	ug/l	5.0	1
	06/03/96	50818	• • •) Lead, Total, ICAP/MS	ND	ug/l	0.50	1
	06/03/96	50818) Antimony, Total, ICAP/MS	ND	ug/l	1.0	1
	06/03/96	50818) Selenium, Total, ICAP/MS	ND	ug/l	5.0	1
	06/03/96	50818	• - •) Thallium, Total, ICAP/MS	ND	ug/l	1.0	1
	06/03/96	50818) Zinc, Total, ICAP/MS	ND	ug/l	5.0	1
			Volatile	Organic Compounds				
	06/04/96	50358	(ML/EPA 502.2) 1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) 1,1,1-Trichloroethane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) 1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) 1,1,2-Trichloroethane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) 1,1-Dichloroethane	ND	ug/l	0.50	1
	06/04/96	50358) 1,1-Dichloroethene	ND	ug/l	0.50	1
	06/04/96	50358) 1,1-Dichloropropene	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) 1,2,3-Trichloropropane	ND	ug/l	0.50	1
	06/04/96	50358) 1,2,3-Trichlorobenzene	ND	ug/i	0.50	1
	06/04/96	50358) 1,2,4-Trichlorobenzene	ND	ug/l	0.50	1
	06/04/96	50358) 1,2,4-Trimethylbenzene	ND	ug/l	0.50	1
	06/04/96	50358	• •) 1,2-Dichloroethane	ND	ug/l	0.50	1
	06/04/96	50358) 1,2-Dichlorobenzene	ND	ug/l	0.50	1
	06/04/96	50358) 1,2-Dichloropropane	ND	ug/l	0.50	1
	06/04/96	50358) 1,3,5-Trimethylbenzene	ND	ug/l	0.50	1

•

ļ

.

;

-

MONTGOMERY WATSON LABORATORIES

555 East Walaut Streat Pasadena, California 91101 818 558 6480; Fax: 818 568 6324; 1 800 568 LABS (1 800 568 5227)

Honolulu, City of (continued)

Prepared	Analyzed	QC Batch#	Hethod	Analyte	Result	Units	MDL -	Dilutio
	06/04/96	50358	(ML/EPA 502.2) 1,3-Dichlorobenzene	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) 1,3-Dichloropropane	ND	ug∕l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) 1,4-Dichlorobenzene	ND	ug/l	0.50	1
	06/04/96	50358	(HL/EPA 502.2) 2,2-Dichloropropane	ND	ug/l	0.50	1
	06/04/96	50358) 2-Chlorotoluene	ND	ug/l	0.50	1
		50358	(ML/EPA 502.2) 4-Chlorotoluene	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) Bromodichtoromethane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) Benzene	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) Bromobenzene	ND	ug/l	0.50	1
	J6/04/96	50358	(ML/EPA 502.2) Bromochloromethane	ND	ug/i	0.50	1
	06/04/96		(ML/EPA 502.2) Bromomethane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) cis-1,2-Dichloroethene	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) Chlorobenzene	DK	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) Carbon tetrachloride	ND	ug/l	0.50	1
	06/04/96	50358	-) cis-1,3-Dichloropropene	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) Bromoform	ND	ug/t	0.50	1
	06/04/96	50358	(ML/EPA 502.2) Chloroform	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) Chloroethane	ND	ug/l	0.50	1
•	06/04/96	50358	(ML/EPA 502.2) Chloromethane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2	• = .	ND	ug/l	0.50	1
	06/04/96	50358) Dibromochloromethane	ND	ug/l	1.0	1
	06/04/96	50358) 1,2-Dibromo-3-chloropropane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) Dibromomethane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) Dichlorodifluoromethane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) 1,2-Dibromoethane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2			ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2		ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2		ND	ug/l	0.50	1
•	06/04/96	50358	(ML/EPA 502.2) Methylene chloride	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2		ND		5.0	1
•	06/04/96	50358	(ML/EPA 502.2) Methyl tert-butyl ether	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) Naphthalene	ND	ug/l	0.50	1
1	06/04/96	50358	(ML/EPA 502.2) n-Butylbenzene	ND	ug/l		1
	06/04/96	50358	(ML/EPA 502.2		ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) o-Xylene	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2		ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2) p-Isopropyltoluene	ND	ug/l	0.50	1

•

-

Page 6

Laboratory Report #27265

....

-.

-----.

---.

-

MONTGOMERY WATSON LABORATORIES

•

.

555 East Walaut Street Pezadena, California 51101 818 568 6600; Fax: 818 568 6324; 1 800 566 1.48:5 (1 800 566 5227)

Laboratory Report #27265

Honolulu, City of (continued)

'repared	Analyzed	QC Batch#	Hethod .		Analyte	Result	Units	MOL	Dilution
•	06/04/96	50358	(ML/EPA 502.2	,	sec-Butylbenzene	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2)	Styrene	ND	ug/1	0.50	1
	06/04/96	50358	(ML/EPA 502.2)	trans-1,2-Dichloroethene	ND	ug/l	0.50	1
-	06/04/96	50358	C ML/EPA 502.2)	tert-Butylbenzene	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2)	Trichioroethene	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 524.2)	Trichlorotrifluoroethane(Freon	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2)	trans-1,3-Dichloropropene	ND	ug/l	0.50	1
··	06/04/96	50358	(ML/EPA 502.2		Toluene	ND	ug/l	0.50	+
	06/04/96	50358	(ML/EPA 502.2	>	Trichlorofluoromethane	ND	ug/l	0.50	1
	06/04/96	50358	(ML/EPA 502.2)	Vinyl chloride	ND	ug/l	0.30	
			(Surrogate)	Bromofluorobenzene-ELCD	84	Z Rec	0.30	•
			(Surrogate		Bromofluorobenzene-PID	87	X Rec		
			(Surrogate		Chlorofluorobenzene-ELCD	93	X Rec		
			(Surrogate		Chlorofluorobenzene-PID	99	X Rec		

-

-

MONTGOMERY WATSON LABORATORIES

555 East Walnut Street Pasadena, California 51181 818 568 6480; Fax: 818 568 6324; 1 800 566 LABS (1 800 566 5227)

Laboratory QC Report #27265

Honolulu, City of

•	QC Batch #50187	Fluori				
ac	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
LCS1	Fluoride	0.87	0.862	99.1	(90.00 - 110.00)	_
LCS2	Fluoride	0.87	0.849	97.6	(90.00 - 110.00)	1.5
MBLK	Fluoride	ND				
MS	Fluoride	0.909	0.920	101.2	(80.00 - 120.00)	
MSD	Fluoride	0.909	0.953	104.8	(80.00 - 120.00)	3.5
	QC Batch #50203	Nitrit	e, Nitz	rogen by	IC	
		Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
QC	Analyte	1.0	1.01	101.0	(90.00 - 110.00)	
LCS1	Nitrite, Nitrogen by IC	1.0	0.99	99.0	(90.00 - 110.00)	2.0
LCS2	Nitrite, Nitrogen by IC	ND	0.,,		-	
MBLK	Nitrite, Nitrogen by IC	1.0	0.99	99.0	(80.00 - 120.00)	
MS	Nitrite, Nitrogen by IC	1.0	0.98	98.0	(80.00 - 120.00)	1.0
MSD	Nitrite, Nitrogen by IC	1.0	0.70			
	QC Batch #50205	Nitrat	e by I	C as NO3	& N	
			_	Yield (%)	Limits (%)	RPD (%)
00	ânsi vre	Spiked	Recovered		Clinit do Area	-
QC MRL K	Analyte Nitrate	Spiked ND	Recovered			
MBLK	Nitrate	•	Recovered	104.4	(90.00 - 110.00)	
HBLK LCS1	Nitrate Nitrate-N	ND 2.5			(90.00 - 110.00) (90.00 - 110.00)	1.2
HBLK LCS1 LCS2	Nitrate Nitrate-N Nitrate-N	ND	2.61	104.4	(90.00 - 110.00) (90.00 - 110.00) (75.00 - 125.00)	
HBLK LCS1	Nitrate Nitrate-N	ND 2.5 2.5	2.61 2.58	104.4 103.2	(90.00 - 110.00) (90.00 - 110.00)	1.2
HBLK LCS1 LCS2 MS MSD	Nitrate Nitrate-N Nitrate-N Nitrate-N	ND 2.5 2.5 2.5 2.5	2.61 2.58 2.56	104.4 103.2 102.4 103.6	(90.00 - 110.00) (90.00 - 110.00) (75.00 - 125.00)	
HBLK LCS1 LCS2 MS MSD	Nitrate Nitrate-N Nitrate-N Nitrate-N Nitrate-N	ND 2.5 2.5 2.5 2.5 Calci	2.61 2.58 2.56 2.59 111, Flay	104.4 103.2 102.4 103.6 me AA	(90.00 - 110.00) (90.00 - 110.00) (75.00 - 125.00) (75.00 - 125.00)	1.2
HBLK LCS1 LCS2 MS MSD	Nitrate Nitrate-N Nitrate-N Nitrate-N Nitrate-N	ND 2.5 2.5 2.5 2.5 Calci Spiked	2.61 2.58 2.56 2.59 m, Flan Recovered	104.4 103.2 102.4 103.6 me AA	(90.00 - 110.00) (90.00 - 110.00) (75.00 - 125.00) (75.00 - 125.00)	1.2
MBLK LCS1 LCS2 MS MSD	Nitrate Nitrate-N Nitrate-N Nitrate-N Nitrate-N QC Batch #50281 Analyte Calcium, Flame AA	ND 2.5 2.5 2.5 2.5 Calci Spiked 50	2.61 2.58 2.56 2.59 m, Flan Recovered 52.7	104.4 103.2 102.4 103.6 me AA Yield (%) 105.4	(90.00 - 110.00) (90.00 - 110.00) (75.00 - 125.00) (75.00 - 125.00) Limits (%) (90.00 - 110.00)	1.2 RPD (%)
MBLK LCS1 LCS2 MS MSD	Nitrate Nitrate-N Nitrate-N Nitrate-N Nitrate-N QC Batch #50281 Analyte	ND 2.5 2.5 2.5 2.5 Calci 50 50	2.61 2.58 2.56 2.59 m, Flan Recovered	104.4 103.2 102.4 103.6 me AA	(90.00 - 110.00) (90.00 - 110.00) (75.00 - 125.00) (75.00 - 125.00)	1.2
MBLK LCS1 LCS2 MS MSD QC LCS1	Nitrate Nitrate-N Nitrate-N Nitrate-N Nitrate-N QC Batch #50281 Analyte Calcium, Flame AA	ND 2.5 2.5 2.5 2.5 Calci 50 50 ND	2.61 2.58 2.56 2.59 111, Flan Recovered 52.7 53.2	104.4 103.2 102.4 103.6 me AA 9 Yield (%) 105.4 106.4	<pre>(90.00 - 110.00) (90.00 - 110.00) (75.00 - 125.00) (75.00 - 125.00) (75.00 - 125.00) Limits (%) (90.00 - 110.00) (90.00 - 110.00)</pre>	1.2 RPD (%)
MBLK LCS1 LCS2 MS MSD QC LCS1 LCS2	Nitrate Nitrate-N Nitrate-N Nitrate-N Nitrate-N QC Batch #50281 Analyte Calcium, Flame AA Calcium, Flame AA	ND 2.5 2.5 2.5 2.5 Calci 50 50	2.61 2.58 2.56 2.59 m, Flan Recovered 52.7	104.4 103.2 102.4 103.6 me AA Yield (%) 105.4	(90.00 - 110.00) (90.00 - 110.00) (75.00 - 125.00) (75.00 - 125.00) Limits (%) (90.00 - 110.00)	1.2 RPD (%)

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

.

Page

1

MONTGOMERY WATSON LABORATORIES

555 East Wainut Street Pusadena, Californie 91101 818 568 6600; Fax: 818 568 6324; 3 809 566 LABS (1 800 566 5227)

.

Laboratory QC Report #27265

٠

Honolulu, City of (continued)

- •		QC Batch #50304	Aldica	rbs			
	QC	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
_	LCS1	3-Hydroxycarbofuran	20.0	17.5	87.5	(85.00 - 120.00)	
-	MBLK	3-Hydroxycarbofuran	DM				
	MS	3-Hydroxycarbofuran	20.0	21.3	106.5	(70.00 - 130.00)	
	LCST	Aldicarb (Temik)	20.0	21.9	109.5	(83.00 - 115.00)	
	MBLK	Aldicarb (Temik)	ND				
	MS	Aldicarb (Temik)	20.0	21.2	106.0	(70.00 - 130.00)	
	LCS1	Aldicarb sulfone	20.0	18.4	92.0	(84.00 - 128.00)	
_	MBLK	Aldicarb sulfone	ND				
	MS	Aldicarb sulfone	20.0	21.4	107.0	(60.00 - 130.00)	
	LCS1	Aldicarb sulfoxide	20.0	18.0	90.0	(85.00 - 138.00)	
	MBLK	Aldicarb sulfoxide	ND				
	MS	Aldicarb sulfoxide	20.0	21.6	108.0	(70.00 - 130.00)	
_	LCS1	Baygon	20.0	19.6	98.0	(85.00 - 115.00)	
	MBLK	Baygon	ND				
	MS	Baygon	20.0	21.4	107.0	(70.00 - 130.00)	
	LCS1	Carbaryl	20.0	16.6	83.0	(85.00 - 119.00)	
-	MBLK	Carbaryl	ND				
	MS	Carbaryl	20.0	21.5	107.5	(70.00 - 130.00)	
	LCS1	Carbofuran (furadan)	20.0	19.4	97.0	(85.00 - 115.00)	
	MBLK	Carbofuran (Furadan)	ND				
	MS	Carbofuran (Furadan)	20.0	21.4	107.0	(70.00 - 130.00)	
	LCS1	Hethiocarb	20.0	17.6	88.0	(70.00 - 136.00)	
	MBLK	Methiocarb	ND				
_	MS	Hethiocarb	20.0	22.0	110.0	(70.00 - 130.00)	
•	LCST	Methomyl	20.0	19.2	96.0	(85.00 - 115.00)	
	MBLK	Methomyl	ND				
	MS	Methomyl	20.0	20.8	104.0	(70.00 - 130.00)	
	LCST	Oxamyl (Vydate)	20.0	17.5	87.5	(85.00 - 115.00)	
•	MBLK	Oxamyl (Vydate)	ND				
	MS	Oxamyl (Vydate)	20.0	21.5	107.5	(70.00 - 130.00)	

٠

.

. ----

-

. .

÷ – ÷ 1 ----

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

•

Page

2

.....

į _

J,

4 i MONTGOMERY WATSON LABORATORIES ٠ 555 East Walnut Street

Laboratory QC Report #27265

.

Honolulu, City of (continued)

Pasadena, California 51101 818 568 6480; Fax: 818 568 6324; 1 800 566 LABS (1 800 566 5227)

• •

		QC Batch #50358	Volat	ile Org	anic Comp	ounds	
	QC	Analyte	Spiked	Recovered	d Yield (%)	Limits (%)	RPD (%)
	MBLK	1,1,1,2-Tetrachloroethane	ND				
	LCS1	1,1,1-Trichtoroethane	4.00	3.96	99.0	(80.00 - 120.00)	
	LCS2	1,1,1-Trichloroethane	4.00	4.25	106.2	(80.00 - 120.00)	7.1
	MBLK	1,1,1-TrichLoroethane	ND				
	MBLK	1,1,2,2-Tetrachloroethane	ND				
	MBLK	1,1,2-Trichloroethane	ND				
	MBLK	1,1-Dichloroethane	ND				
-	MBLK	1,1-Dichloroethene	ND				
	MBLK	1,1-Dichloropropene	ND				
	LCS1	1,2,3-Trichlorobenzene	4.00	3.32	83.0	(80.00 - 120.00)	
_	LCS2	1,2,3-Trichlorobenzene	4.00	3.51	87.8	(80.00 - 120.00)	5.6
	MBLK	1,2,3-Trichtorobenzene	ND				
- .	HBLK	1,2,3-Trichloropropane	ND				
	MBLK	1,2,4-Trichiorobenzene	ND				
	MBLK	1,2,4-Trimethylbenzene	ND				
	MBLK	1,2-Dichlorobenzene	ND				
	MBLK	1,2-Dichloroethane	ND				
	MBLK	1,2-Dichloropropane	ND				
	MBLK	1,3,5-Trimethylbenzene	ND				
-	MBLK	1,3-Dichlorobenzene	ND				
	MBLK	1,3-Dichloropropane	ND				
	MBLK	1,4-Dichlorobenzene	ND				
-	MBLK	2,2-Dichloropropane	ND				
	MELK	2-Chlorotoluene	ND				
-	MBLK	4-Chlorotoluene	ND				
	LCS1	Benzene	4.00	3.63	90.8	(80.00 - 120.00)	
	LCS2	Benzene	4.00	3.88	97.0	(80.00 - 120.00)	6.7
. •	MBLK	Benzene	ND				
	MBLK	Bromobenzene	ND				
	MBLK	Bromochloromethane	ND				
	LCS1	BromodichLoromethane	4.00	3.88	97.0	(80.00 - 120.00)	
•	LCS2	Bromodichloromethane	4.00	3.94	98.5	(80.00 - 120.00)	1.5
	MBLK	Bromodichloromethane	ND			•	

_

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

•

. .

MONTGOMERY WATSON LABORATORIES

.

555 East Walnut Street Pasadena, California 31101 818 568 6400; Fau: 818 568 6324; 1 800 566 LABS (1 800 568 5227)

Laboratory QC Report #27265

Honolulu, City of (continued)

•	· _ ·	/ 00	3.70	92.5	(80.00 - 120.00)
LCS1	Bromoform	4.00	5.70 4.03	100.8	(80.00 - 120.00) 8.5
LCS2	Bromoform	4.00	4.03	100.0	(00100 (20100) 013
MBLK	Bromoform	ND			
MBLK	Bromomethane	ND		101 E	(80.00 - 120.00)
LCS1	Carbon tetrachloride	4.00	4.06	101.5 107.7	(80.00 - 120.00) 6.0
LCS2	Carbon tetrachloride	4.00	4.31	107.7	(30.00 - 120.00) 0.0
MBLK	Carbon tetrachloride	ND			
MBLK	Chlorobenzene	ND			
MBLK	Chloroethane	ND		93.5	(80.00 - 120.00)
LCS1	Chloroform	4.00	3.74		(80.00 - 120.00) 9.9
LCS2	Chloroform	4.00	4.13	103.2	(00.00 - 120.00) 9.9
MBLK	Chloroform	ND			
MBLK	Chloromethane	ND			(80.00 - 120.00)
LCS1	Dibromochloromethane	4.00	3.75	93.8	(80.00 - 120.00) 5.7
LCSZ	Dibromochloromethane	4.00	3.97	99.2	(80.00 - 120.00) 3.1
MBLK	Dibromochloromethane	ND			
MBLK	Dibromomethane	ND			
MBLK	Dichlorodifluoromethane	ND			
MBLK	Ethylbenzene	ND			
MBLK	Hexachlorobutadiene	ND			
LCS1	Isopropylbenzene	4.00	3.56	89.0	(80.00 - 120.00)
LCS2	Isopropylbenzene	4.00	3.80	95.0	(80_00 - 120.00) 6.5
MBLK	Isopropylbenzene	ND			
MBLK	Methylene chloride	ND			
MBLK	Naphthalene	ND			
MBLK	Styrene	ND			
LCS1	Tetrachloroethene	4.00	3.66	91.5	(80.00 - 120.00)
LCS2	Tetrachloroethene	4.00	3.87	96.8	(80.00 - 120.00) 5.6
MBLK	Tetrachloroethene	ND			
MBLK	Toluene	ND			
LCS1	Trichloroethene	4.00	3.58	89.5	(80.00 - 120.00)
LCS2	Trichloroethene	4.00	3.86	96.5	(80.00 - 120.00) 7.5
MBLK	Trichloroethene	ND			
MBLK	Trichlorofluoromethane	ND			
MBLK	Trichlorotrifluoroethane(freen	ND			
MBLK	Vinyl chloride	ND			
MBLK	cis-1,2-Dichloroethene	ND			
MBLK	cis-1,3-Dichloropropene	AD			

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

.

.

_

-4

-**-** .

_

-- -

٠ -----

. .

MONTGOMERY WATSON LABORATORIES -

555 East Walnut Street Pasadena, California 51101 818 568 6480; Fex: 818 568 6324: 1 800 566 LABS (1 800 566 5227) Laboratory QC Report #27265

٠

Honolulu, City of (continued)

MBLK	m+p-Xylenes	ND ·			
MBLK	n-Butylbenzene	ND		•	
 MBLK	n-Propylbenzene	ND			
MBLK	o-Xylene	ND			
MBLK	p-Isopropyltoluene	ND			
 LCS1	sec-Butylbenzene	4.00	3.56	89.0	(80.00 - 120.00)
LCS2	sec-Butylbenzene	4.00	3.76	94.0	(80.00 - 120.00) 5.5
MBLK	sec-Butylbenzene	ND			
MBLK	tert-Butylbenzene	ND			
 LCS1	trans-1,2-Dichloroethene	4.00	3.80	95.0	(80.00 - 120.00)
 LCS2	trans-1,2-Dichloroethene	4.00	4.06	101.5	(80.00 - 120.00) 6.6
MBLK	trans-1,2-Dichloroethene	ND			
 MBLK	trans-1,3-Dichloropropene	ND			

QC Batch #50364 Endothall

90	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD	(%)
LCS1	Endothall	25	23.7	94.8	(58.00 - 137.00)		
MBLK	Endothall	ND					
MS	Endothall	25	23.5	94.0	(63.00 - 126.00)		

QC Batch #50365 AB1803 - EDB and DBCP

ac	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
DUP	Dibromochloropropane (DBCP)	ND	ND		(0.00 - 20.00)	
LCS1	Dibromochloropropane (DBCP)	0.10	0.09	90.0	(60.00 - 140.00)	
LCSZ	Dibromochloropropane (DBCP)	0.10	0.10	100.0	(60.00 - 140.00)	11
MBLK	Dibromochloropropane (DBCP)	ND				
MS	Dibromochloropropane (DBCP)	0.20	0.20	100.0	(60.00 - 140.00)	
DUP	Ethylene Dibromide (ED8)	ND	ND		(0.00 - 20.00)	
LCS1	Ethylene Dibromide (EDB)	0.10	0.09	90.0	(60.00 - 140.00)	
LCS2	Ethylene Dibromide (ED8)	0.10	0.10	100.0	(60.00 - 140.00)	11
MBLK	Ethylene Dibromide (EDB)	ND				
MS	Ethylene Dibromide (EDB)	0.20	0.21	105.0	(60.00 - 140.00)	

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

•

_

MONTGOMERY WATSON LABORATORIES 555 Esst Walnut Street Pasadens, California 51181 818 568 6480; Fax: 818 568 6324; 1 800 566 LABS (1 800 566 5227) Laboratory QC Report #27265

Honolulu, City of (continued)

•						
	•	•				
	QC Batch #50431	Mercur	Y			
ac	Analyte	Spiked	Recover	ed (ield (%)	Limits (%)	RPD (%)
LCS1		1.50	1.39	92.7	(85.00 - 115.00)	
LCS2	Mercury	1.50	1.39	92.1	(85.00 - 115.00)	0.00
MBLK	•	ND				
MS	Mercury	1.50	1.42	94.1	(80.00 - 120.00)	
MSD	Hercury	1.50	1.44	96.0	(80.00 - 120.00)	1.4
· •						
. 	QC Batch #50461	Glypho	sate			
- ec	Analyte	Spiked	Recover	ed yield (%)	Limits (%)	RPD (%)
LCS1	Glyphosate	50	59.4	118.8	(70.00 - 130.00)	
MBLK	Glyphosate	ND				
B MS	Glyphosate	50	58.8	117.6	(70.00 - 130.00)	
. #						
4	QC Batch #50530	Cyanid	e			
. . ac	Analyte	Spiked	Recover	ed yield (%)	Limits (%)	RPD (%)
LCS1	Cyanide	0.10	0.103	103.0	(90.00 - 110.00)	
MBLK	Cyanide	ND				
MS	Cyanide	0.10	0.098	98.0	(80.00 - 120.00)	
* MSD	Cyanide	0.10	0.104	104. ^p	(80.00 - 120.00)	5.9
-1						
ı	QC Batch #50534	Diquat	and H	Paraquat		
	Analyte	Spiked	Recovers	ed yield (%)	Limits (%)	RPD (%)
, LCS1	Diquat	10.0	10.1	101.0	(70.00 - 130.00)	
MBLK	Diquat	ND				
- MS	Diquat	10.0	10.7	107.0	(70.00 - 130.00)	
LCS1	Paraquat	10.0	10.2	102.0	(70.00 - 130.00)	
' MBLK	Paraquat	ND				
. MS	Paraquat	10.0	10.7	107.0	(70.00 - 130.00)	

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

•

•

1

-

•---

<u>...</u>.

-

-

_

:

ł

-

•••

.

_

MONTGOMERY WATSON LABORATORIES

-

Laboratory QC Report #27265

555 East Walnut Street Pasadesa, Califernis 51101 818 568 6480; Fax: 818 568 6324; 1 800 566 LABS (1 800 566 5227)

Honolulu, City of (continued)

QC Batch #50536

Herbicides by 515.1

QC	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
MBLK	2,4,5-T	ND				
LCST	2,4,5-TP (Silvex)	0.50	0.52	104.0	(67.00 - 120.00)	
LCS2	2,4,5-TP (Silvex)	0.50	NA		(67.00 - 120.00)	0.00
MBLK	2,4,5-TP (Silvex)	ND				
MS	2,4,5-TP (Silvex)	0.50	0.48	96.0	(42.00 - 226.00)	
LCS1	2,4-0	1.00	0.96	96.0	(72.00 - 127.00)	
LCS2	2,4-0	1.00	NA		(72.00 - 127.00)	0.00
MBLK	2,4-D	ND				
MS	2,4-D	1.00	0.86	86.0	(49.00 - 214.00)	
MBLK	2,4-DB	ND				
MBLK	3,5-Dichlorobenzoic acid	ND				
MBLK	4-Nitrophenol (qualitative)	ND				
MBLK	Acifluorfen (qualitative)	ND				
LCS1	Bentazon	1.00	1.1	110.0	(75.00 - 134.00)	
LCS2	Bentazon	1.00	NA		(75.00 - 134.00)	0.00
MBLK	Bentaton	ND				
MS	Bentazon	1.00	1.0	100.0	(70.00 - 170.00)	
MBLK	DCPA	ND				
LCS1	Dalapon (qualitative)	6.50	7.4	113.8	(40.00 - 160.00)	
LCS2	Dalapon (qualitative)	6.50	NA		(40.00 - 160.00)	0.00
MBLK	Dalapon (qualitative)	ND				
MS	Dalapon (qualitative)	6.50	5.9	90.8	(40.00 - 160.00)	
LCS1	Dicamba	0.50	0.53	106.0	(38.00 - 232.00)	
LCS2	Dicamba	0.50	NA		(38.00 - 232.00)	0.00
MBLK	Dicamba	ND				
MS	Dicamba	0.50	0.50	100.0	(38.00 - 232.00)	
MBLK	Dichlorprop	ND				
LCS1	Dinoseb	1.00	0.50	50.0	(0.00 - 85.00)	
LCS2	Dinoseb	1.00	NA		(0.00 - 85.00)	0.00
MBLK	Dinoseb	ND				
MS	Dinoseb	1.00	0.39	39.0	(0.00 - 85.00)	
LCS1	Pentachlorophenol	0.50	0.51	102.0	(36.00 - 224.00)	
LCS2	Pentachlorophenol	0.50	NA		(36.00 - 224.00)	0.00
	·					

_

~

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

•

••

••

·

---Ι.

.

÷

٢

MONTGOMERY WATSON LABORATORIES 555 East Walnut Street

Laboratory QC Report #27265

.

-

Honolulu, City of (continued)

Pasadena, California 51101 818 568 6400; Fax: 818 568 6324; 1 800 566 LABS (1 800 566 5227)

•						
	MBLK	Pentachlorophenol	ND .			
	MS	Pentachlorophenol	0.50	0.32	64.0	(36.00 - 224.00)
- *	LCS1	Picloram	0.50	0.42	84.0	(45.00 - 138.00)
	LCS2	Picloram	0.50	NA		(45.00 - 138.00) 0.00
	MBLK	Picloram	ND			
· _	MS	Picloram	0.50	0.38	76.0	(45.00 - 138.00)

QC Batch #50574

525 Semivolatiles by GC/MS

		ac	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
		LCS1	Acenaphthylene	2	1.28	64.0	(70.00 - 130.00)	
	-	MBLK	Acenaphthylene	ND				
		MS	Acenaphthylene	2	1.62	81.0	(70.00 - 130.00)	
:		LCS1	Alachlor	2	1.96	98.0	(70.00 - 130.00)	
	-	MBLK	Alachlor	ND				
		MS	Alachlor	2	1.88	94.0	(70.00 - 130.00)	
		LCSI	Aldrin	2	1.09	54.5	(70.00 - 130.00)	
		MBLK	Aldrin	ND				
		MS	Aldrin	2	1.55	77.5	(70.00 - 130.00)	
		LCS1	Anthracene	2	1.65	82.5	(70.00 - 130.00)	
		MBLK	Anthracene	ND				
,		MS	Anthracene	Z	1.59	79.5	(70.00 - 130.00)	
		LCS1	Atrazine	2	2.04	102.0	(70.00 - 130.00)	
		MBLK	Atrazine	ND				
		MS	Atrazine	2	1.72	86.0	(70.00 - 130.00)	
		LCS1	Benz(a)Anthracene	2	1.73	86.5	(70.00 - 130.00)	
	~	MBLK	Benz(a)Anthracene	ND				
		MS	Benz(a)Anthracene	2	1.91	95.5	(70.00 - 130.00)	
		LCS1	Benzo(a)pyrene	2	1.57	78.5	(70.00 - 130.00)	
		MBLK	Benzo(a)pyrene	ND				
		MS	Benzo(a)pyrene	2	1.58	79.0	(70.00 - 130.00)	
		LCS1	Benzo(b)Fluoranthene	z	1.98	99.0	(70.00 - 130.00)	
	-	MBLK	Benzo(b)Fluoranthene	NG				
		MS	Benzo(b)Fluoranthene	2	1.87	93.5	(70.00 - 130.00)	
		LCS1	Senzo(g,h,i)Perylene	2	1.93	96.5	(70.00 - 130.00)	
	•	MBLK	Benzo(g,h,i)Perylene	ND				
	_	MS	Senzo(g,h,i)Perylene	2	1.78	89.0	(70.00 - 130.00)	

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

•

MONTGOMERY WATSON LABORATORIES

.

Laboratory QC Report #27265

Pasadena, California 5101 812 562 6400; Fax: 812 562 6324; 1 500 555 LABS (1 500 556 5227)

555 East Walnut Street

Honolulu, City of (continued)

		•				
	LCS1	Benzo(k)Fluoranthene	2	1.78	89.0	(70.00 - 130.00)
	MBLK	Benzo(k)Fluoranthene	ND			
	' MS	Benzo(k)Fluoranthene	2	1.80	90.0	(70.00 - 130.00)
	MOLK	Bromacil	ND			
	MBLK	Butachlor	ND			
	LCS1	Butylbenzylphthalate	2	2.05	102.5	(70.00 - 130.00)
	MBLK	Butylbenzylphthalate	DK			
	MS	Butylbenzylphthalate	2	2.05	102.5	(70.00 - 130.00)
	LCS1	Caffeine	2	1.83	91.5	(70.00 - 130.00)
	MBLK	Caffeine	ND			
	MS	Caffeine	2	1.77	88.5	(70.00 - 130.00)
	LCS1	Chrysene	2	1.63	81.5	(70.00 - 130.00)
	MBLK	Chrysene	ND			
	MS	Chrysene	2	1.65	82.5	(70.00 - 130.00)
	LCS1	Di(2-Ethylhexyl)phthalate	2	1.93	96.5	(70.00 - 130.00)
	MBLK	Di(2-Ethylhexyl)phthalate	ND			
	MS	Di(2-Ethylhexyl)phthalate	2	1.93	96.5	(70.00 - 130.00)
	LCS1	Di-(2-Ethylhexyl)adipate	2	1.73	86.5	(70.00 - 130.00)
	MBLK	Di-(2-Ethylhexyl)adipate	ND			
-	MS	Di-(2-Ethylhexyl)adipate	2	1.74	87.0	(70.00 - 130.00)
	LCS1	Di-n-Butylphthalate	2	2.05	102.5	(70.00 - 130.00)
	MBLK	Di-n-Butylphthalate	ND			
-	MS	Di-n-Butylphthalate	2	2.03	101.5	(70.00 - 130.00)
	MBLK	Diazinon	ND			
	LCS1	Dibenz(a,h)Anthracene	2	1.75	87.5	(70.00 - 130.00)
	MBLK	Dibenz(a,h)Anthracene	ND			
	MS	Dibenz(a,h)Anthracene	2	1.69	84.5	(70.00 - 130.00)
-	MBLK	Dieldrin	ND			
	LCS1	Diethylphthalate	2	2.03	101.5	(70.00 - 130.00)
• ••	MBLK	Diethylphthalate	ND			
	MS	Diethylphthalate	2	2.01	100.5	(70.00 - 130.00)
	MBLK	Dimethoate	ND			
	LCS1	Dimethylphthalate	2	1.87	93.5	(70.00 - 130.00)
•	MBLK	Dimethylphthalate	ND			
-	MS	Dimethylphthalate	2	1.69	84.5	(70.00 - 130.00)
	LCST	Endrin	2	2.08	104.0	(70.00 - 130.00)
•	MBLK	Endrin	ND			

._____

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

.

•

1

-

•

:

·----

يبده

| ---- |

1 --4

2 8 27948

٠

: •

-

.

; . ___ MONTGOMERY WATSON LABORATORIES

•

555 East Walaut Street Pasadena, California 51101 818 568 6440; Fax: 818 568 6324; 1 800 566 LABS (1 800 566 5227) Laboratory QC Report #27265

Honolulu, City of (continued)

LCS1	Fluorene	z	1.95	97.5	/ 70 00
MBLK	Fluorene	~ ND		71.2	(70.00 - 130.00)
MS	Fluorene	2	1.93	96.5	1 70 00 470 or i
LCS1	Heptachlor	z	1.91	95.5	(70.00 - 130.00)
MBLK	Heptachlor	ND		لی ہ لہ 7	(70.00 - 130.00)
MS	Heptachlor	Z	1.72	86.0	
LCS1	Heptachlor Epoxide	2	1.58	99.0	(70.00 - 130.00)
MBLK	Heptachlor Epoxide	ND			(70.00 - 130.00)
MS	Heptachlor Epoxide	2	1.84	92.0	/ 70 00 - 170 00 -
LCS1	Hexachlorobenzene	2	1.83	91.5	(70.00 - 130.00)
MBLK	Hexachlorobenzene	ND		e 1 a d	(70.00 - 130.00)
MS	Hexachlorobenzene	2	1.77	88.5	/ 70 00 - 470 00 -
LCS1	Hexachlorocyclopentadiene	2	1.31	65.5	(70.00 - 130.00)
MBLK	Hexachlorocyclopentadiene	ND			(49.90 - 133.60)
MS	Hexachlorocyclopentadiene	2	1.41	70.5	/ 50 80 - 170 70 -
LCS1	Indeno(1,2,3,c,d)Pyrene	2	1.73	86.5	(50.80 - 138.30) (70.00 - 130.00)
MBLK	Indeno(1,2,3,c,d)Pyrene	ND			(ru.uu - 120.00)
MS	Indeno(1,2,3,c,d)Pyrene	2	1.69	84.5	(70.00 - 130.00)
MBLK	Isophorone	ND			(10.00 - 150.00)
LCS1	Lindane	2	1.81	90.5	(70.00 - 130.00)
MBLK	Lindane	ND			(10:00 - 120:00)
MS	Lindane	z	1.79	89.5	(70.00 - 130.00)
LCST	Nethoxychlor	2	1.83	91.5	(70.00 - 130.00)
MBLK	Methoxychlor	ND			(10.00 - 120.00)
MS	Methoxychlor	2	1.84	92.0	(70.00 - 130.00)
MBLK	Metolachlor	ND			(10.00 - 100.00)
18LK	Hetribuzin	ND			
.CS1	Molinate	2	1.95	97.5	(70.00 - 130.00)
IBLK	Molinate	ND			(10.00 - (20.00)
IS	Molinate	2	1.85	92.5	(70.00 - 130.00)
.CS1	Pentachlorophenol	8	8.03	100.4	(70.00 - 130.00)
BLK	Pentachlorophenol	ND			(10.00 - 120.00)
S	Pentachlorophenol	8	7.81	97.6	(70 00 / 170 00 -
CS1	Phenanthrene	2	1.85	92.5	(70.00 - 130.00)
BLK	Phenanthrene	ND		F 44 4 4	(70.00 - 130.00)
S	Phenanthrene	2	1.84	92.0	(70 00 470 ac -
BLK	Prometryn	ND		12.0	(70.00 - 130.00)
8LK	Propachlor	ND			

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

•

.....

•

MONTGOMERY WATSON LABORATORIES

555 East Walnut Streef Pasadena, California 51101 818 568 6480; Fax: 818 568 6324; 1 800 555 LABS (1 800 555 5227) Laboratory QC Report #27265

•

Honolulu, City of (continued)

Pyrene .	z ·	1.91	95.5	(70.00 - 130.00)
Pyrene	ND			(10:00 - 150:00)
Pyrene	2	1.91	95.5	(70.00 - 130.00)
Simazine	2	1.86		(70.00 - 130.00)
Simazine	ND			(10100 100.00)
Simazine	2	1.83	91.5	(70.00 - 130.00)
Thiobencarb	2	1.78		(70.00 - 130.00)
Thiobencarb	ND			
Thiobencarb	2	1.77	88.5	(70.00 - 130.00)
Trifluralin	ND			
alpha-Chlordane	2	1.84	92.0	(70.00 - 130.00)
alpha-Chlordane	ND			
alpha-Chlordane	2	1.79	89.5	(70.00 - 130.00)
gamma-Chlordane	2	1.92		(70.00 - 130.00)
gamma-Chlordane	ND	-		
gamma-Chlordane	2	1.78	89.0	(70.00 - 130.00)
trans-Nonachlor				(70.00 - 130.00)
trans-Nonachlor	ND	-		(10100 130.00)
trans-Nonachlor	2	1.71	85.5	(70.00 - 130.00)
	Pyrene Pyrene Simazine Simazine Simazine Thiobencarb Thiobencarb Thiobencarb Trifluralin alpha-Chlordane alpha-Chlordane gamma-Chlordane gamma-Chlordane trans-Nonachlor	PyreneNDPyrene2Simazine2Simazine2Simazine2Thiobencarb2Thiobencarb2Thiobencarb2Thiobencarb2Thiobencarb2Thiobencarb2Thiobencarb2Simazine2	PyreneNDPyrene21.91Simazine21.86Simazine21.83Simazine21.78Thiobencarb21.77Thiobencarb21.77Thiobencarb21.77TrifluralinNDalpha-Chlordane21.84alpha-Chlordane21.79garma-Chlordane21.79garma-ChlordaneNDgarma-Chlordane21.78trans-Nonachlor21.74trans-NonachlorND	PyreneNDPyrene21.9195.5Simazine21.8693.0SimazineND3Simazine21.8391.5Thiobencarb21.7889.0ThiobencarbND7Thiobencarb21.7788.5TrifluralinND3alpha-Chlordane21.8492.0alpha-Chlordane21.7989.5garma-Chlordane21.7889.0garma-Chlordane21.7889.0trans-Nonachlor21.7487.0ND11.7487.0

QC Batch #50818

T-22 Inorg+Gen Min ICPMS Mets

	ac	Analyte	Spiked	Recovered	f Yield (%)	Limits (%)	RPD (%)
	LCS1	Aluminum, Total, ICAP/MS	200	215	107.5	(85.00 - 115.00)	
	LCS2	Aluminum, Total, ICAP/HS	200	227	113.5	(85.00 - 115.00)	5.4
	MBLK	Aluminum, Total, ICAP/MS	ND		0.0	(2.4
'	MS	Aluminum, Total, ICAP/MS	200	207.	103.5	(70.00 - 130.00)	
	MSD	Aluminum, Total, ICAP/MS	200	214.	107.0	(70.00 - 130.00)	3.3
	LCS1	Antimony, Total, ICAP/HS	50	49.3	98.6	(85.00 - 115.00)	3.5
	LCS2	Antimony, Total, ICAP/MS	50	48.3	96.6	(85.00 - 115.00)	2.0
	MBLK	Antimony, Total, ICAP/MS	ND		0.0	(0):00 (10:00)	2.0
. •	MS	Antimony, Total, ICAP/MS	50	47.7	95.4	(70.00 - 130.00)	
	MSD	Antimony, Total, ICAP/MS	50	49.6	99.2	(70.00 - 130.00)	3.9
	LCS1	Arsenic, Total, ICAP/MS	20	19.0	95.0	(85.00 - 115.00)	3.7
	LCS2	Arsenic, Total, ICAP/MS	20	18.8	94.0	(85.00 - 115.00)	1.1
	MBLK	Arsenic, Total, ICAP/HS	ND		0.0	(05.00 - 115.00)	1.1
	MS	Arsenic, Total, ICAP/MS	20	19.4	97.0	(70.00 - 130.00)	

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

•

_

.

-

MONTGOMERY WATSON LABORATORIES

555 East Walnut Street Pasadena, California 91101 818 568 6600; Fax: 818 568 6324; 3 800 568 LABS (1 800 566 5227)

Honolulu, City of (continued)

•						
	MSD	Arsenic, Total, ICAP/MS	20	18.9	94.5	(70.00 - 130.00) 2.6
	LCS1	Barium, Total, ICAP/MS	100	101	101.0	(85.00 - 115.00) 2.6
	. rcss	Barium, Total, ICAP/MS	100	97.0	97.0	
	MBLK	Barium, Total, ICAP/HS	ND		0.0	(85.00 - 115.00) 4.0
	MS	Barium, Total, ICAP/HS	100	97	97.0	(70.00 - 130.00)
-	MSD	Barium, Total, ICAP/MS	100	96.4	96.4	
	LCS1	Beryllium, Total, ICAP/MS	5	5.32	106.4	(70.00 - 130.00) 0.62 (85.00 - 115.00)
	LCS2	Beryllium, Total, ICAP/MS	5	5.26	105.2	
	MS	Beryllium, Total, ICAP/MS	5	4.76	95.2	
	MSD	Beryllium, Total, ICAP/MS	5	5.02	100.4	(70.00 - 130.00)
	LCS1	Cadmium, Total, ICAP/MS	20	19.4	97.0	(70.00 - 130.00) 5.3
	LCS2	Cadmium, Total, ICAP/MS	20	19.3	96.5	(85.00 - 115.00) (85.00 - 115.00)
	MBLK	Cadmium, Total, ICAP/MS	ND		0.0	(85.00 - 115.00) 0.52
	MS	Cacmium, Total, ICAP/MS	20	19.4	97.0	(70 00 - 170 00)
•	MSD	Cadmium, Total, ICAP/HS	20	19.5	97.5	(70.00 - 130.00)
	LCS1	Chromium, Total, ICAP/MS	100	101	101.0	(70.00 - 130.00) 0.51
	LCS2	Chromium, Total, ICAP/MS	100	106	106.0	(85.00 - 115.00)
	MBLK	Chromium, Total, ICAP/MS	ND		0.0	(85.00 - 115.00) 4.8
	MS	Chromium, Total, ICAP/MS	100	105.	105.0	
	MSD	Chromium, Total, ICAP/MS	100	104.	104.0	(70.00 - 130.00)
	LCS1	Copper, Total, ICAP/MS	100	101		(70.00 - 130.00) 0.96
	LCS2	Copper, Total, ICAP/MS	100	103	101.0	(85.00 - 115.00)
	MBLK	Copper, Total, ICAP/MS	ND		103.0	(85.00 - 115.00) 2.0
	MS	Copper, Total, ICAP/MS	100	101.	0.0	
	MSD	Copper, Total, ICAP/MS	100	101.	101.0	(70.00 - 130.00)
	LCS1	Iron, Total, ICAP/MS	500	530	101.0	(70.00 - 130.00) 0.00
	LCS2	Iron, Total, ICAP/MS	500	549	106.0	(85.00 - 115.00)
-	MBLK	Iron, Total, ICAP/MS	ND	347	109.8	(85.00 - 115.00) 3.5
	MS	Iron, Total, ICAP/MS	500	526.	0.0	
	MSD	Iron, Total, ICAP/MS	500	526.	105.2	(70.00 - 130.00)
	LCST	Lead, Total, ICAP/MS	20		104.8	(70.00 - 130.00) 0.38
•	LCS2	Lead, Total, ICAP/MS	20	20.1	100.5	(85.00 - 115.00)
	MBLK	Lead, Total, ICAP/MS	ND	20.0	100.0	(85.00 - 115.00) 0.50
	MS	Lead, Total, ICAP/MS	20	20	0.0	
I	MSD	Lead, Total, ICAP/MS	20	20	100.0	(70.00 - 130.00)
	LCS1	Manganese, Total, ICAP/MS		20.1	100.5	(70.00 - 130.00) 0.50
	LCSZ	Manganese, Total, ICAP/MS	50	50.9	101_8	(85.00 - 115.00)
	MBLK	Manganese, Total, ICAP/MS	50	52.5	105.0	(85.00 - 115.00) 3.1
-		- January Forder, Funryma	ND		0.0	

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

•

Page 12

Laboratory QC Report #27265

.

-

- • •

. ----

.

_

÷

MONTGOMERY WATSON LABORATORIES

Laboratory QC Report #27265

555 East Walaut Street Pasadena, California 91101 818 568 6400; Fax: 818 568 6324; 1 800 566 LABS (1 800 566 5227) .

Honolulu, City of (continued)

	MS	Manganese, Total, ICAP/MS	50 50	52.4 52.1	104.8 104.2	(85.00 - 115.00) (85.00 - 115.00) 0.57
<u> </u>	MSD LCS1 LCS2	Manganese, Total, ICAP/MS Selenium, Total, ICAP/MS Selenium, Total, ICAP/MS	20 20	18.2 18.7	91.0 93.5 0.0	(85.00 - 115.00) (85.00 - 115.00) 2.7
	MBLK MS MSD	Selenium, Total, ICAP/MS Selenium, Total, ICAP/MS Selenium, Total, ICAP/MS	ND 20 20	20.1 19.4	100.5 97.0	<pre>(70.00 - 130.00) (70.00 - 130.00) 3.5 (85.00 - 115.00)</pre>
	LCS1 LCS2	Silver, Total, ICAP/MS Silver, Total, ICAP/MS	50 50 ND	51.2 50.8	102.4 101.6 0.0	(85.00 - 115.00) 0.78
i.	MBLK MS MSD	Silver, Total, ICAP/MS Silver, Total, ICAP/MS Silver, Total, ICAP/MS	50 50	49.5 49.5 19.4	99.0 99.0 97.0	(70.00 - 130.00) (70.00 - 130.00) 0.00 (85.00 - 115.00)
	LCS1 LCS2	Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS Thallium, Total, ICAP/MS	20 20 ND	19.5	97.5 0.0	(85.00 - 115.00) 0.51
- 4	MBLK MS MSD	Thallium, Total, ICAP/MS Thailium, Total, ICAP/MS	20 20 100	19.4 19.6 101	97.0 98.0 101.0	(70.00 - 130.00) (70.00 - 130.00) 1.0 (85.00 - 115.00)
	LCS1 LCS2 MBLK	Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS	100 100 ND	102	102.0 0.0	(85.00 - 115.00) 0.99 (70.00 - 130.00)
i.	MS MSD	Zinc, Total, ICAP/MS Zinc, Total, ICAP/MS	100 100	104. 104.	104.0 104.0	(70.00 - 130.00) 0.0

QC Batch #50983

SDWA Pesticides

1						
QC	Analyte	Spiked	Recovered	Yield (%)	Limits (%)	RPD (%)
MBLK LCS1 LCS2	Alachior (Alanex) Aldrin Aldrin	ND 0.050 0.050	0.052 NA	104.0	(59.64 - 145.56) (59.64 - 145.56)	0.00
MBLK MS	Aldrin Aldrin	ND 0.050 ND	0.059	118.0	(75.56 - 142.71)	
MBLK MBLK MBLK MBLK LCS1	Alpha-BHC Chlordane Chlorthalonil (Drconil, Bravo) Delta-BHC Dieldrin	ND ND ND 0.100	0.121	121.0	(65.75 - 149.79) (65.75 - 149.79)	0.00
LCS2	Dieldrin	0.100	NA			

----*:*

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

•

- .

1

-+ -----

-

•

.

: ---- MONTGOMERY WATSON LABORATORIES

-

555 East Walnut Street Pssadena, California 31101 818 568 6400; Fas: 818 568 6324; 1 800 566 LABS (1 800 566 5227)

Laboratory QC Report #27265

Honolulu, City of (continued)

	MBLK	Dieldrin	ND .				
	MS	Dieldrin	0.100	0.122	122.0	(77.36 - 141.97)	
	MBLK	Endosulfan I (alpha)	ND			• • • • • • •	
_	MBLK	Endosulfan II (beta)	ND				
	MBLK	Endosulfan sulfate	ND				
-	LCS1	Endrin	0.100	0.123	123.0	(70.07 - 149.66)	
	LCS2	Endrin	0.100	NA		(70.07 - 149.66) 0.00	
	MBLK	Endrin	ND				
	MS	Endrin	0.100	0.121	121.0	(86.46 • 138.80)	
	MBLK	Endrin Aldehyde	ND				
-	LCS1	Gamma-BHC (Lindane)	0.050	0.063	126.0	(81.57 - 148.43)	
	LCS2	Gamma-BHC (Lindane)	0.050	NA		(81.57 - 148.43) 0.00	
	MBLK	Gamma-BHC (Lindane)	ND				
	MS	Gamma-BHC (Lindane)	0.050	0.062	124.0	(88.58 - 141.42)	
<u>`</u>	LCS1	Heptachlor	0.050	0.051	102.0	(60.95 - 145.71)	
<u>-</u> :	LCS2	Heptachlor	0.050	NA		(60.95 - 145.71) 0.00	
·	MBLK	Heptachlor	ND			• • • • • • • • •	
-	MS	Heptachlor	0.050	0.057	114.0	(78.23 - 146.04)	
	MBLK	Heptachlor Epoxide	ND			•	
~	MBLK	Methoxychlor	ND				
	MBLK	PCB 1016 Aroclar	ND				
	MBLK	PCB 1221 Aroclor	ND				
	MBLK	PCB 1232 Aroclor	ND				
	MBLK	PCB 1242 Aroclar	ND				
-	MBLK	PCB 1248 Aroclor	ND		•		
	MBLK	PCB 1254 Aroclor	ND				
	MBLK	PCB 1260 Aroclar	ND				
	MBLK	Toxaphene	ND				
	MBLK	P.P' 000	ND				
•	MBLK	P,P' DDE	ND				
	LCS1	P,P' DOT	0.100	0.135	135.0	(37.03 - 169.44)	
	LCS2	P,P' DDT	0.100	NA		(37.03 - 169.44) 0.00	
-•	MBLK	P,P' DOT	ND			• • • • • •	
	MS	P,P' 001	0.100	0.127	127.0	(57.41 - 158.86)	
						·	

Spikes which exceed Limits and Method Blanks with positive results are highlighted by Underlining.

٠

Appendix B: Archaeological Investigation

•

	Man weight		
	JOHN WAIHEE Governor of Mawaii		WILLIAM W. PATY, CHAIRPERSON BOAHO OF LAND AND HATURAL RESOURCES DEPUTIES THEAT K. LANDGRAF -MANABU TAGOMORI RUSSELL N. FUKUMOTO
-	DEPA	STATE OF HAWAII ARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF STATE PARKS P. 0. BOX 621	AQUACULTURE DEVELOPMENT PROGRAM AQUATIC RESOURCES CONSERVATION AND ENVIRONMENTAL AFFAIRS CONSERVATION AND
 .	November 29, 1990	HONOLULU, HAWAII 95809	RESOURCES ENPORCEMENT CONVEYANCES FORESTRY AND WILDLIFE LAND MANAGEMENT STATE HISTORIC PRESERVATION STATE PARKS WATER AND LAND DEVELOPMENT
	Mr. Kenneth Rappol Macquire Group Inc 1600 Kapiolani Bou Honolulu, Hawaii	levard	
	Dear Mr. Rappolt:		
	SUBJECT: ARCHAEOLOG SACRED FAI TMK: 5-3-1	GICAL FIELDCHECK OF PROPOSED WELL S LLS STATE PARK, KALUANUI, KOOLAULOA 11: 9	ITE WITHIN , OAHU.
	survey conducted for State Park. It is Supply is proposing feet to the north of State Park. The ar conducted on Novemb	ed a copy of the report on the arch or the proposed well site at Sacred our understanding that the Board o g to drill a second well approximat of the existing well and pump at Sa schaeological survey of this projec per 22, 1990 by State Parks archaeo of Smith with the assistance of Jef firm.	Falls f Water ely 200 cred Falls t area was logists
	archaeological surv well sites. If you	the two reports on the previous reys conducted for the Board of Wat have any questions regarding these orts or the survey, please contact (e
	. •	Yours very truly,	
••• •••			
، جرب		RALSTON H. NAGATA	
•		State Parks Administra	ator
-1	Enclosure		
•			
.			
_			

•

.

• ---5

.

-

-

4 ---i

.

ARCHAEOLOGICAL SURVEY:

.

PROPOSED WELL SITE AT SACRED FALLS STATE PARK, KALUANUI, KOOLAULOA, OAHU (TMK: 5-3-11: 9)

Prepared by: Martha Yent, Archaeologist Division of State Parks Department of Land and Natural Resources

NOVEMBER, 1990

•

.

.

.

INTRODUCTION

The Board of Water Supply is proposing to drill a second well approximately 200 feet to the north of the existing well and pump at Sacred Falls State Park, Kaluanui, Koolauloa, Oahu. The existing well and pump site are located on the west (Hauula) side of Kaluanui Stream and approximately 3,800 feet (3/4 mile) mauka (southwest) of the coastline and Kamehameha Highway (see Map 1). The paved access road to the existing well and pump site runs upslope from the dirt road and trail to the falls. Access to the proposed second well will use this existing roadway. Both the existing and proposed well sites are located at an elevation of about 110 feet above sea level (see Map 2).

A fieldcheck was conducted on November 22, 1990 by State Parks archaeologists Martha Yent and Marc Smith who were accompanied by Jeff McCormack of Maguire Group. The survey area has a dense growth of Christmas berry, Java plum. octopus trees, guava, and koa haole. There is an old roadbed that runs parallel to the contour in the project area. This road was noted on a map during the survey for the first well site in 1980 (see Map 2). A continuation of this road on the makai side of the paved access road will be used for the secondary access to the proposed well site. The proposed drilling location is just upslope of this bulldozed road.

HISTORICAL OVERVIEW

The valley floor of Kaluanui during the prehistoric and early historic periods was probably covered by irrigated taro terraces and sweet potato was grown in the front kula lands (Handy, 1940: 91). In 1828, Levi Chamberlain toured Oahu and reported one school in Kaluanui. He also wrote that he was supplied with pig, potato, and taro at Kaluanui which supports the agricultural use of Kaluanui. The lands of Kaluanui were awarded to Victoria Kamamalu during the Great Mahele (1848). There were smaller, individual awards made on the makai, coastal plain portion of Kaluanui.

The major changes in Kaluanui Valley occurred in the early 1900s when the valley bowl and coastal plain were acquired and modified for sugarcane cultivation. Ditches and flumes were constructed on the slopes to divert water from the streams to the sugarcane fields. There is also an abandoned cane haul road that corresponds to the former railroad bed that ran across the valley. Sugarcane cultivation in Kaluanui Valley is believed to have lasted from circa 1906 until the 1950s.

PREVIOUS ARCHAEOLOGY

The Bishop Museum survey of Kaluanui Valley in 1973 located a total of 23 sites. The sites recorded on the coastal plain, which was previously in sugarcane cultivation, included irrigation channels and ditch trails. The sites on the slopes of the valley included dryland terraces, stone mounds, habitation platforms, and additional historic irrigation ditches.

The more intensive survey of proposed park use areas was conducted by State Parks archaeologists in 1980-1981. At this time, State site number 50-80-05-290 was assigned to Kaluanui Valley with a series of consecutive numbers (290-1 through 290-20) designating the sites located during the 1973 and 1981 surveys. The 1981 survey located additional mound features and platforms. Testing conducted on several mound features indicated a lack of cultural materials and suggested that these features represent agricultural clearing mounds.

÷---

During the archaeological survey in 1980 for the first well site, several sites were identified (Barrera, 1980 and Yent & Ota, 1981). The sites included a small cobble paving or platform (290-7) and two large rock mounds (290-6). These sites were in proposed locations for the well which were not selected for construction. The present well site corresponds to well site #2 on Map 3.

ARCHAEOLOGICAL FINDINGS

The survey for the second well site located several features in the vicinity of the project area. The features located in 1990 have been numbered according to the earlier system. The location of these features relative to each other and the proposed well site is shown on Map 4.

- Site 290-21, Feature 1. Concrete-lined auwai (ditch) running parallel to the 107 foot contour line and generally N-S. The auwai is located approximately 12 meters upslope of the bulldozed road and 7 meters upslope from the proposed well site. The ditch measures 30cm in depth and 1 meter wide with concrete only on the upper edges of the ditch alignment. There are boulders on the downslope side of the ditch which may have been a well-stacked retaining wall previously. The ditch runs to the existing well site but the makai (N) extend of the ditch was not determined. It is likely that this ditch was used to irrigate the sugarcane fields on the coastal flat at the mouth of Kaluanui Valley from Waimanamana Stream. Ditch is overgrown with Christmas berry.
- Site 290-21, Feature 2. Second auwai on the 116 foot contour which runs parallel to the first auwai and is located approximately 10 meters upslope of the first auwai. This upper auwai is not concrete-lined and there is no evidence of rock-lining. The auwai is 80cm wide and 50cm deep. This auwai also runs to the existing well site and is overgrown with Christmas berry.
- Site 290-22. Stacked retaining wall located about 20 meters to the northeast of the proposed well site. The wall is built parallel to the contour and measures 12 meters in length and 1.5 meter in height. Huge boulders have been used in the construction with smaller boulders and cobbles stacked between the huge boulders. Site covered by Christmas berry and guava.
- Site 290-23. Double alignment of boulders about 5 meters downslope (NE) of the well site. The alignments measure about 7-8 meters in length and are 1.5 meters apart. These alignments may be related to the construction of the bulldozed road. There is no stacking or wall construction evident. The level area upslope of these alignments has been selected as the best drilling location by the geologist.

Site 290-24. Retaining wall/mound of large and huge basalt boulders on the downslope (NE) side of the bulldozed road. This site is about 10 meters makai (N) of where the proposed access road to the well site angles upslope.

Based on the proposed access to the second well site, the only site that appears to be subject to impact during the drilling project is 290-23. The drilling machinery will be setup from the bulldozed road. Therefore, site 290-21 which is about 7 meters upslope of the well site should not be affected. Likewise, sites 290-22 and 290-24 are located at least 10 meters makai (NE) of the access to the drilling site and should not be impacted.

RECOMMENDATIONS

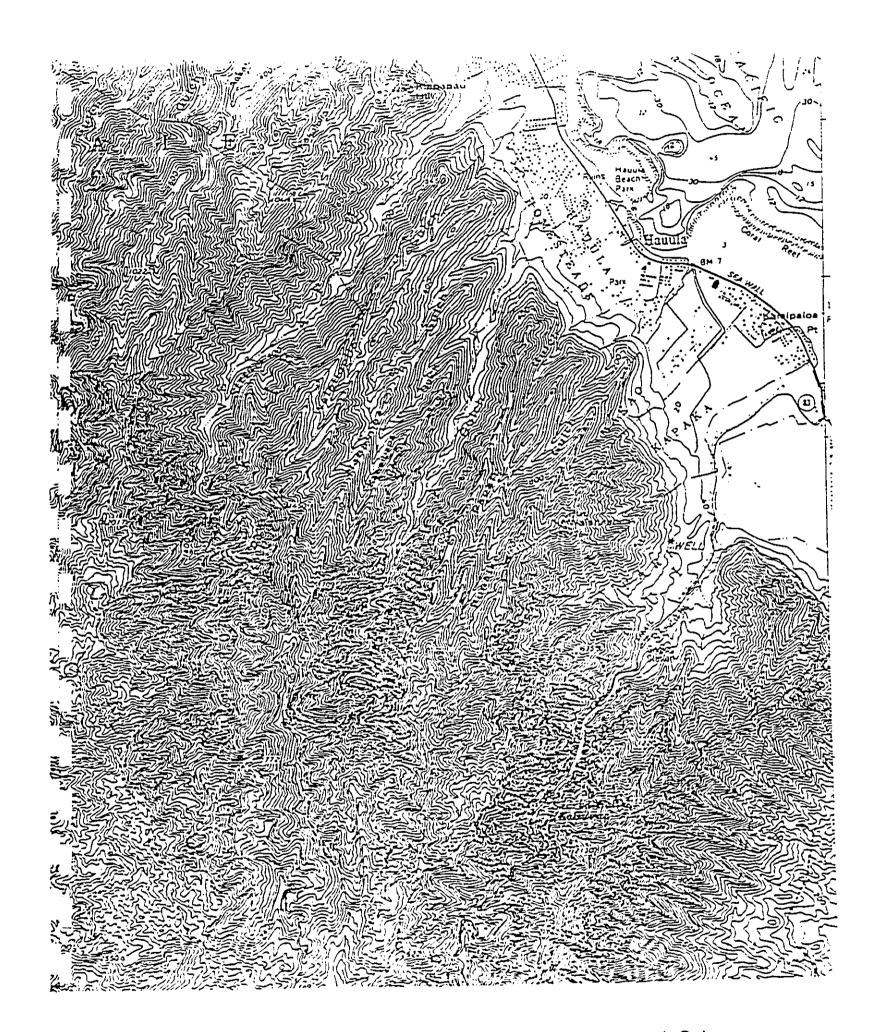
Sites 290-21, 290-22, and 290-24 should be flagged prior to the use of machinery in the area to prevent inadvertent damage to these sites. From the previous surveys and testing in Kaluanui Valley, it appears that these sites are related to agricultural activities. The ditches are probably historic based on the presence of concrete and were used to divert water from Waimanamana Stream to the sugarcane fields on the coastal plain. The presence of site 290-24 adjacent to the bulldozed road suggests that this feature may have been built to retain the slope on the downslope side of the road.

The significance of these sites is related to their research potential. However, based on the fact that these sites are structural features, it is not likely that testing will yield additional information. Recording of the sites during the November, 1990 fieldtrip was hampered by the density of the vegetation. Therefore, it is recommended that the State Parks archaeologists be notified when clearing work for the roadway and drilling site is to begin as this clearing may permit photographing of the archaeological sites.

REFERENCES

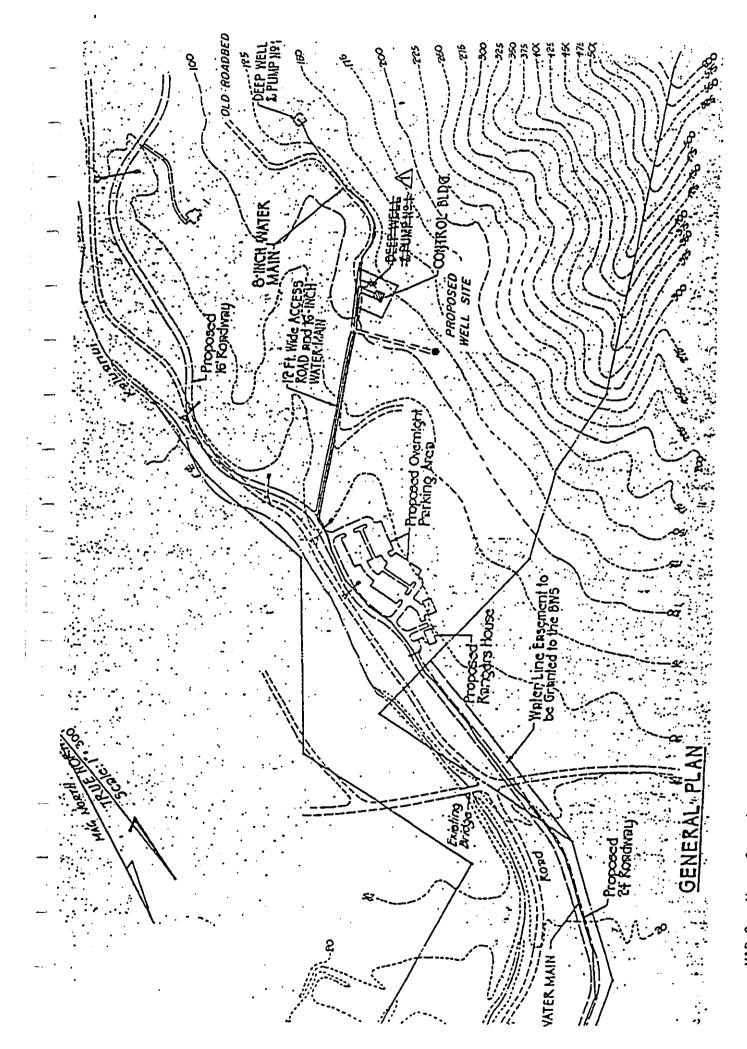
Barrera, William Jr.

....

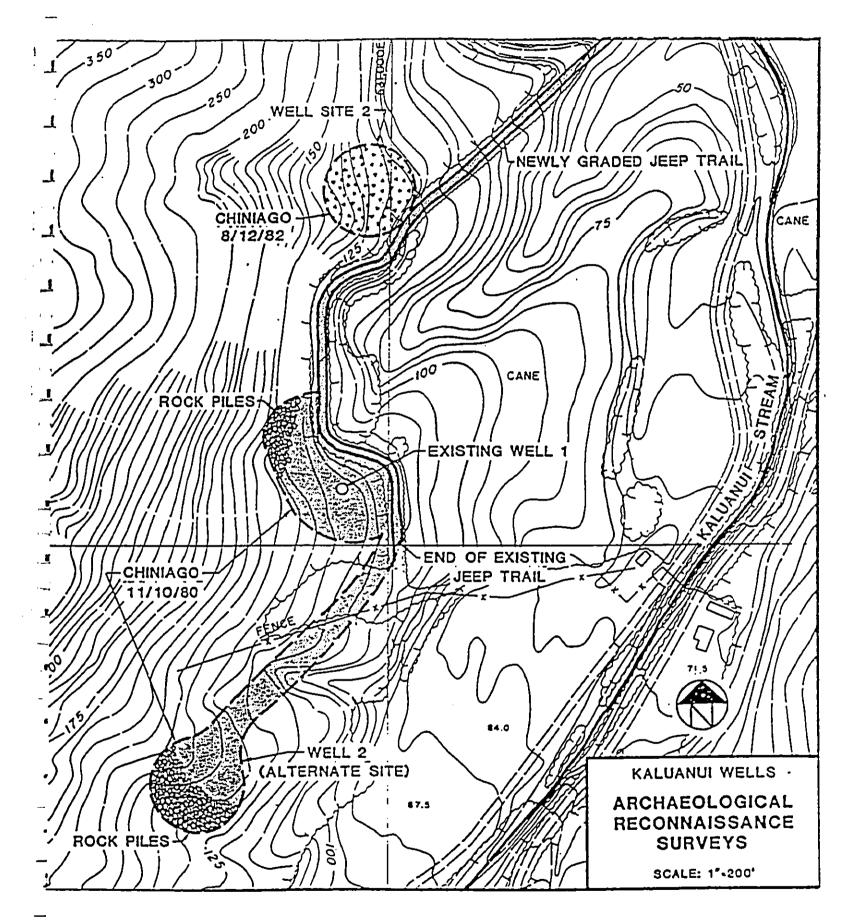

- 1980 Letter Report to Mr. Fred Proby, VTN Pacific, regarding Kaluanui well sites. November 28, 1980.
- 1982 Letter Report to Mr. Fred Proby, VTN Pacific, regarding Kaluanui Expoloratory Well #2 at Sacred Falls. August 16, 1982.
- Chamberlain, Levi
 - 1828 <u>Trip Around Oahu by Levi Chamberlain in 1828</u>. Hawaiian Mission Children's Library.
- Handy, Craighill
 - 1940 <u>The Hawaiian Planter, Volume 1: His Plants, Methods, and Areas of</u> <u>Cultivation</u>. B.P. Bishp Museum Bulletin 161. Bishop Museum Press.

Rosendahl, Paul

1973 <u>An Archaeological Walk-Through Survey of the Kaluanui Lands. Oahu</u>. B.P. Bishop Museum report for Sakoda Realty.

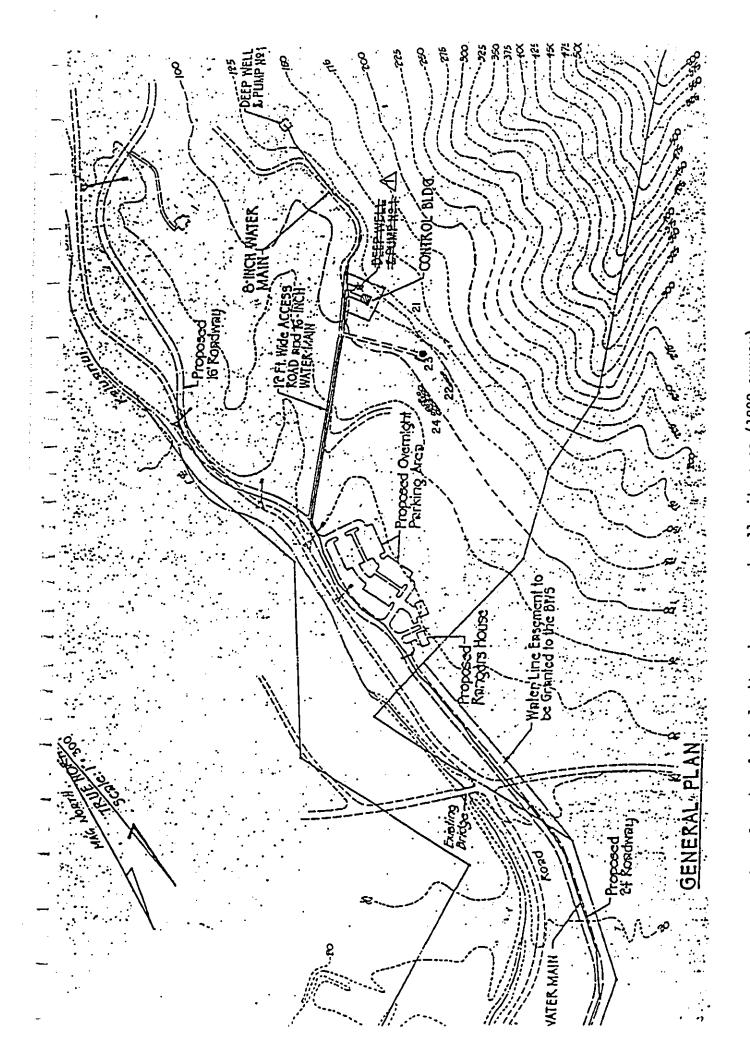

Yent, Martha and Jason Ota

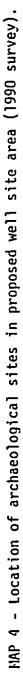
1981 <u>Archaeological Investigations: Sacred Falls State Park. Kaluanui.</u> <u>Koolauloa. Oahu</u>. Division of State Parks, Department of Land and Natural Resources. May, 1981.



Map 1: Location of Well within Sacred Falls State Park, Kaluanui, Oahu.

DOCUMENT CAPTURED AS RECEIVED





MAP 3 - Location of archaeological sites located during previous surveys for well sites (taken from Barrera, 1982).

٠

•

Chiniago Inc.

Archaeological Consulting

76 N. KING STREET, ROOM 202 . HONOLULU, HAWAII 96817 . TELEPHONE: (808) 521-2785

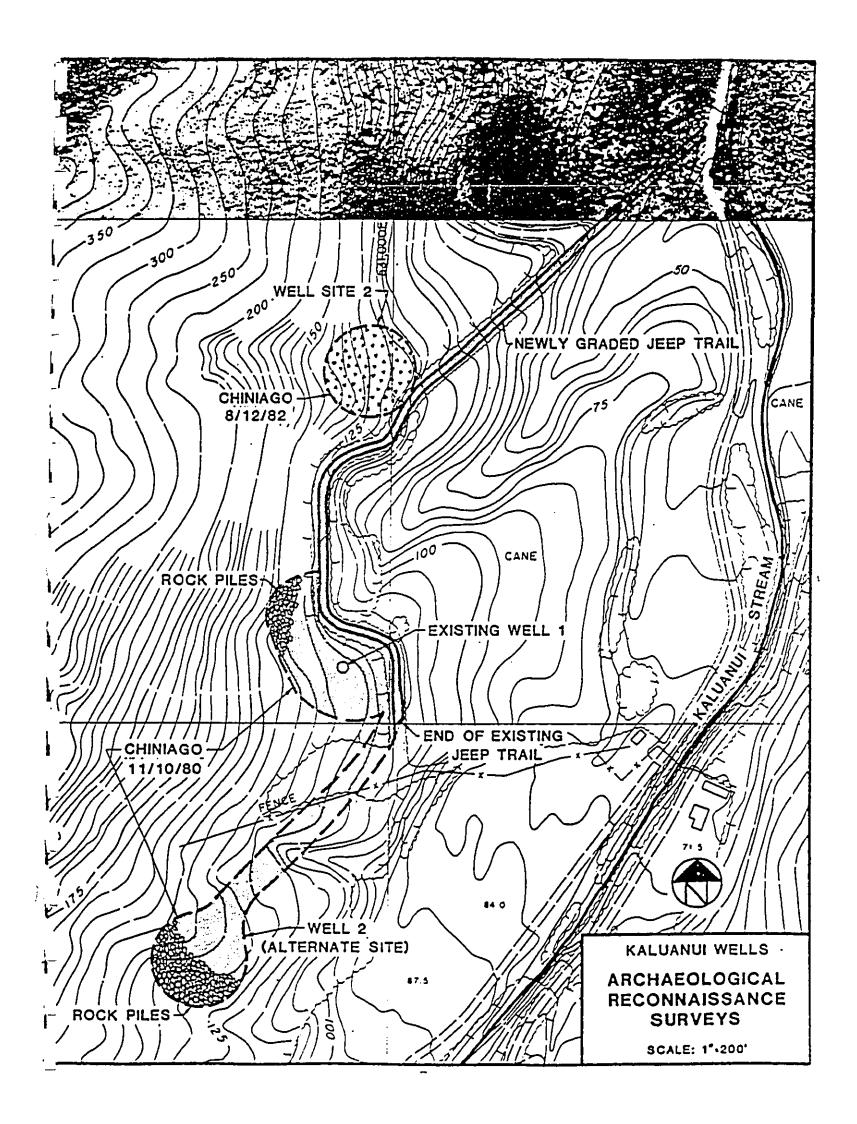
November 28, 1980

Mr. Fred Proby VTN Pacific 1164 Bishop Street Suite 906 Honolulu, Hawaii 96813

Dear Mr. Proby:

_

_



On November 10 we conducted an archaeological reconnaissance survey of two proposed well-sites at Kaluanui Valley, Oahu, each of which consisted of a 200-foot diameter circle [indicated on the enclosed map], plus a proposed roadway connecting them to the main val-ley access road. No definite archaeological or historical remains were found, but the presence of rock piles which may be of human origin requires that caution be exercised during construction. These remains, which are located at the northern edge of the easternmost well-site and on the western half of the westernmost well-site, should not represent any impediment to the project as there appears to be sufficient space available for the construction activities. We will be happy to show the Board of Water Supply people the locations of the areas which we recommend that they avoid.

Sincerely yours, du

William Barrera, Jr. President

Chiniago Inc.

Archaeological Consulting

1040-B SMITH STREET • HONOLULU, HAWAII 96817 • TELEPHONE: (808) 521-2785

August 16, 1982

Mr. Fred Proby VTN Pacific 1164 Bishop Street Suite 906 Honolulu, Hi. 96813

Dear Mr. Proby:

.

On August 12, 1982 I accompanied you, Mr. Larry Whang of the Department of Water Supply and Ms. Martha Yent of the Division of State Parks on an inspection of the proposed site of Kaluanui Exploratory Well #2 at Sacred Falls, Oahu. This letter is to confirm that nothing of archaeological or historical interest was located and that in Our opinion the project may proceed as planned without fear of disturbing any such sites.

Sincerely yours

C-7

toul

William Barrera, Jr. President

•-

Appendix C: Botanical Investigation

•

BOTANICAL CONSULTANTS

P.O. BOX 90765 HONOLULU, HI 96835

NOVEMBER 9, 1990

(808) 923-4193

Mr. Jeff M. McCormick - Project Manager Maguire Group, Inc. 1600 Kapiolani Boulvard Honolulu, Hawaii 96814

Dear Mr. McCormick

As requested by the Maguire Group, Inc. on November 7, 1990 (MGI Job No. 13223), Botanical Consultants conducted a botanical survey of the proposed Kaluanui Exploratory Well No. 11 and Access Site which is located in Sacred Falls State Park, Punalu'u, Hawaii on November 8, 1990.

The Kaluanui Exploratory Well No. 11 and Access Site is at about 200 feet elevation in what appears to be long abandoned farmland. The remains of an old, concrete irrigation system and many large Mango Trees (Mangifer indica L.) indicate earlier human occupation of this site.

FLORA

The vegetation of the Kaluanui Well and Access site is almost entirely introduced. The scattered, emergent trees are 12 to 15 m mango, Java plum (Syzygium cumini (L.) Skeels), and Gunpowder or charcoal (Trema orientalis (L.) Blume) trees. The tree layer or canopy of the site is composed of octopus trees (Schefflera actinophylla (Endl.) Harms). These small trees, 7 to 8 m, provide 50 to 75% cover. The understory is made up of Christmas berry trees (Schinus terebinthifolius Raddi). These shrubby, 5 to 6 m trees, provide a thin, scant, 25 to 30% cover.

The ground is rocky and the herb layer is composed of leaf litter, seedlings, ferns and a wide variety of weedy, alien species. The most common taxon is laua'e-haole (Phlebodium aureum (L.) J. Sm). In this area it attains a height of 40 to 100 cm.

There are a few indigenous (known to exist naturally in Hawaii and other places) species. Poa or Psilotum nudum (L.) Griseb. was found in several places and two 'akia or fish poison (Wikstroemia oahuensis (A. gray) Rock shrubs were found under the canopy.

ENDANGERED SPECIES

No proposed or listed threatened or endangered plant species were found during this survey (USFWS 1990, State of Hawaii 1990).

. .

CONCLUSIONS

The proposed well site is located in an area wich is almost entirly covered with introduced or alien vegetation. Botanically, there is no reason why this project cannot go forward.

LITERATURE CITED

St. John, H. 1973. List of the Flowering Plants in Hawaii. Pacific Tropical Botanical Garden. Memoir 1. Lawai, Kauai.

Wagner, W. L., D. R. Herbst, and S. Sohmer. 1990. Manual of the Flowering Plants of Hawaii. Vols. 1 & 2. University of Hawaii Press.

State Of Hawaii 1990. Endangered and Threatened Species. DLNR.

.

USFWS. 1990. Endangered and Threatened Wildlife and Plants. 50 CFR. 17.11 & 17.12. US Government Printing Office. Wash. DC.

. ---

••

.

_

÷ .

·· •

.

SPECIES LIST

The plant families in the following species list have been alphabetically arranged within two groups, Monocotyledons, and Dicotyledons. The genera and species are arranged alphabetically within families. The taxonomy and nomenclature follow that of St. John (1973) and Wagner, Herbst and Sohmer (1990). For each taxon the following information is provided:

- 1. An asterisk before the plant name indicates a plant introduced to The Hawaiian Islands since Cook or by the aborigines.
- 2. The scientific name.
- 3. The Hawaiian name and or the most widely used common name.
- 4. <u>Abundance ratings are for this site only</u> and they have the following meanings:

Uncommon - a plant that was found less than five times. Occasional - a plant that was found between five to ten times. Common - a plant considered an important part of the vegetation. Locally abundant - plants found in large numbers over a limited

This species list is the result of an extensive survey of this site at the beginning of the rainy season (November 1990) and it reflects the vegetative composition of the flora during a single season. Minor changes in the vegetation will occur due to introductions and losses and a slightly different species list would result from a survey conducted during a different growing season.

•

•

area, for example the plants found in grassy patches.

CHECKLIST OF ALL PLANTS FOUND ON THE KALUANUI EXPLORATORY WELL STUDY SITE

Scientific Name	Common Name	Abundance
FERNS AND FERN ALLIES		
PSILOTACEAE - Psilotum Family		
Psilotum nudum (L.) Griseb.	Moa	Occasional
POLYPODIACEAE - Polypod Family		
Dryopteris dentata (Forsk) C. Chr. *Nephrolepis exaltata (L.) Schott *Phlebodium aureum (L.) J. Sm.	Oak Fern Sword fern Laua'e fern	Common Common Abundant
MONOCOTYLEDONÉS		
GRAMINEAE - Grass Family		
*Brachiaria mutica (Forsk.) Staph *Cenchrus echinatus L. *Oplismenus hirtellus (L.) P. Beauv *Panicum maximum Jacq. *Sorghum halepense (L.) Pers.	Paragrass Sandbur grass Basketgrass Guinea grass Johnson grass	Locally abundant Occasional Locally abundant Common Occasional
ORCHIDACEAE - Orchid Family		
*Spathoglottis plicata Bl.	Malayan ground orchid	Occasional
PALMAE - Palm Family		
*Phoenix sylvestris Roxb.	Date palm	Uncommon
DICOTYLEDONES		
ANACARDIACEAE - Mango Family		
*Mangifera indica L. *Schinus terebinthifolius Raddi	Mango Christmas berry	Common Common
ARALIACEAE - Ginseng Family		
*Schefflera actinophylla (Endl.) Ha	arms Octopus tree	Common

.

,

Scientific_Name	Common Name	Abundance
COMPOSITAE - Sunflower Family		
*Bidens alba (L.) DC *Emilia sonchifolia (L.) DC *Erechtites hieracifolia (L.) Raf *Pluchea odorata (L.) Cass. *Sonchus olerarceusL. *Vernonia cinerea (L.) Lees.	Bidens Lalac puale Fireweed Pluchea Pualele Little ironweed	Common Common Occasional Occasional Occasional Occasional
EUPHORBIACEAE - Spurge Family		
*Chamaesyce hirta L. *Chamaesyce hypericifolia Mellsp. *Phyllanthus niruri L.	Hairy spurge Graceful spurge Niruri	Common Common Occasional
LEGUMINOSAE - Bean Family		
*Chamaecrista nictitans (L.) Moench *Crotalaria incana L. *Desmodium incanum DC *Indigofera suffrutcosa Mill. *Leucaena leucocephala deWit *Mimosa pudica L.	Partridge pea Fuzzy rattle-pod Spanish clover Indigo Koa-haole Sensitive plant	Common Occasional Locally abundant Occasional Common Common
MYRTACEAE - Myrtle Family		
*Syzygium cumini L.	Java plum	Common
MYRSINACEAE - Myrsine Family		
*Ardisia elliptica Thinb.	Shoebutton ardisia	Common
RUBIACEAE - Coffee Family		
*Morindia citrifolia L. *Paederia scandens (Lour.) Merr.	Nori Maile pilau	Occasional Common
THYMELAEACEAE - 'Akia Family		
Wikstroemia oahuensis(A. Gray) Rock	'Akia	Occasional
ULMACEAE - Elm Family		
*Trema orientalis (L.) Blume	Gunpowder tree	Common

Prepared by, Evangeline J. Funk, Ph.D. - Botanist

•

. —

.

• ----

-

-

Appendix D: Yield-Drawdown Test Data

.

KALUANUI EXPLORATORY WELL III No. 3554-06

-

.

٠.

) -

_

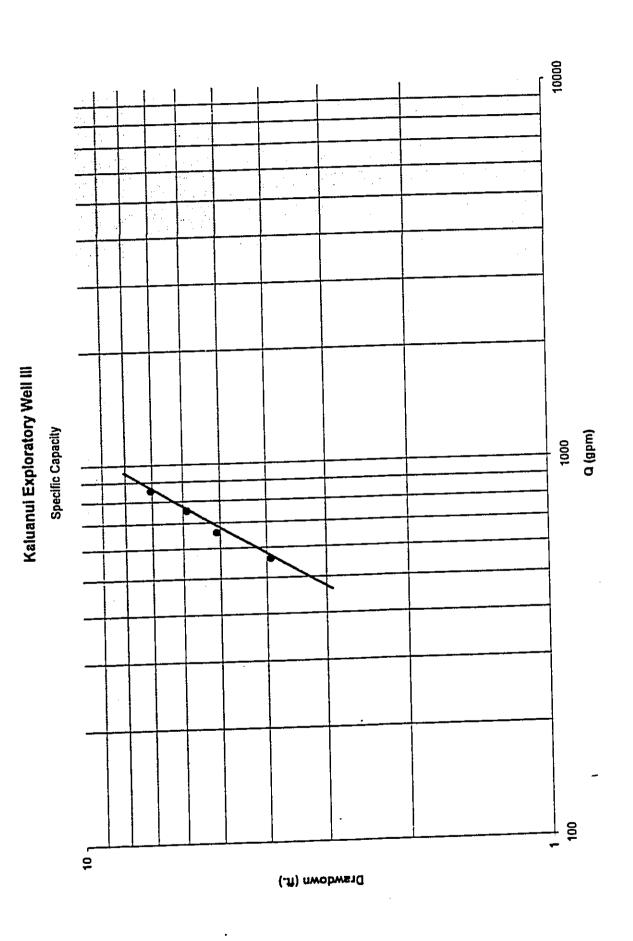
. --

-

ʻ 🗕

.

WELL INFORMATION


Elevation at ground Elevation at bottom of well Elevation at end of casing Diameter of casing Casing Length Well Depth Head Airline Depth Pump Depth (suction) Drilling completed	<pre>TMK: 5-3-11:09 + 90.8 ft. -252.2 ft. -102.2 ft. 12.0 in. I.D. 193.0 ft. 343.0 ft. 16.82 ft. (sounder) 5/22/96 120.0 ft. 129.8 ft. (approximately) April 30, 1996 Roscoe Moss Hawaii, Inc.</pre>
Drilling completed :	April 30, 1996
Date of Yield-Drawdown Test :	May 22, 1996
Date of Sustained Pumpage Test:	May 23, 1996 to May 28, 1996

٠

٠

•

-

---- · i. ----• .' 1 1 ų, -٠., *-1.11 **د.** ر -----_'

Lo	ounty: location		liu Inui Expl	oratory W	/ei1 1	Distance beh	ween observa	Obs. we Pumped ation and pum	well no.:	3554-02 3554-06 1300 fL
	Date	Hour	t (min)	Depth to water (ft.)	s (unad- justed) (ft.)	Adjust- ment Δ s(ft.)	Q (gpm)	Ci	Temp * F * C	Remarks
				74.61				<u> </u>	<u> </u>	static water level
	/22/96	9:38		74.63			<u> </u>	<u></u>	<u> </u>	started pumping
	Wed.	10:17		14.00				<u></u>	+	
-		10:20	2						70.6	sample #1
_		10:22	5			「	380	31	10.0	
		10:25	10	78.66	4.03	[70.4	
		10:30	21			[
		10:45	25	78.70	4.07	[664			
		10:54	34			[556	+	70.3	
		10:57	37				┼╌╌╌			
		10:58	38	78.71	4.08	L	558			
		11:00	40			<u> </u>	350	╶┼╌╌───	+	
		11:07	47	78.71	4.08	<u></u>	┢╼╼╼╼╼╼	31	70.3	sample #2
		11:08	48		<u> </u>		562			rate change, rate 1
\vdash		11:10	50			<u></u>	657	_{		average: 562 gpm.
		11:17	57			↓			70.2	
		11:19	59			\downarrow	660			
F		11:20	60							
-		11:23	63	79.67	5.04		+		70.3	
		11:30	70	<u> </u>		+				
		11:33	73	79.67	5.04	+	660			
Г		11:35	75	ļ		+	+		70.2	
		11:44	84	↓		+	660			
		11:45			5.06	+				1
Γ		11:47	87	79.69	5.00	+		31	70.2	sample #3
٠E		11:52		70.69	5.05	+				rate change. rate 2
		11:53		79.68		+	662			average: 662 gpm.
·Γ		11:55		╶┼╼╌╌──	┽╾╼──	-			70.2	laverage. ooz gpini
- [12:21		80.66	6.03					
L		12:23		00.00	+		753		70.2	
-		12:25	and the second division of the second divisio	╉╾╼╼╼						
Ļ		12:30		80.66	6.03				70.2	sample #4
L		12:33				-		31		
. -		12:37		80.66	6.03					rate change, rate 3
Ļ		12:38				-	756			average: 756 gpm.
Ļ		12:40					840		70.2	
₋╞		12:45	the second se							
┝		12:55		81.82	7.19]				
. L		12:5				7	859			

~

Yield-Drawdown Test

.

Table 1

3554-02 Obs. well no .: County: Honolulu Location: Kaluanui Exploratory Well III 3554-06 Pumped well no .: 1300 fL Distance between observation and pumped well: Average Q: varies Remarks Тетр CI Q Adjust-Depth S Hour t (min) <u>۲</u>۴ F or_°C Date ment (gpm) (unadto justed) Δ water _ s(ft.) (ft.) (ft.) 70.2 5/22/98 13:03 163 7.20 81.83 13:05 165 Wed. 70.2 ----857 175 13:15 7.19 81.82 177 13:17 70.2 13:34 194 858 _ 13:35 195 7.19 81.82 13:37 197 sample #5 70.2 31 . 13:43 203 7.19 81.82 stopped pumping. 13:45 205 857 210 13:50 :44 sec. backspin. , full recovery(airline) 13:53 rate 4 ave.: 857 gpm. 0.17 74.80 13:56 . 0.15 74.78 13:59 0.16 74.79 14:04 0.14 74.77 ---14:07 0.14 74.77 14:15 ----_ --------------

Table 1

.

.

-

•

Yield-Drawdown Test

Table 1

٠

•

•

ocation	n: Kalua	nui Explo	pratory W	/ell Ill			Pump	ed well no	0.: 3554-06
verage Q:	827	gpm				Distance b		rvation and pu	
Date	Hour	t(min)	Depth	S	Adjust-	1 0	CI	Temp	Remarks
i			to	(unad-	ment	(gpm)		<u>X</u> •1	
		[water	justed)	Δ	· · ·		or	
			(ft.)	(ft.)	s(ft.)	1			
5/23/96	10:06		74.74						static water level
Thurs.	10:20	0							start of pumping test
	10:21	1	80.31	5.57					partly cloudy, hot,
	10:22	2	80.60	5.86			1		light winds, dry
	10:23	3	80.69	5.95			1		
	10:24	4	80.78	6.04			1		
	10:25	5	80.88	6.14					
	10:26	6	80.89	6.15					1
	10:27	7	80.91	6.17				1	
	10:28	8	80.92	6.18					
	10:29	9	80.92	6.18					
	10:30	10	80.92	6.18					· · · · · · · · · · · · · · · · · · ·
	10:32	12	80.90	6.16					
	10:34	14	80.89	6.15				1	
	10:36	16	80.89	6.15					
	10:38	18	80.91	6.17					······································
	10:40	20	80.91	6.17					
	10:43	23		[70.2	
	10:44	24					33		sample #1
	10:45	25	80.92	6.18					······································
	10:46	26				765			
	10:50	30	81.54	6.80					adjusted rate @ 10:49
	10:53	33				776			
	10:55	35	81.54	6.80					
	11:00	40	81.59	6.85					
	11:05	45	81.59	6.85					
<u> </u>	11:10	50	81.59	6.85		1			
	11:15	55			[798		70.1	
<u> </u>	11:20	60	81.60	6.86					
<u> </u>	11:30	70	81.60	6.86					
<u> </u>	11:35	75			[808			
 _	11:39	79						70.1	
	11:40	80	81.61	6.87					
	11:50	90	81.62	6.88					diesel eng. rpm: 1390
	11:55	95				814		70.1	
	12:00	100	81.61	6.87		1			
	12:23	123	81.62	6.88					
	12:25	125				818			
	13:00 14:00	160 220	81.65	6.91		822			

-

Continuous Pumping Test

•

•----

County: Honolulu Location: Kaluanui Exploratory Well III

Obs. well no.: Pumped well no.: Distance between observation and pumped well: 3554-02 3554-06 1300 ft.

Average Q: 827 gpm

	Hour	t(min)	Depth	S	Adjust-	Q	CI	Тетр	Remarks
Date		(um)	to	(unad-	ment	(gpm)		<u>X</u> •F	
		1	water	justed)	Δ			or•C	
			(ft.)	(ft.)	s(ft.)				
5/23/96	15:00	280	81.65	6.91		826			· · · · · · · · · · · · · · · · · · ·
Thurs.	16:00	340	81.65	6.91		828			
	17:00	400	81.75	7.01		830	33	ļ	sample #2
	18:00	460	81.75	7.01		830			
	19:00	520	81.75	7.01		831			
	20:00	580	81.75	7.01		833	<u> </u>	<u> </u>	
	21:00	640	81.75	7.01		833		<u> </u>	
	22:00	700	81.80	7.06		833			sample #3
	23:00	760	81.80	7.06		833	33		
5/24/96	24:00	820	81.85	7.11	ļ	833			
Fri.	1:00	880	81.85	7.11	·	833		+	
	2:00	940	81.80	7.06	ļ	823			
	3:00	1000	81.80	7.06		833		<u> </u>	· · · · · · · · · · · · · · · · · · ·
	4:00	1060	81.85	7.11	<u> </u>	838	33	<u>├</u>	sample #4
	5:00	1120	81.80	7.06	<u> </u>	833			
	6:00	1180	81.80	7.06		833	·		
	7:00	1240	81.80	7.06	<u> </u>	834			······································
	8:00	1300	81.83	7.09	 	834 835		<u> </u>	
	9:00	1360	81.85	7.11	<u> </u>	835			
	10:00	1420	81.87	7.13	ļ	835			
	11:00	1480	81.88	7.14		835	33		sample #5
	11:30	1510				035		70.1	cloudy, dry
	11:32	1512	81.87	7.13	<u> </u>	╂━────			
	11:34	1514	81.87	╂────	┟────	837			
	12:00	1540		7.42	↓	835			· · · · · · · · · · · · · · · · · · ·
	13:00	1600	81.87	7.13				70.1	
	13:05	1605				838		+	
	15:00	1720	81.86	7.12		839		<u> </u>	
	18:00	1900	81.86	7.12	<u> </u>	840	<u> </u>	1	
	21:00	2080	81.85			841			
5/25/96	24:00	2260	81.85	7.11		842			
Sat.	3:00	2440	81.85	7.11	┼	833	<u> </u>		
	6:00	2620	81.86	7.12		834			
	9:00	2800	<u> </u>			834	<u> </u>	+	
	12:00	2980	<u> </u>					70.1	
	12:34	3014				833	33		sample #6. cloudy.
	12:35	3015						70.0	rained overnight
	13:38	3078	<u> </u>			833	┼────		
	13:40	3080	ļ			833			
	15:00	3160		1	<u> </u>	1 000	1		_ L

Continuous Pumping Test

Table 1

Table 1

٠

• .

ocatio	n: Kalua	inui Explo	oratory W	eli III			Pumpe	ed well no	0.: 3554-06
verage Q:	827	gpm				Distance b	etween obser	vation and pu	
Date	Hour	t(min)	Depth	S	Adjust-	<u> </u>	CI	Temp	Remarks
	ſ		to	(unad-	ment	(gpm)		<u> </u>	
	ł		water	justed)	Δ		1	or	
			(ft.)	(ft.)	s(ft.)	l			-
	18:00	3340				833	1		
	21:00	3520				832			
/26/96	24:00	3700				831	1	1	
Sun.	3:00	3880				831			
	6:00	4060				834			
	9:00	4240	81,85	7.11		831	1	1	RMHI rig used (dtw).
	10:50	4350	81,90	7.16			1	1	BWS instr. functional.
	11:00	4360				830	33	70.1	sample #7. cloudy,
]	12:00	4420	81.91	7.17		830	1	 	damp, light winds.
	12:15	4435				830	i — — —	1	
	12:16	4436						70.1	
	12:17	4437	81.91	7.17			<u> </u>		
	15:00	4600	81.87	7.13		830			
	18:00	4780	81.87	7.13		830			· · · · · · · · · · · · · · · · · · ·
	21:00	4960	81.87	7.13		829			
27/96	24:00	5140	81.87	7.13		831			
Mon.	3:00	5320	81.87	7.13		828		·	
	6:00	5500	81.87	7.13		828			
	9:00	5680	81.98	7.24		828			
	10:10	5750		·				70.1	cloudy, partly sunny
	10:12	5752	81.98	7.24					humid
	10:15	5755					33		sample #8
	10:20	5760				828		<u> </u>	
	11:16	5816						70.1	
	11:17	5817	81.97	7.23					
	11:20	5820				828		<u> </u>	
	12:00	5860	81.97	7.23		828			
	15:00	6040	81.94	7.20		828		· · · - i	
	18:00	6220	81.98	7.24		828			
	21:00	6400	81.96	7.22	— <u> </u>	829			
8/96	24:00	6580	81.95	7.21		830			
ue.	3:00	6760	81.97	7.23		828			
	6:00	6940				827			BWS instr.(dtw) malf.
	9:00	7120		[-		827			(left exposed to rain)
	10:00	7180				827	— —		raining, cloudy
	10:08	7188	81.92	7.18			<u> </u>		RMHI instr.(dtw)
	10:10	7190					33		
[-	10:13	7193		<u></u> [·			sample #9
	10:17	7197	81.97	7.23				70.2	
	10:20	7200/0		1.23	<u> </u>	824			stopped pumping

Continuous Pumping Test

•

-

Location	: Kaluar	iui Explo	ratory W	ell III			Pumpeo	i well no.	: 3554-06
Average Q:	827	gpm				Distance be	tween observa	ition and pum	ped well: 1300 ft.
Date	Hour	t(min)	Depth	S	Adjust-	Q	CI	Temp	Remarks
			to	(unad-	ment	(gpm)		<u>X</u> •F	
			water	justed)	Δ	1		or_•C	
			(ft.)	(ft.)	s(ft.)				
5/28/96	10:22	2	75.25	0.51					:55 sec. backspin
Tue.	10:24	4	75.36	0.62				ļ	average five day
	10:26	6	75.20	0.46		 	<u> </u>		pumpage: 827 gpm
	10:27	7	75.30	0.56					· · · · · · · · · · · · · · · · · · ·
	10:28	8	75.32	0.58					
	10:29	9	75.30	0.56					
	10:30	10	75.29	0.55			<u> </u>		
	10:32	12	75.32	0.58					
	10:34	<u>14</u> 16	75.34 75.30	0.60					
	10:38	18	75.30	0.55					
	10:38	20	75.29	0.55					
	10:40	25	75.33	0.59	·····				
	10:50	30	75.30	0.56					
	11:00	40	75.28	0.54					
	11:10	50	75.28	0.54					·
	11:20	60	75.26	0.52					
	11:30	70	75.26	0.52					
	11:40	80	75.27	0.53					
	11:50	90	75.29	0.55					
	12:00	100	75.29	0.55	····-				
							ii		
									······································
						·			· · · · · ·
		î							
i									
	i i i i i i i i i i i i i i i i i i i								
			Î						
					i				
			i i i			-			
		Î							

_

Continuous Pumping Test

.

Table 1

•

-

٠

.

Appendix E: Water Source Inventory

.

•

		TAB	LE 3-2		
			NATER USE	(E) D	
AQUIFER		DIKE/BASAL	1996	AVAILABLE (1994
SECTOR/		SUSTAINABLE	PERMITTED	SUSTAINABLE	DIKE/BAS
SYSTEM		YIELD	USE 1	YIELD	USE
HONOLULU					
PALOLO		5	5.86 0	-0.689	5,207
NUUANU		15	15.170	-0.170	14.894
KALIHI		9	8.492	0.508	7.818
MOANALUA		18	18.570	-0.570	14.700
WAIALAE WEST		4	1.990	2.010	0.666
WAIALAE EAST		2	0.600	1.400	0.247
SUBTOTAL		53	50.511	2.489	43.832
PEARL HARBOR					
WAIMALU		45	48.379	-3.379	45.070
WAIPAHU-WAIAWA	5	119	110.559	8,441	71.894
EWA-KUNIA	i	20	17,891	2,109	15.973
MAKAIWA		0		0.000	0.000
SUBTOTAL		184	176.829	7.171	132.937
CENTRAL					
WAHIAWA		23	20.746	2.254	9.710
WAIANAE					
NANAKULI		1	0.000	1.000	0.000
LUALUALEI	8	3	0.300	2.700	0.306
WAIANAE	6	3	3.272	-0.272	2.886
макана	- * [4	2.228	1.772	2.204
KEAAU	_8	4	0.000	4.000	0.000
SUBTOTAL		15	5.800	9.200	5.396
NORTH					
MOKULEIA		12	6.030	5.970	2.123
WAIALUA	ļ	40	39.738	0.262	25.971
KAWAILOA		39	7.053	31.947	2.003
SUBTOTAL		91	52.821	35.179	30.097
WINDWARD					
KOOLAULUA		35	18.590	16.410	11.714
Kahana	2	13	1.101	11.899	0.715
KOOLAUPOKO	2	43	15.522	27.478	13,760
WAIMANALO	2	8	1.656	6.344	0.911
SUBTOTAL		89	36.859	62.131	27.100
EWA CAPROCK		N/A 3			
GRAND TOTAL	4	485	343.576	121.424	249.072

1 Dike/Basal Permitted Use as of May 1996. Excludes highly saline to salt water use permits (chlorides>1,000 mg/l)

2 Permament instream flow standards may reduce the availability of excess sustainable yield.

Withdrawala affecting streams require amendments to inclusam flow standards

3 Estimated sustainable yield is <21 mgd due to sugar plantation closure.

4 Grand total of Dika/Basal uses excludes; caprock, springs and perched alluvial sources.

.

5 Waipshu-Walawa & Walawa sustainable yields may be reduced to reflect the recharge reduction from sugar plantation closure. 6 Welanee is not a designated water management area, therefore, existing uses are shown in lisu of permitted use. Source: George Yuen and Associates, 1990; DLNR and BWS records

Revised: 11/17/97

NOV 18 '97 09:06

808 527 6195

PAGE.04

-----..... ----• • • •--------------. •----.

			PERMITED	POTNBLE	NONPOTABLE COMBINED	COMBINED		ACAHERO	SOURCE
		WEILNO	1980 1980	1334 1334	1894 1894	1990 1990	PLAN AREA	SYSTEM	COMMENTS
USEK	20000								
MINDWARD SECTOR		1655 01	0.50	0.154		0 245	KOOLAULOA	KOOLANTOA	
BWS	HAUGA WELL	ANST-16 IA	0 600	0.557		0.546	KOOLAULCA	KOOLAULOA	
BWS		4 (00-03 05	0000	0.000		0.000	KOOLALEOA	KOOLAULOA	FUURE
BWS			000.0			0,000	KOOLAUPOKO	KOOLAUACA	FUINKE
BWS			1.083	1.003		0000	KOOLAUPOKO	KOOLULOA	
SWB			0000			800	KOOLAUPOKO	KOOLAULOA	FUINE
BWS	LAIE WELL					0.000	KOOLAUPOKO	KOOLAULOA	FUTURE
BWS	WALELE WELL	10-000				0000	KOOLAUPOKO	KOOLAULOA	FUTURE
BWS	MANUA WELL	20-5590	100.0	A 101		202.0	KOOLALLOA	KOOLAULOA	
etws	PUNALUU WELL	3653-02					KODI ALIPOKO	KOMAHOA	
	PUNALUU WELLS I	3653-00 TO 08	4.6(8					KOOI ALA OA	
	PUNALUU WELL III	3453-05,07	1.500	0.929				KODI ALLOA	
	CAMPUS WELLS	30.55.05	1.070	0.749		3		KODI ALEOA	
	CHILDS WELLS	3655-10		0.00	0.000				
	ALLARY WELLS	2656-04	0.330	0.069	0000	0.020			
		1026-03	0920	200	0.000	0.260	KOULAULOA		
		3455-00	0.600		0.562	0.100	KOULAULOA		
ZON BEOUNTIES		20-5202	0.460		0.450	0 9 9	KOOLAULOA	KOOLAUCA	
		1056-05	0.060		0:000	0.060	KOOLAULOA	KODUMUON	
ZION SECURITIES		1012001	0.432	0000	0.000	0.70	KOOLAULOA	KOOLAULOA	
HANDHAND		2463-03	0.008	0.00	0.000	0.100	KOOLAULOA	KODUAULOA	
OTA OTA		MASSAGE	0013	0000	0000	0.000	KOOLALAOA	KOOLAULOA	
WHITE		20-102 W.S.4.02	0.002	00010	0.000	0.000	KOOLALACA	KOOLAULUA	
HOLT		3455-12	0000	0.00	0.000	0000	-	KOOLAULOA	
NHAPL		10-6-01	0.017	0.000	0:000	0.00		KOOLULUA	
600		1154.14	0,302		0.167	0.00	-	KODLAULOA	
KULLIAA RESORT		ACA A	0.042	0,040	000:0	0.500	KOOLAULOA	KODUNUOA	
CAMPBELL ESTATE		10-23-02	9000		0000	000'0	KOOLALLOA	KOOLAULOA	_
CANPBELL ESTATE			0 570						
CAMPBELL ESTATE	KAWAWAWAKUA		100.0		0.249	000:0	KODUNUOA	KOCLAULOA	_
KAHUKU FARM	FUMP 1				0000		KOOLAULOA	KOOLAULOA	
CAMPBELL ESTATE	PUMP 8		010.0		0.131		KOOLAULOA	KDOLALLOA	-
CAMPBELL ESTATE	PUMP 12		401.5		0000		KOOLAULOA	KOOLAULOA	
CANTERL ESTATE	PUMP 12-A				1220 0		KOOLAULOA	KOOLAULOA	
CAMPBELL ESTATE	SUGAR MILL PUMP				0.147		_	KOOLAULOA	4
CAUPBELL ESTATE	PAUNER GC	10-01			1000		-	KOOLAULDA	~
CUMPBELL ESTATE	FUMP (5	4157-04	1.010	0000				KOOLAUROA	Æ
CAMPBELL ESTATE	USFW 1.2,3	4157-00,06,07		88				KOOLAULOA	•
CAMPBELL ESTATE	AMOR INKO SALT	4157-09						KOOLALLOA	•
CAMPBELL ESTATE	KAHUKU ARGASE	4150-12,13	0.100					KOOLAULOA	•
CAMPREL ESIATE	PUMP 2	120-01	1914					KOOLAULOA	•
CAMPBELL ESTATE	PUNAMANO (ARM)	4159-02	100.0					KOOLAULDA	*
CAMPGEN ESTATE	T ASTRO SALT	1258-05	00010					KOM ANI OA	
CAUDUEL ESTATE	AHOR RCA SALT 1.2	11100-0021	0.000					KOOI AIR OA	4
CAMERICI ESTATE	ANOR PACT SALT 12	4254-12,13	0.00	0000			_		:
	ELC FOUNDATION	10-95/12	0.019	•					
ELC CIIEDRAI CETATE		10-1980	0.945	Ŵ					
CAMPBELLESTATE	PUMP 3A	507-159E	1.169	•					
	•					10,00			
							•		

.

.

808 527 6195 PAGE.05

• •

-

ENGINEERING DIVISION TEL No.808-527-6195 Nov 18,97 8:55 No.004 P.05

Appendix F: Draft EA Distribution List

.

-

Draft EA Distribution List

Federal Agencies

•

- Department of the Interior
 - Fish and Wildlife Service
 - Geological Survey
- Department of Agriculture • Natural Resources Conservation Service
- •
- U.S. Army Corp of Engineers .

State Agencies

- Department of Health ٠
- Department of Land and Natural Resources •
- University of Hawaii at Manoa •
 - Environmental Center (Dr. John Harrison)
 - Water Resources Research Center
- Office of Environmental Quality Control ٠

City and County of Honolulu Agencies

- Department of Land Utilization •
- Planning Department ٠
- Department of Public Works •

Other Groups and Organizations

- Koolauloa Neighborhood Board No. 28 •
- Sierra Club, Hawaii Chapter ٠
- Councilman Steve Holmes •

.

.

1 -- 0 1 1 ; -4 1.146

٠,

PAGE.02

608 527 6195

PACE.03

------. i -. ł ---ı. . 1-4 1.--1--------4 -----٠ _ . -----.

-

10 18 '97 B9:07

808 527 6195

PGE.05

_	
-	
'	
-	
•	
-	
•	
•	
•	
•	
1	
•	
•	
• •	
1	
•	
,	

NOV 18.97 8:55 No.004 P.04 ENGINEERING DIVISION TEL NO.808-527-6195

	Ň	GROUNDY LOUNCER SYSTEM A	GROUNDWATER USE By adurer eystem and sustanuale yreld	£10	
AQUFER SECTORU SYSTEM		DINGEARSAL SUISTADUABLE YELD	1941 031714/0539 05E 1	AVALABLE SUSTANABLE YELD	1964 DIRCE/BASAL USE
HONOLULU			1 441	-0 689	2025
NULANU		, tī	15.170	2.9	14,054
KULH		-	261 0	1 050	7.818
NONNUN		=	14.570	-0.270	14.700
WALLAE WEST		- 1	1.990	2.010	0.066
WAMLAE EAST	1	~			
SUBTOTAL	1	2			768.65
PEARL HARBOR		¥	14.14	976 6-	45.070
					11 694
	•	2	191	2.104	15.973
LAKANAA		0		0000	0000
SUBTOTAL	Γ	H	176 625	1417	159 251
CENTRAL	Γ				
WAMAWA		ส	20746	2254	8.710
WAIANG	ſ				
NNNNN	•	-	0000	1.000	0.000
LUALUALEI	•	-	0000	2700	0.00
WANNAE	•	•	2222		2 840
MAXANA	•	• •		71/1	
	•	•		0.200	
2001012	Ī	2			
NORTH VOVINELA		:	0.0	5 970	2123
		: 9		202.0	25.971
		5	163	21 MI	2 003
SUBIOIAL	ſ	10	1002	34 179	30.087
MENDWARD	ſ				
KDOLAUADA		*	11 590	19 410	11.714
KANADUA.	-	2	101.1	11.699	0.715
KOOLAUPOKO	-	4	15.52	27.478	11.760
WANNANALO	-	-	1634	6.344	0811
SUBTOTAL		8	34 669	12131	27.100
EWA CAPROCK		NA 5			
101010		ž		121.121	249 072
	•				
i	ï	-	n ann a ca ann fu	Exclose hgry subre is call wear use parmits (cherkee -1,000 mg/)	(100 mg/)
Terrando international statements and the second se	1	Ī	ca fite predictely of entrants publication your desires it preserve fite structures		
		tanatie jaki la Cl'age da la Ngir jarutan thura	stien down.		
			ינוקאים הישהיאניה להמנה של או שיריכון א שווינים את המשועים אינויים. את ראש הישהיאניה מהמניר אינונים את המנינים היינוים או היינוים או	course appear, uping any percent more more recent.	Que plantation closure
		A designment of the local data	The second		

.....

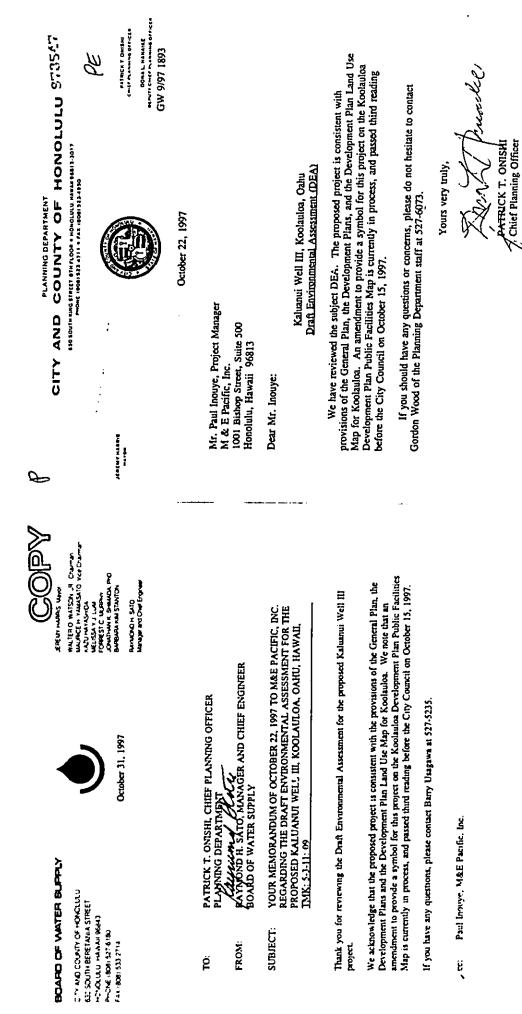
			PERMITTU	PUTANLE	NON-POTABLE	COMBINED			
-			USE	USE	USE	UCIE	DEVELOPMENT	ADWER	SOURCE
LISER	BOURCE	WELL NO.	1996	1954	1994	1990	PLAN ATEA	SYSTEM	COMMENT
MHOMAND SECTOR	HAUTLA WELL	3603-91	0,250	0 144		0243	KOULAULOA	ROULAULOA	
W8 W3	KAHUKU WELLS	4057-18,16	0 400	0 347		0 546	KOOLALOA	KOOLAULQA	
WS	OPANA WELL	4100-03.05	0000	0 000		0 000	KOOLALLOA	KOOLAULOA	FUTURE
W3	KAPAPALI WELL	3856-03	0 000			0 000	KOOLALPOKO	KOOLALLOA	FUTURNE
W3	KALUAMUI WELLS	3364-04,05	1.043	1.003		0 000	KODLAUPOKO	KOOLAULDA	
	LANEWELL	3623-08	0 002			0 009	ROOTYNAL	KOOLALI CA	FUTURE
	WALLELE WELL	3664-09	0 000			0 000	KOOLALPOKO	KOOLAILOA	FUTURE
	MAAGUA WILL	3835-02	0 887			0 000	ROOLAUPORO	KOOLALLOA	FUTURE
	PUNALUU WILL P	3533-02	0 348	0 210		0.367	KOOLALLOA	ROOLAROA	
TVS	PUHALUU WELLS #	2553-03 TO 98	4 618	5 4 29		4 511	KOOLALPOKO	KOOLAULOA	
MB	PURALULY WELL IN	3453 08.07	1 3 3 9	0 125		1 004	KOOLALIPOKO	KOOLALLOA	
ION SECURITIES	CAMPUS WELLS	3635-06	1070	0749	8 000	1 000	KOOLALL DA	KOOLALBOA	
TION SECURITIES	CHILDS WELLS	3835-10		0 000	0 100	0 300	KOOLALLOA	KOOLALLOA	
TION BECLINITTER	QUARRY WELLS	2004-04	0 130	0.049	0 000	0 630	KOOLALLOA	KOOLALLDA	
TICH SECURITIES	IEMPLE WELLS	3036-03	0 380	0 370	6 000	0 290	KOOLAULOA	KOOLALLUA	
TON BECURTNES	PCC LAGOON	3855-09	0 000		0 947	0,100	KOOLAULOA	KOOLAIROA	
TON SECURITES	PRAVITI FARM	3896-07	6 440		0 440	0,000	KOOLAULOA	ROOLAROA	
CON SECURITIES	LANE EGGS FARM	3036-05	0 000	ê 000	0,000	6 700	KOOLALLOA	KDOLALLOA	
CINAHOHANG	HANDHAND	3553-01	0 432	e 000 e 100	0 000	0 100	KOOLAULOA	KOOLALLCA	
OTA	OTA	3483-03	0 006	9 000	6 000	0 000	KDOLALLOA	KOOLAULOA	
WHITE	WHATE, NE	3855-05	0 013	6 000	0 000	0 000	KOOLALE OA	KOOLALLOA	
HOLT	HOLT, LW	3654-02	0 002	8 000	6 000	0 000	KDOLALA CA	KOOLAULOA	
NH PALI	MINIPALI	3430-12		8 000	0 000	0,000	KOOLAULOA	XOOLALS OA	
~~~	KARD ARTESIAN	8835-07	0 017	0.000	9 197	0 000	KOOLALLOA	KOOLALA DA	
KUKUMA RESORT	REFERENCE I	4158-14	0 302	0 040	0 000	0 900	KOOLALLOA	KOOLAA OA	
CAMPBELL ESTATE	MALAEKAHANA CA	2906-01	0.042	0.040	0 004	000	KOOLALALOA	KDOLAROA	
CAMPBELL ESTATE	PUMP 8	2637-07			0.004				
CAMPBELL ESTATE	ACTANANAWAR	4036-01	0 576		0.219	0 000	KOOLAILOA	KOOLAULOA	
KAHUNU FARM	PUMP I	4857-01	0.301		0.000	0.000	KOOLAULOA	KOOLALLOA	
CAMPBELL ESTATE	PUMP &	4057-08	0 670		6 131	6 000	KOOLAULOA	KDOLALA DA	
CANFEELL ESTATE	PUBAR 12	4057-07	0.129		6 131	8 000	KOCLAULOA	KDOLALLOA	
CANFWELL ESTATE	PUMP 12 A	4057-18	1 200			0 000	KOOLALLOA	KOOLAJLOA	
CAMPBELL ESTATE	SUCAR MILL PUMP	4057-04	0 0220		0 023	0,000	KOOLALLOA	KOOLALLOA	
CAMPBELL ESTATE	PALMER GC	4100-01	0 200		0 147	0,120	KOOLALEOA	KOOLAUL DA	
CAMPBELL ESTATE	PUNP 15	4157-04	1 317		0 001	0 000	KOOLAUL OA	KCOLALLOA	
CAMPBELL ESTATE	USI'W 1.2,3	4157-06,00,87	0 245	0 000	0 000	0 000	ROCIALOA	KOOLAULOA	
CAMPBELL ESTATE	AMOR POLD SALT	4197-00	000	0 000	0 000	0 200	KOCLALLOA	KOOLALA DA	
CAMPTELL ESTATE	KANAKU ARBASE	4158-12,13	0 193	0.069	6 647	0 000	KOOLAULOA	KOOLALLOA	
CAMPBELLESTATE	PUMP 2	4199-91	0 814		6 647	0.000	KOOLALLOA	KOOLALLOA	
CAMPBELL ESTATE	PUNAMANO (ARMIT)	4159-02	9 001	0013	0 000	0 000	KOCLALLOA	KOOLALLOA	
CAMPBELL ESTATE	T ARTHO SALT	4234-00	8 000	8 000	8 000	0 100	KOOLALOA	KOOLAULOA	
CAMPOELL ESTATE	AMOR RCA SALT 1.2	4238-06,14	6.000	0 000		0 000	KOOLAULOA	KODLALLOA	
CANPELL ETTATE	AMOR PACT BALT 1.2	4220-12,13	000	8,000	8 000	0 000	ROOLAOLOA		
RC	ELC FOUNDATION	3756-03	0.019						
CANFORL ESTATE	PUMP 1	3857-01	0.945						
CAMPBELL CETATE	PUMP 3A	3857-03	1,109						

. —

... ..

Revised: 11/17/07

FRGE. DA 5619 225 808


90:60 L5, 91 NON

Nov 18.97 8:55 No.004 P.05

ENGINEERING DIVISION TEL NO.808-527-6195

i -----

. ~~~



Ë

Ë

Ray Sato, BWS

ដ

PTO:Ih

RECEIVED NOV 0 7 1997

Conta II on a poor population and

ر است ( 1.4 _ -

۰. ۲

CITY AND COUNTY OF HONOLULU 650 50474 4140 5186 57 774 71.008 a mOMOLULU 14344 54813 PmOnt 18091 523 4414 a 741 18081 517 4743

AMERT 14470



October 22, 1997

97-06953(ST) 97-06953(ST) 97 EA Comments Zone 5

JAR NAOE SULLIYAN Inneroe

Mr. Paul Inouye, Project Manager MEE Pacific, Inc. Pauehi Tover, Suite 500 Honolulu, Hawaii 96813

Dear Mr. Inouye:

Draft Environmental Assessment (DEA) For Development of Kaluanul Well III Koolaupoko, Oahu Tax Map Kev: 5-3-111: por. 09

We have reviewed the DEA transmitted by your letter dated September 22, 1997, for the development of the above-referenced well and offer the following comments:

- Section 5.1 Technical Description, should be revised to include an elevation illustration of the actual improvements proposed at the well site. This section should also describe the size of the proposed area for these improvements. ÷
- Section 6.3 Infrastructurg, should clarify whether electric and telephone services are already provided to the proposed well site. It is our understanding that utilities are available at the existing control building located approximately 150 feet to the south, and that <u>201</u> exploratory work has been conducted at this location thus far. **~**
- Section 6.4 Land Use Zoning/Ownership, should be expanded to disclose that the proposed site is currently zoned P-2 General disclose that This section should also include the Development Plan (DP) and DP Public Facilities Map designation of this site. , ÷

RECEIVED OCT 2 3 1997

Mr. Paul Inouye, Project Manager Page 2 October 22, 1997

Thank you for the opportunity to comment. Should you have any questions, please contact Steve Tagawa of our staff at 523-4817.

JAN ANDE SULLIVAN Director of Land Utilization Ņ Very tryyyyours,

cc: State Office of Environmental Quality Control g:ppd/DEAteIII.sht

JNS: AB

- BOARD OF WAT		JEREMY HARRIS, Mayor
CITY AND COUNTY OF HOM 630 SOUTH BERETANIA ST HONOLULU, HAWAII 96843	REET	WALTER O WATSON, JR. Chairman MAURICE H YAMASATO Vice Chairman KAZU HAYASHIDA MELISSA Y J. LUM FORREST C MURPHY JONATHAN K, SHIMADA, PhD
PHONE (808) 527-6180 FAX (808) 533-2714		BARBARA KIM STANTON
	November 12, 1997	RAYMOND H. SATO Manager and Chief Engineer
-		
•		
то:	JAN SULLIVAN, DIRECTOR DEFARTMENT OF LAND UTILIZATION	
FROM:	FAYMOND H. SATO, MANAGER AND CHIEF EN BOARD OF WATER SUPPLY	IGINEER
SUBJECT:	YOUR LETTER OF OCTOBER 22, 1997 TO M&E 1 DRAFT ENVIRONMENTAL ASSESSMENT FOR T KOOLAULOA, OAHU, HAWAII, TMK: 5-3-11: 09	
	reviewing the Draft Environmental Assessment (EA) for	the proposed Kaluanui Well III
production facil	ity.	
We provide the	following responses to your concerns:	
1. A	n elevation representation along with the size of the actu te will be incorporated within Section 5.1, <u>Technical De</u>	ual improvements proposed at the well escription, of the Final EA.
al	ection 6.3, <u>Infrastructure</u> , will be revised to indicate that ready provided to the proposed well site. Utilities are a cated approximately 350 feet to the south. Exploratory	vailable at the existing control building
	e well site thus far.	wen arning has only been performed at
cu	ection 6.4, <u>Land Use Zoning/Ownership</u> , will be expand urrently zoned P-2 General Preservation. In addition, the	ed to disclose that the proposed site is e Development Plan (DP) and DP Public
•	icilities Map designation will be specified.	
If you have any	questions, please contact Barry Usagawa at 527-5235.	
Paul In	ouye, M&E Pacific, Inc.	
-		

•

-Pure Water ... our greatest need - use it wisely

. . ` ___ -· _----------.

· ----

____ 4 ----------..__ _ ~ _

ł

+ + +

-----



DEPARTMENT OF THE ARMY U S ANVE ENDREED DSTRET: HONOLULU PT SAVYER HANALI MARP 4400

October 16, 1997

Planning and Operations Division

Mr. Paul Inouye, Project Manager M£E Pacific, Incorporated 1001 Bishop Street, Suite 500 Honolulu, Hawaii 96813 Dear Mr. Inouye:

Thank you for the cpportunity to review and comment on the Draft Environmental Assessment (DEA) for the Kaluanul Well III Project. Koolauloa. Oahu (TWK 5-3-11) 9). The following comments are provided in accordance with U.S. Army Corps of Engineers authorities to provide flood hazard information and to issue Department of the Army (DA) permits.

a. Based on the information provided, a DA permit will not be required for the project. Should you require any further information, please contact our Regulatory Section at 438-9258 and refer to file number 970000150.

b. The flood hazard information provided on page 4 of the DEA is correct.

Sincerely,

20 Marie

Faul Mizue, P.E. Acting Unief of Planning and Operations Division

٠

## BOASO OF WATER BUPPLY

.

CITY JAND COUNTY OF HOUGUAU 620 SOUTH BERETAINA STREET HOVOLUU HANNAI 96843 PHOVE (808) 527-6160 FAX (808) 533 27'4





Department of the Army Pacific Ocean Division, Corps of Engineers Fort Shafter, Hawaii 96858-5440 Mr. Paul Mizue, P.E. Planning and Operations Division

Dear Mr. Mizue:

Subject: Your Letter of October 16, 1997 to M&E Pacific, Inc. Regarding the Draft Environmental Assessment for the Proposed Kaluanui Well III, Koolauloa, Oahu, Hawaii, TMK: 5-3-011: 009

Thank you for reviewing the Draft Environmental Assessment for the proposed Kaluanui Well III project. We acknowledge that a Department of the Army permit will not be required for the proposed project and that you concur with the floor hazard information.

If you have any questions, please contact Barry Usagawa at 527-5235.

Very truly yours.

RAYMOND H. SATO Manager and Chief Engineer LH 1900 õ

Paul Inouye, M&E Pacific, Inc.

ÿ

ייתו "נווזונית שנוון – האי ון הואווי Pur Nove RECEIVED ANT 1 7 497

2 . . . ' 1 _.; ----. ____ _ -_ _

÷

÷

1

BOARD OF WATER SUPPLY CITY AND COUNTY OF HONOLULU 630 SOUTH BERETAMA STREET HONOLULU HANAII 96843 PHONE (1808) 533-2714 FAX (1808) 533-2714 Antonio Carcina San Antonio An RECEIVED GCT | \$ 522 Thank you for the opportunity to review and comment on the subject Draft Environmental Assessment for the Kaluanui Exploratory Well III project. Should you have any questions, please contact Nicholas Vaccaro of our Land Division's Support Services Branch at 587-0438. The Department of Land and Natural Resources has no comments to offer on the subject matter at this time. REF. : WELLIII.RCM Review : Draft Environmental Assessment Project : Kaluanui Exploratory Well III Proposal : Establish necessary facilities to convert the Kaluanui Exploratory Hell III into a Production well Purpose : To dutction well Purpose : To satisfy the growing water demand for the Honolulu and Windward District Applicant: Board of Water Supply Location : Kaluanui Valley, Island of Oahu, Hawaii IMK : lst/5-1-11:09 ; Kunder Brond Very truly yours, MDEAN Y. UCHIDA Administrator STATE OF HAWAII DEPARTNENT OF LAND AND NATURAL RESOURCES LUND DNNSON PO SOL 421 PO SOL 421 PO CODDET 13, 1997 OCCODET 13, 1997 Mr. Paul Inouye Project Manager M & E Pacific. Inc. A Metcalf & Eddy Company 1001 Bishop Street, Suite 530 Pauahi Tower Honolulu, Mawaii 96813 Dear Mr. Inouye: : LDECEOS LD-NAV

c: Oahu Land Board Member At Large Land Board Member Oahu District Land Office

•

A PARTY SNUL - DWILL BUNK Par 11.27



October 27, 1997

Mr. Dean Uchida, Administrator Department of Land and Natural Resources State of Hawaii P. O. Box 621 Honolulu, Hawaii 96809

Dear Mr. Uchida:

Subject: Your Letter of October 13, 1997 to M&E Pacific, Inc. Regarding the Draft Environmental Assessment for the Proposed Kaluanui Well III, Koolauloa, Oahu, Hawaii, TMK: 5-3-011: 009

Thank you for reviewing the Draft Environmental Assessment for the proposed Kaluanui Well III project.

We acknowledge that you have no comments to the proposed well development.

If you have any questions, please contact Barry Usagawa at 527-5235.

Very truly yours,

ROR RAYMOND H. SATO Manager and Chief Engineer LALABOUR .

véc: Paul Inouye, M&E Pacific, Inc.

# Ξ. 1 .

1 1 • • e

SULVERS L'ATTAND

STATE OF HAWAII DEPARTMENT OF HEALTH P.O. BOX 3378 HOMOLULU HAMAN 56801

October 10, 1997

97-068**A/e**po

Mr. Paul Inouye, Project Manager M4E Pacific, Inc. Pauahi Tover, Suite 500 1001 Bishop Street Honolulu, Hawaii 96813

Dear Mr. Inouye:

DRAFT ENVIRONMENTAL ASSESSMENT (DEA) Project: Raluanui Well III (STATE WELL NO. 3-3554-06) Location: Kaluanui Valley, Oahu, Hawaii TMK: (1) 5-3-11: 9 subject:

Thank you for allowing us to review and comment on the subject project. We have the following comments to offer:

- Havail Administrative Rules (HAR), Title 11, Chapter 20, "Rules Relating to Potable Water Systems," Section 11-20-29 requires that all new sources of potable water serving a public water system be approved by the Director of Health prior to its use. Such an approval is based primarily upon the submission of a satisfactory engineering report which addresses the requirements set in Section 11-20-29. The Honolulu Board of Water Supply has submitted an engineering report for the Kaluanui Well 111 which is now under review. :
- In the subject DEA, Section 9.0, List of Permits, should be revised as follows: 2.

State of Hawaii: Subdivision Application (DLU) NPDES Permit, if necessary (DOH) Water Use Permit (DLNR) Pump Installation Permit (DOH - DLNR) Potable Water Source Approval (DOH)

4

Should you have any guestions on these comments, please contact Mr. Stuart Yamada of the Safe Drinking Water Branch at 586-4258.

Mr. Paul Inouye, Project Manager October 10, 1997 Page 2

97-068A/epo

<u>Water Pollution</u>

- The applicant should contact the Army Corps of Engineers to identify whether a federal permit (including a Department of Army permit) is required for this project. If a federal permit is required, then a Section 401 Water Quality Certification is required from the State Department of Health, Clean Water Branch. i
  - A National Pollutant Discharge Elimination System (NPDES) <u>GENERAL</u> permit is required for the following discharges to vaters of the State: 5
- storm water discharges relating to construction activities, such as clearing, grading, and excavation, for projects equal to or greater than five acres; ė
- Storm water discharges from industrial activities; ġ
  - Construction dewatering activities; j,
- Noncontact cooling water discharges less than one million gallons per day; q.
- Treated groundwater from underground storage tank remedial activities; and ÷
- Hydrotesting water. ...

Any person requesting to be covered by a NPDES <u>general</u> permit for any of the above activities should file a Notice of Intent with the Department's Clean Mater Branch at least 10 days prior to commencement of any discharge to waters of the State.

an After construction of the proposed facility is completed, NPDES individual permit will be required if the operation involves any wastewater discharge into State waters. ÷

Any questions regarding these comments should be directed to Mr. Denis Lau, Branch Chief, Clean Water Branch at 586-4309.

Sincerely,

Jundhalun

BRUCE S. ANDERSON, Ph.D. Deputy Director for Environmental Health

SDHB CHB ü

RECEIVED 001 1 7 :997

	_			
-	BOARD OF	WATER SUPPLY		
	CITY AND COUNTY	Y OF HONOLULU		WALTER O WATSON JR Chairman
	630 SOUTH BERET	ANIA STREET		MAURICE H YAMASATO, VICE Chairman KAZU HAYASHIDA
· _	HONOLULU, HAWA PHONE (808) 527-6			MELISSA Y.J. LUM
	FAX (808) 533-2714			FORREST C MURPHY JONATHAN K. SHIMADA, PhD
		,	October 27, 1997	BARBARA KIM STANTON
_				RAYMOND H. SATO Manager and Chief Engineer
	Bruce S.	Anderson, Ph.D.		
	Deputy D	Director for Environmental Heal	th	
;	Departme	ent of Health	•••	
	State of H			
	P. O. Box			
	Honolulu,	, Hawaii 96801		
	Dear Dr. A	Anderson:		
	Subject:	Your Letter of October 10	1007 to M&C D: C	
··	-	Assessment for the Board of	1997 to M&E Pacific, Inc., Regard f Water Supply's Proposed Kal	ing the Draft Environmental
		<u>TMK: 5-3-11: 09</u>	f Water Supply's Proposed Kaluani	ii Well III, Koolauloa, Oahu,
1				
	<b>Th</b> 1			
	proposed K	i for your letter regarding the Di Kaluanui Well III project.	raft Environmental Assessment (EA	) for the Board of Water Supply's
المد -	We provide	e the following responses to you	Ir concerns:	
· · · · ·	1.	We acknowledge that the eng the Department of Health (De	gineering report for the proposed pr OH).	oject is currently under review by
-	2.	Section 9.0, List of Permits,	of the Final EA will be revised as f	follows:
		State of Hawaii:		
: 		Pump Installation Permit (Dep	partment of Land and Natural Reso	urces)
-		Potable Water Source Approv.	al (DOH)	
: 	If you have a	any questions, please contact Ba	arry Usagawa at 527-5235.	
			Very truly yours,	
			ALL KINGS	
			FOR	
			RAYMOND H. SATO	
			Manager and Chief Enginee	r
_	Acc: Paul	Inouye, M&E Pacific, Inc.		
		ayo, come current, the.		
~				

Pure Water our greatest need - use it wisely

----

1 -. . . . . -------

.....

11.1 HT (1.)



-----

TII MAPIDLAM BOULEVARD SUITE 500 Momolulu Mamaii 56813 5248 OFFICE OF NAWAIIAN AFFAIRS STATE OF HAWAI'I PHONE (BOB) 594-1144 FAX (BCB) 394-1945 October 01, 1997

Mr. Paul Inouye M&E Pacific, Inc. 1001 Bishop Street Suite 500 Pauahi Tower Honolulu, HI 96813

Subject: Draft Environmental Assessment (DEA) for Kaluanui Well III, Koolaulao, Island of Oahu.

Dear Mr. Inouye:

Thank you for the opportunity to review the Draft Environmental Assessment (DEA) for Draft Environmental Assessment (DEA) for Kaluanui Well III, Koolaulao, Island of Oahu. The Board of Water Supply is seeking to convert the Kaluanui Exploratory Well III into a production well. The proposed conversion is part of an overall effort to increase the agency's capacity to meet growing urban water demands.

The Office of Hawaiian Affairs (OHA) has no objections at this time to the proposed production well. According to the DEA, the well apparently bears no adverse impacts on adjacent lands nor upon existing flora or fauna and no known archaeological remains exist in the area. Furthermore, the well will neither significantly affect nearby scenic resources nor air quality. Moreover, water pumping will not aquifer system nor affect waterflow of nearby Kaluanui stream. Apparently the basal aquifer and the Kolauloa stream. Apparently the basal aquifer and the Kaluanui arc physically separated by layers of relatively impermeable alluvium which makes water pumping uneventful.

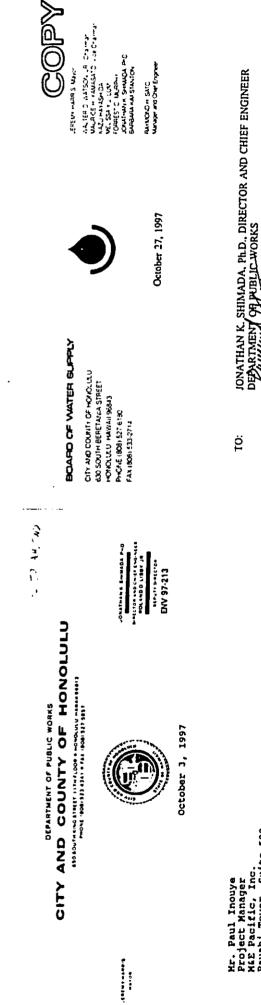
Letter to Mr. Inouye Page two

Please contact Lynn Lee, Acting Officer of the Land and Natural Resources Division, or Luis A. Manrique, should you have any questions on this matter.

Sincereiy yours, Rándall Ogata Administrator ĥ

Lynn Lee Lynn Lee Acting Officer, Land and Natural Resources Division -1--7-1

LM:Im cc Trustee Clayton Hee, Board Chair Trustee Abraham Aiona, Board Vice-Chair Trustee Rowena Akana, Land & Sovereignty Chair Trustee Haunani Apoliona Trustee Fenchy DeScro Trustee Moses Keale Trustee Colette Machado Trustee Hannah Springer


	BOARD OF V	VATER SUPPLY		
-	CITY AND COUNTY O 630 SOUTH BERETAN HONOLULU, HAWAII	NA STREET		WALTER O WATSON, JR. Chairman MAURICE H. YAMASATO. Vice Chairman KAZU HAYASHIDA MELISSA Y J. LUM
-	PHONE (808) 527-618 FAX (808) 533-2714		October 27, 1997	FORREST C MURPHY JONATHAN K. SHIMADA, PhD BARBARA KIM STANTON
-				RAYMOND H. SATO Manager and Chief Engineer
_	Mr. Randa Office of	all Ogata, Administrator Hawaiian Affairs		
	State of H	awaii		
-	711 Kapio Honolulu,	lani Boulevard, Suite 500 Hawaii 96813-5249		
-	Dear Mr. (	Ogata:		
-	Subject:	Your Letter of October 1, 1997 Assessment for the Board of W Oahu, TMK: 5-3-11: 09	7 to M&E Pacific, Inc. Re Vater Supply's Proposed K	garding the Draft Environmental aluanui Well III, Koolauloa,
	We acknow Kaluanui W and Kaluanu	for your letter regarding the Dra oposed Kaluanui Well III project ledge that you have no objection cell station should not affect stread i Stream, in the lower reach, are	t. s to the proposed well pro im flow within Kaluanui S s physically separated by n	ject. Pumpage from the tream since the basal aquifer elatively impermeable allusium
•		and stream gaging procedures any questions, please contact Bar		f this project.
-	-		Very truly yours,	
_				
			Blitter	$\sim$
		FOR	RAYMOND H. SATO Manager and Chief Eng	ineer
	cc: Paul	Inouye, M&E Pacific, Inc.		

-

RECEIVED Som S 1 1997

-.-.---.

ł



Mr. Paul Inouye Project Manager MrE Pacific, Inc. Pauahi Tover, Suite 500 1001 Bishop Street Honolulu, HI 96813

Dear Mr. Inouye:

Subject: Draft Environmental Assessment (DEA) Kaluanui Well III IMK: 5-3-11: 9

We have revieved the subject DEA and have the following comments:

- Provide appropriate best management practices (BMPs) during drilling operations to mitigate discharge of pollutants, including slurries, lubricating fluids and well purge waters to Kaluanui Strean. ...
- The DEA should address where the test water will be disposed of. 2
- For your information, the state Department of Health is proposing changes to Chapter 11-55, Appendix I, NPDES General Permit Authorizing Discharges of Treated Effluent From Well Drilling Activities, to State waters which will have an impact on future well drilling operations. ń

Should you have any questions, please contact Alex Ho at 523-4150.

JIL VULLET AND A, PhD JOHATHAN K. SHIMADA, PhD Director and Chief Engineer amine Very truly yours,

Par Wiese ACCENED 307 8 7 897

در ترونطاردی مرضو - An در Rine

- JONATHAN K. SHIMADA, Ph.D., DIRECTOR AND CHIEF ENGINEER DEPARTMEN OF PUBLIC WORKS AUTHUM AND H. SATO, MANAGER AND CHIEF ENGINEER BOARD OF WATER SUPPLY FROM:
- DRAFT ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED KALUANUI WELL III. KOOLAULOA. OAHU. HAWAII. TMK: 5-3-11; 09 SUBJECT:

Thank you for reviewing the Draft Environmental Assessment (EA) for the proposed Kaluanui Well III production facility.

completed; therefore, your concerns regarding best management practices (BMP) during well drilling operations, test pumping discharges and National Pollutant Discharge Elimination System well drilling requirements are no longer applicable. This Draft EA addresses the production facility phase for the proposed well. Any discharges associated with the construction of the permanent pump and connecting pipelines will incorporate standard BMPs' to minimize impacts to State receiving waters. The exploratory well drilling phase of the Kaluanui Well III project has already been

If you have any questions, please contact Barry Usagawa at 527-5235.

cc: Paul Inouye, M&E Pacific, Inc.

C.02.VT3