March 27, 2014

TO: Ms. Jessica Wooley, Director
 Office of Environmental Quality Control
 Department of Health

FROM: Duane Y. Kashiwai, Public Works Administrator
 Facilities Development Branch
 Department of Education

SUBJECT: Final Environmental Assessment and Finding of No Significant Impact (FEA-FONSI) for the Kapolei II Elementary School, New School
 Kapolei, Oahu, Hawaii
 TMK: (1) 9-1-160:024 and (1) 9-1-158:062

With this letter, the State of Hawai‘i, Department of Education (DOE) hereby transmits the final environmental assessment and Finding of No Significant Impact (FEA-FONSI) for the Kapolei II Elementary School, New School, situated at Tax Map Key (1) 9-1-160:024 and (1) 9-1-158:062, in the City of Kapolei, ‘Ewa District on the island of O‘ahu, for publication in the next available edition of The Environmental Notice.

We have included copies of comments and responses that we received during the 30-day public comment period on the draft environmental assessment and Anticipated Finding of No Significant Impact (DEA-AFONSI).

Based on the Environmental Assessment and comments received, the DOE finds that the proposed project, a new elementary school in Kapolei, has no significant environmental impacts and will be of benefit to the surrounding community.

Enclosed is a completed OEQC publication form, two printed copies of the FEA-FONSI, a CD containing a PDF file of the same, and an electronic copy of the publication form in MS Word. We have submitted the project summary of the action in a text file by e-mail to your office.

If you have any questions, please call Gaylyn Nakatsuoka of the Facilities Development Branch at (808) 377-8315.

DYK:GN:jmb

Enclosures
AGENCY ACTIONS
SECTION 343-5(B), HRS
PUBLICATION FORM (FEBRUARY 2013 REVISION)

Project Name: Kapolei II Elementary School
Island: O‘ahu
District: ‘Ewa
TMK: (1) 9-1-160:24 and (1) 9-1-158:62
Permits: Construction and building permits; Kapolei Urban Design Approval, NPDES
Proposing/Determination Agency:
Hawai‘i State Department of Education; Gaylyn Nakatsuka, Planning Section, Facilities Development Branch, Office of School Facilities & Support Services, 4680 Kalanianaole Highway, TB1A, Honolulu, HI 96821, 808-377-8315
Consultant: Joanne Hiramatsu, Belt Collins Hawaii LLC, 2153 N. King Street, Suite 200, Honolulu, HI 96819, 808-521-5361

Status (check one only):
- **DEA-AFNSI**
 Submit the proposing agency notice of determination/transmittal on agency letterhead, a hard copy of DEA, a completed OEQC publication form, along with an electronic word processing summary and a PDF copy (you may send both summary and PDF to oeqchawaii@doh.hawaii.gov); a 30-day comment period ensues upon publication in the periodic bulletin.
- **x_FEA-FONSI**
 Submit the proposing agency notice of determination/transmittal on agency letterhead, a hard copy of the FEA, an OEQC publication form, along with an electronic word processing summary and a PDF copy (send both summary and PDF to oeqchawaii@doh.hawaii.gov); no comment period ensues upon publication in the periodic bulletin.
- **_FEA-EISPN**
 Submit the proposing agency notice of determination/transmittal on agency letterhead, a hard copy of the FEA, an OEQC publication form, along with an electronic word processing summary and PDF copy (you may send both summary and PDF to oeqchawaii@doh.hawaii.gov); a 30-day consultation period ensues upon publication in the periodic bulletin.
- **Act 172-12 EISPN**
 Submit the proposing agency notice of determination on agency letterhead, an OEQC publication form, and an electronic word processing summary (you may send the summary to oeqchawaii@doh.hawaii.gov). NO environmental assessment is required and a 30-day consultation period upon publication in the periodic bulletin.
- **DEIS**
 The proposing agency simultaneously transmits to both the OEQC and the accepting authority, a hard copy of the DEIS, a completed OEQC publication form, a distribution list, along with an electronic word processing summary and PDF copy of the DEIS (you may send both the summary and PDF to oeqchawaii@doh.hawaii.gov); a 45-day comment period ensues upon publication in the periodic bulletin.
- **FEIS**
 The proposing agency simultaneously transmits to both the OEQC and the accepting authority, a hard copy of the FEIS, a completed OEQC publication form, a distribution list, along with an electronic word processing summary and PDF copy of the FEIS (you may send both the summary and PDF to oeqchawaii@doh.hawaii.gov); no comment period ensues upon publication in the periodic bulletin.
- **Section 11-200-23 Determination**
 The accepting authority simultaneously transmits its determination of acceptance or nonacceptance (pursuant to Section 11-200-23, HAR) of the FEIS to both OEQC and the proposing agency. No comment period ensues upon publication in the periodic bulletin.
- **Section 11-200-27 Determination**
 The accepting authority simultaneously transmits its notice to both the proposing agency and the OEQC that it has reviewed (pursuant to Section 11-200-27, HAR) the previously accepted FEIS and determines that a supplemental EIS is not required. No EA is required and no comment period ensues upon publication in the periodic bulletin.
Summary (Provide proposed action and purpose/need in less than 200 words. Please keep the summary brief and on this one page):

The State Department of Education proposes construction of a new elementary school on Kunehi Street in Kapolei in response to population growth in the Kapolei area and high enrollments at existing schools. Kapolei II Elementary is being designed as a Twenty-First Century Learning Environment for children in PK through Grade 5. It will be designed to serve up to 750 students.

The school would include more than 100,000 square feet of enclosed space, along with a data center. More than 122,000 square feet of outdoor physical education space would also be provided. The project will be designed to meet LEED Silver standards or better. Space has been identified for potential expansion—for portable classrooms and a two-story classroom building—if in time it is necessary to expand enrollment.

The site has long been disturbed and has been filled and graded. Infrastructure has been developed for the Mehana subdivision, anticipating the construction of the school. No historical or cultural resources are on the site; no impacts on such resources are expected.

The main socio-economic impact and impact on public facilities would be the provision of a new school, serving students and increasing school capacity in the region. No significant impact on traffic is expected.
<table>
<thead>
<tr>
<th>Proposed Action:</th>
<th>Kapolei II Elementary School Department of Education (DOE) Job No. Q82001-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street Address:</td>
<td>511 Kunehi Street Kaspoli, Hawai'i 96707</td>
</tr>
<tr>
<td>Proposing Agency:</td>
<td>Department of Education Facilities Development Branch, Planning Section State of Hawai'i 1151 Punchbowl Street Honolulu, Hawai'i 96813</td>
</tr>
<tr>
<td>Accepting Agency:</td>
<td>Department of Education Facilities Development Branch, Planning Section State of Hawai'i 1151 Punchbowl Street Honolulu, Hawai'i 96813</td>
</tr>
<tr>
<td>Tax Map Key:</td>
<td>(1) 9-1-160:24 and (1) 9-1-158:62</td>
</tr>
<tr>
<td>Land Area:</td>
<td>(1) 9-1-160:24: 12.349 acres; (1) 9-1-158:62: 5,000 square feet (0.115 acres)</td>
</tr>
<tr>
<td>Landowner:</td>
<td>D. R. Horton – Schuler Homes LLC</td>
</tr>
<tr>
<td>Existing Use:</td>
<td>Vacant</td>
</tr>
<tr>
<td>State Land Use District:</td>
<td>Urban</td>
</tr>
<tr>
<td>Zoning:</td>
<td>A-1 Apartment and R-5 Residential</td>
</tr>
<tr>
<td>Development Plan (DP) Area:</td>
<td>'Ewa</td>
</tr>
<tr>
<td>DP Urban Land Use Map:</td>
<td>Low and Medium Density Residential</td>
</tr>
<tr>
<td>Special Management Area:</td>
<td>Not within Special Management Area</td>
</tr>
<tr>
<td>Flood Insurance Rate Map (FIRM):</td>
<td>Zone D; areas in which flood hazards are undetermined, but possible.</td>
</tr>
<tr>
<td>Requirement for Environmental Assessment:</td>
<td>Chapter 343, HRS, § 343-5(1); proposed use of State or County lands or use of State or County funds</td>
</tr>
<tr>
<td>Determination:</td>
<td>Finding of No Significant Impact (FONSI)</td>
</tr>
</tbody>
</table>
Contents

1 DESCRIPTION OF PROPOSED ACTION AND ALTERNATIVES .. 1
 1.1 Introduction .. 1
 1.2 Project Purpose and Need .. 2
 1.3 Project Description ... 7
 1.3.1 Site Plan and Buildings .. 7
 1.3.2 Roadways, Circulation and Parking .. 9
 1.3.3 Infrastructure .. 9
 1.3.4 Demolition and Staging ... 9
 1.3.5 Project Cost and Schedule ... 9
 1.4 Alternatives to the Proposed Action .. 10

2 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES 11
 2.1 Land Use .. 11
 2.1.1 Existing Conditions .. 11
 2.1.1.1 Region .. 11
 2.1.1.2 Project Site .. 12
 2.1.2 Impacts and Mitigation Measures ... 12
 2.2 Physiography .. 15
 2.2.1 Existing Conditions .. 15
 2.2.1.1 Topography .. 15
 2.2.1.2 Soils ... 15
 2.2.1.3 Groundwater and Surface Water ... 18
 2.2.1.4 Climate ... 19
 2.2.2 Impacts and Mitigation Measures ... 19
 2.3 Flora ... 19
 2.3.1 Existing Conditions .. 19
 2.3.2 Impacts and Mitigation Measures ... 20
 2.4 Fauna .. 20
 2.4.1 Existing Conditions .. 20
 2.4.2 Impacts and Mitigation Measures ... 21
 2.5 Air Quality ... 21
 2.5.1 Existing Conditions .. 21
 2.5.2 Impacts and Mitigation Measures ... 21
 2.6 Acoustical Environment ... 22
 2.6.1 Existing Conditions .. 22
3.1.1 Hawai‘i State Plan... 43
3.1.2 State Environmental Policy.. 43
3.1.3 State Land Use Classification... 44
3.1.4 Coastal Zone Management/Special Management Area... 44
3.2 County Policies.. 45
3.2.1 General Plan.. 45
3.2.2 ‘Ewa Development Plan... 46
3.2.3 Land Use Ordinance.. 46
3.2.4 ‘Ewa Highway Master Plan and Transportation Impact Fees.......................... 46
3.3 Summary of Required Permits and Approvals .. 47
4 DETERMINATION.. 49
5 FINDINGS AND REASONS SUPPORTING THE DETERMINATION.......................... 51
6 EARLY CONSULTATION AND COMMENTS ON THE DRAFT ENVIRONMENTAL ASSESSMENT .. 55
7 REFERENCES... 57

Tables

Table 1: Population Growth .. 2
Table 2: Demographic Characteristics, 2010, Kapolei Zip Code Tabulation Area........... 29
Table 3: Level of Service Operating Conditions at Intersections Near Kapolei II Elementary ... 33
Table 4: Summary of Required Permits and Approvals for the Project......................... 47

Figures

Figure 1: Location Map.. 3
Figure 2: Project Site and Nearby Public Facilities.. 4
Figure 3: TMK Map.. 5
Figure 4: Preliminary Site Plan... 6
Figure 5: Preliminary Ground Floor Plan... 7
Figure 6: Preliminary Exterior Elevations ... 8
Figure 7: City of Kapolei Urban Design Conceptual Plan... 12
Figure 8: State Land Use Map... 13
Figure 9: Zoning Map... 14
Figure 10: Underlying Soils... 17
Figure 11: Flood Map... 24
Figure 12: ‘Ewa Development Plan Area and Kapolei Zip Code Tabulation Area......... 30
Appendices

Appendix A Early Consultation and Draft Environmental Assessment Comments and Responses
Appendix B Traffic Impact Report
Appendix C Environmental Noise Assessment Report
Appendix D Phase I Environmental Site Assessment
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>BPNAS</td>
<td>Barbers Point Naval Air Station</td>
</tr>
<tr>
<td>BWS</td>
<td>Board of Water Supply (City and County of Honolulu)</td>
</tr>
<tr>
<td>cfs</td>
<td>cubic feet per second</td>
</tr>
<tr>
<td>City</td>
<td>City and County of Honolulu</td>
</tr>
<tr>
<td>CUP</td>
<td>Conditional Use Permit</td>
</tr>
<tr>
<td>CZM</td>
<td>Coastal Zone Management</td>
</tr>
<tr>
<td>DLNR</td>
<td>Department of Land and Natural Resources (State of Hawai‘i)</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Education (State of Hawai‘i)</td>
</tr>
<tr>
<td>DOH</td>
<td>Department of Health (State of Hawai‘i)</td>
</tr>
<tr>
<td>DP</td>
<td>Development Plan</td>
</tr>
<tr>
<td>DPP</td>
<td>Department of Planning and Permitting (City and County of Honolulu)</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FIRM</td>
<td>Flood Insurance Rate Map</td>
</tr>
<tr>
<td>FM</td>
<td>Factory Mutual</td>
</tr>
<tr>
<td>FONSI</td>
<td>Finding of No Significant Impact</td>
</tr>
<tr>
<td>gpm</td>
<td>gallons per minute</td>
</tr>
<tr>
<td>HAR</td>
<td>Hawai‘i Administrative Rules</td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density Polyethylene</td>
</tr>
<tr>
<td>HECO</td>
<td>Hawaiian Electric Company</td>
</tr>
<tr>
<td>HPOWER</td>
<td>Honolulu Program of Waste Energy Recovery</td>
</tr>
<tr>
<td>HRS</td>
<td>Hawai‘i Revised Statutes</td>
</tr>
<tr>
<td>JCIP</td>
<td>James Campbell Industrial Park</td>
</tr>
<tr>
<td>kV</td>
<td>Kilovolts</td>
</tr>
<tr>
<td>Ldn</td>
<td>Day-night Average Sound Level</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of Service</td>
</tr>
<tr>
<td>MG</td>
<td>million gallons</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MGD</td>
<td>million gallons per day</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligrams per liter</td>
</tr>
<tr>
<td>msl</td>
<td>mean sea level</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic Atmospheric Administration</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>OEQC</td>
<td>Office of Environmental Quality Control</td>
</tr>
<tr>
<td>OR&L</td>
<td>Oahu Railway and Land Company</td>
</tr>
<tr>
<td>PSI</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>R-1</td>
<td>Effluent treated to a level found acceptable for irrigation use in landscaping and some agricultural activities (subject to Dept. of Health regulation)</td>
</tr>
<tr>
<td>ROH</td>
<td>Revised Ordinances of Honolulu</td>
</tr>
<tr>
<td>SHPD</td>
<td>State Historic Preservation Division</td>
</tr>
<tr>
<td>SMA</td>
<td>Special Management Area</td>
</tr>
<tr>
<td>State</td>
<td>State of Hawai’i</td>
</tr>
<tr>
<td>TIAR</td>
<td>Traffic Impact Assessment Report</td>
</tr>
<tr>
<td>TMK</td>
<td>Tax Map Key</td>
</tr>
<tr>
<td>TMP</td>
<td>Traffic Management Plan</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>WWTP</td>
<td>Wastewater treatment plant</td>
</tr>
</tbody>
</table>
1 DESCRIPTION OF PROPOSED ACTION AND ALTERNATIVES

1.1 INTRODUCTION

The Department of Education (DOE), State of Hawai‘i (State), is proposing to build a second elementary school in Kapolei (see Figures 1 through 6). The existing school in the Villages of Kapolei is located on Kama‘aha Loop, approximately half a mile east of Fort Barrette Road. The existing school opened in 1993, and has operated with enrollments at or above its design guidelines for many years. It was planned to serve the Villages of Kapolei, while Kapolei II Elementary School would primarily serve residents of the City of Kapolei. The new school would be designed to serve up to 750 students in a Twenty-First Century Learning Environment with spaces for students in grades in Pre-K through 5. Facilities would include classrooms, a cafeteria, administrative space, class gardens, play areas, and a data center. Parking and space for bus loading will be provided. Space has been identified for additional classrooms if needed to serve a larger student population. The school site lies within the City of Kapolei. That area was recognized as a Secondary Urban Center by the City and County of Honolulu (City) in the 1977 General Plan, and designated as Urban by the State Land Use Commission in 1988. The Estate of James Campbell refined plans for the City of Kapolei, and submitted a request to the City for changes in the ‘Ewa Development Plan Land Use Map in 1988. An Environmental Impact Statement (EIS) was finalized at that time. The proposed changes were incorporated in subsequent versions of the ‘Ewa Development Plan, including the latest, passed as Ordinance 13-26 in July 2013.

The EIS for the Kapolei Town Center (i.e., the City of Kapolei) included studies of demography, economics, biological resources, air quality and archaeology of an 879-acre area, along with the results of workshops on community facilities needs for the Secondary Urban Center. Traffic and noise impact studies were also conducted. This Environmental Assessment (EA) deals with an area of approximately 12.5 acres within the City of Kapolei. It updates information in the 1988 EIS by detailing the history of development in the area, incorporating findings of subsequent studies for nearby facilities, and including results of a new traffic study.

The school site occupies Tax Map Key (TMK) (1) 9-1-160:24. It is bounded by Fort Barrette Road (Barbers Point Access Road) to the east and Kunehi Street to the west. On the north side is an undeveloped commercial parcel, while a series of residential parcels on Luakālai

Street in the Lā Hiki section of Mehana is to the south. A small parcel, (1) 9-1-158-62, provides an additional access by way of Luakālai Street.

1.2 PROJECT PURPOSE AND NEED

Kapolei has experienced increases in population and housing since the early 1990s. Since the year 2000, new housing has been built west of Fort Barrette Road in the area designated the City of Kapolei (as opposed to the Villages of Kapolei and other subdivisions to the east). The City anticipates considerable population growth, both regionally and in the City of Kapolei.²

Table 1: Population Growth

<table>
<thead>
<tr>
<th></th>
<th>2005 (est.)</th>
<th>2010 (est.)</th>
<th>2035 (est.)</th>
<th>Increase 2010 to 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Ewa Development Plan Area</td>
<td>82,595</td>
<td>94,504</td>
<td>164,556</td>
<td>70,052</td>
</tr>
<tr>
<td>Villages of Kapolei subarea</td>
<td>12,071</td>
<td>14,012</td>
<td>14,471</td>
<td>459</td>
</tr>
<tr>
<td>City of Kapolei subarea</td>
<td>242</td>
<td>756</td>
<td>8,577</td>
<td>7,821</td>
</tr>
</tbody>
</table>

Figure 1 shows the location of the project and the City of Kapolei in relation to the island and nearby areas. Figure 2 shows the project in relation to some of the nearby public facilities. Figure 3 shows the outlines of the TMKs of the project, while Figure 4 provides a preliminary site plan of the school facilities.

The purpose of the project is to provide school facilities needed by the growing population of the City of Kapolei and its surroundings. The population increase anticipated in the City of Kapolei and nearby subdivisions will generate demand for schools sufficient to fill another elementary school in the next few years.

² Department of Planning and Permitting, City and County of Honolulu, revised projections for Development Plan areas and subareas, issued 2009. Posted at http://www.honoluludpp.org/Portals/0/pdfs/planning/demographics2/Projections/2000-2035byDPSA.pdf.
Figure 1: Location Map
Figure 2: Project Site and Nearby Public Facilities
Figure 3: TMK Map
1.3 PROJECT DESCRIPTION

1.3.1 Site Plan and Buildings

The school would include more than 100,000 square feet of enclosed space, along with a data center. In the future, four portable classrooms, and a possible two story classroom building could be added if needed. More than 122,000 square feet of outdoor physical education space will also be provided. Figures 4 through 6 show the proposed school layout and appearance.

The project will be designed to achieve a Leadership in Energy and Environmental Design (LEED) Silver rating equivalent under LEED 2009 for Schools. Design considerations to promote sustainability include minimizing energy consumption, incorporating renewable energy sources, providing daylighting, reducing water usage, managing indoor air quality, minimizing site disturbance, and using materials with low volatile organic compounds.

Figure 5: Preliminary Ground Floor Plan
Figure 6: Preliminary Exterior Elevations
1.3.2 **Roadways, Circulation and Parking**

The project site is served by roadways which have been constructed to City and State roadway standards. The site is bordered on the west by a 75-foot wide collector roadway, Kunehi Street (City roadway), which provides access to the site and serves the Mehana residences to the south. The site is also bordered on the east by Fort Barrette Road (State roadway), a major north-south corridor between the H-1 Freeway and Kalaeloa.

Entrances on Kunehi Street will provide access to parking and drop-off areas. An additional access from Luakalai Street will be reserved for emergency use. The preliminary site plan includes 142 parking spaces, including at least five spaces for disabled persons. Space for bus loading will also be provided.

1.3.3 **Infrastructure**

Both potable and non-potable water will be supplied via existing distribution lines in Kunehi Street. The existing potable water line is adequate to supply the school’s needs and provide the required fire flow and water pressure. Currently, the irrigation distribution system in the vicinity is not providing effluent treated to a level found acceptable for irrigation use in landscaping and some agricultural activities (R-1 water).

Sewage will be discharged through an existing main in Kunehi Street. The sewer system feeds to the Honouliuli wastewater treatment plant, where treated and reclaimed non-potable water is produced. Solid waste will be transported to the Honolulu Program of Waste Energy Recovery (HPOWER) waste to energy plant and to the City’s municipal solid waste landfill at Waimānalo Gulch.

Gas service is not currently piped to the vicinity of the school, so a propane gas tank will be located on site to support the cooking equipment and water heater for the kitchen.

Electrical power to the school will be provided by Hawaiian Electric Company (HECO). Hawaiian Telcom is the service provider for telephone and Internet service to the school. Oceanic Time Warner Cable will provide cable TV service to the school.

1.3.4 **Demolition and Staging**

Existing pavement, curbing, vegetation and utilities within the construction site will be demolished and removed as necessary.

The project will use a staging/storage area on site during construction. Construction waste will be disposed of off-site, in conformity with City and State regulations. A dust fence will be erected around the school site from the beginning of clearance and construction.

1.3.5 **Project Cost and Schedule**

The order of magnitude cost for construction of the proposed project is $38.288 million. The cost includes a design-build process, along with permits and fees.
Construction of the new school facilities is expected to begin before the summer of 2014 and be substantially completed by mid-2015.

1.4 ALTERNATIVES TO THE PROPOSED ACTION

During the design of the proposed school, alternative building heights and footprints were considered. None would involve a significant difference in the relationship of the school to its surroundings or to the functioning of the school. The No Action Alternative, i.e., the future baseline against which impacts of the project can be measured, would leave the project site undeveloped. The students who are proposed to attend Kapolei II Elementary School would be distributed among the other schools of the region. Most of these are at or over capacity. The school with the lowest enrollment locally, Barbers Point Elementary, is not easily reached from most of the Kapolei-Makakilo area. It is also an older facility, not yet enhanced for Twenty-First Century Learning performance.

The No Action Alternative would compel the DOE to rely on modular structures and outdated buildings to accommodate the needs of the children of the Kapolei region. It would reduce the provision of effective learning environments needed by those children.
2 AFFECTED ENVIRONMENT AND ENVIRONMENTAL CONSEQUENCES

2.1 LAND USE

2.1.1 Existing Conditions

2.1.1.1 Region

The project is located on the ‘Ewa Plain, in the southwest region of O‘ahu, within the Honouliuli ahupua‘a. The ‘Ewa Plain was not densely inhabited in the pre-contact era. In the later 19th century, the ‘Ewa Plain was used for sugar cane cultivation and the ground was disturbed, excavated, and filled with transported soils.

Next to the project site, Fort Barrette Road was a major access to Barbers Point Naval Air Station (BPNAS). It remains a major roadway, linking ‘Ewa Beach and the Kalaeloa Redevelopment area (the former BPNAS) with Kapolei and the H-1 Freeway. Kapolei Parkway, north of the project site, also is a major east-west corridor for the ‘Ewa Plain, extending from Ocean Pointe through the Villages and City of Kapolei to Kalaeloa Boulevard.

Pu‘u o Kapolei, a volcanic cone about a half mile north of the project site, was once the site of a heiau. A coastal gun emplacement, Fort Barrette, was built on the hill during the 1930s. Parts of the fort remain within Kapolei Regional Park.

BPNAS was built during World War II, expanding the Marine Corps’ ‘Ewa Air Station. BPNAS closed in 1999. The former air station, now known as Kalaeloa, is a redevelopment area administered by the Hawai‘i Community Development Authority. The air field is operated by the Hawai‘i State Department of Transportation as a general aviation airport. It continues to be used by the Coast Guard. A public school, Barbers Point Elementary, housing and other facilities remain in use.

In the last decade, residential development has begun in the blocks to the south and west of the project site. Single family homes have been built on Luakālai Street, with lots abutting the project site. The lot north of the project site is reserved for eventual commercial development. Further to the north and west are office and commercial buildings, including State and City offices. Figure 7 shows the project site within the City of Kapolei Urban Design Plan.
2.1.1.2 Project Site

The project site has been designated for eventual development of an elementary school for years. The site is being acquired by the State from the developer for this use. It is currently vacant, except for underground utilities serving the surrounding neighborhood.

The State Land Use designation of the project site is Urban. The project site is zoned A-1, except for the access lot from Luakālai Street, which is zoned R-5 (see Figures 8 and 9). As a public use, the school is a permitted use in these zoning districts.

2.1.2 Impacts and Mitigation Measures

Neither the proposed action nor the no action alternative would result in any land use changes affecting the surrounding area. No mitigation is required.

3 The site has been identified for the Kapolei II Elementary School since the acquisition, by D.R. Horton – Schuler Division, of the Mehana area for residential development. Infrastructure for Mehana was planned and constructed with the school use in mind.
Figure 8: State Land Use Map
Figure 9: Zoning Map
2.2 **PHYSIOGRAPHY**

2.2.1 **Existing Conditions**

2.2.1.1 **Topography**

The existing school is situated to the west of Fort Barrette Road, approximately 1.9 miles north of Nimitz Beach and the Barbers Point Coast Guard station on the south coast line and 3.2 miles east of Ko’Olina and Barbers Point/Kalaeloa Commercial Harbor.

The topography of the existing site is relatively flat, with slopes less than 1 percent. Elevations at the site and in the immediate vicinity range from approximately 50 to 60 feet above mean sea level (msl).

2.2.1.2 **Soils**

According to the United States (U.S.) Department of Agriculture, National Resources Conservation Services Web Soil Survey (http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx), the native soil on the project site was mainly HxA, Honouliuli clay, 0 to 2 percent slopes (as shown in Figure 10). The erosion hazard for HxA is described as slight and runoff potential is considered high.

The southeast corner of the site was identified as part of a quarry extending to the south. However, the land has been filled and is now flat. Other soils in the project area include coral rock and ‘Ewa silty clay. Coraline soils have been imported to the site as fill during the plantation era and in subsequent years.

The project site has been mass graded as part of the Mehana at Kapolei development. Approximately one-half of the site drains to the east and the remainder of the site drains to the west (in conformance with the drainage master plans). Most of the site has been filled with imported coralline soils. No undisturbed surface soils remain. A geotechnical report completed in early 2014 provides more detail about the fill and underlying soils:

> In general, the school site was filled with very stiff to hard silty clays and capped with up to about 5 feet of dense to very dense coralline sands and gravel from Barbers Point Harbor. The upper fill materials are generally underlain by alluvial deposits consisting of very stiff to hard silty clays extending to the maximum depth explored of approximately 27 feet below the existing ground surface. We did not encounter groundwater in the drilled borings at the time of our field exploration.4

A Phase I Environmental Site Assessment found no recognized environmental conditions of concern. Earlier laboratory analyses checked for petroleum hydrocarbons, heavy metals, and poly-chlorinated biphenyls. The analyses found no concentrations at or above environmental action limits.

5 Tetra Tech, Inc. Final Report of Phase I Environmental Site Assessment, Elementary School at Mehana, West of Fort Barrette Road. Prepared for D. R. Horton – Schuler Homes LLC. Houston, TX 2014. The earlier laboratory analyses were conducted by Tetra Tech in 2009 and described in the Phase I Report.
Figure 10: Underlying Soils
2.2.1.3 Groundwater and Surface Water

Based on the *Aquifer Identification and Classification for Oahu: Groundwater Protection Strategy for Hawaii*, the project area is located in the ‘Ewa Aquifer System of the Pearl Harbor Aquifer Sector. Two aquifer types exist within the ‘Ewa aquifer system. The first contains groundwater that is basal and unconfined and found in sedimentary-type geology. Water from this aquifer is not used for drinking or ecological purposes, has a moderate salinity of 1,000 to 5,000 milligrams per liter (mg/L) of chloride, is replaceable, and has a high vulnerability to contamination. The second aquifer type contains groundwater that is basal and confined and found in flank-type geology. It is not used for drinking or ecological purposes, has a low salinity of 250 to 1,000 mg/L of chloride, is irreplaceable, and has a low vulnerability to contamination.

The Underground Injection Control line runs south of the project, approximately along Roosevelt Road. The school site is in the mauka area, where injection wells are prohibited in order to protect sources of drinking water.

There are no streams, ponds or wetlands on the project site or in the immediate vicinity.

In 1969, runoff from the Kapolei area resulted in extensive flood damage at BPNAS. Flooding has recurred in the Kalaeloa Redevelopment Area.

The project site is included in the *Drainage Master Plan for Mehana at Kapolei*, prepared by Bills Engineering, Inc. which is included in the scope of the overall *Drainage Master Plan for the City of Kapolei*, prepared by Engineering Concepts, Inc. Storm water runoff from the project site in its fully developed condition has been accounted for in the design and construction of the downstream drainage infrastructure.

Recent percolation tests indicate that the onsite soils will percolate at a rate of at least 7.6 minutes per inch (more than 7 inches per hour). Offsite drainage does not run on and enter the site from the parcels to the north or from the south of the project.

Two of the major mauka-makai drainage corridors, which are designed to accommodate the City of Kapolei as well as upstream tributary areas and the Mehana development, border the school site. Within Kunehi Street, a 42-inch diameter drainage trunk line runs southward past the site and two 24-inch diameter drain pipe stub-outs were provided for the school’s use. According to the drainage master plan, this drainage trunk line has an approximate tributary area of 23 acres and is designed for a total peak flow of 88 cubic feet per second (cfs). Adjacent to Fort Barrette Road, a 54-inch and 60-inch diameter drainage trunk line

7 The Safe Drinking Water Branch of the Department of Health is responsible under Hawaii Administrative Rules Title 11, Chapter 23. See their website for mapping of the line (http://health.hawaii.gov/sdwb/uicprogram/).
runs southward within the boundary of the school site (via a 20-foot wide easement), and three grated drain inlets along this trunk line collect runoff from the eastern half of the site. That drainage trunk line has an approximate tributary area of 50 acres and is designed for a total peak flow of 324 cfs. Both drainage trunk lines discharge into the regional City of Kapolei Makai Drainage Channel, which runs along the north boundary of the Oahu Railway and Land Company (OR&L) railroad right of way, and connects to the existing James Campbell Industrial Park (JCIP) drainage channel. The JCIP channel is a trapezoidal channel that is at least 30 feet wide (70 feet wide near the mouth to the ocean) and has depths of up to 15 feet. The JCIP channel receives all storm drainage from the City of Kapolei.

According to the drainage master plan, the (fully developed condition) estimated 10-year storm peak flows generated within the school site are 18 cfs, contributing to the Kunehi Street drain line, and 22 cfs, contributing to the Fort Barrette Road line.

2.2.1.4 Climate

Recorded temperatures at the National Oceanic and Atmospheric Administration (NOAA) Cooperative Station ‘Ewa Plantation 741, about 2.7 miles east of the school site, range from an average annual maximum of 84.3°F to an average annual minimum of 65.7°F. The maximum daily extreme temperature recorded is 93°F, while the minimum daily recorded temperature is 49°F.\(^8\)

The ‘Ewa Plain is one of the drier areas of O‘ahu. The average annual rainfall at the project site is approximately 18 inches.\(^9\)

2.2.2 Impacts and Mitigation Measures

The project is not expected to impact soils or groundwater. There will be a slight alteration to topography. Installation of landscaping and drainage systems will control runoff onsite. No mitigation is required.

Under the no action alternative, there would be no impacts relating to physiography.

2.3 FLORA

2.3.1 Existing Conditions

A biological survey was conducted of the entire City of Kapolei project area in 1986. It identified no rare, threatened or endangered plant species. The biologists were aware of

two endangered species found in nearby sites, but found no specimens in the project area. As noted at the time, the vegetation of the area had been disturbed and extensively modified for a long time.

Since the survey, the Kapolei II Elementary project site has been cleared and graded. Grass and street trees have been planted next to sidewalks, and a few invasive plants have established themselves within the school site. Ornamentals (hibiscus bushes) have been planted near utility boxes along Kunehi Street.

2.3.2 Impacts and Mitigation Measures

The proposed project would have no adverse impact on listed plant species or habitat. No mitigation is required.

The landscaping plan for the school combines areas in which planned uses, such as class gardens and turf-covered active play zones, limit planting choices with areas designed to recreate the ‘Ewa Plain plant community. The proposed species are adapted to very low water use and the hot, sunny conditions of the site. Whenever possible, endemic species will be used. Irrigation will use R-1 water when it is provided to the site. With the native plant palette, irrigation can be reduced after establishment to very minimal water usage. This design further reduces maintenance costs for trimming and weed control.

2.4 FAUNA

2.4.1 Existing Conditions

In the course of the biological survey of the City of Kapolei project area, a total of 17 bird species was recorded. The only native species observed was the Pacific Golden Plover (*Pluvialis dominica*, or kolea), a migratory species that is widespread on O‘ahu. The only mammal observed was the cat. Tracks of mongoose were also noted. Mice and rats are also likely to be present.

More recent studies conducted for development at sites in the area have similarly found no evidence of native fauna.

2.4.2 Impacts and Mitigation Measures

The proposed project would have no significant adverse impacts on fauna populations in the region. The project area is already disturbed. Although not observed during the survey, there is potential for the endangered Hawaiian hoary bat (Lasius cinereus) to use the airspace or roost in trees in the area. The proposed improvements would be limited to a relatively small area that now has no tree cover. The project would accordingly have no effect on roosting sites. No mitigation is required.

At other sites in Hawai‘i, outdoor lighting may need to be shielded in order not to disorient shearwaters and other seabirds flying overhead. The DOE will make sure that outdoor lights are oriented downward shielded as a precaution.

2.5 AIR QUALITY

2.5.1 Existing Conditions

The U.S. Environmental Protection Agency (EPA) sets national ambient air quality standards (NAAQS) and the State Department of Health (DOH) sets ambient air quality standards for the State. The nearest monitoring station to the proposed action is the Kapolei Station located approximately 1.2 miles to the west south west in the Kapolei Business Park. The Kapolei Station monitors a wide range of air quality indicators, since it is near the heavy industrial operations of JCIP. A recent summary of observations shows no case in which averages approached, much less exceeded, Federal and State standards. On a few occasions, New Year’s fireworks and dust due to construction traffic were identified as the source of short-term exceedances. According to the State of Hawaii Annual Summary 2011 Air Quality Data, the State was in attainment of all NAAQS in 2011, excluding exceedances due to the effects of volcanoes and fireworks from New Year’s celebrations.

2.5.2 Impacts and Mitigation Measures

Construction activities may result in short-term air quality impacts, including the generation of dust and emissions from construction vehicles and equipment. To avoid or minimize these temporary impacts, the contractor will be required to comply with the DOH Hawai‘i Administrative Rules (HAR), Title 11, Chapter 60.1, “Air Pollution Control.” Compliance with State regulations will require adequate measures to control fugitive dust. Such measures could include:

11 Newell’s shearwater (Puffinus auricularis newelli) is listed as threatened; other shearwaters and seabirds are of concern under the federal Migratory Bird Treaty Act. As noted above, none of these have been observed at the project site.

• Planning different phases of construction, focusing on minimizing the amount of dust generating materials and activities, centralizing on-site vehicular traffic routes, and locating potential dusty equipment to areas of least impact;
• Watering exposed dirt areas;
• Starting from the initial grading phase, landscaping and rapid covering of bare areas, including slopes;
• Controlling dust from unpaved access roads;
• Controlling dust from debris being hauled away from the project site; and
• Installing a dust barrier/fence.

A dust barrier will be installed at the start of construction. Watering and other dust control measures will be implemented as needed to minimize dust and comply with State regulations.

During operations, the use of the site for school activities would have no long-term impact on air quality. No mitigation is required.

2.6 ACoustical Environment

2.6.1 Existing Conditions
Noise in the immediate vicinity is generated by traffic and residential activity. When the nearby airfield was used by the U.S. Navy, noise levels at the project site were estimated at less than 60 day-night average sound level (Ldn), i.e., below levels identified as unacceptable for residential areas.\(^{13}\) Since that time, the number of air operations has decreased greatly.

A noise study conducted for the Kapolei II Elementary School project by D.L. Adams Associates is included as Appendix C of this report. It provides data on both long-term and short-term noise levels at the site, taking into account current conditions and projected development. It considers various standards from State and City regulations for noise at residential areas and schools.

2.6.2 Impacts and Mitigation Measures
Construction activities will generate noise that can have short-term impacts on nearby homes. To mitigate short-term construction-related noise impacts, compliance with the provisions of HAR 11-46, “Community Noise Control,” will be exercised. A noise permit will be required if the noise levels from construction activity are expected to exceed specified standards. It will be the contractor’s responsibility to minimize noise by properly maintaining mufflers and other noise-attenuating equipment. Project management can

\(^{13}\) Helber, Hastert & Kimura, Kapolei Town Center Final Environmental Impact Statement, Section 3.7 and Appendices K and L.
minimize the occurrence of construction activity generating high noise events outside of daylight work hours. If construction work is required during evenings, night, and weekend hours, a variance will be sought from the DOH.

The proposed exterior construction of the school buildings is sufficient to minimize noises from vehicular traffic and aircraft flyovers audible in the interior of the buildings. No additional mitigation will be required.

2.7 NATURAL HAZARDS

2.7.1 Existing Conditions

2.7.1.1 Floods
The Flood Insurance Rate Maps (FIRM) prepared by the Federal Emergency Management Agency (FEMA) for the City indicates that the project site is within Zone D, areas in which flood hazards are undetermined but possible. See Figure 11.

2.7.1.2 Earthquakes
Most earthquake activity in the State occur on and around the island of Hawai‘i. On O‘ahu, the most recent earthquakes occurred in 2010 and 2011. In 2010, the U.S. Geological Survey reported a 3.6-magnitude earthquake in the Ka‘iwi Channel east of O‘ahu. The epicenter of the 2011 earthquake (4.0-magnitude) was located offshore south of the island.

2.7.1.3 Hurricanes
Since record keeping began in the 1950s, eight hurricanes affected the Hawaiian Islands and 12 others posed threats by their passage. Hurricane ‘Iniki on Kaua‘i was the most recent Category 4 hurricane to strike Hawai‘i.

2.7.1.4 Tsunami
The proposed project is not located within a Tsunami Evacuation Zone.

2.7.1.5 Wildfires
Due to low rainfall, undeveloped areas in ‘Ewa are subject to brush fires from time to time. However, the project site is cleared and surrounded by residential development, so the risk of wildfire is minimal.
Figure 11: Flood Map

Legend:
- ZONE AE: Base flood elevations determined.
- ZONE D: Flood hazards undetermined but possible.
- ZONE VE: Coastal flood zone with velocity hazard (wave action).
- ZONE X: Areas determined to be outside the 0.2% annual chance floodplain.

State Flood Data: http://www.hawaii.gov/fema/

Scale in Feet:
0 825 1650 3300
NORTH
2.7.2 Impacts and Mitigation Measures

No flood or wildfire impacts are expected. The proposed facilities will be designed according to applicable structural and architectural standards to address seismic and hurricane risks. No additional mitigation is required. With no action, there would be no natural hazard impacts.

2.8 SCENIC RESOURCES

2.8.1 Existing Conditions

The site is a level area surrounded by homes and roadways. In the distance, Pu‘u Makakilo and the Wai‘anae Mountains can be seen over the buildings of the City of Kapolei.

The ‘Ewa Development Plan identifies distant views of the shoreline from the H-1 Freeway above the ‘Ewa Plain, along with mauka and makai views, as scenic resources of the region.

Pu‘u o Kapolei, about a half-mile north of the school site, is a known wahi pana (sacred place). It is mentioned in accounts of Hi‘iaka, the sister of Pele, and Kamapua‘a. It has been associated with annual solar observations for Native Hawaiians.

2.8.2 Impacts and Mitigation Measures

The proposed action will result in minor visual alterations. Views from the nearest public street will change, but not be significantly affected. The new buildings will be consistent in scale with the surrounding residential community. The project will not interfere with vistas recognized as scenic resources. No mitigation is required.

2.9 ARCHAEOLOGICAL RESOURCES

2.9.1 Existing Resources

No recognized historic site or property is located within the project site. The OR&L railroad line, currently maintained by the Hawaii Railway Society, is recognized as a historic resource. Its train runs on Sunday afternoons. The rail line crosses Fort Barrette Road at the edge of the Kalaeloa area, some two-tenths of a mile to the south of the project site. Lā Hiki, part of the Mehana residential area, separates the school site from the rail line.

A preliminary archaeological reconnaissance survey was conducted of the City of Kapolei area in 1986. The survey identified an agricultural ditch and a military structure as possibly of historic interest. Both are located mauka of the H-1 Freeway, away from the project site.

14 A YouTube video records chants associated with the sun setting over Pu‘u o Kapolei, as seen from Waikiki beach in May 2012 (Posted at http://www.youtube.com/watch?v=jrf5WJ74QeY).
Pu’u o Kapolei, located about a half mile mauka of the project site, is a major feature in the cultural landscape. A heiau, of which no remnant remains, was located on its slope. A coastal artillery installation was located on the hill and enclosed in concrete fortifications during World War II. The battery site is still a landmark. ‘Ahahui Sivila Hawai‘i o Kapolei, the Hawaiian Civic Club of Kapolei, has established gardens and a hula mound on the site, and has collaborated with other community groups to clear and then paint a bunker. The rededication effort has since been set back by a fire at the bunker. Research of previous archaeological studies indicates that pre-contact cultural deposits and burials are uncommon in the immediate vicinity of the project.15

For the Mehana residential subdivisions next to the school site, D. R. Horton – Schuler Homes LLC has cleared land and excavated for necessary infrastructure in compliance with HAR Chapter 13 regulations on responses to any unanticipated finds. No significant finds were indicated in State Historic Preservation files for the TMK plats surrounding the school site, reviewed in response to a request made in November 2013.

The school site is currently the property of D.R. Horton – Schuler Homes LLC. The Educational Contribution Agreement for the Mehana subdivision specified that the school site “shall not contain any known historical or archaeological sites. HORTON-ESTATE [D.R. Horton and the Estate of James Campbell] shall be responsible for verifying such state with the DLNR-State Historic Preservation Division (SHPD) and/or provide appropriate mitigation measures that are acceptable to the SHPD and the DOE.”16

2.9.2 Impacts and Mitigation Measures

No impacts on archaeological resources are expected due to construction of the new school. In the event that historic, cultural, or burial sites or artifacts are identified during construction ground disturbance activity, personnel involved with the construction work would cease all work in the immediate area of the find and the appropriate agencies would

16 “Educational Contribution Agreement for KAPOLEI PARKWAY RESIDENTIAL (“MEHANA”) signed in May and June 2005.
be notified pursuant to applicable laws. In the event of discoveries of burials during construction, recognized cultural authorities and lineal descendants would be notified and consulted on matters of burial treatment.

2.10 CULTURAL RESOURCES

2.10.1 Existing Conditions

The Final Environmental Impact Assessment for the City of Kapolei did not include a Cultural Impact Assessment; none was required at the time. Cultural resources in the region have been documented in other studies.

For this EA, Belt Collins Hawaii LLC sought information and guidance from recent studies, local cultural experts and Native Hawai‘i an organizations. One local cultural expert, Mr. Shad Kāne, provided guidance. Detailed reports emphasize the importance of Pu‘uo o Kapolei and of trails through the ‘Ewa Plain, but do not mention any past or ongoing cultural activity at the school site and its immediate environs.

On the arid ‘Ewa Plain, sinkholes have been identified as sites where artifacts from traditional agriculture or burials may sometimes be located. At the school project site, no such sinkhole exists. About an acre at the southeast corner of the project site was part of a larger quarry (shown in Figure 10). As such, it was disturbed after traditional occupation of the area, and has since been filled.

Cultural practitioners gather plants from vegetated areas in the Kalaeloa Community Development District. The school site, however, has been cleared of plant material and has no current known cultural uses.

2.10.2 Impacts and Mitigation Measures

Should historic, cultural, or burial sites or artifacts be identified during construction ground disturbance activity, personnel involved with the construction work should cease all work in the immediate area of the find and the appropriate agencies notified pursuant to applicable laws. In the event of discoveries of burials during construction, recognized cultural authorities and lineal descendants should be notified and consulted on matters of burial treatment. Additionally, cultural and lineal descendants would be granted access rights to iwi kupuna to conduct customary and traditional burial practices on-site.

The development and naming of a new school provide opportunities to recognize and respect local traditions. The use of Hawaiian names, traditions and motifs can be an important basis for linking a school with local kupuna and the community, so long as informed stakeholders understand and have a voice in the process of defining the school’s identity. It is DOE practice for the first principal of a new school to meet with community stakeholders before the school opens. The school name and a shared vision of the school in the community are expected to emerge through that process.
2.11 SOCIO-ECONOMIC CONSIDERATIONS

2.11.1 Existing Conditions

The population of the ‘Ewa Development Plan Area totaled 101,397 as of the 2010 Census. The population growth rate for the decade leading up to the Census was 3.97% per year, while the population of the City as a whole grew only by 0.85% per year. \(^{17}\) Growth was rapid along the eastern side of the Development Plan Area, i.e., along Fort Weaver Road, and in the Villages of Kapolei. Residential development has more recently occurred in the immediate area surrounding the project site.

Over the long term, the student population will largely come from the City of Kapolei. While the population grows in that area, some students will come from other sites in the vicinity. The exact boundaries for the school population will not be delineated until the school is nearly ready to open. Census data on the Kapolei Zip Code Tabulation Area from 2010 provides indications of the demographic characteristics of the school’s population:

- Kapolei’s population is relatively young – the median age is 32.8 years, while the county median is 37.8;
- Households are larger than the county average of 2.95; and
- The share of households with children is higher than the County average (49.8% versus 34.8%).
- The share of the population with mixed ancestry (as indicated by the Racial Identifications/Total Population figure in Table 2) is higher than the County and State averages. This is in line with the high share of Hawai‘i-born young families in the local population.

Figure 12 shows the boundaries of the ‘Ewa Development Plan area and the smaller area, identified here with the 96707 Zip Code Tabulation area.

Plans for development of the City of Kapolei involve some 3,214 housing units. As of June 30, 2010, only 65 units had been built. \(^{18}\)

\(^{17}\) In Section 1.2, a lower figure was given for “estimated” 2010 population. It was taken from projections developed in 2009, and used in comparison with 2035 projections produced for the Development Plan Area and its subareas.

\(^{18}\) Department of Planning and Permitting, City and County of Honolulu. *Annual Report on the Status of Land Use on Oahu: Fiscal Year 2010*. Honolulu, HI: 2011. Posted at http://www.honoluluudpp.org/Portals/0/pdfs/planning/dpar2/dpar2010.pdf. The total of 3,214 units includes 714 units in a “Senior Village” at Leihano. If those units did not house school children, the number of units within the City of Kapolei eventually likely to house students at Kapolei II Elementary School would be about 2,500.
Table 2: Demographic Characteristics, 2010, Kapolei Zip Code Tabulation Area

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>38,817</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 5 years</td>
<td>3,076</td>
<td>7.9%</td>
</tr>
<tr>
<td>5 to 9 years</td>
<td>3,052</td>
<td>7.9%</td>
</tr>
<tr>
<td>10 to 14 years</td>
<td>3,090</td>
<td>8.0%</td>
</tr>
<tr>
<td>15 to 19 years</td>
<td>3,097</td>
<td>8.0%</td>
</tr>
<tr>
<td>Median Age (years)</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>Race (alone or in combination with other races)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>17,276</td>
<td>44.5%</td>
</tr>
<tr>
<td>Black or African American</td>
<td>1,961</td>
<td>5.1%</td>
</tr>
<tr>
<td>American Indian and Alaska Native</td>
<td>1,092</td>
<td>2.8%</td>
</tr>
<tr>
<td>Asian</td>
<td>21,951</td>
<td>56.5%</td>
</tr>
<tr>
<td>Native Hawaiian and Other Pacific Islander</td>
<td>13,370</td>
<td>34.4%</td>
</tr>
<tr>
<td>Some Other Race</td>
<td>1,089</td>
<td>2.8%</td>
</tr>
<tr>
<td>Racial Identifications/Total population</td>
<td>146.2%</td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino (of any race)</td>
<td>4,735</td>
<td>12.2%</td>
</tr>
<tr>
<td>Housing and Households</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total housing units</td>
<td>12,461</td>
<td></td>
</tr>
<tr>
<td>Occupied housing units</td>
<td>11,253</td>
<td>90.3%</td>
</tr>
<tr>
<td>Vacant housing units</td>
<td>1,208</td>
<td>9.7%</td>
</tr>
<tr>
<td>Households</td>
<td>11,253</td>
<td></td>
</tr>
<tr>
<td>Households with individuals under 18 years</td>
<td>5,604</td>
<td>49.8%</td>
</tr>
<tr>
<td>Households with individuals 65 years and over</td>
<td>2,035</td>
<td>18.1%</td>
</tr>
<tr>
<td>Average household size</td>
<td>3.38</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12: ‘Ewa Development Plan Area and Kapolei Zip Code Tabulation Area
2.11.2 Impacts and Mitigation Measures

The proposed action is not expected to impact area population. The new school is proposed in response to ongoing and expected population increases in ‘Ewa, leading to increasing enrollments. It is being designed to incorporate Twenty-First Century Learning standards to benefit students and to provide an efficient working environment for faculty and staff.

The estimated design-build construction cost of the proposed action is $38.288 million. Assuming that some 4.21 person-years of design and construction work are engaged per million dollars spent, the direct design and construction workforce for the school would amount to 161 person-years. The bulk of that amount would be in the 2014-2015 construction period of about 18 months.

During the construction stage of the project, indirect jobs would be created in the construction trades, material and supply vendors, and related fields. Induced effects would occur as firms and workers in these industries spend income gained from work on the project. Indirect and induced jobs in the Hawai‘i economy associated with construction would amount to approximately 271 person-years.

The school’s planned capacity is 750 students. Elementary schools in the Campbell-Kapolei complex area had, on average, 6.97 instructional faculty members, administrators and student support staff per 100 students, so the professional staff of the school can be forecast as reaching about 52 full-time equivalent positions. Additional staff on-site could account for about eight full-time equivalent positions. The total annual wages would be around $2.95 million. About 33 indirect and induced jobs would be associated with the direct jobs at Kapolei II Elementary. (Unlike the indirect and induced jobs associated with construction, these would continue over time.)

Fiscal impacts (i.e., changes in government revenues) would occur through the expenditure of funds for the school, followed by taxes on subsequent cash flows. Revenues from general excise taxes and income taxes associated with construction are likely to amount to about 10 percent of construction spending, or $3.8 million.

19 The ratio used is based on the construction job count and General Excise tax base for construction for 2012, as reported in the State of Hawaii Data Book, 2012.

21 Fall enrollments and staffing as reported in School Status and Improvement Reports for SY 2011-2012 for 11 elementary schools. The range was from 5.98 to 7.60 professional staff per 100 students. These reports were posted at http://arch.k12.hi.us/school/ssir/ssir.html in October 2013.

22 Personal communication, Tammy Keller, Business Office, Kapolei Complex, December 2013. This count does not include cafeteria personnel.

23 The Input-Output Model provides multipliers for government jobs (1.64) and educational services (1.47). The latter is presumably based on private schools. For this report, an average of the two multipliers (1.55) was used, showing that about 0.55 jobs in the economy were created along with every public school job.
2.12 TRANSPORTATION

2.12.1 Existing Conditions

2.12.1.1 Roads and Traffic

The school site is located adjacent to Fort Barrette Road and to Kunehi Street. An undeveloped lot separates it from Kapolei Parkway. An additional access on the south side of the site links the school with Laukālai Street.

Fort Barrette Road is much used. It served as part of the direct route between Kapolei and ‘Ewa Beach from 1999 (when BPNAS closed and Roosevelt Road became open to the public at large) and the present. Recently, Kapolei Parkway has been completed between eastern ‘Ewa and Fort Barrette Road. The new route is in better condition than the old route through BPNAS, and also has access to Kualaka’i Parkway. In the next few years, Kapolei Parkway is to extend through the City of Kapolei to the commercial district on Kalaeloa Boulevard, completing a major east-west corridor.

Traffic congestion has been a major concern in ‘Ewa, but development of new roadways has helped to relieve problems.

A Traffic Impact Analysis Report has been drafted by Wilson Okamoto Corporation for this project. It is incorporated as Appendix B of this EA. It analyzes existing conditions, year 2018 conditions without the project, and year 2018 conditions with project.

Based on counts in February and November 2013, current traffic at the Kunehi Street/Kapolei Parkway and Kapolei Parkway/Fort Barrette Road intersections, and at the Fort Barrette Road/Kama’aha Avenue intersection further north, flows at acceptable levels even at peak morning and afternoon hours. Without the project, traffic at these intersections would continue to be at acceptable levels, except for the southbound traffic on Fort Barrette Road at Kapolei Parkway during the AM peak period. That traffic movement would be at level of service (LOS) “E,” even with improved phasing of traffic signals at that intersection.

2.12.1.2 Public Transportation and Paratransit

TheBus Route 41 provides service along Fort Barrette Road from Kapolei Parkway towards Kalaeloa, on the way to and from ‘Ewa Beach. Route 415 runs along Fort Barrette Road between downtown Kalaeloa and the Kapolei Transit Center. The Transit Center is located on Haumea Street, between Uloha and Wakea streets, about a mile north of the project site. From that location, Routes C and 40 provide transportation both to the Wai’anae Coast and to Downtown Honolulu.

24 This comment is based on the Level of Service (LOS) analysis in the TIAR, with LOS "A" through "D" taken to be an acceptable flow for an urban area, and LOS "E" or "F" to be undesirable. For LOS methodology and calculations, see Appendix B.
Paratransit service in the form of The Handi-Van is generally provided island-wide from approximately 4:00 AM through 1:00 AM. Twenty-four hour service is available in areas within three quarters of a mile along TheBus Route 40 on Farrington Highway, which is near but not reaching the project site.

2.12.2 Impacts and Mitigation Measures

According to the Traffic Impact Assessment Report (Appendix B), a total of 199 external vehicle trips would be associated with the school during the morning peak period, and 70 trips during the afternoon peak period. A large share would be for residents of Mehana, near the school site. Traffic on Kunehi Street would increase notably during the morning peak period. However, the school traffic would not affect LOS on the nearby roads, as Table 3 indicates.

Table 3: Level of Service Operating Conditions at Intersections Near Kapolei II Elementary

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Approach</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Existing</td>
<td>2018 without Project</td>
<td>2018 with Project</td>
</tr>
<tr>
<td>Kunehi St./Kapolei Pkwy</td>
<td>Eastbound</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Kapolei Pkwy/Fort Barrette Road</td>
<td>Eastbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Fort Barrette Road/Kama‘aha Avenue</td>
<td>Eastbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Since the school will generate only a modest increase in traffic volumes, no mitigation is needed for traffic congestion. However, the Traffic Impact Assessment Report (TIAR) includes recommendations for further study, notably:

- Consider preparing a Construction Traffic Management Plan to minimize the impact of construction traffic on the surrounding roadways and neighborhood;

25 See the TIAR for details. The counts used here follow the total number of trips expected per ITE Trip Generation Manual, minus trips within the Mehana subdivision. Trip generation characteristics were modeled on those of the existing Kapolei Elementary School.
During the design phase of the project, consider the incorporation of complete streets concepts if possible; and

Consider preparing a Traffic Management Plan (TMP) for the school to minimize the impact of school-related traffic (daily and special events) on the surrounding roadways. The TMP should include recommendations to ensure that the designated crossing points to the proposed school are safe.

The DOE and its contractors will develop the two plans suggested above. Complete Streets and Safe Routes to School concepts are strongly supported by the Department. However, the school grounds are simply the destination point for student travel; collaboration with transportation agencies, landowners and the community will be needed to ensure safe travel and to encourage travel on foot or by bicycle.

2.13 INFRASTRUCTURE

2.13.1 Existing Conditions

Water. The project site is included in the scope of the Kapolei Regional Potable Water Master Plan, prepared by Engineering Concepts, Inc. and the Water Master Plan for Mehana at Kapolei, prepared by Bills Engineering, Inc. in 2005.

The Board of Water Supply (BWS) has a 215-foot (elevation) pressure system that provides potable water service to the entire Kapolei region, including the project site. Potable water storage is provided by the BWS’s Barbers Point Reservoirs 1, 2, and 3, and the Kapolei Reservoir, which has a combined storage capacity of 16 million gallons (MG). Water distribution is done via the BWS water system, which includes up to 30-inch diameter transmission mains within Farrington Highway and a network of 16-inch and 12-inch diameter distribution mains within the City of Kapolei roadways.

Within Kunehi Street, an existing 12 inch diameter potable water main fronts the project site, and is capable of delivering the domestic water demands for the school and the required fire flow of 2,000 gallons per minute (gpm) for a two-hour duration, with a residual pressure of 20 pounds per square inch (psi). An existing 12 inch diameter service lateral is provided to the site boundary with a static water pressure of approximately 68 psi.

An existing 6 inch diameter non-potable BWS water main is located within the upper portion of Kunehi Street. It terminates at the northern end of the project site. The static water pressure is approximately 69 psi at this point. An existing 1-1/2 inch non-potable water lateral is provided to the site boundary for irrigation purposes. The non-potable water system is intended to provide R-1 treated effluent from the Hoohuliili Wastewater Treatment Plant (WWTP) in the future when the R1 water is available to the region. In the meantime, the non-potable water system is energized with potable water.

According to the Mehana water master plan, the budgeted potable water demand for the project site is approximately 0.039 million gallons per day (MGD), which equates to an
expanded enrollment of 950 students. The budgeted irrigation demand for the project site is approximately 0.049 MGD based on a unit demand of 4,000 gallons per acre per day over the entire site.

Sewer. The project site is included in the *Revised Sewer Master Plan for the City of Kapolei*, prepared by Engineering Concepts, Inc. (2012) and the *Master Plan for the Makakilo Interceptor Replacement Sewer*, prepared by Bills Engineering, Inc. The *Revised Sewer Master Plan For Mehana at Kapolei* (Bills Engineering, 2013) is currently under review by the City. The entire region is served by the City’s Honolulu WWTP.

The school site is served by an existing 12 inch diameter (polyvinyl chloride) PVC gravity sewer main which is located within Kunehi Street. An existing 8 inch diameter sewer lateral is provided to the project boundary at the southeast corner of the site. The existing sewer main connects to the 36 inch diameter West Beach Interceptor Sewer just south of the Kunehi Street terminus, above the OR&L railroad right of way. From there, the sewer system is tributary to the existing 42 inch diameter Kapolei Interceptor Sewer and 30 inch diameter Makakilo Interceptor Sewer, and ultimately the Honolulu WWTP. The Makakilo Interceptor Replacement Sewer project is presently in the design phase and intends to upsize the pipes to 36 inches and 48 inches to provide additional capacity for future development to the west.

According to the master plans, the budgeted average daily sewer requirement for the school is 0.024 MGD based on an expanded enrollment of 950 students.26

Drainage. The project site is included in the *Drainage Master Plan for Mehana at Kapolei*, prepared by Bills Engineering, Inc., which is included in the scope of the overall *Drainage Master Plan for the City of Kapolei*, prepared by Engineering Concepts, Inc. Storm water runoff from the project site in its fully developed condition has been accounted for in the design and construction of the downstream drainage infrastructure.

The project site has been mass graded as part of the Mehana at Kapolei development such that approximately one-half of the site drains to the east and the remainder of the site drains to the west (in conformance with the drainage master plans). Most of the site has been filled with imported coralline soils at depths between 4 to 12 feet. Recent percolation tests indicate that the onsite soils will percolate at a rate of at least 7.6 minutes per inch (more than 7 inches per hour). Offsite runoff from the parcels to the north and to the south of the project does not enter the site.

Two of the major mauka-makai drainage corridors, which are designed to accommodate the City of Kapolei as well as upstream tributary areas and the Mehana development, border the

26 The school is being designed for an enrollment of 750 students. Space has been allocated for additional classrooms if the need arises to serve more students. The water and wastewater master plans for the subdivision identify a maximal capacity, not the design enrollment of the school.
school site. Within Kunehi Street, a 42 inch diameter drainage trunk line runs southward past the site and two 24 inch diameter drain pipe stub-outs are provided for the school. According to the drainage master plan, this drainage trunk line has an approximate tributary area of 23 acres and is designed for a total peak flow of 88 cfs. Adjacent to Fort Barrette Road, a 54 inch and 60 inch diameter drainage trunk line runs southward within the boundary of the school site (via a 20-foot wide easement) and three grated drain inlets along this trunk line collect runoff from the eastern half of the site. That drainage trunk line has an approximate tributary area of 50 acres and is designed for a total peak flow of 324 cfs. Both drainage trunk lines discharge into the regional City of Kapolei Makai Drainage Channel, which runs along the north boundary of the OR&L railroad right-of-way and connects to the existing JCIP drainage channel. The JCIP channel is a trapezoidal channel, at least 30 feet wide (70 feet wide near the mouth to the ocean) and has depths of up to 15 feet. The JCIP channel serves all of the City of Kapolei.

According to the drainage master plan, the 10-year storm peak flows generated on the school site when fully developed are 18 cfs, contributing to Drain Line “N” in Kunehi Street and 22 cfs, contributing to Drain Line “F” along Fort Barrette Road.

Electrical Power and Communications. HECO will provide primary electrical power which will terminate at a HECO owned transformer within the property, adjacent to Kunehi Street. The secondary electrical distribution system within the site will be owned and maintained by the DOE. HECO upgrades (work outside the property) are not anticipated.

Hawaiian Telcom has an existing terminal box along Kunehi Street that provides fiberoptic cabling and Oceanic Time Warner Cable has an existing terminal cabinet along Kunehi Street. The school site will connect to the existing telephone and cable systems and route the underground lines within the school site.

2.13.2 Impacts and Mitigation Measures

Water. The school’s culinary water and fire protection needs will be met by an onsite potable water system consisting of 8 inch and 12 inch diameter PVC water mains, fire hydrants and small diameter culinary and fire sprinkler service laterals to the buildings. The onsite water system will be owned and maintained by the DOE. Water service to the site will be provided by the BWS via a proposed 8 inch by 2 inch factory mutual (FM) meter and an 8 inch diameter reduced pressure principle backflow preventer at the point of connection to the onsite water system. The onsite water system will be designed to meet current fire codes and provide a minimum of two hours of flow at 2,000 gpm at each hydrant with a residual pressure of 20 psi.

The proposed culinary water demand is estimated to be 0.045 MGD and the proposed irrigation demand is approximately 0.037 MGD. Both of these demands are within the budgeted amounts in the *Master Plan.*
The BWS has indicated that the existing water system is adequate to accommodate the proposed school. However, the BWS reserves the right to change this position pending final approval of the building permit.

Sewer. The school will be served by an onsite private gravity sewer system (non-City), consisting of 6 inch and 8 inch PVC pipe and County standard pre-cast concrete sewer manholes, which will be owned and maintained by the DOE. The onsite sewer system is proposed to connect to the City’s gravity sewer system at the existing 8 inch diameter sewer stubout lateral on the southeast corner of the site.

Projected sewer flows for the school conform to the sewer master plans and it is expected that the City sewer systems have adequate capacity to accommodate these flows.

Drainage. The installation of impervious surfaces such as roofs and pavements will result in an increase in storm water runoff volume and peak flows compared to the existing condition of the site. However, with regard to the fully developed site, the project’s calculated peak flows are much less than the master planned (allowable runoff) values due to the compact site design and vast amounts of landscaped areas. The calculated 10-year storm peak flows generated by the site include 11 cfs, contributing to Drain Line “N” on Kunehi Street and 8 cfs, contributing to Drain Line “F” along Fort Barrette Road. This reduction in peak flow is a positive impact to the regional drainage systems.

Although the regional drainage systems have been designed to accommodate runoff from the fully developed site, the proposed onsite improvements will be designed to capture increases in runoff and infiltrate excess runoff into the soil. The site will also be designed to retain and infiltrate the 1 inch rainfall in accordance with the City’s current Rules Relating to Storm Drainage Standards. The use of curbs in the parking lots will be minimal and paved surfaces (in the courtyard as well as parking lots) will be sloped toward the planter areas to capture and retain storm runoff. A significant bioswale will be installed downstream of the main parking lot to capture pollutants and infiltrate excess runoff. The proposed playfield on the eastern half of the site will be graded to retain approximately 0.5 to 1.0 acre-feet of storm water runoff while allowing excess runoff to enter the existing drainage system along Fort Barrette Road. For safety reasons, the depth of storm water retention on the playfield will be less than 6 inches.

The onsite underground drainage systems will consist of an 18 inch and 24 inch diameter high density polyethylene (HDPE) pipes and grated drain inlets and will be designed to accommodate the 10-year and 50-year storms (as applicable) according to the City’s drainage standards. The onsite drainage system will connect to the existing 24 inch diameter drain pipe stub-outs along the Kunehi Street boundary.

The project will be required to file with the DOH, Clean Water Branch a National Pollutant Discharge Elimination System (NPDES) Permit for Construction Storm Water Discharges. Best management practices (BMPs) will be implemented during construction to minimize
any discharge of pollutants from the site. BMPs will include but not be limited to, a stabilized gravel pad (or tire wash-down station) at entry points; a dust fence along the perimeter of the site; silt fences and filter socks; sediment basins; minimizing the area of disturbance; keeping the site moist; and good housekeeping practices such as covering sources of contaminants and keeping the site clean.

Electrical Power. HECO will provide primary and secondary service within the property. HECO work outside the property is not anticipated. There is an existing primary switchgear along Kunehi Street near the intersection with Kakala Street. The existing electrical service to the site is 12.47 kilovolts (kV). The proposed construction will include a new underground 12.47 kV primary service from the existing switchgear to a new pad mounted transformer near the corner of Kunehi Street and Kakala Street. The new pad mounted transformer will step the voltage down to the secondary utilization voltage of 277/480V, 3 Phase, 4 Wire. The secondary service to the building will also be underground from the pad mounted transformer to the electrical service room in Building F. The estimated total load on the new service is approximately 2,500 amps at 277/480V, 3 Phase. The secondary service cables will consist of eight sets of 4-#500 MCM each set in a 3 inch conduit.

Propane Gas Service. Piped natural gas is not presently available to the project site. Therefore, the gas loads will be served by an on-site propane gas storage system. The propane tank will be located on the school building property near the dock drive off of Kakala Street. Propane gas will be piped underground to the school building. The gas service will serve the kitchen cooking equipment and the water heater serving the kitchen area.

Telephone Service. Hawaiian Telcom will provide telephone and Internet service to the project. Hawaiian Telcom work outside the property is not anticipated. There is an existing telephone terminal box along Kunehi Street near the intersection with Kakala Street. The existing service to the site is fiber optic cabling. There will be a new underground telephone service consisting of two 3 inch conduits from the existing terminal box to a new telecom service entrance board in the Data Center portion of Building F of the new school building. The telephone service to the building will be underground from the pad mounted terminal board to the telephone service termination board in the Data Center.

Cable Television Service. Oceanic Time Warner Cable Company will provide television service to the property. Oceanic Time Warner Cable Company work outside the property is not anticipated. There is an existing cable television terminal cabinet along Kunehi Street near the intersection with Kakala Street. The existing service to the site is coaxial cabling. There will be a new underground cable television service consisting of one 3 inch conduit from the existing Oceanic Time Warner Cable Terminal box to a new television service entrance board in the Data Center portion of Building F of the new school building. The television service to the building will be underground from the pad mounted television terminal cabinet to the television service termination board in the Data Center.
Utilities will be designed according to applicable standards. Construction plans will be reviewed, as required, by the appropriate agencies.

2.14 SOLID WASTE

2.14.1 Existing Conditions

A private contractor would be used for collecting and disposing of solid waste. Most municipal solid waste on O'ahu is disposed of at the City’s HPOWER Waste to Energy Plant and at the Waimânalo Gulch Sanitary Landfill.

2.14.2 Impacts and Mitigation Measures

Short-term impacts to the solid waste system would be limited to waste materials generated during demolition and construction. All construction materials will be properly transported, stored, and used. Demolition debris, as well as soil, rocks, vegetation, and construction debris, will be properly disposed of at DOH-approved City disposal or recycling facilities, and in accordance with applicable City, State, and Federal requirements. No construction waste materials will be buried or disposed of on-site.

Generation of solid waste from the proposed school during normal operation is anticipated to be up to 90 tons per school year. 27 Recycling of plastics, aluminum cans and paper may potentially reduce the amount of solid waste by as much as 48 percent28, 29.

2.15 PUBLIC FACILITIES AND SERVICES

2.15.1 Existing Conditions

Police. The school site is located within the Honolulu Police Department's District 8 (Kapolei). The District 8 headquarters is located on Kamokila Boulevard, about 0.9 miles from the school site.

Fire and Emergency. The engine company nearest to the school is Engine 43, housed at the East Kapolei Fire Station, approximately 1.3 miles away. Other fire stations in the region include the Makakilo, Kapolei, 'Ewa Beach, Waikele and Waipahu Stations.

29 City and County of Honolulu, Department of Environmental Services, Oahu Recycling Rate, accessed December 5, 2012, http://www.opala.org.
Emergency medical services are deployed from the Kapolei Fire Station, in the Kapolei Business Park.

Medical. The nearest hospital is the Queen's Medical Center – West O'ahu. The Queen's facility is located approximately 4.1 miles away. It is anticipated to re-open by mid-2014. Clinics and other medical services are located in Kapolei, about a mile from the school.

Parks and Recreation. The Kapolei area includes parks and land for future park development. Kapolei Community Park, in the Villages of Kapolei, covers 12 acres. The 69-acre Regional Park north of the school project site includes open play areas and an archery range as well as the Pu'u o Kapolei cultural site. Kapolei Green is a 5.6-acre Neighborhood Park west of the school site. The Kalaeloa District includes playfields, beach parks and areas for future park development. The Kroc Center, recently opened on Kualaka'i Parkway, is run by the Salvation Army. It provides sports fields, pools, a gymnasium, an art center and additional facilities to its members.

2.15.2 Impacts and Mitigation Measures

The proposed action—addition of an elementary school—is not expected to affect the delivery of police, fire, emergency or medical services in the region.

Access will be available for fire department vehicles to the school grounds and inside the school buildings. Plans will be submitted to the Fire Department for review to assure compliance with Fire Department standards. As noted above, the available water pressure will be sufficient to assure fire flow.

The school buildings will be built in conformance with the 2006 International Building Code. Assembly areas in buildings, i.e., the cafetorium, will be hardened and might be designated by State and County authorities as emergency shelter space.

In the event of an emergency during school hours, the response will depend on the nature of the emergency and on the regional emergency response network. With pollutants monitored by the DOH from a location in Kapolei Business Park, the school will be able to respond to emissions by cutting off air flow from outside to some buildings, if necessary. If public safety concerns warrant, school gates can be closed. The school administration will be in communication with Honolulu Police Department personnel at the Kapolei station.

The school will have its own playfields, and will not depend on other recreational facilities on a regular basis.

2.16 CUMULATIVE IMPACTS

Cumulative impacts are those which result from incremental effects of the proposed action when added to other past, present, and reasonably foreseeable actions in the same region of influence, including actions by other agencies or entities. Cumulative impacts can result
from individually minor but collectively substantial actions taking place over a period of time.

The proposed action is planned in a region that has experienced and will continue to experience population growth and further development. Addition of a new school is part of the planned response to that growth, and not expected to result in any significant cumulative impacts beyond contributing to the quality of life for the community.
Page intentionally left blank.
RELATIONSHIP TO PUBLIC AND LAND USE POLICIES

3.1 STATE POLICIES

3.1.1 Hawai'i State Plan

The Hawai'i State Planning Act (Planning Act) has served as a guide for the long-range development of the State since its adoption into law in 1978 as Hawai'i Revised Statutes (HRS) Chapter 226. The Planning Act identifies goals, objectives, and policies for the State to: (1) provide a basis for determining priorities and allocating limited resources, such as public funds, services, human resources, land, energy, water, and other resources; (2) improve coordination of Federal, State, and County plans, policies, programs, projects, and regulatory activities; and (3) establish a system for plan formulation and program coordination to provide for an integration of all major State and County activities.

The proposed action is consistent with several of the objectives and policies stated in HRS §226-21, Objectives and policies for the socio-cultural advancement, education, which include:

(b) To achieve the educational objective, it shall be the policy of this State to:

(1) Support educational programs and activities that enhance personal development, physical fitness, recreation, and cultural pursuits of all groups.

(2) Ensure that the provision of adequate and accessible educational services and facilities that are designed to meet individual and community needs.

(3) Provide appropriate educational opportunities for groups with special needs.

(7) Promote programs and activities that facilitate the acquisition of basic skills, such as reading, writing, computing, listening, speaking, and reasoning.

(8) Emphasize quality educational programs in Hawai'i's institutions to promote academic excellence.

3.1.2 State Environmental Policy

The proposed action is consistent with the State Environmental Policy, as stated in HRS Chapter 344, to “enhance the quality of life” by “creating opportunities for the residents of Hawai'i to improve their quality of life through diverse economic activities which are stable and in balance with the physical and social environments.” The proposed action will provide needed school facilities to promote educational opportunities which are anticipated to improve quality of life.
3.1.3 State Land Use Classification

State Land Use Districts are established by the State Land Use Commission in accordance with HRS Chapter 205. There are four classifications of land under this districting system: Agricultural, Conservation, Rural, and Urban. The purpose of the districts is to regulate the use of lands within the State to accommodate population growth and development as needed, and to protect important agricultural and natural resources areas. The school site is located within the Urban district. Activities or uses within the Urban district are regulated by the City. A public elementary school is an appropriate use within the Urban district.

3.1.4 Coastal Zone Management/Special Management Area

Hawai‘i’s Coastal Zone Management (CZM) Program was enacted in 1977 (HRS Chapter 205A) through the passage of the Federal CZM Act of 1972. The CZM program protects and manages Hawai‘i’s coastal resources through land and water use regulations. The entire land area of Hawai‘i is within the CZM area, so new development must further or be in compliance with CZM objectives and policies. Those objectives30 are:

1. Recreational resources;
 (A) Provide coastal recreational opportunities accessible to the public.

2. Historic resources;
 (A) Protect, preserve, and, where desirable, restore those natural and manmade historic and prehistoric resources in the coastal zone management area that are significant in Hawaiian and American history and culture.

3. Scenic and open space resources;
 (A) Protect, preserve, and, where desirable, restore or improve the quality of coastal scenic and open space resources.

4. Coastal ecosystems;
 (A) Protect valuable coastal ecosystems, including reefs, from disruption and minimize adverse impacts on all coastal ecosystems.

5. Economic uses;
 (A) Provide public or private facilities and improvements important to the State’s economy in suitable locations.

6. Coastal hazards;
 (A) Reduce hazard to life and property from tsunami, storm waves, stream flooding, erosion, subsidence, and pollution.

30 HRS 205A-2.
(7) Managing development;
 (A) Improve the development review process, communication, and public participation in the management of coastal resources and hazards.

(8) Public participation;
 (A) Stimulate public awareness, education, and participation in coastal management.

(9) Beach protection;
 (A) Protect beaches for public use and recreation.

(10) Marine resources;
 (A) Promote the protection, use, and development of marine and coastal resources to assure their sustainability.

Development of a new elementary school nearly two miles inland from the coastline is in compliance with CZM objectives and policies.

Special Management Areas (SMA) have been established throughout the State under the CZM Program, and land use rules and regulations for those specially designated areas are administered by the individual county planning authorities. The project area is located outside of the SMA and does not require an SMA Use Permit.

3.2 COUNTY POLICIES

3.2.1 General Plan

The General Plan (1992, amended 2002) for the City is a written commitment by the City to guide O'ahu to a future considered desirable and attainable. The project is consistent with the following policies and guidelines in Chapter IX, Health and Education:

 Objective B: To provide a wide range of educational opportunities for the people of O’ahu.

 Policy 4: Encourage the construction of school facilities that are designed for flexibility and high levels of use.

 Policy 5: Facilitate the appropriate location of learning institutions from the preschool through the university levels.

3.2.2 ‘Ewa Development Plan

The City’s ‘Ewa Development Plan (DP) program provides a framework for implementing General Plan objectives and policies for the growth and development of O’ahu at a regional level.

In July 2013, Ordinance 13-26 took effect, adopting a revised ‘Ewa DP. The proposed action is consistent with DOE projections presented in the ‘Ewa DP, which state that ten new elementary schools, three new middle schools, and two new high schools will be needed by 2030.

The updated ‘Ewa DP recognizes Kapolei II Elementary as having a capacity of 400 to 750 students.31

3.2.3 Land Use Ordinance

The project is in an area zoned A-1 Agriculture and a small 5,000 square feet lot is zoned R-5 Residential. The project is consistent with the Land Use Ordinance as a public facility use which supports and complements residential neighborhood activities. Although public schools are permitted in A-1 and R-5 areas, the Department of Planning and Permitting (DPP) was contacted to determine whether a Conditional Use Permit (CUP) would be required. According to the DPP, a CUP would not be required because it is a public facility.

3.2.4 ‘Ewa Highway Master Plan and Transportation Impact Fees

The Revised Ordinances of Honolulu (ROH), Chapter 33A, states “impact fees shall be charged and assessed for all new land development activities that require a building permit in the Ewa region” with a few exceptions. The ROH also states that the fees are to be borne by those who “directly contribute to expanding the population and increasing economic activity in the Ewa region through new land development activities.” Construction of the new school will require a building permit. While the project type does not appear on the exemption list, the project is not a population contributor, but rather a response to the expanding population. This type of impact fee would normally be assessed and paid prior to the issuance of a building permit.

The fee can be calculated on the basis of the square footage under roof, using the rate of $2,019/1,000 square feet for Industrial and Other facilities. At that rate, the total fee for the school would amount to more than $230,000. The fee could change, since the ‘Ewa impact fees will be recalculated for new roadways and user groups. However, the revised ordinance has not been finalized, much less submitted to the County Council, so it is unlikely to affect the project.

31 Table 4.3 shows existing and planned schools in the area. The updated DP is posted at http://www4.honolulu.gov/docushare/dsweb/Get/Document-141182/806jrd66.pdf.
Some developers have credits in the impact fee system because they have already constructed improvements or otherwise contributed to the system. The State is the major roadway developer in ‘Ewa. Accordingly, impact fees for the Kapolei II Elementary School could be offset by such credits.

3.3 SUMMARY OF REQUIRED PERMITS AND APPROVALS

The following is a summary of permits and approvals that may be required for construction of the proposed action.

Table 4: Summary of Required Permits and Approvals for the Project

<table>
<thead>
<tr>
<th>Permits/Approvals</th>
<th>Approving Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of Hawai’i</td>
<td></td>
</tr>
<tr>
<td>Construction Plans Approval</td>
<td>Department of Education</td>
</tr>
<tr>
<td></td>
<td>Department of Health</td>
</tr>
<tr>
<td>National Pollutant Discharge Elimination System (NPDES) Permit</td>
<td>Department of Health</td>
</tr>
<tr>
<td>Community Noise Permit and/or Noise Variance</td>
<td>Department of Health</td>
</tr>
<tr>
<td>City and County of Honolulu</td>
<td></td>
</tr>
<tr>
<td>Construction Plans Approval</td>
<td>Department of Planning and Permitting</td>
</tr>
<tr>
<td></td>
<td>Department of Transportation Services</td>
</tr>
<tr>
<td></td>
<td>Board of Water Supply</td>
</tr>
<tr>
<td></td>
<td>Department of Environmental Services</td>
</tr>
<tr>
<td>Building Permit</td>
<td>Department of Planning and Permitting</td>
</tr>
<tr>
<td>Street Usage Permit</td>
<td>Department of Planning and Permitting</td>
</tr>
<tr>
<td>Grading, Grubbing, and Stockpiling Permit</td>
<td>Department of Planning and Permitting</td>
</tr>
<tr>
<td>Trenching Permit</td>
<td>Department of Planning and Permitting</td>
</tr>
<tr>
<td>Storm Drain Connection Permit</td>
<td>Department of Planning and Permitting</td>
</tr>
<tr>
<td>City of Kapolei</td>
<td></td>
</tr>
<tr>
<td>Urban Design Approval</td>
<td>Kapolei Urban Design Board; James Campbell Companies with Department of Planning and Permitting</td>
</tr>
</tbody>
</table>
Page intentionally left blank.
4 DETERMINATION

This EA demonstrates that the proposed action will have no significant adverse impact on the environment and that an EIS is not warranted. A Finding of No Significant Impact (FONSI) is reached for this project.
5 FINDINGS AND REASONS SUPPORTING THE DETERMINATION

The following findings and reasons indicate that the proposed action will have no significant adverse impacts on the environment based on the 13 significance criteria as provided in HAR 11-200-12.

1) Involves an irrevocable commitment to loss or destruction of any natural or cultural resource.

Construction of the proposed school would not result in significant loss or destruction of any natural or cultural resources. The building will be constructed on land which has been previously disturbed. Other related improvements, such as utility connections, will also be done in previously disturbed areas. The project is not anticipated to affect any threatened or endangered species or their habitat.

2) Curtails the range of beneficial uses of the environment.

No curtailment of beneficial uses of the environment is anticipated. There are few, if any, alternative beneficial uses of the existing school site other than educational activities. The proposed action will enhance those activities.

3) Conflicts with the state's long-term environmental policies or goals and guidelines as expressed in Chapter 344, HRS, and any revisions thereof and amendments thereto, court decisions, or executive orders.

As demonstrated in Section 3.1.2 of this document, the proposed action is consistent with the State’s long-term environmental policies and guidelines as expressed in HRS, Chapter 344.

4) Substantially affects the economic or social welfare of the community or state.

The proposed project is expected to improve the economic and social well-being of the community and surrounding region. Students will be educated in a new facility designed for learning. Construction activities associated with the proposed improvements will mobilize existing labor and generate income and secondary effects in the local economy. Construction of a new school to provide a Twenty-First Century Learning Environment furthers the State’s goal of providing education for a future skilled and informed workforce.

5) Substantially affects public health.

Existing State DOH regulations are intended to protect air and water quality and control noise. The proposed improvements would not result in the uncontrolled and unsupervised use of hazardous materials or construction methods that could detrimentally affect the area’s public health and safety. The construction contractor will be required to comply with applicable permit requirements to avoid or minimize impacts on air and water quality, in accordance with HAR Title 11,
Chapter 60.1, Air Pollution Control, and the project-specific NPDES permit. Construction noise will be minimized through compliance with HAR Chapter 11-46, Community Noise Control.

6) *Involves substantial secondary impacts, such as population changes or effects on public facilities.*

Population growth has resulted in a substantial increase in school enrollment. This growth has occurred, and will continue, independent of the proposed project. The project itself would not generate population changes but is a response to population growth in the area. There would be no substantial secondary impacts on public services and facilities.

7) *Involves a substantial degradation of environmental quality.*

The proposed action would not involve degradation of environmental quality during either construction or operations. Temporary construction-related impacts will be avoided or minimized through compliance with applicable DOH permit requirements.

8) *Is individually limited but cumulatively has considerable effect upon the environment or involves a commitment for larger action.*

The proposed project occupies a site planned for this use, and serves a growing population. It is not expected to have a cumulative or considerable effect on the environment or a commitment for larger actions.

9) *Substantially affects a rare, threatened, or endangered species, or its habitat.*

No rare, threatened, or endangered species or their habitat have been identified on or in the immediate vicinity of the project site.

10) *Detrimentally affects air or water quality or ambient noise levels.*

The anticipated impacts associated with project construction will be temporary. These impacts will be avoided or minimized by the implementation of BMPs and mitigation measures in accordance with applicable permit requirements. Long-term detrimental impacts to air, water quality, or ambient noise levels are not expected.

11) *Affects or is likely to suffer damage by being located in an environmentally sensitive area such as a flood plain, tsunami zone, beach, erosion-prone area, geologically hazardous land, estuary, fresh water, or coastal waters.*

The project area is located about two miles from the shoreline and, therefore, not in the vicinity of an estuary or coastal waters. It is not located in a flood plain or tsunami zone, and it is not in an area subject to erosion or geologic hazards. The school is outside the SMA. The proposed action is not expected to impact freshwater resources.

12) *Substantially affects scenic vistas and view planes identified in county or state plans or studies.*

The proposed action will not affect identified scenic vistas or view planes.
13) **Requires substantial energy consumption.**

Installation of air conditioning and electrical systems in the new school will increase electrical utility demand. However, the building will be designed to comply with the International Energy Code and the Revised Ordinances of Honolulu Chapter 32. In addition, various energy efficient design strategies will be utilized to further minimize energy consumption and to achieve an equivalent of LEED silver rating or better. As a result, the proposed action will likely involve less energy consumption than would the use of older, retrofitted facilities and temporary classrooms. Some energy resources will be consumed during project construction.
6 **EARLY CONSULTATION AND COMMENTS ON THE DRAFT ENVIRONMENTAL ASSESSMENT**

Early consultation letters for the project were transmitted to the following agencies and organizations for review and comment. This correspondence, including agency responses, is included in Appendix A.

<table>
<thead>
<tr>
<th>AGENCIES AND INTERESTED PARTIES</th>
<th>Early Consultation Responses Included in Appendix</th>
<th>Draft Environmental Assessment Responses in Appendix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Government</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of the Army, Corps of Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Protection Agency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State of Hawai‘i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Land and Natural Resources</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Department of Land and Natural Resources, State Historic Preservation Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Hawaiian Home Lands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office of Hawaiian Affairs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Accounting and General Services</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Department of Health, Clean Water Branch</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Department of Health, Clean Air Branch</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Department of Health, Environmental Planning Office</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Department of Business Economic Development and Tourism, Office of Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Transportation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Department of Defense</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Senator Mike Gabbard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGENCIES AND INTERESTED PARTIES</td>
<td>Early Consultation Responses Included in Appendix</td>
<td>Draft Environmental Assessment Responses in Appendix</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Representative Sharon Har</td>
<td></td>
<td></td>
</tr>
<tr>
<td>City and County Agencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board of Water Supply</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Department of Design and Construction</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Department of Emergency Management</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Department of Emergency Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Environmental Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Parks and Recreation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Department of Planning and Permitting</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Department of Transportation Services</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fire Department</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Police Department</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Council Chair, Ernest Y. Martin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Council Member Kymberly Marcos Pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility Companies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaiian Electric Company</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hawaii Gas</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hawaiian Telcom</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Other Organizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.R Horton, Schuler Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kapolei Property Development LLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makakilo / Kapolei / Honokai Hale Neighborhood Board No. 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oahu Island Burial Council</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Nature Conservancy of Hawaii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Hawaii Foundation</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mr. Shad Kāne</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7 REFERENCES

APPENDIX A

EARLY CONSULTATION AND DRAFT ENVIRONMENTAL ASSESSMENT COMMENTS AND RESPONSES
1. EARLY CONSULTATION LETTERS:
SAMPLE REQUEST LETTER AND FIGURES
Dear Sir or Madam:

Environmental Assessment (EA) Early Consultation
Proposed Kapolei II Elementary School
Department of Education Job No. Q82001-10
Tax Map Key: 9-1-016:158 and 9-1-158:62
‘Ewa, O‘ahu, Hawai‘i

On behalf of the State of Hawai‘i, Department of Education (DOE), we would like to inform you of the proposed new Kapolei II Elementary School (see enclosed Figures 1 and 2). The purpose and need for the school is to accommodate increasing enrollment from the surrounding area, notably the anticipated build-out of the City of Kapolei.

The school site occupies TMK (1) 9-1-16:158. It is bounded by Fort Barrette Road (Barbers Point Access Road) to the east and Kunehi Street to the west. On the north side is an undeveloped commercial parcel, while a series of residential parcels on Luakālai Street in the Lā Hiki section of Mehana is to the south. A small parcel, (1) 9-1-158-62, provides an additional access by way of Luakālai Street. The new school would be designed to serve up to 750 students in a Twenty First Century Learning Environment with spaces for students in grades Pre-K through 5. Facilities would include classrooms, a cafeteria, administrative space, class gardens, play areas, and space for eventual expansion, if needed. Parking and spaces for busses would be provided. Figure 1 shows the site in relation to existing development in Kapolei. Figure 2 is a preliminary site and landscaping plan for the school.

As part of this proposed project, an EA will be prepared in compliance with Chapter 343, Hawaii Revised Statutes (HRS). The EA will reference the studies prepared for the approved Environmental Impact Statement for the Kapolei Town Center. New traffic and noise studies will be prepared. If you wish to provide preliminary input on the project at this time or be a consulted party while the EA is being prepared, please review the above introductory information and attached figures and submit your written comments to the address below by December 12, 2013. Comments received during this period will be considered in the preparation of the Draft EA. When the draft is complete, a copy will be sent to you for further review and input.
If you have any questions, please contact the undersigned at 521-5361, extension 309 or by email at jhiramatsu@beltcollins.com.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH/JTK:ajk

Enclosures: Figure 1: Kapolei Development Around Project Site
Figure 2: Preliminary Site and Landscape Plan, Kapolei II Elementary School

cc: Ms. Gaylyn Nakatsuka - DOE
Figure 1
Kapolei Development Around Project Site

Source:
Aerial imagery is from Google Earth and is approximately
matched to lot lines for illustrative purposes.
Figure 2: Preliminary Site and Landscape Plan, Kapolei II Elementary School
2. COMMENTS RECEIVED IN 2013, WITH RESPONSES
December 11, 2013

Belt Collins Hawaii LLC
Attention: Ms. Joanne E. Hiramatsu
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

via email: jhiramatsu@beltcollins.com

Dear Ms. Hiramatsu,

SUBJECT: Environmental Assessment (EA) Early Consultation, Proposed Kapolei II Elementary School, Department of Education Job No. Q82001-10

Thank you for the opportunity to review and comment on the subject matter. The Department of Land and Natural Resources' (DLNR) Land Division distributed or made available a copy of your report pertaining to the subject matter to DLNR Divisions for their review and comments.

At this time, enclosed are comments from (1) Land Division – Oahu District; and (2) Engineering Division. No other comments were received as of our suspense date. Should you have any questions, please feel free to call Supervising Land Agent Steve Molmen at 587-0439. Thank you.

Sincerely,

Russell Y. Tsuji
Land Administrator

Enclosure(s)
STATE OF HAWAI'I
DEPARTMENT OF LAND AND NATURAL RESOURCES
LAND DIVISION
POST OFFICE BOX 621
HONOLULU, HAWAI'I 96809

November 27, 2013

MEMORANDUM

TO: DLNR Agencies:
 ___ Div. of Aquatic Resources
 ___ Div. of Boating & Ocean Recreation
 X Engineering Division
 ___ Div. of Forestry & Wildlife
 ___ Div. of State Parks
 X Commission on Water Resource Management
 X Office of Conservation & Coastal Lands
 X Land Division – Oahu District
 X Historic Preservation

FROM: Russell Y. Tsuji, Land Administrator

SUBJECT: Environmental Assessment (EA) Early Consultation Proposed Kapolei II Elementary School, Department of Education Job No. Q82001-10

LOCATION: Tax Map Key: 9-1-016:158 and 9-1-158:62, ‘Ewa, O’ahu, Hawai‘i

APPLICANT: State of Hawai‘i, Department of Education (DOE) by its consultant, Belt Collins Hawaii LLC

Transmitted for your review and comment on the above referenced document. We would appreciate your comments on this document.

Please submit any comments by December 11, 2013. If no response is received by this date, we will assume your agency has no comments. If you have any questions about this request, please contact Supervising Land Agent Steve Molmen at (808) 587-0439. Thank you.

Attachments

() We have no objections.
() We have no comments.
() Comments are attached.

Signed: [Signature]
Print Name: [Name]
Date: [Date]

cc: Central Files
MEMORANDUM

TO: DLNR Agencies:
 ___ Div. of Aquatic Resources
 ___ Div. of Boating & Ocean Recreation
 ___ Engineering Division
 ___ Div. of Forestry & Wildlife
 ___ Div. of State Parks
 ___ Commission on Water Resource Management
 ___ Office of Conservation & Coastal Lands
 ___ Land Division – Oahu District
 ___ Historic Preservation

FROM: Russell Y. Tsuji, Land Administrator

SUBJECT: Environmental Assessment (EA) Early Consultation Proposed Kapolei II Elementary School, Department of Education Job No. Q82001-10

LOCATION: Tax Map Key: 9-1-016:158 and 9-1-158:62, ‘Ewa, O’ahu, Hawai‘i

APPLICANT: State of Hawai‘i, Department of Education (DOE) by its consultant, Belt Collins Hawaii LLC

Transmitted for your review and comment on the above referenced document. We would appreciate your comments on this document.

Please submit any comments by December 11, 2013. If no response is received by this date, we will assume your agency has no comments. If you have any questions about this request, please contact Supervising Land Agent Steve Molmen at (808) 587-0439. Thank you.

Attachments

() We have no objections.
() We have no comments.
() Comments are attached.

Signed:
Print Name: Kart S. Chang, Chief Engineer
Date: 12/6/13

cc: Central Files
DEPARTMENT OF LAND AND NATURAL RESOURCES
ENGINEERING DIVISION

LD/Russell Y. Tsuji
REF: EA Early Consultation for Proposed Kapolei II Elementary School, DOE Job. No. Q82001-10,
Ewa
Oahu 019

COMMENTS

() We confirm that the project site, according to the Flood Insurance Rate Map (FIRM), is located in
Flood Zone ____.

(X) Please note that the project site, according to the Flood Insurance Rate Map (FIRM), is
located in Zone D, an area where flood hazards are undetermined.

() Please note that the correct Flood Zone Designation for the project site according to the Flood
Insurance Rate Map (FIRM) is ____.

() Please note that the project must comply with the rules and regulations of the National Flood
Insurance Program (NFIP) presented in Title 44 of the Code of Federal Regulations (44CFR),
whenever development within a Special Flood Hazard Area is undertaken. If there are any
questions, please contact the State NFIP Coordinator, Ms. Carol Tyau-Beam, of the Department
of Land and Natural Resources, Engineering Division at (808) 587-0267.

Please be advised that 44CFR indicates the minimum standards set forth by the NFIP. Your
Community’s local flood ordinance may prove to be more restrictive and thus take precedence
over the minimum NFIP standards. If there are questions regarding the local flood ordinances,
please contact the applicable County NFIP Coordinators below:

() Mr. Mario S. Li at (808) 768-8098 or Ms. Ardis Shaw-Kim at (808) 768-8296 of the
City and County of Honolulu, Department of Planning and Permitting.

() Mr. Frank DeMarco at (808) 961-8042 of the County of Hawaii, Department of Public
Works.

() Mr. Carolyn Cortez at (808) 270-7813 of the County of Maui, Department of Planning.

() Mr. Stanford Iwamoto at (808) 241-4884 of the County of Kauai, Department of Public
Works.

(X) The applicant should include water demands and infrastructure required to meet project
needs. Please note that State sponsored projects requiring water service from the Honolulu
Board of Water Supply system may be required to pay a resource development charge, in
addition to Water Facilities Charges for transmission and daily storage.

(X) The applicant should provide the water demands and calculations to the Engineering
Division so it can be included in the State Water Projects Plan Update.

() Additional Comments: __

() Other: ___

Signed: CARTY S. CHANG, CHIEF ENGINEER
Date: 12/5/13

Should you have any questions, please call Mr. Dennis Imada of the Planning Branch at 587-0257.
Mr. Russell Y. Tsuji, Land Administrator
Department of Land and Natural Resources
State of Hawai‘i
P.O. Box 621
Honolulu, HI 96809

Dear Mr. Tsuji:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158:62
Kapolei, O‘ahu, Hawai‘i

We thank you for your letter, dated December 11, 2013, and the Land and Engineering Divisions’ input on the Department of Education’s preparation of an Environmental Assessment (EA) for the proposed Kapolei II Elementary School. We will include your information in the Draft EA, which is scheduled to be available for public review in the coming months.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk

c: Gaylyn Nakatsuka, DOE
Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

Subject: Environmental Assessment (EA) Early Consultation
Proposed Kapolei II Elementary School
Department of Education Job No. Q82001-10
Tax Map Key: 9-1-016:158 and 9-1-158:62
Ewa, Oahu, Hawaii

Thank you for the opportunity to provide comments for the subject project. This project does not impact any of the Department of Accounting and General Services' projects or existing facilities in this area and we have no comments to offer at this time.

If you have any questions, please call me at 586-0400 or your staff may call Mr. Alva Nakamura of the Public Works Division at 586-0488.

Sincerely,

DEAN H. SEKI
Comptroller

c: Ms Gaylyn Nakatsuka, DOE
Mr. Dean Seki, Comptroller
Department of Accounting & General Services
State of Hawaii
P.O. Box 119
Honolulu, HI 96810-0119

Dear Mr. Seki:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158:62
Kapolei, O'ahu, Hawai‘i

We thank you for your letter, dated November 19, 2013, regarding the Kapolei II Elementary School Environmental Assessment (EA) and acknowledge you have no comments at this time.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk
cc: Gaylyn Nakatsuka, DOE
November 28, 2013

Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

SUBJECT: Comments on the Environmental Assessment Early Consultation for the Proposed Kapolei II Elementary School Project Ewa, Island of Oahu, Hawaii

The Department of Health (DOH), Clean Water Branch (CWB), acknowledges receipt of your letter, dated November 12, 2013, requesting comments on your project. The DOH-CWB has reviewed the subject document and offers these comments. Please note that our review is based solely on the information provided in the subject document and its compliance with the Hawaii Administrative Rules (HAR), Chapters 11-54 and 11-55. You may be responsible for fulfilling additional requirements related to our program. We recommend that you also read our standard comments on our website at: http://health.hawaii.gov/epo/files/2013/10/CWB_Oct22.pdf.

1. Any project and its potential impacts to State waters must meet the following criteria:

 a. Antidegradation policy (HAR, Section 11-54-1.1), which requires that the existing uses and the level of water quality necessary to protect the existing uses of the receiving State water be maintained and protected.

 b. Designated uses (HAR, Section 11-54-3), as determined by the classification of the receiving State waters.

 c. Water quality criteria (HAR, Sections 11-54-4 through 11-54-8).

2. You may be required to obtain a National Pollutant Discharge Elimination System (NPDES) permit: for discharges of wastewater, including storm water runoff, into State surface waters (HAR, Chapter 11-55). An application for an NPDES individual permit must be submitted at least 180 calendar days before the commencement of the discharge. To request NPDES permit coverage, you must submit the CWB Individual NPDES Form through the e-Permitting Portal and the hard copy certification statement with $1,000 filing fee. Please open the e-Permitting Portal.
website at: https://eha-cloud.doh.hawaii.gov/epерmit/View/home.aspx. You will be asked to do a one-time registration to obtain your login and password. After you register, click on the Application Finder tool and locate the “CWB Individual NPDES Form.” Follow the instructions to complete and submit this form.

3. If your project involves work in, over, or under waters of the United States, it is highly recommend that you contact the Army Corp of Engineers, Regulatory Branch (Tel: 438-9258) regarding their permitting requirements.

Pursuant to Federal Water Pollution Control Act [commonly known as the “Clean Water Act” (CWA)], Paragraph 401(a)(1), a Section 401 Water Quality Certification (WQC) is required for “[a]ny applicant for Federal license or permit to conduct any activity including, but not limited to, the construction or operation of facilities, which may result in any discharge into the navigable waters...” (emphasis added). The term “discharge” is defined in CWA, Subsections 502(16), 502(12), and 502(6); Title 40 of the Code of Federal Regulations, Section 122.2; and Hawaii Administrative Rules (HAR), Chapter 11-54.

4. Please note that all discharges related to the project construction or operation activities, whether or not NPDES permit coverage and/or Section 401 WQC are required, must comply with the State’s Water Quality Standards. Noncompliance with water quality requirements contained in HAR, Chapter 11-54, and/or permitting requirements, specified in HAR, Chapter 11-55, may be subject to penalties of $25,000 per day per violation.

If you have any questions, please visit our website at: http://health.hawaii.gov/cwb, or contact the Engineering Section, CWB, at (808) 586-4309.

Sincerely,

ALEC WONG, P.E., CHIEF
Clean Water Branch

CTM:jst
Mr. Alec Wong, P.E., Chief
Clean Water Branch
Department of Health
State of Hawai‘i
P.O. Box 3378
Honolulu, HI 96801-3378

Dear Mr. Wong:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
Kapolei, O‘ahu, Hawai‘i

We thank you for your letter, dated November 26, 2013, and your input on the State Department of Education’s preparation of an Environmental Assessment (EA) for the proposed Kapolei II Elementary School. We will address your areas of interest in the Draft EA, which is scheduled to be available for public review in the coming months.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk

cc: Gaylyn Nakatsuka, DOE
Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

December 10, 2013

Dear Ms. Hiramatsu:

SUBJECT: Environmental Assessment Early Consultation
Proposed Kapolei II Elementary School Project, Ewa, Oahu, Hawaii
Tax Map Key: 9-1-016:158 and 9-1-158:62

A significant potential for fugitive dust emissions exists during all phases of demolition and construction. The activities must comply with the provisions of Hawaii Administrative Rules, §11-60.1-33 on Fugitive Dust. In addition, for cases involving mixed land use, we strongly recommend that buffer zones be established, wherever possible, in order to alleviate potential nuisance problems.

We encourage the contractor to implement a dust control plan, which does not require approval by the Department of Health, to comply with the fugitive dust regulations. Dust control measures may include, but are not limited to, the following:

a) Planning the different phases of construction, focusing on minimizing the amount of dust-generating materials and activities, centralizing on-site vehicular traffic routes, and locating potential dust-generating equipment in areas of the least impact;
b) Providing an adequate water source at the site prior to start-up of construction activities;
c) Landscaping and providing rapid covering of bare areas, including slopes, starting from the initial grading phase;
d) Minimizing dust from shoulders and access roads;
e) Providing adequate dust control measures during weekends, after hours, and prior to daily start-up of construction activities; and
f) Controlling dust from debris being hauled away from the project site. Also, controlling dust from daily operations of material being processed, stockpiled, and hauled to and from the facility.

If you have any questions, please contact Mr. Barry Ching of the Clean Air Branch at 586-4200.

Sincerely,

NOLAN S. HIRAI, P.E.
Manager, Clean Air Branch
Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
Kapolei, O'ahu, Hawai‘i

We thank you for your letter, dated December 10, 2013, and your input on the State Department of Education’s preparation of an Environmental Assessment (EA) for the proposed Kapolei II Elementary School. We will address your areas of interest in the Draft EA, which is scheduled to be available for public review in the coming months. The Department of Education and the contractor (Kiewit) are aware of both State regulations concerning fugitive dust and effective procedures to deal with this problem in the Kapolei area.

We look forward to your continued participation in this EA review process.

Sincerely yours,
BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk

cc: Gaylyn Nakatsuka, DOE
Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii, LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

SUBJECT: Environmental Assessment Early Consultation
Proposed Kapolei II Elementary School
Department of Education Job No. Q82001-10
Tax Map Key: 9-1-016: 158 and 9-1-158: 62, Ewa, Oahu, Hawaii

The Department of Health (DOH), Environmental Planning Office (EPO), acknowledges receipt of your letter dated November 12, 2013. Thank you for allowing us to review and comment on the subject document. The document was routed to the Clean Air Branch, Clean Water Branch, Indoor & Radiological Health Branch, Solid & Hazardous Waste Branch, Wastewater Branch, and the Hazard Evaluation & Emergency Response Office. They will provide specific comments to you if necessary. EPO recommends that you review the standard comments at: http://health.hawaii.gov/epo/home/landuse-planning-review-program/.

You are required to adhere to all standard comments specifically applicable to this application.

EPO suggests the applicant examine the many sources available on strategies to support the sustainable design of communities, including the:
U.H., School of Ocean and Earth Science and Technology: www.soest.hawaii.edu;
U.S. Environmental Protection Agency’s sustainability programs: www.epa.gov/sustainability; and

The DOH encourages everyone to apply these sustainability strategies and principles early in the planning and review of projects. We also request that for future projects you consider conducting a Health Impact Assessment (HIA). More information is available at: www.cdc.gov/healthyplaces/hia.htm. We request you share all of this information with others to increase community awareness on sustainable, innovative, inspirational, and healthy community design.

We require a written response confirming receipt of this letter and any other letters you receive from DOH in regards to this submission. You may mail your response to 919 Ala Moana Blvd., Ste. 312, Honolulu, Hawaii 96814. However, we would prefer an email submission to: epo@doh.hawaii.gov. We anticipate that our letter(s) and your response(s) will be included in the final document. If you have any questions, please contact me at (808) 586-4337.

Mahalo,

Laura Leialoha Phillips McIntyre, AICP
Manager, Environmental Planning Office
Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
Kapolei, O'ahu, Hawai'i

We thank you for your letter, dated November 22, 2013, and your input on the State Department of Education’s preparation of an Environmental Assessment (EA) for the proposed Kapolei II Elementary School. We will address your areas of interest in the Draft EA, which is scheduled to be available for public review in the coming months.

The proposed school will be built to LEED silver standard. It will incorporate design and operations procedures to reduce energy and water use.

Per your request, we are confirming receipt of your letter, along with letters from the Clean Air Branch and Clean Water Branch of your Department. These letters will be included in the Environmental Assessment.

We look forward to your continued participation in this EA review process.

Sincerely yours,
BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

cc: Gaylyn Nakatsuka, DOE
Ref. No. P-14209

December 17, 2013

Ms. Joanne E. Hiramatsu, Director of Planning
Belt Collins Hawaii, LLC.
2153 N. King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

Subject: Environmental Assessment (EA) Early Consultation for Proposed Kapolei II Elementary School, Department of Education Job No. Q82001-10, Ewa, Oahu; TMK: 9-1-016:158 and 9-1-1-158:62

Thank you for the opportunity to provide early consultation comments on the new Kapolei II Elementary School development project in Ewa, Oahu.

We have reviewed the documents received by letter dated November 18, 2013, and have the following comments to offer:

1. The entire state is defined to be within the Coastal Zone Management Area, see Hawaii Revised Statutes (HRS) §205A-1 (definition of "coastal zone management area"). The Draft Environmental Assessment (Draft EA) should include a discussion of the proposed project’s ability to meet the objectives and policies set forth in HRS §205A-2.

2. During the construction phase of this project, there is a possibility that nonpoint pollution may be generated and may have an impact on coastal waters. Please review the Hawaii Watershed Guidance, which provides a summary and links to management measures that may be implemented to minimize coastal nonpoint pollution impact. Specifically, please examine the management measures described in the section on Urban Areas/Urban Runoff (pages 120-122).

4. The Draft EA should include the Coastal Zone Management Act, HRS Chapter 205A, in the list of “Relationship to Land Use Plans, Policies, and Controls.”

If you have any questions regarding this comment letter, please contact Josh Hekeka of our Hawaii CZM Program at 587-2845.

Sincerely,

[Signature]

Jesse K. Souki
Director

c: Ms. Gaylyn Nakatsuka, Department of Education
Mr. Jessie K. Souki, Director
Office of Planning
State of Hawaii
P.O. Box 2359
Honolulu, HI 96804

Dear Mr. Souki:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
Kapolei, O‘ahu, Hawai‘i

We thank you for your letter, dated December 17, 2013, and your input on the State Department of Education’s preparation of an Environmental Assessment (EA) for the proposed Kapolei II Elementary School. We will address your areas of interest in the Draft EA, which is scheduled to be available for public review in the coming months.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk

cc: Gaylyn Nakatsuka, DOE
December 24, 2013

Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

Subject: Kapolei II Elementary School
Department of Education, Job Number Q82001-10
Environmental Assessment (EA), Early Consultation
TMK: (1) 9-1-016:158 and 9-1-158:062

Our Department of Transportation’s comments on the subject EA, Early Consultation are as follows:

DOT Airports Division

The project may be impacted by aircraft noise and overflights from Honolulu International Airport and Kalaeloa Airport.

DOT Highways Division

The Draft EA should discuss and evaluate the project’s contribution to the cumulative traffic impacts on State highways facilities.

If there are any questions, please contact Mr. Norren Kato of the DOT Statewide Transportation Planning Office at telephone number (808) 831-7977.

Very truly yours,

GLENN M. OKIMOTO, Ph.D.
Director of Transportation
Mr. Glenn M. Okimoto, Ph.D., Director
Department of Transportation
State of Hawai‘i
869 Punchbowl Street
Honolulu, HI 96813-5097

Dear Mr. Okimoto:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
Kapolei, O‘ahu, Hawai‘i

We thank you for your letter, dated December 24, 2013, and your input on the State Department of Education’s preparation of an Environmental Assessment (EA) for the proposed Kapolei II Elementary School. The Draft EA, which is scheduled to be available for public review in the coming months, includes a Traffic Impact Assessment Report and a Noise Study. These reports address your concerns with traffic and noise from air transportation.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk

cc: Gaylyn Nakatsuka, DOE
December 13, 2013

Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819

Attn: Joanne Hiramatsu

Dear Ms. Hiramatsu:

The Department of Design and Construction does not have any comments to offer on the environmental assessment early consultation.

Thank you for the opportunity to review and comment. Should there be any questions, please contact me at 768-8480.

Sincerely,

Chris T. Takashige, P.E., CCM
Director

CTT: cf (538357)
Mr. Chris T. Takashige, P.E., CCM, Director
Department of Design and Construction
City and County of Honolulu
650 South King Street, 11th Floor
Honolulu, HI 96813

Dear Mr. Takashige:

Early Consultation for Environmental Assessment

Proposed Kapolei II Elementary School

Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
 Kapolei, O‘ahu, Hawai‘i

We thank you for your letter, dated December 13, 2013, regarding the Kapolei II Elementary School Environmental Assessment (EA) and acknowledge you have no comments at this time.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

[Signature]

Joanne E. Hiramatsu
Director of Planning

JEH:jdk

cc: Gaylyn Nakatsuka, DOE
November 25, 2013

Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii, LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

SUBJECT: EA Early Consultation Proposed Kapolei II Elementary School
DOE Job No. Q82001-10, Tax Map Key: 9-1-016:158 and 9-1-158:62
‘Ewa, O‘ahu, Hawai‘i

The City and County of Honolulu, Department of Emergency Management (DEM) recognizes the need to accommodate the increasing enrollment of school children grades Pre-K through 5. We also recognize that emergency safeguard considerations need to be built into new school plans being developed to include classrooms and buildings which can serve as:

- Shelter-In-Place venues for students and school staff in the event of a possible active shooter on campus or hazardous material dispersed into the atmosphere from nearby Campbell Industrial Park
- Emergency Evacuation Shelter to accommodate the increasing number of people in the Kapolei area in the event of a hurricane, fire or other disaster that would force people to seek shelter away from their homes

Your consideration to include these features in this new school’s building construction plans would be greatly appreciated. Should you have any questions, feel free to contact me at 808-723-8960.

Sincerely,

Melin N. Kaku
Director

cc: DOE Safety, Security and Emergency Preparedness Branch
Mr. Melvin N. Kaku, Director
Department of Emergency Management
City and County of Honolulu
850 South King Street
Honolulu, HI 96813

Dear Mr. Kaku:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
Kapolei, O'ahu, Hawai'i

We thank you for your letter, dated November 25, 2013, and your input on the State Department of Education’s preparation of an Environmental Assessment (EA) for the proposed Kapolei II Elementary School. We will address your areas of interest—shelter in place venues and emergency evacuation shelter design—in the Draft EA, which is scheduled to be available for public review in the coming months.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk

cc: Gaylyn Nakatsuka, DOE
December 2, 2013

Ms. Joanne E. Hiramatsu
Belt Collins Hawaii, LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819

Dear Ms. Hiramatsu:

SUBJECT: Pre-Assessment Consultation for Environmental Assessment
Development of Kapolei II Elementary School
1250 Luakalai Street - Kapolei
Tax Map Key 9-1-158: 62

This is in response to your letter dated November 12, 2013, requesting comments regarding the preparation of the Draft Environmental Assessment (EA) for development of the above property. The new Kapolei II Elementary School will be located on a site zoned R-5 Residential District. Based on the summary information and location map you submitted, we offer the following preliminary comments:

1. The Draft EA should include a discussion on relevant plans and policies, including but not limited to the City’s General and Development Plans and Urban Design Plan. Also, discuss how the project conforms or is consistent with the Land Use Ordinance, specifically the R-5 Residential District Development Standards.

2. A preliminary site plan was provided with the letter. The Draft EA should include a site plan (drawn to scale) showing the boundaries of the site, and existing and proposed structures and parking. The site plan should also identify the required yard setbacks and site access.

3. Please note that the site is within the Ewa Highway Master Plan. A discussion of its applicability should be included in the Draft EA.

Thank you for the opportunity to review the project. We would like to review the Draft EA when it becomes available. If you have any questions, please contact Malynne Simeon of our staff at 768-8023.

Very truly yours,

George I. Atta, FAICP
Director

GIA:nw

A2:24
Mr. George I. Atta, FAICP, Director
Department of Planning and Permitting
City and County of Honolulu
650 South Street, 7th Floor
Honolulu, HI 96813

Dear Mr. Atta:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
Kapolei, O'ahu, Hawai’i

We thank you for your letter, dated December 2, 2013, and your input on the State Department of Education’s preparation of an Environmental Assessment (EA) for the proposed Kapolei II Elementary School. The Draft EA, which is scheduled to be available for public review in the coming months, will address your areas of concern, including fit with City and County Plans, the Land Use Ordinance, and the ‘Ewa Highway Master Plan.

The project is designed to conform with City standards. The school site is zoned A-1, and only a secondary access is on R-5 land. Setbacks are shown in the preliminary site plan. A final site plan with measured setbacks will be submitted for permit applications.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk

cc: Gaylyn Nakatsuka, DOE
December 20, 2013

Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

SUBJECT: Pre-Consultation for Draft Environmental Assessment (DEA)
Kapolei II Elementary School, Department of Education Job
No. Q82001-10; Tax Map Keys (TMK): 9-1-016: 158 and
9-1-158:62; Ewa, Oahu, Hawaii

In response to your letter dated November 18, 2013, we have the following comments:

1. The DEA should include a traffic impact assessment report (TIAR). The TIAR should discuss the traffic and pedestrian impacts on the surrounding City roadways as a result of the project, including short-term impacts during construction and any proposed mitigating measures consistent with the City’s Complete Streets policy. The TIAR should also discuss and recommend mitigative measures (i.e., speed bumps, etc.) to ensure that the designated pedestrian crossing points to the future school are safe.

2. The area Neighborhood Board, as well as the area residents, businesses, etc., should be kept apprised of the details of the proposed project and the impacts, particularly during construction, the project may have on the adjoining local street area network.

3. The DEA should include a description of public transit routes in the area and the impact of your project on TheBus and paratransit operations during construction. There are several bus stops near the project. Two stops are on Kapolei Parkway near Fort Barrette Road serves Routes 41 and 411. Another, two stops are on Roosevelt Avenue near Fort Barrette.
Ms. Joanne E. Hiramatsu
December 20, 2013
Page 2

Road/Enterprise Avenue serve Routes 41 and 415. Basic information is available on our websites: www.thebus.org and www.honolulu.gov/dts. For more details, you may contact our staff at 768-8370.

We reserve further comment pending submission of the DEA.

Thank you for the opportunity to review this matter. Should you have any further questions, please contact Michael Murphy of my staff at 768-8359.

Very truly yours,

Michael D. Formby
Director

cc: Ms. Gaylyn Nakatsuka,
Department of Education
Mr. Michael D. Formby, Director
Department of Transportation Services
City and County of Honolulu
850 South King Street
Honolulu, HI 96813

Dear Mr. Formby:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158:62
Kapolei, O'ahu, Hawai'i

We thank you for your letter, dated December 10 2013, and your input on the State Department of Education’s preparation of an Environmental Assessment (EA) for the proposed Kapolei II Elementary School. The Draft EA, which is scheduled to be available for public review in the coming months, includes a Traffic Impact Assessment Report and a discussion of public transportation in the environs. Your concerns with Complete Streets and Safe Routes to School will be addressed in future Construction Traffic Management and Traffic Management Plans.

We look forward to your continued participation in this EA review process.

Sincerely yours,
BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk

cc: Gaylyn Nakatsuka, DOE
November 27, 2013

Ms. Joanne Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

Subject: Environmental Assessment Early Consultation
 Proposed Kapolei II Elementary School
 Department of Education Job No. Q82001-10
 Tax Map Keys: 9-1-016: 158 and 9-1-158: 062

In response to your letter of November 12, 2013, regarding the above-mentioned subject, the Honolulu Fire Department (HFD) requires that the following be complied with:

1. Fire department access roads shall be provided such that any portion of the facility or any portion of an exterior wall of the first story of the building is located not more than 150 feet (46 m) from fire department access roads as measured by an approved route around the exterior of the building or facility. (National Fire Protection Association [NFPA] 1; Uniform Fire Code [UFC]™, 2006 Edition, Section 18.2.3.2.2.)

 A fire department access road shall extend to within 50 ft (15 m) of at least one exterior door that can be opened from the outside and that provides access to the interior of the building. (NFPA 1; UFC™, 2006 Edition, Section 18.2.3.2.1.)

2. A water supply approved by the county, capable of supplying the required fire flow for fire protection, shall be provided to all premises upon which facilities or buildings, or portions thereof, are hereafter...
constructed, or moved into or within the county. When any portion of the facility or building is in excess of 150 feet (45 720 mm) from a water supply on a fire apparatus access road, as measured by an approved route around the exterior of the facility or building, on-site fire hydrants and mains capable of supplying the required fire flow shall be provided when required by the AHJ [Authority Having Jurisdiction]. (NFPA 1; UFC™, 2006 Edition, Section 18.3.1, as amended.)

3. Submit civil drawings to the HFD for review and approval.

Should you have questions, please contact Battalion Chief Socrates Bratakos of our Fire Prevention Bureau at 723-7151 or sbratakos@honolulu.gov.

Sincerely,

[Signature]

ROLLAND J. HARVEST
Assistant Chief

RJH/SY:bh
January 22, 2014
2013-70-0700 /14P-005

Mr. Rolland J. Harvest, Assistant Chief
Honolulu Fire Department
City and County of Honolulu
636 South Street
Honolulu, HI 96813-5007

Dear Mr. Harvest:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
Kapolei, O'ahu, Hawaii

We thank you for your letter, dated November 27, 2013, regarding the Kapolei II Elementary School Environmental Assessment (EA). Your areas of concern—fire department access to buildings and fire flow—have been considered in project design and will be addressed in the Draft EA, which is scheduled to be available for public review in the coming months.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk

cc: Gaylyn Nakatsuka, DOE
November 26, 2013

Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii, LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

This is in response to your letter dated November 12, 2013, requesting comments on an Environmental Assessment Early Consultation for the proposed, new Kapolei II Elementary School project in Ewa.

The Honolulu Police Department has no specific concerns at this time. We are accepting your offer to be consulted in the preparation of the environmental assessment, particularly in the traffic study.

Thank you for the opportunity to review the subject application.

If there are any questions, please contact Major Kerry Inouye of District 8 (Kapolei) at 723-8403 or via e-mail at kinouye@honolulu.gov.

Sincerely,

LOUIS M. KEALOHA
Chief of Police

By
RANDAL K. MACADANGDANG
Assistant Chief
Support Services Bureau
Mr. Randal K. Macadangdang, Assistant Chief
Support Services Bureau
Police Department
801 South Beretania Street
Honolulu, HI 96813

Dear Mr. Macadangdang:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
Kapolei, O‘ahu, Hawai‘i

We thank you for your letter, dated November 26, 2013, regarding the Kapolei II Elementary School Environmental Assessment (EA) and acknowledge you have no comments at this time.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk
cc: Gaylyn Nakatsuka, DOE
Dear Ms. Hiramatsu,

Thank you for the opportunity to comment on the subject project. Hawaiian Electric Company has no objections to the project. Should HECO have existing easements and facilities on the subject property, we will need continued access for maintenance of our facilities.

We appreciate your efforts to keep us apprised of the subject project in the planning process. As the Kapolei II Elementary School project comes to fruition, please continue to keep us informed. Further along in the design, we will be better able to evaluate the effects on our system facilities.

If you have any questions, please call me at 543-7245.

Sincerely,

Rouen Liu
Permits Engineer
Hawaiian Electric Company

CONFIDENTIALITY NOTICE: This e-mail message, including any attachments, is for the sole use of the intended recipient(s) and may contain confidential and/or privileged information. Any unauthorized review, use, copying, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender immediately by reply e-mail and destroy the original message and all copies.
Mr. Rouen Q.W. Liu, Permits Engineer
Hawaiian Electric Company
820 Ward Avenue
Honolulu, HI 96813

Dear Mr. Liu:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
Kapolei, O‘ahu, Hawai‘i

We thank you for your email, dated December 20, 2013, and your input on the State Department of Education’s preparation of an Environmental Assessment (EA) for the proposed Kapolei II Elementary School. The DOE will continue to coordinate with and include Hawaiian Electric Company in the review of its improvement plans.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk

cc: Gaylyn Nakatsuka, DOE
Aloha Joanne,
Historic Hawai‘i Foundation received the notice for early consultation for an environmental assessment for the proposed Kapolei II Elementary School.

Have any known historic or cultural resources been identified that may be affected by the project? In addition to any resources on the site, we are also concerned with indirect and cumulative effects that may occur from off-site traffic improvements. In particular, are any new or expanded crossings of the historic OR&L railroad right of way likely to be proposed? I can’t tell from the location map if it is in the vicinity of the OR&L or not.

Please let me know, both about OR&L and any other historic properties.

Mahalo,
Kiersten

Kiersten Faulkner, AICP
Executive Director
Historic Hawaii Foundation
680 Iwilei Rd., Ste. 690
Honolulu, HI 96817
Tel: 808-523-2900
FAX: 808-523-0800
Email: kiersten@historichawaii.org
WEB: www.historichawaii.org
Ms. Kiersten Faulkner, AICP, Executive Director
Historic Hawaii Foundation
680 Iwilei Road, Suite 690
Honolulu, HI 96817

Dear Ms. Faulkner:

Early Consultation for Environmental Assessment
Proposed Kapolei II Elementary School
Tax Map Key: (1) 9-1-160:24 and 9-1-158: 62
Kapolei, O‘ahu, Hawai‘i

We thank you for your letter, dated December 17, 2013, and your input on the State Department of Education’s preparation of an Environmental Assessment (EA) for the proposed Kapolei II Elementary School. We will address your areas of interest in the Draft EA, which is scheduled to be available for public review in the coming months.

No historic properties or remains have been found on the site, which has long been disturbed by plantation agriculture, and more recently by clearing for urban development. The makai boundary of the school site is about 0.2 miles from the OR & L crossing at Fort Barrette Road. School related traffic is not expected to affect the level of service on that roadway at intersections nearer to the school site. No new crossings of the railroad right of way are anticipated. Please note that, since the Hawaii Railway Society train operates on Sundays, when school is not in session, we anticipate no interaction between the school and railway operations.

We look forward to your continued participation in this EA review process.

Sincerely yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:jdk
cc: Gaylyn Nakatsuka, DOE
3. COMMENTS ON THE DRAFT ENVIRONMENTAL ASSESSMENT RECEIVED DURING THE COMMENT PERIOD, WITH RESPONSES
March 7, 2013

Belt Collins Hawaii LLC
Attention: Ms. Joanne E. Hiramatsu via email: jhiramatsu@beltcollins.com
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu,

SUBJECT: Draft Environmental Assessment, Kapolei II Elementary School

Thank you for the opportunity to review and comment on the subject matter. The Department of Land and Natural Resources' (DLNR) Land Division distributed or made available a copy of your report pertaining to the subject matter to DLNR Divisions for their review and comments.

At this time, enclosed are comments from (1) Land Division – Oahu District; and (2) Engineering Division. No other comments were received as of our suspense date. Should you have any questions, please feel free to call Supervising Land Agent Steve Molmen at 587-0439. Thank you.

Sincerely,

Russell Y. Tsuji
Land Administrator

Enclosure(s)
MEMORANDUM

TO:

DLNR Agencies:
- Div. of Aquatic Resources
- Div. of Boating & Ocean Recreation
- Engineering Division
- Div. of Forestry & Wildlife
- Div. of State Parks
- Commission on Water Resource Management
- Office of Conservation & Coastal Lands
- Land Division - Oahu District
- Historic Preservation

FROM: Russell Y. Tsuji, Land Administrator

SUBJECT: Draft Environmental Assessment, Kapolei II Elementary School

LOCATION: TM/K (1) 9-1-160:24 and (1) 9-1-158:62, Kapolei, ‘Ewa, O‘ahu, Hawai‘i

APPLICANT: Hawai‘i State Department of Education by its consultant, Belt Collins Hawaii LLC

Transmitted for your review and comment on the above referenced document. We would appreciate your comments on this document which can be found here:

1. Go to: https://sp01.ld.dlnr.hawaii.gov/LD
2. Login: Username: LDVisitor Password: 0pa$word0 (first and last characters are zeros)
3. Click on: Requests for Comments
4. Click on the subject file “Draft Environmental Assessment, Kapolei II Elementary School” then click on “Files” and “Download a copy”.

Please submit any comments by March 7, 2014. If no response is received by this date, we will assume your agency has no comments. If you have any questions about this request, please contact Supervising Land Agent Steve Molmen at (808) 587-0439. Thank you.

Attachments

() We have no objections.
() We have no comments.
() Comments are attached.

Signed:
Print Name:
Date: 2/12/14
MEMORANDUM

DLNR Agencies:
- Div. of Aquatic Resources
- Div. of Boating & Ocean Recreation
- Engineering Division
- Div. of Forestry & Wildlife
- Div. of State Parks
- Commission on Water Resource Management
- Office of Conservation & Coastal Lands
- Land Division – Oahu District
- Historic Preservation

FROM: Russell Y. Tsuji, Land Administrator

SUBJECT: Draft Environmental Assessment, Kapolei II Elementary School
LOCATION: TMK (1) 9-1-160:24 and (1) 9-1-158:62, Kapolei, ‘Ewa, O‘ahu, Hawai‘i
APPLICANT: Hawai‘i State Department of Education by its consultant, Belt Collins Hawaii LLC

Transmitted for your review and comment on the above referenced document. We would appreciate your comments on this document which can be found here:

1. Go to: https://sp01.ld.dlnr.hawaii.gov/LD
2. Login: Username: LD\Visitor Password: 0pa$$word0 (first and last characters are zeros)
3. Click on: Requests for Comments
4. Click on the subject file “Draft Environmental Assessment, Kapolei II Elementary School” then click on “Files” and “Download a copy”.

Please submit any comments by March 7, 2014. If no response is received by this date, we will assume your agency has no comments. If you have any questions about this request, please contact Supervising Land Agent Steve Molmen at (808) 587-0439. Thank you.

Attachments

() We have no objections.
() We have no comments.
() Comments are attached

Signed: ____________________________

Print Name: Cody S. Chang, Chief Engineer

Date: ____________________________
DEPARTMENT OF LAND AND NATURAL RESOURCES
ENGINEERING DIVISION

LD/ Russell Y. Tsuji
REF: DEA for Kapolei II Elementary School
Oahu.010

COMMENTS

(X) We confirm that the project site, according to the Flood Insurance Rate Map (FIRM), is located in Zone D, an area where flood hazards are undetermined.

() Please take note that the project site according to the Flood Insurance Rate Map (FIRM), is located in Zone ___.

() Please note that the correct Flood Zone Designation for the project site according to the Flood Insurance Rate Map (FIRM) is ___.

() Please note that the project must comply with the rules and regulations of the National Flood Insurance Program (NFIP) presented in Title 44 of the Code of Federal Regulations (44CFR), whenever development within a Special Flood Hazard Area is undertaken. If there are any questions, please contact the State NFIP Coordinator, Ms. Carol Tyau-Beam, of the Department of Land and Natural Resources, Engineering Division at (808) 587-0267.

Please be advised that 44CFR indicates the minimum standards set forth by the NFIP. Your Community’s local flood ordinance may prove to be more restrictive and thus take precedence over the minimum NFIP standards. If there are questions regarding the local flood ordinances, please contact the applicable County NFIP Coordinators below:

() Mr. Mario Siu Li at (808) 768-8098 or Ms. Ardis Shaw-Kim at (808) 768-8296 of the City and County of Honolulu, Department of Planning and Permitting.

() Mr. Frank DeMarco at (808) 961-8042 of the County of Hawaii, Department of Public Works.

() Mr. Carolyn Cortez at (808) 270-7813 of the County of Maui, Department of Planning.

() Mr. Stanford Iwamoto at (808) 241-4884 of the County of Kauai, Department of Public Works.

(X) The applicant should include water demands and infrastructure required to meet project needs. Please note that projects within State lands requiring water service from the Honolulu Board of Water Supply system will be required to pay a resource development charge, in addition to Water Facilities Charges for transmission and daily storage.

(X) The applicant should provide the water demands and calculations to the Engineering Division so it can be included in the State Water Projects Plan Update.

() Additional Comments: __

() Other: __

Should you have any questions, please call Mr. Dennis Imada of the Planning Branch at 587-0257.

Signed: ________________________
CARTY S. CHANG, CHIEF ENGINEER

Date: __/25/14

A3-4
NATIONAL FLOOD INSURANCE PROGRAM

FLOOD ZONE DEFINITIONS

SPECIAL FLOOD HAZARD AREAS SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD - The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zone A, AE, AH, AO, V, and VE. The Base Flood Elevation (BFE) is the water-surface elevation of the 1% annual chance flood. Mandatory flood insurance purchase applies in these zones:

- **Zone A:** No BFE determined.
- **Zone AE:** BFE determined.
- **Zone AH:** Flood depths of 1 to 3 feet (usually areas of ponding); BFE determined.
- **Zone AO:** Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined.
- **Zone V:** Coastal flood zone with velocity hazard (wave action); no BFE determined.
- **Zone VE:** Coastal flood zone with velocity hazard (wave action); BFE determined.
- **Zone AEF:** Floodway areas in Zone AE. The floodway is the channel of stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without increasing the BFE.

NON-SPECIAL FLOOD HAZARD AREA - An area in a low-to-moderate risk flood zone. No mandatory flood insurance purchase requirements apply, but coverage is available in participating communities.

- **Zone XS (X shaded):** Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.
- **Zone X:** Areas determined to be outside the 0.2% annual chance floodplain.

OTHER FLOOD AREAS

- **Zone D:** Unstudied areas where flood hazards are undetermined, but flooding is possible. No mandatory flood insurance purchase requirements apply but coverage is available in participating communities.

PROPERTY INFORMATION

- **COUNTY:** HONOLULU
- **TMK NO:** (1) 9-1-160-024
- **PARCEL ADDRESS:**
- **FIRM INDEX DATE:** JANUARY 19, 2011
- **LETTER OF MAP CHANGE(S):** NONE
- **FEMA FIRM PANEL(S):** 15003C0310G
- **PANEL EFFECTIVE DATE:** JANUARY 19, 2011
- **PARCEL DATA FROM:** APRIL 2013
- **IMAGERY DATA FROM:** MAY 2006

IMPORTANT PHONE NUMBERS

- **County NFIP Coordinator**
 - City and County of Honolulu
 - Mario Siau-Li, CFM
 - (808) 768-8098
- **State NFIP Coordinator**
 - Carol Tyau-Beam, P.E., CFM
 - (808) 587-0267

Disclaimer: The Department of Land and Natural Resources (DLNR) assumes no responsibility arising from the use of the information contained in this report. Viewers/Users are responsible for verifying the accuracy of the information and agree to indemnify the DLNR from any liability, which may arise from its use.

If this map has been identified as 'PRELIMINARY' or 'UNOFFICIAL', please note that it is being provided for informational purposes and is not to be used for official/legal decisions, regulatory compliance, or flood insurance rating. Contact your county NFIP coordinator for flood zone determinations to be used for compliance with local floodplain management regulations.
Mr. Russell Tsuji
Land Division Administrator
Department of Land and Natural Resources
State of Hawaii
P.O. Box 621
Honolulu, HI 96809

Dear Mr. Tsuji:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O‘ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comments you provided in your letter of March 7, 2014.

We acknowledge that the Department of Land and Natural Resources has identified the project as in Flood Zone D.

The Department of Education understands that water for the site will be obtained from the Honolulu Board of Water Supply. The water demand for the school has been estimated and is described in the Environmental Assessment (Section 2.13.2).

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:ajk

cc: Ms. Gaylyn Nakatsuka, State Department of Education
Ms. Joanne E. Hiramatsu, Director of Planning
Belt Collins Hawaii, LLC
2153 N. King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

Subject: Draft Environmental Assessment
Kapolei II Elementary School
TMK (1) 9-1-160:24 and (1) 9-1-158:62
Kapolei, Ewa, Oahu, Hawaii

Thank you for the opportunity to provide comments for the subject project. This project does not impact any of the Department of Accounting and General Services' projects or existing facilities in this area and we have no comments to offer at this time.

If you have any questions, your staff may call Mr. Alva Nakamura of the Public Works Division at 586-0488.

Sincerely,

DEAN H. SEKI
Comptroller

C: Ms. Gaylyn Nakatsuka, DOE
Mr. Dean H. Seki, Comptroller
Department of Accounting and General Services
State of Hawai‘i
P.O. Box 119
Honolulu, HI 96810-0119

Dear Mr. Seki:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O‘ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comment you provided in your letter of February 13, 2014.

We acknowledge that the Department of Accounting and General Services has no comments at this time.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:ajk

cc: Ms. Gaylyn Nakatsuka, State Department of Education
March 5, 2014

Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

SUBJECT: Comments on the Draft Environmental Assessment and Anticipated Finding of No Significant Impact (DEA-AFONSI) for the Proposed Kapolei II Elementary School, New School Project
Ewa, Island of Oahu, Hawaii

The Department of Health (DOH), Clean Water Branch (CWB), has reviewed the subject document and has no comments at this time. The DOH-CWB provided comments on the proposed EA Early Consultation for this project (Letter No. 11070PCTM.13, dated November 26, 2013).

Please note that our review is based solely on the information provided in the subject document and its compliance with Hawaii Administrative Rules (HAR), Chapters 11-54 and 11-55. You may be responsible for fulfilling additional requirements related to our program. We recommend that you also read our standard comments on our website at: http://health.hawaii.gov/epo/files/2013/05/CWB-standardcomment.pdf.

If you have any questions, please visit our website at: http://health.hawaii.gov/cwb, or contact the Engineering Section, CWB, at (808) 586-4309.

Sincerely,

[Signature]
ALEC WONG, P.E., CHIEF
Clean Water Branch

CTM:tg

c: Ms. Gaylyn Nakatsuka, Department of Education
 [via email gaylyn_nakatsuka@notes.k12.hi.us only]
Mr. Alec Wong, P.E., Chief
Clean Water Branch
State of Hawai‘i
Department of Health
P.O. Box 3378
Honolulu, HI 96801-3378

Dear Mr. Wong:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O‘ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comments you provided in discussions by telephone and in your letter of March 5, 2014.

A request for a National Pollutant Discharge Elimination System (NPDES) permit for project construction activities has been submitted.

The project site does not contain and the project does not affect any waters of the United States.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

cc: Ms. Gaylyn Nakatsuka, State Department of Health
February 24, 2014

Dear Joanne E. Hiramatsu
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, HI 96819

SUBJECT: Draft Environmental Assessment, Kapolei II Elementary School, Ewa, Oahu

The Department of Health (DOH), Environmental Planning Office (EPO), acknowledges receipt of your letter dated 2.7.2014. Thank you for allowing us to review and comment on the subject document. The document was routed to the relevant Environmental Health divisions and offices. They will provide specific comments to you if necessary. EPO recommends that you review the standard comments at: http://health.hawaii.gov/epo/home/landuse-planning-review-program/. You are required to adhere to all standard comments specifically applicable to this application.

EPO suggests that you examine the many sources available on strategies to support the sustainable and healthy design of communities and buildings, including the:
U.H., School of Ocean and Earth Science and Technology: www.soest.hawaii.edu;
U.S. Health and Human Services: www.hhs.gov/about/sustainability;
U.S. Environmental Protection Agency’s schools siting guidance: www.epa.gov/schools/siting/;
U.S. Environmental Protection Agency’s sustainability programs: www.epa.gov/sustainability; and
International Well Building Standard: http://delosliving.com

The DOH encourages everyone to apply these sustainability strategies and principles early in the planning and review of projects. We also request that for future projects you consider conducting a Health Impact Assessment (HIA). More information is available at: www.cdc.gov/healthyplaces/hia.htm. We request you share all of this information with others to increase community awareness on sustainable, innovative, inspirational, and healthy community design.

We request electronic response confirming receipt of this letter and any other letters you receive from DOH in regards to this project. Please email: epo@doh.hawaii.gov. We anticipate that our letter(s) and your electronic response(s) will be included in the final document. If you have any questions, please contact me at (808) 586-4337 or laura.mcintyre@doh.hawaii.gov

Mahalo,

Laura Leialoha Phillips McIntyre, AICP
Program Manager, Environmental Planning Office
Ms. Laura Leialoha Phillips McIntyre, AICP
Program Manager
Environmental Planning Office
State of Hawai‘i
Department of Health
P.O. Box 3378
Honolulu, HI 96801-3378

Dear Ms. McIntyre:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O‘ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comments you provided in discussions by telephone and in your letter of February 24, 2014.

We acknowledge your concern with sustainability, and stress that the project is designed to meet or exceed LEED Silver criteria.

In connection with your concern about the soils at school sites, we note that the site is covered with coral and sand fill to depths of five feet or more. A soils report and a Phase I Environmental Report have been completed. Key findings of those reports are incorporated in the Final Environmental Assessment. The Phase I Report is included in the Final Environmental Assessment as Appendix D.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne Hiramatsu
Director of Planning

JEH:ajk

cc: Ms. Gaylyn Nakatsuka, State Department of Education
March 3, 2014

Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819

Dear Ms. Hiramatsu:

Draft Environmental Assessment, Kapolei II Elementary School
TMK (1) 9-1-160:24 and (1) 9-1-158:62, Kapolei, Ewa, Oahu, Hawaii

Thank you for the opportunity to comment on the above project. This project is within existing arcs of siren coverage. We have no additional comments at this time.

Please contact this office upon completion of the environmental assessment for further review. If you have any question, please contact Mr. Ian Duncan, State Hazard Mitigation Officer, at 733-4300, extension 555.

Sincerely,

DOUG MAYNE
Vice Director of Civil Defense
March 20, 2014
2013.70.0700/14P-038

Mr. Doug Mayne
Vice Director of Civil Defense
Department of Defense
State of Hawaii
3949 Diamond Head Road
Honolulu, HI 96816-4495

Dear Mr. Mayne:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O‘ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comments you provided in your letter of March 3, 2014.

We acknowledge your comment that the site is within range of Civil Defense sirens. The Department of Education and the design-build team will follow up on your request for further discussion after the Environmental Assessment process.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

cc: Ms. Gaylyn Nakatsuka, State Department of Education
Ms. Joanne E. Hiramatsu
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819

Dear Ms. Hiramatsu:

Thank you for the opportunity to comment on the proposed Kapolei II Elementary School.

The existing water system is adequate to accommodate the proposed development. However, please be advised that this information is based upon current data, and therefore, the Board of Water Supply (BWS) reserves the right to change any position or information stated herein up until the final approval of the building permit application. The final decision on the availability of water will be confirmed when the building permit application is submitted for approval.

When water is made available, the applicant will be required to pay our Water System Facilities Charges for resource development, transmission and daily storage.

The on-site fire protection requirements should be coordinated with the Fire Prevention Bureau of the Honolulu Fire Department.

The proposed project is subject to BWS Cross-Connection Control and Backflow Prevention requirements prior to the issuance of the Building Permit Applications.

If you have any questions, please contact Robert Chun, Project Review Branch of our Water Resources Division at 748-5443.

Very truly yours,

[Signature]

ERNEST Y. W. LAU, P.E.
Manager and Chief Engineer
Ernest Y. W. Lau, P.E.
Manager and Chief Engineer
Board of Water Supply
City and County of Honolulu
630 South Beretania Street
Honolulu, Hawaii 96843

Dear Mr. Lau:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O‘ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comments you provided in your letter of March 10, 2014.

We acknowledge your finding that the existing water system is adequate to accommodate the proposed school. As you note, a Water System Facilities Charge will be levied. Also, the project is subject to cross-connection control and backflow prevention requirements, and will be reviewed before the building permit is granted. Plans for fire protection on-site are being coordinated with the Honolulu Fire Department.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

cc: Ms. Gaylyn Nakatsuka, State Department of Education
March 3, 2014

Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819

Attn: Joanne Hiramatsu

Dear Ms. Hiramatsu:

Subject: Draft Environmental Assessment, Kapolei II Elementary School
TMK (1) 9-1-160:24 and (1) 9-1-158:62 Kapolei, Ewa, Oahu, Hawaii

The Department of Design and Construction does not have comments to offer on the draft environmental assessment.

Thank you for the opportunity to review and comment. Should there be any questions, please contact me at 768-8480.

Sincerely,

[Signature]

Chris T. Takashige, P.E., CCM
Director

CTT: cf (549272)
Mr. Chris T. Takeshige, P.E. CCM
Department of Design and Construction
City and County of Honolulu
650 S. King Street, 11th Floor
Honolulu, HI 96813

Dear Mr. Takeshige:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O‘ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comment you provided in your letter of March 3, 2014.

We acknowledge that the Department of Design and Construction has no comments at this time.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

cc: Ms. Gaylyn Nakatsuka, State Department of Education
Dear Joanne Hiramatsu:

The Department of Emergency Management, City & County of Honolulu, has no comments on your draft Environmental Assessment for the Kapolei II Elementary School.

As we discussed, we support the State Civil Defense’s position that there should be designated spaces for safe hurricane sheltering. Otherwise we have no concerns about the Draft EA.

Thank you for your time and I apologize for missing the deadline.

Sincerely,

Peter J.S. Hirai, Certified Emergency Manager
Deputy Director
Department of Emergency Management
650 South King Street
Honolulu, Hawaii 96813-3078
Voice: (808) 723-8960 Fax: (808) 768-1458

Follow DEM—
On the World Wide Web: www.OahuDEM.org
On Facebook: www.facebook.com/OahuDEM
On Twitter: www.twitter.com/Oahu_DEM
Sign up for free alerts to your cell phone at www.nixle.com/DEM, provided by the City & County of Honolulu
Mr. Peter J.S. Hirai
Certified Emergency Manager
Deputy Director
Department of Emergency Management
City and County of Honolulu
650 South King Street
Honolulu, Hawaii 96813-3078

Dear Mr. Hirai:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O’ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comments you provided in your e-mail of March 13, 2014.

We acknowledge your finding that your department has no comment on the Draft Environmental Assessment. We further acknowledge your concern with safe designated spaces for shelter during hurricanes. The design-build team will continue communication with the State Division of Civil Defense in the coming months.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

[Signature]

Joanne E. Hiramatsu
Director of Planning

cc: Ms. Gaylyn Nakatsuka, State Department of Education
February 13, 2014

Ms. Joanne E. Hiramatsu
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819

Dear Ms. Hiramatsu:

SUBJECT: Draft Environmental Assessment
Kapolei II Elementary School
TMK: (1) 9-1-160:24 and (1) 9-1-158:62
Kapolei, Ewa, Oahu, Hawaii

Thank you for the opportunity to review and comment on the Draft Environmental Assessment for the proposed Kapolei II Elementary School.

The Department of Parks and Recreation has no comment. As the proposed project will have no impact on any program or facility of the department, you may remove us as a consulted party to the balance of the EIS process.

Should you have any questions, please contact Mr. John Reid, Planner at 768-3017.

Sincerely,

Toni P. Robinson
Director

TPR jr
(549466)
Ms. Toni P. Robinson
Director
City and County of Honolulu
Department of Parks and Recreation
1000 Uluohia Street, Suite 309
Kapolei, HI 96707

Dear Ms. Robinson:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O’ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comments you provided in your letter of February 13, 2014.

We acknowledge your finding that that proposed school will have no impact on any of your Department’s programs or facilities.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

JEH:ajk

cc: Ms. Gaylyn Nakatsuka, State Department of Education
March 6, 2014

Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

SUBJECT: Draft Environmental Assessment (DEA) Kapolei II Elementary School; Tax Map Key (TMK): (1) 9-1-160:24 and (1) 9-1-158:62; Kapolei, Oahu, Hawaii

In response to your letter dated February 7, 2014, we have the following comments:

1. Regarding page 34 of the DEA, Impacts and Mitigating Measures, there is a discrepancy between the Institute of Transportation Engineers trip generation rates and what is shown as external project site trips during the AM/PM peak periods. There should be a discussion in the DEA justifying the discrepancy.

2. Regarding page 9 of the Traffic Impact Assessment Report (TIAR), it states that a large portion of the students attending the school are expected to live within the adjacent Mehana subdivision. As such, the school should be designed to encourage students to walk and bicycle as the primary modes of access by applying the principles of Complete Streets and Safe Routes to Schools. There should be safe, direct, and convenient pedestrian crossings of Kunehi Street near the school. Within the site, pedestrian connections from Kunehi Street and Luakalani Street to the school entrance should be designed to be direct and convenient while minimizing potential conflicts with vehicles. On-site pedestrian circulation should be clearly indicated in the site plan. Bicycle parking for at least 20 bicycles should be provided near the main entrance in a highly visible location. The Traffic Management Plan (TMP) should discuss
Ms. Joanne E. Hiramatsu
March 6, 2014
Page 2

measures to promote increased safety and circulation while minimizing vehicular/pedestrian conflicts.

3. Regarding page 8 of the TIAR, there is a discrepancy with the Level of Service (LOS) discussed in section b and the LOS shown for the approach of Kunehi Street at Kapolei Parkway in Figures 3 and 4.

4. Regarding the LOS for the eastbound approach for Kapolei Parkway at Kunehi Street, it should be covered in the TIAR.

5. Regarding the other Kapolei Parkway intersections west of Kunehi Street, the expected completion dates should be specified in the TIAR.

Thank you for the opportunity to review this matter. Should you have any further questions, please contact Michael Murphy of my staff at 768-8359.

Very truly yours,

[Signature]
Michael D. Formby
Director
March 24, 2014
2013.70.0700/14P-041

Mr. Michael D. Formby, Director
Department of Transportation Services
City and County of Honolulu
650 S. King Street, 3rd Floor
Honolulu, HI 96813

Dear Mr. Formby:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O‘ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comments you provided in your letter of March 6, 2014. The following comments follow the enumeration in that letter.

1. The external project trips cited in the Environmental Assessment (EA) reflect the total number of trips generated by the proposed school according to the ITE Trip Generation Manual, minus the internal capture of trips due to use of the internal roadways in the Mehana subdivision. During the AM peak period, the total number of entering vehicles was adjusted to reflect the origination of some of those trips from within the Mehana subdivision, but all exiting vehicles were treated as destined for areas outside the subdivision. Similarly, during the PM peak period, all entering trips were accounted as originating outside the adjacent residential subdivision, but some exiting trips were treated as to destinations within Mehana. Local trip generating characteristics were modeled after those of the existing Kapolei Elementary School. The Final EA will note this point, and the Traffic Impact Analysis Report (TIAR) will be expanded to clarify it.

2. Pedestrian and bicycle facilities will be incorporated in the project design. Space has been set aside near the school entrance for at least 20 bicycles. Pedestrian safety and circulation to minimize vehicle/pedestrian conflicts will be discussed in a Transportation Management Plan, as noted in the EA.

3. The TIAR is being revised. The typographical errors you noted will be corrected.

4. The intersection of Kapolei Parkway and Kunehi Street functions as an unsignalized, stop-controlled intersection. The Level-of-Service (LOS) designation for the eastbound approach of Kapolei Parkway at Kunehi Street is
undefined since this is a shared movement lane group. On the other hand, LOS
designations are provided for movements from the westbound approach, since
these represent individual lanes.

5. The TIAR treats that Kapolei Parkway west of Kunehi Street as open for use prior
to the proposed opening of the school. The revised TIAR will identify it as to be
completed by 2018.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne Hiramatsu
Director of Planning

cc: Ms. Gaylyn Nakatsuka, State Department of Health
February 24, 2014

Ms. Joanne Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

Subject: Draft Environmental Assessment
Kapolei II Elementary School
Kapolei, Ewa, Oahu, Hawaii
Tax Map Keys: 9-1-160: 024 and 9-1-158: 062

In response to your letter of February 7, 2014, regarding the above-mentioned subject, the Honolulu Fire Department (HFD) requires that the following be complied with:

1. Fire department access roads shall be provided such that any portion of the facility or any portion of an exterior wall of the first story of the building is located not more than 150 feet (46 m) from fire department access roads as measured by an approved route around the exterior of the building or facility. (National Fire Protection Association [NFPA] 1, Uniform Fire Code [UFC™, 2006 Edition, Section 18.2.3.2.2.)

A fire department access road shall extend to within 50 ft (15 m) of at least one exterior door that can be opened from the outside and that provides access to the interior of the building. (NFPA 1, UFC™, 2006 Edition, Section 18.2.3.2.1.)

2. A water supply approved by the county, capable of supplying the required fire flow for fire protection, shall be provided to all premises upon which facilities or buildings, or portions thereof, are hereafter constructed, or moved into or within the county. When any portion of the facility or building is in excess of 150 feet (45 720 mm) from a
water supply on a fire apparatus access road, as measured by an approved route around the exterior of the facility or building, on-site fire hydrants and mains capable of supplying the required fire flow shall be provided when required by the AHJ [Authority Having Jurisdiction]. (NFPA 1, UFC™, 2006 Edition, Section 18.3.1, as amended.)

3. Submit civil drawings to the HFD for review and approval.

Should you have questions, please contact Acting Battalion Chief Brett Lomont of our Fire Prevention Bureau at 723-7151 or blomont@honolulu.gov.

Sincerely,

[Signature]

SOCRATES D. BRATAKOS
Assistant Chief

SDB/SY: bh
Mr. Socrates D. Bratakos
Assistant Chief
Honolulu Fire Department
City and County of Honolulu
636 South Street
Honolulu, HI 96816-5007

Dear Mr. Bratakos:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O‘ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comments you provided in discussions by telephone and in your letter of February 24, 2014.

The Kapolei II Elementary School project has been designed to meet Uniform Fire Code standards with regard to access roads and water supply. Fire trucks will be able to reach school buildings through the public vehicle access and parking areas, by a fire lane between buildings C and D that extends into the Piko of the school, and by a fire lane that extends to the edges of buildings F and G. Fire hose connections are provided on the outside of the enclosed buildings, while sprinkler systems are included in the buildings.

Civil drawings will be submitted to your Department by the design-build team.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

cc: Ms. Gaylyn Nakatsuka, State Department of Education
February 26, 2014

Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

This is in response to your letter dated February 7, 2014, requesting comments on a Draft Environmental Assessment for the proposed Kapolei II Elementary School project.

The Honolulu Police Department (HPD) has concerns with the increase in traffic during peak hours. The HPD concurs with the recommendation of the Traffic Impact Report to prepare a Construction Management Plan (CMP) and the Traffic Management Plan (TMP) to minimize the impact of construction-related activities and school-related traffic on the surrounding roadways.

Additionally, the HPD recommends incorporating early planning and traffic safety initiatives into the CMP and the TMP to reduce traffic problems.

If there are any questions, please contact Major Kerry Inouye of District 8 (Kapolei) at 723-8403 or via e-mail at kinouye@honolulu.gov.

Sincerely,

LOUIS M. KEALOHA
Chief of Police

By
RANALD K. MACADANGDANG
Assistant Chief
Support Services Bureau

Serving and Protecting With Aloha
A3-30
Mr. Randal K. Macadangdang
Assistant Chief
Support Services Bureau
Honolulu Police Department
City and County of Honolulu
801 South Beretania Street
Honolulu, HI 96813

Dear Mr. Macadangdang:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O’ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comments you provided in your letter of February 26, 2014.

We acknowledge your concern with possible traffic impacts of construction and operations at the new school, and your recommendations for planning to minimize such impacts.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

cc: Ms. Gaylyn Nakatsuka, State Department of Education
February 12, 2014

Ms. Joanne E. Hiramatsu
Director of Planning
Belt Collins Hawaii LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554

Dear Ms. Hiramatsu:

Subject: Draft Environmental Assessment, Kapolei II Elementary School
 TMK (1) 9-1-160:24 and (1) 9-1-158:62
 Kapolei, ‘Ewa, O‘ahu, Hawai‘i

In response to your letter dated February 7, 2014, it has been determined that the area is currently clear of utility gas facilities.

Thank you for the opportunity to review the Draft Environmental Assessment. Should there be any questions, or if additional information is desired, please feel free to call Jared Pasalo at 594-5008.

Sincerely,

Hawaii Gas

Keith K. Yamamoto
Manager, Engineering

KKY.krs
14-121
Mr. Keith K. Yamamoto
Manager, Engineering
Hawai‘i Gas
680 Iwilei Road, Suite 690
Honolulu, HI 96817

Dear Mr. Yamamoto:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O‘ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comment you provided in your letter of February 21, 2014.

We acknowledge your finding that Hawai‘i Gas currently has no gas utility lines serving the project site.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne Hiramatsu
Director of Planning

cc: Ms. Gaylyn Nakatsuka, State Department of Education
Belt Collins Hawaii, LLC
2153 North King Street, Suite 200
Honolulu, Hawaii 96819-4554
Attention: Ms. Joanne E. Hiramatsu

Dear Ms. Hiramatsu:

Subject: Draft Environmental Assessment
Kapolei II Elementary School
TMK (1) 9-1-160:24 and (1) 9-1-158:62
Kapolei, Ewa, Oahu, Hawaii

Thank you for the opportunity to review and comment on the Draft Environmental Assessment regarding the subject project.

Hawaiian Telcom does not have any comments to offer at this time.

If you have any questions or require assistance in the future on this project, please call me at 546-7761.

Sincerely,

Les Loo
Network Engineer – OSP Engineering
Network Engineering & Planning

cc: File
Mr. Les Loo
Network Engineer - OSP Engineering
Network Engineering & Planning
Hawaiian Telcom
P.O. Box 2200
Honolulu, HI 96841

Dear Mr. Loo:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O’ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to your letter of March 6, 2014.

We acknowledge your finding that Hawaiian Telcom has no comments at this time.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

cc: Ms. Gaylyn Nakatsuka, State Department of Education
February 21, 2014

Joanne E. Hiramatsu
Belt Collins Hawai’i LLC
2153 North King Street, Suite 200
Honolulu, HI 96819

RE: Draft Environmental Assessment, Kapolei II Elementary School
TMK (l) 9-1-160:024 and (l) 9-1-158:62
Kapolei, ‘Ewa, O‘ahu, Hawai‘i

Dear Ms. Hiramatsu,

Thank you for referring the Draft Environmental Assessment for Kapolei II Elementary School to Historic Hawai‘i Foundation (HHF) for review and comment. Since 1974, HHF has been a statewide leader for historic preservation with a mission to preserve and encourage the preservation of historic properties significant to the history of Hawai‘i.

The Draft Environmental Assessment covers the proposed construction of Kapolei II Elementary School with a proposed location at 511 Kunehi Street in Kapolei. The Assessment addresses concerns stated by HHF in an email dated December 30, 2013 in which we requested further information relating to historic properties in the area. We specifically requested information regarding the proximity of the OR&L line to the project site.

The Draft EA states that the OR&L crossing at Fort Barrett Road is approximately two-tenths of a mile south of the proposed project site. Furthermore, the Draft states that based on archeological studies of nearby parcels, there is limited potential for finding previously unidentified archeological objects or impacting known historic properties. HHF agrees with the stated intention of immediately ceasing ground disturbing activities if previously unknown archeological objects are uncovered and contacted qualified professionals to assess the situation.

HHF has no concerns in regards to the Draft EA, or the proposed project itself as it is outlined. If the scope of work changes, or historic properties identified in the Draft EA or previously unidentified historic properties are impacted please notify HHF so we may re-evaluate if our participation may be warranted at that time. Megan Borthwick, Preservation Program Manager, will be HHF's point of contact. She can be reached at 808-523-2900 or Megan@historichawaii.org

Very truly yours,

[Signature]

Kiersten Faulkner, AICP
Executive Director
Ms. Kiersten Faulkner, AICP
Executive Director
Historic Hawaii Foundation
680 Iwilei Road, Suite 690
Honolulu, HI 96817

Dear Ms. Faulkner:

Response to Comments
Draft Environmental Assessment (DEA)
Kapolei II Elementary School
‘Ewa District, Island of O‘ahu

Thank you for participating in the Hawaii Revised Statutes, Chapter 343, public and agency review process. We are writing in response to the comments you provided in your letter of February 21, 2014.

We acknowledge that Historic Hawaii Foundation has concerns with regard to historic properties in the area, specifically the OR&L railroad line. No historic properties will be affected by the proposed Elementary School.

Thank you for your response.

Very truly yours,

BELT COLLINS HAWAII LLC

Joanne E. Hiramatsu
Director of Planning

cc: Ms. Gaylyn Nakatsuka, State Department of Education
TRAFFIC IMPACT REPORT

FOR THE

KAPOLEI II ELEMENTARY SCHOOL

Prepared for:

Kiewit Building Group, Inc.
650 Iwilei Road
Honolulu, HI 96817

and

KYA Design Group, Inc.
934 Pumehana Street
Honolulu, HI 96826

Prepared by:

Wilson Okamoto Corporation
1907 S. Beretania Street, Suite 400
Honolulu, Hawaii 96826
WOC Ref #10027-01

December 2013
Updated March 2014
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>A. Purpose of Study</td>
<td>1</td>
</tr>
<tr>
<td>B. Scope of Study</td>
<td>1</td>
</tr>
<tr>
<td>II. Project Description</td>
<td>1</td>
</tr>
<tr>
<td>A. Location</td>
<td>1</td>
</tr>
<tr>
<td>B. Project Characteristics</td>
<td>1</td>
</tr>
<tr>
<td>III. Existing Traffic Conditions</td>
<td>4</td>
</tr>
<tr>
<td>A. Area Roadway System</td>
<td>4</td>
</tr>
<tr>
<td>B. Traffic Volumes and Conditions</td>
<td>4</td>
</tr>
<tr>
<td>1. General</td>
<td>4</td>
</tr>
<tr>
<td>1a. Field Investigation</td>
<td>4</td>
</tr>
<tr>
<td>1b. Capacity Analysis Methodology</td>
<td>5</td>
</tr>
<tr>
<td>2. Existing Peak period of Traffic</td>
<td>5</td>
</tr>
<tr>
<td>2a. General</td>
<td>5</td>
</tr>
<tr>
<td>2b. Kunehi Street and Kapolei Parkway</td>
<td>8</td>
</tr>
<tr>
<td>2c. Kapolei Parkway and Ft. Barrette Road</td>
<td>8</td>
</tr>
<tr>
<td>2d. Ft. Barrette Road and Kamaaha Avenue</td>
<td>8</td>
</tr>
<tr>
<td>IV. Projected Traffic Conditions</td>
<td>9</td>
</tr>
<tr>
<td>A. Site-Generated Traffic</td>
<td>9</td>
</tr>
<tr>
<td>1. Trip Generation Methodology</td>
<td>9</td>
</tr>
<tr>
<td>2. Trip Distribution</td>
<td>10</td>
</tr>
<tr>
<td>B. Through-Traffic Forecasting Methodology</td>
<td>10</td>
</tr>
<tr>
<td>C. Other Considerations</td>
<td>13</td>
</tr>
<tr>
<td>D. Total Traffic Volumes Without Project</td>
<td>13</td>
</tr>
<tr>
<td>E. Total Traffic Volumes With Project</td>
<td>17</td>
</tr>
<tr>
<td>V. Traffic Impact Analysis</td>
<td>17</td>
</tr>
<tr>
<td>VI. Recommendations</td>
<td>20</td>
</tr>
<tr>
<td>VII. Conclusion</td>
<td>20</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

FIGURE 1 Location Map and Vicinity Map
FIGURE 2 Project Site Plan
FIGURE 3 Existing AM Peak Period of Traffic
FIGURE 4 Existing PM Peak Period of Traffic
FIGURE 5 Year 2018 Distribution of Site-Generated Vehicles – AM Peak Period
FIGURE 6 Year 2018 Distribution of Site-Generated Vehicles – PM Peak Period
FIGURE 7 Year 2018 AM Peak Period of Traffic Without Project
FIGURE 8 Year 2018 PM Peak Period of Traffic Without Project
FIGURE 9 Year 2018 AM Peak Period of Traffic With Project
FIGURE 10 Year 2018 PM Peak Period of Traffic With Project

LIST OF APPENDICIES

APPENDIX A Existing Traffic Count Data
APPENDIX B Level of Service Definitions
APPENDIX C Capacity Analysis Calculations
APPENDIX C Existing Peak Period Traffic Analysis
APPENDIX D Trip Distribution
APPENDIX E Capacity Analysis Calculations
APPENDIX E Year 2018 Peak Period Traffic Analysis Without Project
APPENDIX F Capacity Analysis Calculations
APPENDIX F Year 2018 Peak Period Traffic Analysis With Project
I. INTRODUCTION

A. Purpose of Study

The purpose of this study is to identify and assess the traffic impacts resulting from a proposed Kapolei II Elementary School located in Kapolei on the island of Oahu. The new elementary school is intended to accommodate the increasing demand in the Kapolei region in support of the existing Kapolei Elementary School.

B. Scope of Study

This report presents the findings and conclusions of the traffic study, the scope of which includes:

1. Description of the proposed project.
2. Evaluation of existing roadway and traffic operations in the vicinity.
3. Analysis of future roadway and traffic conditions without the proposed project.
4. Analysis and development of trip generation characteristics for the proposed project.
5. Superimposing site-generated traffic over future traffic conditions.
6. The identification and analysis of traffic impacts resulting from the proposed project.
7. Recommendations of improvements, if appropriate, that would mitigate the traffic impacts resulting from the proposed project.

II. PROJECT DESCRIPTION

A. Location

The proposed project site is located adjacent to Kunehi Street south of Kapolei Parkway within the Mehana Subdivision in Kapolei on the island of Oahu (see Figure 1). Primary access to the proposed school will be provided via driveways off Kunehi Street.

B. Project Characteristics

The proposed project entails the development of a new elementary school within the Kapolei area. The elementary school is expected to serve a maximum enrollment of 750 students and include classrooms, administrative offices, support facilities, and parking areas. Figure 2 shows the proposed site plan.
FIGURE 1

LOCATION MAP AND VICINITY MAP

KAPOLEI II ELEMENTARY SCHOOL

0 500 1000 2000 Feet

Island of Oahu

Project Site

Wilson Okamoto Corporation
III. EXISTING TRAFFIC CONDITIONS

A. Area Roadway System

The proposed project site is located adjacent to Kunehi Street, a two-lane, two-way roadway generally oriented in the north-south direction between Kapolei Parkway and Kukulu Street. At the unsignalized T-intersection with Kapolei Parkway, Kunehi Street has one stop-controlled lane that serves left-turn and right-turn traffic movements. In the vicinity of the project site, Kapolei Parkway is a predominantly six-lane, two-way roadway generally oriented in the east-west direction. At the intersection with Kunehi Street, the eastbound approach of Kapolei Parkway has two through lanes and a shared right-turn and through lane while the westbound approach has three through lanes and an exclusive left-turn lane.

East of the intersection with Kunehi Street, Kapolei Parkway intersects Ft. Barrette Road. At this signalized intersection, both directions of Kapolei Parkway have exclusive turning lanes and one through lane. In the vicinity of the project site, Ft. Barrette Road is a predominantly two-lane, two-way roadway generally oriented in the north-south direction. At the intersection with Kapolei Parkway, the northbound approach of Ft. Barrette Road has exclusive turning lanes and one through lane while the southbound approach has an exclusive left-turn lane and a shared through and right-turn lane.

North of the intersection with Kapolei Parkway, Ft. Barrette Road intersects Kamaaha Avenue. At this signalized intersection, the northbound approach of Ft. Barrette Road has two exclusive left-turn lanes, a through lane, and an exclusive right turn lane while the southbound approach has exclusive turning lanes and one through lane. Both approaches of Kamaaha Avenue have exclusive turning lanes and one through lane at this intersection.

B. Traffic Volumes and Conditions

1. General

 a. Field Investigation

 Field investigations were conducted in February and November 2013 and consisted of manual turning movement count surveys during the morning peak hours between 6:00 AM and 9:00 AM, and the
afternoon peak hours between 3:00 PM and 6:00 PM at the following intersections:
- Kunehi Street and Kapolei Parkway
- Kapolei Parkway and Ft. Barrette Road
- Ft. Barrette Road and Kamaaha Avenue
Appendix A includes the existing traffic count data.

b. Capacity Analysis Methodology
The highway capacity analysis performed in this study is based upon procedures presented in the “Highway Capacity Manual”, Transportation Research Board, 2000, and the “Synchro” software, developed by Trafficware. The analysis is based on the concept of Level of Service (LOS) to identify the traffic impacts associated with traffic demands during the peak periods of traffic.

LOS is a quantitative and qualitative assessment of traffic operations. Levels of Service are defined by LOS “A” through “F”; LOS “A” representing ideal or free-flow traffic operating conditions and LOS “F” unacceptable or potentially congested traffic operating conditions.

“Volume-to-Capacity” (v/c) ratio is another measure indicating the relative traffic demand to the road carrying capacity. A v/c ratio of one (1.00) indicates that the roadway is operating at or near capacity. A v/c ratio of greater than 1.00 indicates that the traffic demand exceeds the road’s carrying capacity. The LOS definitions are included in Appendix B.

2. Existing Peak Hour Traffic
a. General
Figures 3 and 4 show the existing AM and PM peak period traffic volumes and operating conditions. The AM peak hour of traffic generally occurs between 7:15 AM and 8:15 AM. The PM peak hour of traffic generally occurs between the hours of 4:30 PM and 5:30 PM.
EXISTING AM PEAK HOUR OF TRAFFIC

FORT BARRETTE ROAD

KAMAAHA AVENUE

KAPOLEI PARKWAY

KUNEHI STREET

LEGEND

90
TRAFFIC MOVEMENT VOLUME (VPH)

LANE USAGE

APPROACH LEVEL OF SERVICE

DATES OF COUNT: FEBRUARY & NOVEMBER 2013

KAPOLEI II ELEMENTARY SCHOOL

FIGURE 3
LEGEND

90
TRAFFIC MOVEMENT VOLUME (VPH)

3
LANE USAGE

A
APPROACH LEVEL OF SERVICE

DATES OF COUNT: FEBRUARY & NOVEMBER 2013

KAPOLEI PARKWAY

287

32

46

37

204

221

73

77

348

176

KAPOLEI STREET

KUNEHI STREET

FORT BARRETTE ROAD

112

187

26

79

271

113

493

84

40

142

141

141

76

106

442

37

92

187

26

66

112
The analysis is based on these peak hour time periods for each intersection to identify the traffic impacts resulting from the proposed project. LOS calculations are included in Appendix C.

b. Kunehi Street and Kapolei Parkway

At the intersection with Kapolei Parkway, the Kunehi Street approach carries 113 vehicles northbound during the AM peak period and 78 vehicles northbound during the PM peak period. The northbound approach of Kunehi Street operates at LOS “B” during both peak periods.

Kapolei Parkway carries 256 vehicles eastbound and 430 vehicles westbound during the AM peak period. During the PM peak period, the overall traffic volume is slightly lower with 333 vehicles traveling eastbound and 294 vehicles traveling westbound. The westbound approach of Kapolei Parkway operates at LOS “A” during both peak periods.

c. Kapolei Parkway and Ft. Barrette Road

At the intersection with Kapolei Parkway, Ft. Barrette Road carries 541 vehicles northbound and 771 vehicles southbound during the AM peak period. During the PM peak period, the overall traffic volume is lower with 624 vehicles traveling northbound and 601 vehicles traveling southbound. Both approaches of Ft. Barrette Road operate at LOS “D” and LOS “C” during the AM and PM peak periods, respectively.

Kapolei Parkway carries 320 vehicles eastbound and 732 vehicles westbound during the AM peak period. During the PM peak period, the overall traffic volume is less with 333 vehicles traveling eastbound and 349 vehicles traveling westbound. Both approaches of Kapolei Parkway operate at LOS “D” during both peak periods.

d. Ft. Barrette Road and Kamaaha Avenue

At the intersection with Kamaaha Avenue, Ft. Barrette Road carries 676 vehicles northbound and 849 vehicles southbound during
the AM peak period. During the PM peak period, traffic volumes are less with 617 vehicles traveling northbound and 696 vehicles traveling southbound. The northbound approach of Ft. Barrette Road operates at LOS “C” during both peak periods while the southbound approach operates at LOS “D” and LOS “C” during the AM and PM peak periods, respectively.

Kamaaha Avenue carries 128 vehicles eastbound and 448 vehicles westbound during the AM peak period. During the PM peak period, the overall traffic volume is higher with 463 vehicles traveling eastbound and 325 vehicles traveling westbound. Both approaches of Kamaaha Avenue operate at LOS “D” during both peak periods.

IV. PROJECTED TRAFFIC CONDITIONS

A. Site-Generated Traffic

1. Trip Generation Methodology

The trip generation methodology used in this study is based upon generally accepted techniques developed by the Institute of Transportation Engineers (ITE) and published in “Trip Generation, 9th Edition,” 2012. The ITE trip generation rates are developed empirically by correlating the vehicle trip generation data with various land use characteristics such as the number of vehicle trips generated per student. The new elementary school is intended to accommodate the increasing demand in the Kapolei region in support of the existing Kapolei Elementary School. A large portion of the students attending the school are expected to live within the adjacent Mehana Subdivision. As such, a portion of the entering trips during the AM peak period and a portion of the exiting trips during the PM peak period are expected to have origins/destinations within that subdivision. The resulting internal capture of trips was modeled after the other existing elementary school in the region situated within a similar residential setting. The trips associated with the internal capture component of the project are a result of the use of the internal roadway system within the residential area of which the proposed school would be located. The adjusted trip generation values are reflected in Table 1,
which summarizes the external project site trip generation characteristics contributing to the study intersections, and as applied to the projected AM and PM peak periods of traffic.

Table 1: External Peak Hour Trip Generation

<table>
<thead>
<tr>
<th>ELEMENTARY SCHOOL</th>
<th>PROJECTED TRIP ENDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEPENDENT VARIABLE: # of students = 750</td>
<td></td>
</tr>
<tr>
<td>AM PEAK</td>
<td>ENTER</td>
</tr>
<tr>
<td></td>
<td>EXIT</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>PM PEAK</td>
<td>ENTER</td>
</tr>
<tr>
<td></td>
<td>EXIT</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

2. Trip Distribution

Figures 5 and 6 show the distribution of external site-generated vehicular trips at the study intersections during the Year 2018 peak periods. Access to Kapolei II Elementary School will be provided via driveways off Kunehi Street. The directional distribution of vehicles was based upon the trip distribution percentages derived from the Oahu Metropolitan Planning Organization (OMPO) 2035 regional travel forecasting model. The trips were then routed through the surrounding roadway network based upon their assumed origin/destination and the relative convenience of the available routes. Appendix D includes the trip distribution percentages.

B. Through Traffic Forecasting Methodology

The section of Kapolei Parkway in the vicinity of proposed school is fairly new and not yet complete. As such, there is no available historical data to obtain a historical trend for the growth of traffic along that roadway. For the purpose of this report, an average annual growth rate of 2.0% per year was conservatively assumed in the project vicinity to account for ambient growth in traffic. Using 2013 as the Base Year, a growth rate of 1.10 was applied to the existing traffic demands at the study intersections to achieve the projected Year 2018 traffic demands.
C. Other Considerations

The section of Kapolei Parkway within the project vicinity is expected to be extended further west to connect to an existing segment of the roadway west of Parkway will serve as an alternate east-west route through the Kapolei area. This roadway connection is expected to be open for public use prior to Year 2018 when the school is expected to open. The traffic distribution within the region is expected to shift due to the availability of the new east-west route. As such, the volume of through traffic along Kapolei Parkway is expected to increase as motorists choose to utilize that roadway instead of Kamokila Boulevard and Roosevelt Avenue. Based upon the projections included in the “Comprehensive Transportation Analysis Report for Kapolei,” the through volumes along Kapolei Parkway were modified to reflect the anticipated route changes under without project conditions.

In addition, a new project is planned adjacent to Kunehi Street north of Kapolei Parkway. Phase 1 of the Ilima at Leihano Senior Living Development is expected to be completed by the Year 2015 and include approximately 90 beds. Primary access to Phase 1 of the project will be provided via an extension of Kunehi Street on the north side of Kapolei Parkway. Although the development is expected to include additional phases in the future, the details and implementation schedule for these phase are not know at this time. As such, only the traffic associated with Phase 1 of the development was incorporated into without project conditions.

D. Total Traffic Volumes Without Project

The projected Year 2018 AM and PM peak period traffic volumes and operating conditions without the proposed Kapolei II Elementary School are shown in Figures 7 and 8, and summarized in Table 2. The traffic signal phasing and timing at the intersection of Kapolei Parkway with Ft. Barrette Road is assumed to be modified to accommodate the anticipated increases in traffic along Kapolei Parkway. These modifications are assumed to include the removal of the existing split phasing of the eastbound and westbound approaches of the intersection. The existing levels of service are provided for comparison purposes. LOS calculations are included in Appendix E.
Table 2: Existing and Projected Year 2018 (Without Project) LOS Traffic Operating Conditions

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Approach</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Exist</td>
<td>Year 2018 w/out Proj</td>
</tr>
<tr>
<td>Kunehi St/ Kapolei Pkwy</td>
<td>Eastbound</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Kapolei Pkwy/ Ft. Barrette Rd*</td>
<td>Eastbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Ft Barrette Rd/ Kamaaha Ave</td>
<td>Eastbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

*Traffic signal phasing and timing modified.

Under Year 2018 without project conditions, traffic operations are expected to deteriorate from existing conditions due to the anticipated shifts in traffic distribution within the Kapolei region, expected growth in ambient traffic along the surrounding roadways, and development of other projects in the vicinity. At the intersection of Kunehi Street with Kapolei Parkway, the approaches of the intersection are expected to operate at LOS “C” or better during the AM peak period and LOS “B” or better during the PM peak period. Along Ft. Barrette Road, the approaches of the intersection with Kapolei Parkway are expected to operate at LOS “D” during both peak periods with the exception of the southbound approach during the AM peak period which is expected to operate at LOS “E.” At the intersection with Kamaaha Avenue, the approaches of the intersection are expected to operate at LOS “D” or better during both peak periods.
E. Total Traffic Volumes With Project

Figures 9 and 10 show the Year 2018 cumulative AM and PM peak hour traffic conditions that result from the projected external traffic and the Kapolei II Elementary School. The cumulative volumes consist of site-generated traffic superimposed over Year 2018 projected traffic demands. The traffic impacts resulting from the proposed project are addressed in the following section.

V. TRAFFIC IMPACT ANALYSIS

The projected Year 2018 AM and PM peak period traffic volumes and operating conditions with the proposed Kapolei II Elementary School are summarized in Table 3. The projected Year 2018 (Without Project) operating conditions are provided for comparison purposes. LOS calculations are included in Appendix F.

Table 3: Projected Year 2018 (Without and With Project) LOS Traffic Operating Conditions

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Approach</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>w/out Proj</td>
<td>w/ Proj</td>
</tr>
<tr>
<td>Kunhehi St/ Kapolei Pkwy</td>
<td>Eastbound</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Kapolei Pkwy/ Ft. Barrette Rd</td>
<td>Eastbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Ft. Barrette Rd/ Kamaaha Ave</td>
<td>Eastbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Westbound</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Northbound</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>Southbound</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Under Year 2018 with project conditions, traffic operations along Ft. Barrette Road are generally expected to remain similar to without project conditions despite the addition of site-generated vehicles to the surrounding roadways. Traffic operations at the intersections with Kapolei Parkway and Kamaaha Avenue are expected to continue operating at LOS “D” or better during both peak periods with the exception of the southbound approach of the
Kapolei Parkway intersection which is expected to continue operating at LOS “E” during the AM peak period. At the intersection of Kapolei Parkway and Kunehi Street, the approaches of the intersection are expected to operate at slightly lower levels of service due to the anticipated increases in traffic along Kunehi Street. Both approaches of Kapolei Parkway are expected to continue operating at LOS “A” during both peak periods while the Kunehi Street approaches are expected to operate at LOS “D’ or better during the AM peak period and LOS “C” or better during the PM peak period.

VI. RECOMMENDATIONS

Based on the analysis of the traffic data, the following are the recommendations of this study to be incorporated in the project design.

1. Maintain sufficient sight distance for motorists to safely enter and exit all project driveways.

2. Provide adequate on-site loading and off-loading service areas and prohibit off-site loading operations.

3. Provide adequate turn-around area for service, delivery, and refuse collection vehicles to maneuver on the project site to avoid vehicle-reversing maneuvers onto public roadways.

4. Provide sufficient turning radii at all project driveways to avoid or minimize vehicle encroachments to oncoming traffic lanes.

5. During the design phase of the project, consider the incorporation of complete streets concepts if possible.

6. Consider preparing a Traffic Management Plan (TMP) for the school to minimize the impact of school-related traffic (daily and special events) on the surrounding roadways. The TMP should include recommendations to ensure that the designated pedestrian crossing points to the proposed school are safe.

7. Consider preparing a Construction Traffic Management Plan (CTMP) to minimize the impact of construction-related activities on the surrounding roadways and neighborhood.

VII. CONCLUSION

In conjunction with the continued development within the Kapolei region, new schools are planned in the region to support the increasing demand. The Kapolei II Elementary School is expected to support the existing Kapolei Elementary School by
accommodating up to 750 students. With the implementation of the aforementioned recommendations, traffic operations in the vicinity of the new school are expected to remain similar to without project conditions. Although the Kapolei II Elementary School is not expected to have a significant impact on traffic operations in the vicinity, consideration should be given to the preparation of a Construction Traffic Management Plan (CTMP) and Traffic Management Plan (TMP) for the school to minimize the impact of construction-related activities, as well as, daily and special event traffic related to the school.
APPENDIX A

EXISTING TRAFFIC COUNT DATA
Wilson Okamoto Corporation
1907 S. Beretania Street Suite 400
Honolulu, HI 96826

Counted By: GC
Counter: D4-5672
Weather: Clear
File Name: KapKun AM
Site Code: 00000001
Start Date: 2/12/2013
Page No: 1

Groups Printed- Unshifted

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Southbound</th>
<th>Kapolei Parkway Westbound</th>
<th>Knehei Street Northbound</th>
<th>Kapolei Parkway Eastbound</th>
<th>Int Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>App. Total</td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
</tr>
<tr>
<td>06:00 AM</td>
<td>0</td>
<td>4</td>
<td>29</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>06:15 AM</td>
<td>0</td>
<td>7</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>06:30 AM</td>
<td>0</td>
<td>7</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>06:45 AM</td>
<td>0</td>
<td>13</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0</td>
<td>31</td>
<td>113</td>
<td>0</td>
</tr>
<tr>
<td>07:00 AM</td>
<td>0</td>
<td>9</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>0</td>
<td>11</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>0</td>
<td>7</td>
<td>98</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>0</td>
<td>20</td>
<td>91</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0</td>
<td>47</td>
<td>289</td>
<td>0</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>0</td>
<td>20</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:15 AM</td>
<td>0</td>
<td>6</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:30 AM</td>
<td>0</td>
<td>7</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:45 AM</td>
<td>0</td>
<td>16</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0</td>
<td>49</td>
<td>141</td>
<td>0</td>
</tr>
<tr>
<td>Grand Total</td>
<td>0</td>
<td>127</td>
<td>543</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Approch %</td>
<td>19</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>31.1</td>
</tr>
<tr>
<td>Total %</td>
<td>8.9</td>
<td>37.8</td>
<td>0</td>
<td>0</td>
<td>46.7</td>
</tr>
</tbody>
</table>

Peak Hour Analysis From 06:00 AM to 08:45 AM - Peak 1 of 1

- Peak Hour for Entire Intersection Begins at 07:15 AM

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Southbound</th>
<th>Kapolei Parkway Westbound</th>
<th>Knehei Street Northbound</th>
<th>Kapolei Parkway Eastbound</th>
<th>Int Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>App. Total</td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>0</td>
<td>11</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>0</td>
<td>7</td>
<td>98</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>0</td>
<td>20</td>
<td>91</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>0</td>
<td>20</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Volume</td>
<td>0</td>
<td>58</td>
<td>303</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% App. Total</td>
<td>16.1</td>
<td>83.9</td>
<td>0</td>
<td>0</td>
<td>27.4</td>
</tr>
</tbody>
</table>

| PHP | .000 | .725 | .773 | .000 | .813 | .596 | .000 | .603 | .601 | .000 | .725 | .563 | .757 | .772 |

Wilson Okamoto Corporation

1907 S. Beretania Street Suite 400
Honolulu, HI 96826

Counted By: GC
Counter: D4-5672
Weather: Clear

File Name: KapKun PM
Site Code: 00000001
Start Date: 2/12/2013
Page No: 1

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Southbound</th>
<th>Kapolei Parkway</th>
<th>Kunehi Street</th>
<th>Kapolei Parkway</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Westbound</td>
<td>Northbound</td>
<td>Eastbound</td>
<td></td>
</tr>
<tr>
<td></td>
<td>App. Total</td>
<td>Left</td>
<td>Thru</td>
<td>Right</td>
<td>Peds</td>
</tr>
<tr>
<td>03:00 PM</td>
<td>0</td>
<td>22</td>
<td>54</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>03:15 PM</td>
<td>0</td>
<td>21</td>
<td>39</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>0</td>
<td>14</td>
<td>67</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>03:45 PM</td>
<td>0</td>
<td>17</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>74</td>
<td>224</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>0</td>
<td>13</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>0</td>
<td>20</td>
<td>42</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>0</td>
<td>22</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>04:45 PM</td>
<td>0</td>
<td>14</td>
<td>42</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>69</td>
<td>165</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>0</td>
<td>26</td>
<td>43</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>05:15 PM</td>
<td>0</td>
<td>11</td>
<td>53</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>05:30 PM</td>
<td>0</td>
<td>27</td>
<td>51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>05:45 PM</td>
<td>0</td>
<td>16</td>
<td>41</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>80</td>
<td>188</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grand Total</td>
<td>0</td>
<td>223</td>
<td>577</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Approch %</td>
<td>27.9</td>
<td>72.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total %</td>
<td>12.3</td>
<td>31.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Peak Hour Analysis From 03:00 PM to 05:45 PM - Peak 1 of 1

Peak Hour for Entire Intersection Begins at 03:00 PM
Wilson Okamoto Corporation
1907 S. Beretania Street Suite 400
Honolulu, HI 96826

Counted By: GC, TO
Counter: D4-5675, D4-5677
Weather: Clear
File Name: FtBarKapPkwy AM
Site Code: 00000002
Start Date: 11/12/2013
Page No: 1

Groups Printed- Unshifted

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>06:00 AM</td>
<td>10 81 13 0 104</td>
<td>7 26 20 1 54</td>
<td>5 39 6 2 52</td>
<td>8 12 11 0 31</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>06:15 AM</td>
<td>11 102 22 0 135</td>
<td>14 28 12 0 54</td>
<td>3 38 5 1 47</td>
<td>7 20 19 0 46</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>06:30 AM</td>
<td>27 90 17 0 134</td>
<td>13 43 17 0 73</td>
<td>7 36 6 1 50</td>
<td>7 20 25 1 53</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>06:45 AM</td>
<td>39 110 18 0 167</td>
<td>16 41 26 0 83</td>
<td>13 34 7 2 56</td>
<td>11 31 16 1 59</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>87 383 70 0 540</td>
<td>50 138 75 1 264</td>
<td>28 147 24 6 205</td>
<td>33 83 71 2 189</td>
<td>1196</td>
<td></td>
</tr>
<tr>
<td>07:00 AM</td>
<td>47 109 9 0 165</td>
<td>28 54 34 0 116</td>
<td>14 52 10 5 81</td>
<td>8 29 25 0 62</td>
<td>424</td>
<td></td>
</tr>
<tr>
<td>07:15 AM</td>
<td>68 131 11 0 210</td>
<td>28 62 59 0 149</td>
<td>19 59 20 8 106</td>
<td>12 40 33 1 86</td>
<td>551</td>
<td></td>
</tr>
<tr>
<td>07:30 AM</td>
<td>73 126 9 0 208</td>
<td>39 74 99 0 212</td>
<td>37 89 39 12 177</td>
<td>8 42 52 0 102</td>
<td>699</td>
<td></td>
</tr>
<tr>
<td>07:45 AM</td>
<td>63 139 10 0 212</td>
<td>60 81 113 0 254</td>
<td>42 92 31 7 172</td>
<td>9 49 22 0 80</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>251 505 39 0 795</td>
<td>155 271 305 0 731</td>
<td>112 292 100 32 536</td>
<td>37 160 132 1 330</td>
<td>2392</td>
<td></td>
</tr>
<tr>
<td>08:00 AM</td>
<td>32 104 5 0 141</td>
<td>20 57 40 0 117</td>
<td>23 79 11 1 114</td>
<td>12 27 14 0 53</td>
<td>425</td>
<td></td>
</tr>
<tr>
<td>08:15 AM</td>
<td>25 102 10 0 137</td>
<td>13 34 35 0 82</td>
<td>12 75 8 2 97</td>
<td>16 24 8 0 48</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>08:30 AM</td>
<td>28 75 12 0 115</td>
<td>11 27 27 0 65</td>
<td>10 71 15 2 98</td>
<td>7 14 7 0 28</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>08:45 AM</td>
<td>24 65 9 0 98</td>
<td>14 30 34 0 78</td>
<td>11 51 8 1 71</td>
<td>9 25 7 0 41</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>109 346 36 0 491</td>
<td>58 148 136 0 342</td>
<td>56 276 42 6 380</td>
<td>44 90 36 0 170</td>
<td>1393</td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>447 1234 145 0 1826</td>
<td>263 557 516 1 1337</td>
<td>196 715 166 44 1121</td>
<td>114 333 239 3 689</td>
<td>4973</td>
<td></td>
</tr>
<tr>
<td>Approach %</td>
<td>24.5 67.6 7.9 0</td>
<td>19.7 41.7 38.6 0.1</td>
<td>17.5 63.8 14.8 3.9</td>
<td>16.5 48.3 34.7 0.4</td>
<td>973</td>
<td></td>
</tr>
<tr>
<td>Total %</td>
<td>9 24.8 2.9 0 36.7</td>
<td>5.3 11.2 10.4 0 26.9</td>
<td>3.9 14.4 3.3 0.9 22.5</td>
<td>2.3 6.7 4.8 0.1 13.9</td>
<td>3973</td>
<td></td>
</tr>
</tbody>
</table>

Peak Hour Analysis From 06:00 AM to 08:45 AM - Peak 1 of 1

Peak Hour for Entire Intersection Begins at 07:15 AM

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Volume</td>
<td>236 500 35 0 771</td>
<td>147 274 311 0 732</td>
<td>121 319 101 0 541</td>
<td>141 356 121 0 329</td>
<td>2364</td>
<td></td>
</tr>
<tr>
<td>% App. Total</td>
<td>30.6 64.9 4.5</td>
<td>20.1 37.4 42.5 0</td>
<td>22.4 59 16.7 0</td>
<td>12.8 49.4 37.8 0</td>
<td>2364</td>
<td></td>
</tr>
<tr>
<td>PHF</td>
<td>908 .899 .795 .909</td>
<td>.613 .846 .688 .720</td>
<td>.720 .867 .647 .820</td>
<td>.854 .806 .582 .784</td>
<td>931</td>
<td></td>
</tr>
</tbody>
</table>
Wilson Okamoto Corporation
1907 S. Beretania Street Suite 400
Honolulu, HI 96826

Counted By: GC, TO
Counter: D4-5675, D4-5677
Weather: Clear

File Name: FtBarKapPkwy PM
Site Code: 00000002
Start Date: 11/12/2013
Page No: 1

<table>
<thead>
<tr>
<th>Groups Printed - Unshifted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ft. Barret Road</th>
<th>Kapolei Parkway</th>
<th>Ft. Barret Road</th>
<th>Kapolei Parkway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Southbound</td>
<td>Westbound</td>
<td>Northbound</td>
<td>Eastbound</td>
</tr>
<tr>
<td></td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
</tr>
<tr>
<td></td>
<td>Peds</td>
<td>Peds</td>
<td>Peds</td>
<td>Peds</td>
</tr>
<tr>
<td>Start Time</td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
</tr>
<tr>
<td>03:00 PM</td>
<td>123</td>
<td>94</td>
<td>139</td>
<td>429</td>
</tr>
<tr>
<td>03:15 PM</td>
<td>103</td>
<td>103</td>
<td>136</td>
<td>418</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>109</td>
<td>90</td>
<td>117</td>
<td>438</td>
</tr>
<tr>
<td>03:45 PM</td>
<td>118</td>
<td>111</td>
<td>159</td>
<td>470</td>
</tr>
<tr>
<td>Total</td>
<td>453</td>
<td>398</td>
<td>606</td>
<td>1760</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>168</td>
<td>88</td>
<td>147</td>
<td>475</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>130</td>
<td>112</td>
<td>140</td>
<td>452</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>141</td>
<td>87</td>
<td>157</td>
<td>474</td>
</tr>
<tr>
<td>04:45 PM</td>
<td>140</td>
<td>97</td>
<td>168</td>
<td>507</td>
</tr>
<tr>
<td>Total</td>
<td>579</td>
<td>384</td>
<td>612</td>
<td>1908</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>149</td>
<td>86</td>
<td>143</td>
<td>448</td>
</tr>
<tr>
<td>05:15 PM</td>
<td>171</td>
<td>81</td>
<td>169</td>
<td>494</td>
</tr>
<tr>
<td>05:30 PM</td>
<td>134</td>
<td>98</td>
<td>134</td>
<td>430</td>
</tr>
<tr>
<td>05:45 PM</td>
<td>152</td>
<td>85</td>
<td>136</td>
<td>431</td>
</tr>
<tr>
<td>Total</td>
<td>606</td>
<td>350</td>
<td>582</td>
<td>1803</td>
</tr>
<tr>
<td>Grand Total</td>
<td>465</td>
<td>165</td>
<td>1132</td>
<td>5471</td>
</tr>
<tr>
<td>Apprch %</td>
<td>165</td>
<td>3</td>
<td>1638</td>
<td>3</td>
</tr>
<tr>
<td>Total %</td>
<td>8.5</td>
<td>18.4</td>
<td>29.9</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Peak Hour Analysis
From 03:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:30 PM

<table>
<thead>
<tr>
<th></th>
<th>Ft. Barret Road</th>
<th>Kapolei Parkway</th>
<th>Ft. Barret Road</th>
<th>Kapolei Parkway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Southbound</td>
<td>Westbound</td>
<td>Northbound</td>
<td>Eastbound</td>
</tr>
<tr>
<td></td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
</tr>
<tr>
<td>Start Time</td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
<td>Left Thru Right</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>89</td>
<td>85</td>
<td>151</td>
<td>466</td>
</tr>
<tr>
<td>04:45 PM</td>
<td>84</td>
<td>97</td>
<td>166</td>
<td>504</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>86</td>
<td>98</td>
<td>140</td>
<td>445</td>
</tr>
<tr>
<td>05:15 PM</td>
<td>149</td>
<td>81</td>
<td>17</td>
<td>492</td>
</tr>
<tr>
<td>Total Volume</td>
<td>601</td>
<td>348</td>
<td>624</td>
<td>1907</td>
</tr>
<tr>
<td>% App. Total</td>
<td>28.3</td>
<td>57.9</td>
<td>12.8</td>
<td>16.7</td>
</tr>
<tr>
<td>PHF</td>
<td>815</td>
<td>816</td>
<td>837</td>
<td>879</td>
</tr>
</tbody>
</table>

Note: PHF = Peak Hour Flow
Wilson Okamoto Corporation
1907 S. Beretania Street Suite 400
Honolulu, HI 96826

Counted By: JL, DY
Counter: TU-0650, TU-0649
Weather: Clear

Groups Printed- Unshifted

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Ft. Barrette Road Southbound</th>
<th>Kamaaha Avenue Westbound</th>
<th>Ft. Barrette Road Northbound</th>
<th>Kamaaha Avenue Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>06:00 AM</td>
<td>12</td>
<td>90</td>
<td>4</td>
<td>2</td>
<td>108</td>
</tr>
<tr>
<td>06:15 AM</td>
<td>7</td>
<td>127</td>
<td>6</td>
<td>1</td>
<td>141</td>
</tr>
<tr>
<td>06:30 AM</td>
<td>11</td>
<td>140</td>
<td>3</td>
<td>2</td>
<td>156</td>
</tr>
<tr>
<td>06:45 AM</td>
<td>14</td>
<td>154</td>
<td>8</td>
<td>1</td>
<td>177</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>511</td>
<td>21</td>
<td>6</td>
<td>582</td>
</tr>
<tr>
<td>07:00 AM</td>
<td>18</td>
<td>154</td>
<td>6</td>
<td>0</td>
<td>178</td>
</tr>
<tr>
<td>07:15 AM</td>
<td>27</td>
<td>209</td>
<td>8</td>
<td>0</td>
<td>244</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>34</td>
<td>195</td>
<td>10</td>
<td>0</td>
<td>239</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>20</td>
<td>191</td>
<td>18</td>
<td>1</td>
<td>230</td>
</tr>
<tr>
<td>Total</td>
<td>99</td>
<td>749</td>
<td>42</td>
<td>1</td>
<td>891</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>32</td>
<td>99</td>
<td>6</td>
<td>6</td>
<td>143</td>
</tr>
<tr>
<td>08:15 AM</td>
<td>12</td>
<td>103</td>
<td>9</td>
<td>1</td>
<td>125</td>
</tr>
<tr>
<td>08:30 AM</td>
<td>17</td>
<td>111</td>
<td>8</td>
<td>4</td>
<td>140</td>
</tr>
<tr>
<td>08:45 AM</td>
<td>13</td>
<td>86</td>
<td>7</td>
<td>1</td>
<td>107</td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>399</td>
<td>30</td>
<td>12</td>
<td>515</td>
</tr>
</tbody>
</table>

Grand Total: 217 1659 93 19 1988 64 533 471 21 1091 278 1053 45 0 1376 40 198 79 2 319 4774

Apprch %: 10.9 83.5 4.7 1 5.9 49 43.2 1.9 20.2 76.5 3.3 0 12.5 62.1 24.8 0.6

Total %: 4.5 34.8 1.9 0.4 41.6 1.3 11.2 9.9 0.4 22.9 5.8 22.1 0.9 0

Peak Hour Analysis
From 06:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 07:15 AM

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Ft. Barrette Road Southbound</th>
<th>Kamaaha Avenue Westbound</th>
<th>Ft. Barrette Road Northbound</th>
<th>Kamaaha Avenue Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:15 AM</td>
<td>27</td>
<td>209</td>
<td>8</td>
<td>244</td>
<td>2</td>
</tr>
<tr>
<td>07:30 AM</td>
<td>34</td>
<td>195</td>
<td>10</td>
<td>239</td>
<td>10</td>
</tr>
<tr>
<td>07:45 AM</td>
<td>20</td>
<td>191</td>
<td>18</td>
<td>229</td>
<td>6</td>
</tr>
<tr>
<td>08:00 AM</td>
<td>32</td>
<td>99</td>
<td>6</td>
<td>137</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>113</td>
<td>694</td>
<td>42</td>
<td>849</td>
<td>24</td>
</tr>
<tr>
<td>% App. Total</td>
<td>13.3</td>
<td>61.7</td>
<td>4.9</td>
<td>.870</td>
<td>.600</td>
</tr>
</tbody>
</table>

PHF: .831 .830 .583 .870 .600 .759 .566 .567 .543 .847 .778 .750 .607 .770 .531 .821 .796
Wilson Okamoto Corporation
1907 S. Beretania Street Suite 400
Honolulu, HI 96826

Counted By: DY, JL
Counter: TU-0649, TU-0650
Weather: Clear

Groups Printed: Unshifted

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Ft. Barrette Road Southbound</th>
<th>Kaamaha Avenue Westbound</th>
<th>Ft. Barrette Road Northbound</th>
<th>Kaamaha Avenue Eastbound</th>
<th>Int. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>03:00 PM</td>
<td>42</td>
<td>93</td>
<td>8</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>03:15 PM</td>
<td>41</td>
<td>106</td>
<td>11</td>
<td>1</td>
<td>159</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>46</td>
<td>119</td>
<td>9</td>
<td>3</td>
<td>177</td>
</tr>
<tr>
<td>03:45 PM</td>
<td>44</td>
<td>112</td>
<td>7</td>
<td>1</td>
<td>164</td>
</tr>
<tr>
<td>Total</td>
<td>173</td>
<td>430</td>
<td>35</td>
<td>5</td>
<td>643</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>30</td>
<td>115</td>
<td>7</td>
<td>0</td>
<td>152</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>45</td>
<td>116</td>
<td>15</td>
<td>4</td>
<td>180</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>42</td>
<td>120</td>
<td>16</td>
<td>9</td>
<td>187</td>
</tr>
<tr>
<td>04:45 PM</td>
<td>48</td>
<td>106</td>
<td>15</td>
<td>2</td>
<td>171</td>
</tr>
<tr>
<td>Total</td>
<td>165</td>
<td>457</td>
<td>53</td>
<td>15</td>
<td>690</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>34</td>
<td>133</td>
<td>13</td>
<td>4</td>
<td>184</td>
</tr>
<tr>
<td>05:15 PM</td>
<td>44</td>
<td>108</td>
<td>17</td>
<td>1</td>
<td>170</td>
</tr>
<tr>
<td>05:30 PM</td>
<td>55</td>
<td>114</td>
<td>7</td>
<td>4</td>
<td>180</td>
</tr>
<tr>
<td>05:45 PM</td>
<td>32</td>
<td>125</td>
<td>14</td>
<td>1</td>
<td>175</td>
</tr>
<tr>
<td>Total</td>
<td>165</td>
<td>480</td>
<td>51</td>
<td>13</td>
<td>709</td>
</tr>
</tbody>
</table>

Grand Total: 503 1367 139 33 2042 84 504 335 14 937 194 1482 77 0 1753 200 698 275 6 1179 5911

Approch %: 24.6 66.9 6.8 1.6 9 53.8 35.8 1.5 11.1 84.5 4.4 0 17.9 59.2 23.3 0.5

Total %: 8.5 23.1 2.4 0.6 34.5 1.4 8.5 5.7 0.2 15.9 3.3 25.1 1.3 0 29.7 3.4 11.8 4.7 0.1 19.9

Ft. Barrette Road Southbound

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Left</th>
<th>Thru</th>
<th>Right</th>
<th>Peds</th>
<th>App. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>04:30 PM</td>
<td>42</td>
<td>120</td>
<td>16</td>
<td>178</td>
<td>10 31 25 66</td>
</tr>
<tr>
<td>04:45 PM</td>
<td>48</td>
<td>106</td>
<td>15</td>
<td>169</td>
<td>5 54 26 65</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>34</td>
<td>133</td>
<td>13</td>
<td>180</td>
<td>6 64 32 102</td>
</tr>
<tr>
<td>05:15 PM</td>
<td>44</td>
<td>108</td>
<td>17</td>
<td>169</td>
<td>5 38 29 72</td>
</tr>
<tr>
<td>Total</td>
<td>165</td>
<td>487</td>
<td>51</td>
<td>696</td>
<td>26 87 112 325</td>
</tr>
</tbody>
</table>

Peak Hour Analysis From 03:00 PM to 05:45 PM - Peak of 1

Peak Hour for Entire Intersection Begins at 04:30 PM

PHF: .785 .878 .897 .967 .650 .730 .875 .797 .778 .833 .833 .886 .823 .847 .764 .697 .945
APPENDIX B

LEVEL OF SERVICE DEFINITIONS
LEVEL OF SERVICE DEFINITIONS

LEVEL-OF-SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

Level of Service (LOS) for signalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. Specifically, level-of-service (LOS) criteria are stated in terms of the average control delay per vehicle, typically a 15-min analysis period. The criteria are given in the following table.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Control Delay per Vehicle (sec/veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≤10.0</td>
</tr>
<tr>
<td>B</td>
<td>>10.0 and ≤20.0</td>
</tr>
<tr>
<td>C</td>
<td>>20.0 and ≤35.0</td>
</tr>
<tr>
<td>D</td>
<td>>35.0 and ≤55.0</td>
</tr>
<tr>
<td>E</td>
<td>>55.0 and ≤80.0</td>
</tr>
<tr>
<td>F</td>
<td>>80.0</td>
</tr>
</tbody>
</table>

Delay is a complex measure and depends on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group.

Level of Service A describes operations with low control delay, up to 10 sec per vehicle. This level of service occurs when progression is extremely favorable and most vehicles arrive during the green phase. Many vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay values.

Level of Service B describes operations with control delay greater than 10 and up to 20 sec per vehicle. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.

Level of Service C describes operations with control delay greater than 20 and up to 35 sec per vehicle. These higher delays may result from only fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. Cycle failure occurs when a given green phase does not serve queued vehicles and overflows occur. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.

Level of Service D describes operations with control delay greater than 35 and up to 55 sec per vehicle. At level of service D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

Level of Service E describes operation with control delay greater than 55 and up to 80 sec per vehicle. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent.

Level of Service F describes operations with control delay in excess of 80 sec per vehicle. This level, considered to be unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity lane groups. It may also occur at high v/c ratios with many individual cycle failures. Poor progression and long cycle lengths may also contribute significantly to high delay levels.
LEVEL OF SERVICE DEFINITIONS

LEVEL-OF-SERVICE CRITERIA FOR UNSIGNALIZED INTERSECTIONS

Level of Service (LOS) criteria are given in Table 1. As used here, control delay is defined as the total elapsed time from the time a vehicle stops at the end of the queue to the time required for the vehicle to travel from the last-in-queue position to the first-in-queue position, including deceleration of vehicles from free-flow speed to the speed of vehicles in the queue.

The average total delay for any particular minor movement is a function of the service rate or capacity of the approach and the degree of saturation. If the degree of saturation is greater than about 0.9, average control delay is significantly affected by the length of the analysis period.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Average Control Delay (Sec/Veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≤10.0</td>
</tr>
<tr>
<td>B</td>
<td>>10.0 and ≤15.0</td>
</tr>
<tr>
<td>C</td>
<td>>15.0 and ≤25.0</td>
</tr>
<tr>
<td>D</td>
<td>>25.0 and ≤35.0</td>
</tr>
<tr>
<td>E</td>
<td>>35.0 and ≤50.0</td>
</tr>
<tr>
<td>F</td>
<td>>50.0</td>
</tr>
</tbody>
</table>

APPENDIX C

CAPACITY ANALYSIS CALCULATIONS
EXISTING PEAK PERIOD TRAFFIC ANALYSIS
HCM Unsignalized Intersection Capacity Analysis
3: Kunehi St & Kapolei Pkwy

12/17/2013

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>NBL</th>
<th>NBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (veh/h)</td>
<td>238</td>
<td>18</td>
<td>58</td>
<td>372</td>
<td>31</td>
<td>82</td>
</tr>
<tr>
<td>Sign Control</td>
<td>Free</td>
<td>Free</td>
<td>Stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>Hourly flow rate (vph)</td>
<td>309</td>
<td>23</td>
<td>75</td>
<td>483</td>
<td>40</td>
<td>106</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Width (ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.0</td>
</tr>
<tr>
<td>Walking Speed (ft/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Percent Blockage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Right turn flare (veh)</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median storage veh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstream signal (ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>594</td>
</tr>
<tr>
<td>pX, platoon unblocked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vC, conflicting volume</td>
<td>344</td>
<td>644</td>
<td>127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vC1, stage 1 conf vol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vC2, stage 2 conf vol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vCu, unblocked vol</td>
<td>344</td>
<td>644</td>
<td>127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, single (s)</td>
<td>4.1</td>
<td>6.8</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, 2 stage (s)</td>
<td>2.2</td>
<td>3.5</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p0 queue free %</td>
<td>94</td>
<td>89</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cM capacity (veh/h)</td>
<td>1199</td>
<td>376</td>
<td>891</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Direction, Lane

<table>
<thead>
<tr>
<th>Direction, Lane #</th>
<th>EB 1</th>
<th>EB 2</th>
<th>EB 3</th>
<th>WB 1</th>
<th>WB 2</th>
<th>WB 3</th>
<th>WB 4</th>
<th>NB 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Total</td>
<td>124</td>
<td>124</td>
<td>85</td>
<td>75</td>
<td>161</td>
<td>161</td>
<td>161</td>
<td>147</td>
</tr>
<tr>
<td>Volume Left</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Volume Right</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>106</td>
</tr>
<tr>
<td>cSH</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>1199</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>648</td>
</tr>
<tr>
<td>Volume to Capacity</td>
<td>0.07</td>
<td>0.07</td>
<td>0.05</td>
<td>0.06</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.23</td>
</tr>
<tr>
<td>Queue Length 95th (ft)</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Control Delay (s)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.2</td>
</tr>
<tr>
<td>Lane LOS</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay (s)</td>
<td>0.0</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intersection Summary

- Average Delay: 2.3
- Intersection Capacity Utilization: 27.9%
- ICU Level of Service: A
- Analysis Period (min): 15

Existing AM Peak 12/16/2013 Baseline

Synchro 8 Report
Page 1
HCM Unsignalized Intersection Capacity Analysis

3: Kunehi St & Kapolei Pkwy

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>NBL</th>
<th>NBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (veh/h)</td>
<td>287</td>
<td>46</td>
<td>73</td>
<td>221</td>
<td>32</td>
<td>46</td>
</tr>
<tr>
<td>Sign Control</td>
<td>Free</td>
<td>Free</td>
<td>Stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>Hourly flow rate (vph)</td>
<td>299</td>
<td>48</td>
<td>76</td>
<td>230</td>
<td>33</td>
<td>48</td>
</tr>
<tr>
<td>Pedestrians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Width (ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walking Speed (ft/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Blockage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right turn flare (veh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median type</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median storage veh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstream signal (ft)</td>
<td>583</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pX, platoon unblocked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vC, conflicting volume</td>
<td>347</td>
<td>552</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vC1, stage 1 conf vol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vC2, stage 2 conf vol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vCu, unblocked vol</td>
<td>347</td>
<td>552</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, single (s)</td>
<td>4.1</td>
<td>6.8</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, 2 stage (s)</td>
<td>2.2</td>
<td>3.5</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tP (s)</td>
<td>94</td>
<td>92</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p0 queue free %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cM capacity (veh/h)</td>
<td>1209</td>
<td>435</td>
<td>904</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Direction, Lane #</th>
<th>EB 1</th>
<th>EB 2</th>
<th>EB 3</th>
<th>WB 1</th>
<th>WB 2</th>
<th>WB 3</th>
<th>WB 4</th>
<th>NB 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Total</td>
<td>120</td>
<td>120</td>
<td>108</td>
<td>76</td>
<td>77</td>
<td>77</td>
<td>77</td>
<td>81</td>
</tr>
<tr>
<td>Volume Left</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Volume Right</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>cSH</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>1209</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>627</td>
</tr>
<tr>
<td>Volume to Capacity</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>Queue Length 95th (ft)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>11.6</td>
</tr>
<tr>
<td>Control Delay (s)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>11.6</td>
</tr>
<tr>
<td>Lane LOS</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay (s)</td>
<td>0.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.6</td>
</tr>
<tr>
<td>Approach LOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

Intersection Summary

Average Delay	2.1
Intersection Capacity Utilization	25.2%
ICU Level of Service	A
Analysis Period (min)	15

Existing PM Peak 12/16/2013 Baseline
Synchro 8 Report
Page 1
Movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations													
Volume (vph)	41	158	121	147	274	311	121	319	101	236	500	35	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85	1.00	0.85	1.00	0.99	
Flt Protected	0.95	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00	0.95	1.00		
Std. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1845		
Flt Permitted	0.95	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00			
Std. Flow (perm)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1845		
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	
Adj. Flow (vph)	49	190	146	177	298	375	146	364	122	284	602	42	
RTOR Reduction (vph)	0	0	127	0	0	0	0	0	0	0	2		
Lane Group Flow (vph)	49	190	19	177	298	74	146	364	36	284	642	0	

Turn Type

<table>
<thead>
<tr>
<th>Turn Type</th>
<th>Split</th>
<th>NA</th>
<th>Perm</th>
<th>Split</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protected Phases</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permitted Phases</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actuated Phases

Actuated Green, G (s)	14.7	14.7	14.7	22.0	22.0	22.0	12.2	33.1	33.1	21.4	42.3		
Effective Green, g (s)	14.7	14.7	14.7	22.0	22.0	22.0	12.2	33.1	33.1	21.4	42.3		
Actuated g/C Ratio	0.13	0.13	0.13	0.20	0.20	0.20	0.11	0.30	0.30	0.19	0.38		
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	233	246	209	350	368	313	194	554	471	340	701		
w/s Ratio Prot	0.03	0.10	0.10	0.16	0.08	0.21	0.35						
w/s Ratio Perm													
w/c Ratio	0.21	0.77	0.09	0.51	0.81	0.24	0.75	0.69	0.08	0.84	0.92		
Uniform Delay, d1	43.1	46.6	42.4	39.8	42.5	37.5	48.0	34.6	28.1	43.2	32.8		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.5	13.9	0.2	1.2	12.4	0.4	15.2	3.7	0.1	16.1	18.6		
Delay (s)	43.5	60.6	42.5	40.9	55.0	37.9	63.2	38.3	28.1	59.3	49.4		
Level of Service	D	E	D	D	D	E	D	C	E	D			
Approach Delay (s)	51.6										42.0	52.4	
Approach LOS	D										D		

Intersection Summary

<table>
<thead>
<tr>
<th>HCM 2000 Control Delay</th>
<th>47.5</th>
<th></th>
<th>HCM 2000 Level of Service</th>
<th>D</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM 2000 Volume to Capacity ratio</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuated Cycle Length (s)</td>
<td>111.2</td>
<td></td>
<td>Sum of lost time (s)</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection Capacity Utilization</td>
<td>69.6%</td>
<td></td>
<td>ICU Level of Service</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis Period (min)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical Lane Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Existing AM Peak 12/16/2013 Baseline Synchro 8 Report Page 2
Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Volume (vph)</td>
<td>37</td>
<td>204</td>
<td>92</td>
<td>66</td>
<td>141</td>
<td>142</td>
<td>76</td>
<td>442</td>
<td>106</td>
<td>176</td>
<td>348</td>
<td>77</td>
</tr>
<tr>
<td>Ideal Flow (vphpl)</td>
<td>1900</td>
</tr>
<tr>
<td>Total Lost time (s)</td>
<td>5.0</td>
</tr>
<tr>
<td>Lane Util. Factor</td>
<td>1.00</td>
</tr>
<tr>
<td>Frt</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>Fit Protected</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Satd. Flow (prot)</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
</tr>
<tr>
<td>Fit Permitted</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Satd. Flow (perm)</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
</tr>
<tr>
<td>Adj. Flow (vph)</td>
<td>39</td>
<td>215</td>
<td>97</td>
<td>69</td>
<td>148</td>
<td>149</td>
<td>80</td>
<td>465</td>
<td>112</td>
<td>185</td>
<td>366</td>
<td>81</td>
</tr>
<tr>
<td>RTOR Reduction (vph)</td>
<td>0</td>
<td>0</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>129</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Lane Group Flow (vph)</td>
<td>39</td>
<td>215</td>
<td>16</td>
<td>69</td>
<td>148</td>
<td>20</td>
<td>80</td>
<td>465</td>
<td>37</td>
<td>185</td>
<td>440</td>
<td>0</td>
</tr>
</tbody>
</table>

Turn Type

<table>
<thead>
<tr>
<th>Turn Type</th>
<th>Split</th>
<th>NA</th>
<th>Perm</th>
<th>Split</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protecting Phases</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Permitted Phases

Actuated Green, G (s)	16.1	16.1	16.1	12.7	12.7	12.7	7.8	31.7	31.7	14.9	38.8
Effective Green, g (s)	16.1	16.1	16.1	12.7	12.7	12.7	7.8	31.7	31.7	14.9	38.8
Actuated g/C Ratio	0.17	0.17	0.17	0.13	0.13	0.13	0.08	0.33	0.33	0.16	0.41
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	298	314	267	235	248	210	144	619	526	276	736
v/s Ratio Prot	0.02	c0.12	0.04	c0.08	0.05	c0.25	c0.10	0.24			
v/s Ratio Perm	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01			
v/c Ratio	0.13	0.68	0.06	0.29	0.60	0.09	0.56	0.75	0.07	0.67	0.60
Uniform Delay, d1	33.7	37.3	33.3	37.3	38.9	36.3	42.1	28.3	21.8	37.9	22.2
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	6.1	0.1	0.7	3.8	0.2	4.6	5.1	0.1	6.3	1.3
Delay (s)	33.9	43.3	33.4	38.0	42.8	36.5	46.7	33.5	21.8	44.2	23.5
Level of Service	C	D	C	D	D	D	D	C	D	C	C
Approach Delay (s)	39.5	39.3	33.1	29.6							
Approach LOS	D	D	C	C							

Intersection Summary

- HCM 2000 Control Delay: 34.2
- HCM 2000 Level of Service: C
- HCM 2000 Volume to Capacity ratio: 0.69
- Actuated Cycle Length (s): 95.4
- Sum of lost time (s): 20.0
- Intersection Capacity Utilization: 64.1%
- ICU Level of Service: C
- Analysis Period (min): 15
- Critical Lane Group:
HCM Signalized Intersection Capacity Analysis

12: Ft. Barrette Rd & Kamaaha Ave

12/18/2013

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (vph)</td>
<td>17</td>
<td>77</td>
<td>34</td>
<td>24</td>
<td>243</td>
<td>181</td>
<td>163</td>
<td>485</td>
<td>28</td>
<td>113</td>
<td>694</td>
<td>42</td>
</tr>
<tr>
<td>Ideal Flow (vphpl)</td>
<td>1900</td>
</tr>
<tr>
<td>Total Lost time (s)</td>
<td>5.0</td>
</tr>
<tr>
<td>Lane Util. Factor</td>
<td>1.00</td>
</tr>
<tr>
<td>Frq</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
</tr>
<tr>
<td>Fit Protected</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Satd. Flow (prot)</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>3433</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
</tr>
<tr>
<td>Fit Permitted</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Satd. Flow (perm)</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>3433</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.80</td>
</tr>
<tr>
<td>Adj. Flow (vph)</td>
<td>21</td>
<td>96</td>
<td>42</td>
<td>30</td>
<td>304</td>
<td>226</td>
<td>204</td>
<td>606</td>
<td>35</td>
<td>141</td>
<td>868</td>
<td>52</td>
</tr>
<tr>
<td>RTOR Reduction (vph)</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>181</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Lane Group Flow (vph)</td>
<td>21</td>
<td>96</td>
<td>8</td>
<td>30</td>
<td>304</td>
<td>45</td>
<td>204</td>
<td>606</td>
<td>16</td>
<td>141</td>
<td>868</td>
<td>26</td>
</tr>
<tr>
<td>Turn Type</td>
<td>Prot</td>
<td>NA</td>
<td>Perm</td>
<td>Prot</td>
<td>NA</td>
<td>Perm</td>
<td>Prot</td>
<td>NA</td>
<td>Perm</td>
<td>Prot</td>
<td>NA</td>
<td>Perm</td>
</tr>
<tr>
<td>Protected Phases</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Permitted Phases</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Actuated Green, G (s)</td>
<td>2.0</td>
<td>19.4</td>
<td>19.4</td>
<td>3.2</td>
<td>20.6</td>
<td>20.6</td>
<td>9.1</td>
<td>47.9</td>
<td>47.9</td>
<td>13.2</td>
<td>52.0</td>
<td>52.0</td>
</tr>
<tr>
<td>Effective Green, g (s)</td>
<td>2.0</td>
<td>19.4</td>
<td>19.4</td>
<td>3.2</td>
<td>20.6</td>
<td>20.6</td>
<td>9.1</td>
<td>47.9</td>
<td>47.9</td>
<td>13.2</td>
<td>52.0</td>
<td>52.0</td>
</tr>
<tr>
<td>Actuated g/C Ratio</td>
<td>0.02</td>
<td>0.19</td>
<td>0.19</td>
<td>0.03</td>
<td>0.20</td>
<td>0.20</td>
<td>0.09</td>
<td>0.48</td>
<td>0.46</td>
<td>0.13</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Clearance Time (s)</td>
<td>5.0</td>
</tr>
<tr>
<td>Vehicle Extension (s)</td>
<td>3.0</td>
</tr>
<tr>
<td>Lane Grp Cap (vph)</td>
<td>34</td>
<td>348</td>
<td>296</td>
<td>54</td>
<td>370</td>
<td>314</td>
<td>301</td>
<td>860</td>
<td>731</td>
<td>225</td>
<td>934</td>
<td>793</td>
</tr>
<tr>
<td>v/s Ratio Prot</td>
<td>0.01</td>
<td>0.05</td>
<td>0.02</td>
<td>0.16</td>
<td>0.06</td>
<td>0.33</td>
<td>0.08</td>
<td>0.47</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/s Ratio Perm</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
<td>0.03</td>
<td>0.07</td>
<td>0.33</td>
<td>0.08</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/c Ratio</td>
<td>0.62</td>
<td>0.28</td>
<td>0.03</td>
<td>0.56</td>
<td>0.82</td>
<td>0.14</td>
<td>0.68</td>
<td>0.70</td>
<td>0.02</td>
<td>0.63</td>
<td>0.93</td>
<td>0.03</td>
</tr>
<tr>
<td>Uniform Delay, d1</td>
<td>50.5</td>
<td>36.1</td>
<td>34.4</td>
<td>49.5</td>
<td>39.8</td>
<td>34.3</td>
<td>45.9</td>
<td>22.3</td>
<td>15.2</td>
<td>42.9</td>
<td>24.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Progression Factor</td>
<td>1.00</td>
</tr>
<tr>
<td>Incremental Delay, d2</td>
<td>29.0</td>
<td>0.4</td>
<td>0.0</td>
<td>11.8</td>
<td>13.6</td>
<td>0.2</td>
<td>5.9</td>
<td>2.6</td>
<td>0.0</td>
<td>5.4</td>
<td>15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Delay (s)</td>
<td>79.5</td>
<td>36.6</td>
<td>34.5</td>
<td>61.4</td>
<td>53.4</td>
<td>34.5</td>
<td>51.8</td>
<td>24.9</td>
<td>15.2</td>
<td>48.3</td>
<td>39.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Level of Service</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Approach Delay (s)</td>
<td>41.7</td>
<td>46.2</td>
<td>31.0</td>
<td>39.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intersection Summary

- **HCM 2000 Control Delay**: 38.2
- **HCM 2000 Level of Service**: D
- **HCM 2000 Volume to Capacity ratio**: 0.89
- **Actuated Cycle Length (s)**: 103.7
- **Sum of lost time (s)**: 20.0
- **Intersection Capacity Utilization**: 67.8%
- **ICU Level of Service**: C
- **Analysis Period (min)**: 15
- **Critical Lane Group**
Movement Configuration

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (vph)</td>
<td>79.0</td>
<td>271.0</td>
<td>113.0</td>
<td>26.0</td>
<td>187.0</td>
<td>112.0</td>
<td>84.0</td>
<td>493.0</td>
<td>40.0</td>
<td>168.0</td>
<td>467.0</td>
<td>61.0</td>
</tr>
<tr>
<td>Ideal Flow (vph/lanes)</td>
<td>1900.0</td>
</tr>
<tr>
<td>Total Lost Time (s)</td>
<td>5.0</td>
</tr>
<tr>
<td>Lane Util. Factor</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.97</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Frt</td>
<td>1.0</td>
<td>1.0</td>
<td>0.85</td>
<td>1.0</td>
<td>1.0</td>
<td>0.85</td>
<td>1.0</td>
<td>1.0</td>
<td>0.85</td>
<td>1.0</td>
<td>1.0</td>
<td>0.85</td>
</tr>
<tr>
<td>Fit Protected</td>
<td>0.95</td>
<td>1.0</td>
<td>1.0</td>
<td>0.95</td>
<td>1.0</td>
<td>1.0</td>
<td>0.95</td>
<td>1.0</td>
<td>1.0</td>
<td>0.95</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Satd. Flow (prot)</td>
<td>1770.0</td>
<td>1863.0</td>
<td>1583.0</td>
<td>1770.0</td>
<td>1863.0</td>
<td>1583.0</td>
<td>3433.0</td>
<td>1863.0</td>
<td>1583.0</td>
<td>1770.0</td>
<td>1863.0</td>
<td>1583.0</td>
</tr>
<tr>
<td>Fit Permitted</td>
<td>0.95</td>
<td>1.0</td>
<td>1.0</td>
<td>0.95</td>
<td>1.0</td>
<td>1.0</td>
<td>0.95</td>
<td>1.0</td>
<td>1.0</td>
<td>0.95</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Satd. Flow (perm)</td>
<td>1770.0</td>
<td>1863.0</td>
<td>1583.0</td>
<td>1770.0</td>
<td>1863.0</td>
<td>1583.0</td>
<td>3433.0</td>
<td>1863.0</td>
<td>1583.0</td>
<td>1770.0</td>
<td>1863.0</td>
<td>1583.0</td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
</tr>
<tr>
<td>Adj. Flow (vph)</td>
<td>83.0</td>
<td>285.0</td>
<td>119.0</td>
<td>27.0</td>
<td>197.0</td>
<td>118.0</td>
<td>88.0</td>
<td>519.0</td>
<td>42.0</td>
<td>177.0</td>
<td>492.0</td>
<td>64.0</td>
</tr>
<tr>
<td>RTOR Reduction (vph/lanes)</td>
<td>0.0</td>
<td>91.0</td>
<td>0.0</td>
<td>96.0</td>
<td>0.0</td>
<td>27.0</td>
<td>0.0</td>
<td>34.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Group Flow (vph)</td>
<td>83.0</td>
<td>285.0</td>
<td>28.0</td>
<td>27.0</td>
<td>197.0</td>
<td>22.0</td>
<td>88.0</td>
<td>519.0</td>
<td>15.0</td>
<td>177.0</td>
<td>492.0</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Turn Type

<table>
<thead>
<tr>
<th>Turn Type</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phases</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Actuated Green, G (s)</td>
<td>7.6</td>
<td>22.3</td>
<td>22.3</td>
<td>2.5</td>
<td>17.2</td>
<td>17.2</td>
<td>4.4</td>
<td>33.8</td>
<td>33.8</td>
</tr>
<tr>
<td>Effective Green, g (s)</td>
<td>7.6</td>
<td>22.3</td>
<td>22.3</td>
<td>2.5</td>
<td>17.2</td>
<td>17.2</td>
<td>4.4</td>
<td>33.8</td>
<td>33.8</td>
</tr>
<tr>
<td>Actuated g/C Ratio</td>
<td>0.08</td>
<td>0.24</td>
<td>0.24</td>
<td>0.03</td>
<td>0.18</td>
<td>0.18</td>
<td>0.05</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Clearance Time (s)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Vehicle Extension (s)</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Lane Grp Cap (vph)</td>
<td>144.0</td>
<td>445.0</td>
<td>378.0</td>
<td>47.0</td>
<td>343.0</td>
<td>292.0</td>
<td>162.0</td>
<td>675.0</td>
<td>574.0</td>
</tr>
<tr>
<td>v/s Ratio Prot</td>
<td>c0.05</td>
<td>c0.15</td>
<td>0.02</td>
<td>0.11</td>
<td>0.03</td>
<td>0.28</td>
<td>c0.10</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>v/s Ratio NA</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/s Ratio Perm</td>
<td>0.58</td>
<td>0.64</td>
<td>0.08</td>
<td>0.57</td>
<td>0.57</td>
<td>0.07</td>
<td>0.54</td>
<td>0.77</td>
<td>0.03</td>
</tr>
<tr>
<td>Uniform Delay, d1</td>
<td>41.2</td>
<td>31.8</td>
<td>27.5</td>
<td>44.8</td>
<td>34.7</td>
<td>31.4</td>
<td>43.4</td>
<td>26.2</td>
<td>19.1</td>
</tr>
<tr>
<td>Progression Factor</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Incremental Delay, d2</td>
<td>5.5</td>
<td>3.1</td>
<td>0.1</td>
<td>15.9</td>
<td>2.3</td>
<td>0.1</td>
<td>3.7</td>
<td>5.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Delay (s)</td>
<td>46.7</td>
<td>35.0</td>
<td>27.5</td>
<td>60.7</td>
<td>37.0</td>
<td>31.5</td>
<td>47.1</td>
<td>31.5</td>
<td>19.1</td>
</tr>
<tr>
<td>Level of Service</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Approach Delay (s)</td>
<td>35.2</td>
<td>37.0</td>
<td>32.8</td>
<td>23.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intersection Summary

- **HCM 2000 Control Delay**: 30.9
- **HCM 2000 Level of Service**: C
- **HCM 2000 Volume to Capacity ratio**: 0.72
- **Actuated Cycle Length (s)**: 93.2
- **Sum of lost time (s)**: 20.0
- **Intersection Capacity Utilization**: 69.9%
- **ICU Level of Service**: C
- **Analysis Period (min)**: 15
- **Critical Lane Group**:

Existing PM Peak 12/16/2013 Baseline

Synchro 8 Report

Page 3

B-43
APPENDIX D

TRIP DISTRIBUTION
DISTRIBUTION OF VEHICLE TRIPS

<table>
<thead>
<tr>
<th>Subarea or Cordon Sta</th>
<th>Gate</th>
<th>Commerical AM</th>
<th>Commerical PM</th>
<th>Residential AM</th>
<th>Residential PM</th>
<th>Recreation/Resort AM</th>
<th>Recreation/Resort PM</th>
<th>Industrial/ Harbor AM</th>
<th>Industrial/ Harbor PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1 Fwy West</td>
<td>1</td>
<td>9.0</td>
<td>9.0</td>
<td>3.0</td>
<td>5.0</td>
<td>4.0</td>
<td>18.0</td>
<td>11.0</td>
<td>11.2</td>
</tr>
<tr>
<td>H-1 Fwy East</td>
<td>2</td>
<td>19.0</td>
<td>17.0</td>
<td>33.0</td>
<td>28.0</td>
<td>28.5</td>
<td>35.0</td>
<td>24.6</td>
<td>18.2</td>
</tr>
<tr>
<td>Farrington Hwy East</td>
<td>3</td>
<td>9.0</td>
<td>9.0</td>
<td>4.0</td>
<td>5.0</td>
<td>4.2</td>
<td>7.5</td>
<td>3.1</td>
<td>3.8</td>
</tr>
<tr>
<td>Kapolei Pkwy East</td>
<td>4</td>
<td>11.0</td>
<td>13.0</td>
<td>14.0</td>
<td>12.0</td>
<td>2.4</td>
<td>2.0</td>
<td>5.2</td>
<td>6.5</td>
</tr>
<tr>
<td>Roosevelt East</td>
<td>5</td>
<td>4.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.8</td>
<td>1.8</td>
<td>1.0</td>
<td>7.1</td>
<td>2.8</td>
</tr>
<tr>
<td>Makakilo Dr</td>
<td>6</td>
<td>9.0</td>
<td>12.7</td>
<td>3.0</td>
<td>3.6</td>
<td>2.0</td>
<td>3.7</td>
<td>8.1</td>
<td>9.0</td>
</tr>
<tr>
<td>Kalaeloa Blvd South</td>
<td>7</td>
<td>6.0</td>
<td>8.1</td>
<td>10.0</td>
<td>13.4</td>
<td>5.5</td>
<td>3.0</td>
<td>20.0</td>
<td>22.3</td>
</tr>
<tr>
<td>Villages of Kapolei</td>
<td>8</td>
<td>13.0</td>
<td>9.0</td>
<td>0.6</td>
<td>0.1</td>
<td>4.0</td>
<td>2.0</td>
<td>8.0</td>
<td>6.8</td>
</tr>
<tr>
<td>Kalaeloa Redeveloped</td>
<td>9</td>
<td>6.0</td>
<td>5.0</td>
<td>6.0</td>
<td>11.0</td>
<td>4.0</td>
<td>2.0</td>
<td>1.8</td>
<td>4.1</td>
</tr>
<tr>
<td>Ko Olina</td>
<td>10</td>
<td>1.0</td>
<td>3.7</td>
<td>5.0</td>
<td>4.6</td>
<td>31.0</td>
<td>15.0</td>
<td>7.3</td>
<td>7.4</td>
</tr>
<tr>
<td>Kapolei Shopping Ctr</td>
<td>11</td>
<td>6.0</td>
<td>1.0</td>
<td>6.0</td>
<td>4.0</td>
<td>3.6</td>
<td>3.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Kapolei Office Core</td>
<td>12</td>
<td>1.0</td>
<td>2.5</td>
<td>4.4</td>
<td>3.5</td>
<td>2.0</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Kapolei Power Ctr Area</td>
<td>13</td>
<td>2.0</td>
<td>1.0</td>
<td>4.0</td>
<td>3.0</td>
<td>2.5</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Kapolei Government Office Core</td>
<td>14</td>
<td>4.0</td>
<td>6.0</td>
<td>7.0</td>
<td>6.0</td>
<td>4.5</td>
<td>5.0</td>
<td>1.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
APPENDIX E

CAPACITY ANALYSIS CALCULATIONS
PROJECTED YEAR 2018 PEAK PERIOD TRAFFIC
ANALYSIS WITHOUT PROJECT
HCM Unsignalized Intersection Capacity Analysis

3: Kunehi St & Kapolei Pkwy

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Volume (veh/h)</td>
<td>2</td>
<td>363</td>
<td>20</td>
<td>84</td>
<td>662</td>
<td>6</td>
<td>34</td>
<td>0</td>
<td>90</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sign Control</td>
<td>Free</td>
<td>Free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stop</td>
<td>Stop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0%</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.92</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.92</td>
<td>0.77</td>
<td>0.92</td>
<td>0.77</td>
<td>0.92</td>
<td>0.77</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Hourly flow rate (vph)</td>
<td>2</td>
<td>471</td>
<td>26</td>
<td>83</td>
<td>860</td>
<td>7</td>
<td>44</td>
<td>0</td>
<td>117</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pedestrians</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Lane Width (ft)</td>
<td></td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Walking Speed (ft/s)</td>
<td></td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Percent Blockage</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Right turn flare (veh)</td>
<td></td>
</tr>
<tr>
<td>Median type</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Median storage veh</td>
<td></td>
</tr>
<tr>
<td>Upstream signal (ft)</td>
<td></td>
<td>594</td>
</tr>
<tr>
<td>pX, platoon unblocked</td>
<td></td>
</tr>
<tr>
<td>vC, conflicting volume</td>
<td>866</td>
<td>509</td>
<td></td>
<td>955</td>
<td>1533</td>
<td>182</td>
<td>1308</td>
<td>1543</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vC1, stage 1 conf vol</td>
<td></td>
</tr>
<tr>
<td>vC2, stage 2 conf vol</td>
<td></td>
</tr>
<tr>
<td>vCu, unblocked vol</td>
<td>866</td>
<td>509</td>
<td></td>
<td>955</td>
<td>1533</td>
<td>182</td>
<td>1308</td>
<td>1543</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, single (s)</td>
<td>4.1</td>
<td>4.1</td>
<td></td>
<td>*6.5</td>
<td>6.5</td>
<td>*5.9</td>
<td>*6.5</td>
<td>6.5</td>
<td>*5.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, 2 stage (s)</td>
<td></td>
</tr>
<tr>
<td>tF (s)</td>
<td>2.2</td>
<td>2.2</td>
<td></td>
<td>*2.5</td>
<td>4.0</td>
<td>*2.3</td>
<td>*2.5</td>
<td>4.0</td>
<td>*2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p0 queue free %</td>
<td>100</td>
<td>92</td>
<td></td>
<td>86</td>
<td>100</td>
<td>98</td>
<td>98</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cM capacity (veh/h)</td>
<td>773</td>
<td>1041</td>
<td></td>
<td>323</td>
<td>105</td>
<td>1218</td>
<td>174</td>
<td>103</td>
<td>1066</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Direction, Lane

<table>
<thead>
<tr>
<th>Direction Lane #</th>
<th>EB 1</th>
<th>EB 2</th>
<th>EB 3</th>
<th>EB 4</th>
<th>WB 1</th>
<th>WB 2</th>
<th>WB 3</th>
<th>WB 4</th>
<th>NB 1</th>
<th>SB 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Total</td>
<td>2</td>
<td>189</td>
<td>189</td>
<td>120</td>
<td>83</td>
<td>344</td>
<td>344</td>
<td>178</td>
<td>161</td>
<td>4</td>
</tr>
<tr>
<td>Volume Left</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>44</td>
<td>3</td>
</tr>
<tr>
<td>Volume Right</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>117</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cSH</td>
<td>773</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>1041</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>692</td>
<td>220</td>
</tr>
<tr>
<td>Volume to Capacity</td>
<td>0.00</td>
<td>0.11</td>
<td>0.11</td>
<td>0.07</td>
<td>0.08</td>
<td>0.20</td>
<td>0.20</td>
<td>0.10</td>
<td>0.23</td>
<td>0.02</td>
</tr>
<tr>
<td>Queue Length 59th (ft)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Control Delay (s)</td>
<td>9.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>11.8</td>
<td>21.7</td>
</tr>
<tr>
<td>Lane LOS</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay (s)</td>
<td>0.0</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td></td>
</tr>
</tbody>
</table>

Intersection Summary

<table>
<thead>
<tr>
<th>Average Delay</th>
<th>Intersection Capacity Utilization</th>
<th>ICU Level of Service</th>
<th>Analysis Period (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>33.4%</td>
<td>A</td>
<td>15</td>
</tr>
</tbody>
</table>

* User Entered Value
Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (veh/h)</td>
<td>2</td>
<td>605</td>
<td>51</td>
<td>80</td>
<td>405</td>
<td>7</td>
<td>35</td>
<td>0</td>
<td>51</td>
<td>9</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Sign Control</td>
<td>Free</td>
<td>Free</td>
<td>Stop</td>
<td>Stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.92</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.92</td>
<td>0.96</td>
<td>0.92</td>
<td>0.96</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Hourly flow rate (vph)</td>
<td>2</td>
<td>630</td>
<td>53</td>
<td>83</td>
<td>422</td>
<td>8</td>
<td>36</td>
<td>0</td>
<td>53</td>
<td>10</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Pedestrians</td>
<td></td>
</tr>
<tr>
<td>Lane Width (ft)</td>
<td></td>
</tr>
<tr>
<td>Walking Speed (ft/s)</td>
<td></td>
</tr>
<tr>
<td>Percent Blockage</td>
<td></td>
</tr>
<tr>
<td>Right turn flare (veh)</td>
<td></td>
</tr>
<tr>
<td>Median type</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Median storage veh</td>
<td></td>
</tr>
<tr>
<td>Upstream signal (ft)</td>
<td>586</td>
<td></td>
</tr>
<tr>
<td>pX, platoon unblocked</td>
<td></td>
</tr>
<tr>
<td>vC, conflicting volume</td>
<td>429</td>
<td>683</td>
<td>971</td>
<td>1257</td>
<td>237</td>
<td>860</td>
<td>1280</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vC1, stage 1 conf vol</td>
<td></td>
</tr>
<tr>
<td>vC2, stage 2 conf vol</td>
<td></td>
</tr>
<tr>
<td>vCu, unblocked vol</td>
<td>429</td>
<td>683</td>
<td>971</td>
<td>1257</td>
<td>237</td>
<td>860</td>
<td>1280</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, single (s)</td>
<td>4.1</td>
<td>4.1</td>
<td>*6.5</td>
<td>6.5</td>
<td>*5.9</td>
<td>*6.5</td>
<td>6.5</td>
<td>*5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, 2 stage (s)</td>
<td>2.2</td>
<td>2.2</td>
<td>*2.5</td>
<td>4.0</td>
<td>*2.3</td>
<td>*2.5</td>
<td>4.0</td>
<td>*2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p0 queue free %</td>
<td>100</td>
<td>91</td>
<td>89</td>
<td>100</td>
<td>95</td>
<td>97</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cM capacity (veh/h)</td>
<td>1126</td>
<td>906</td>
<td>318</td>
<td>154</td>
<td>1144</td>
<td>358</td>
<td>149</td>
<td>1293</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Direction, Lane

<table>
<thead>
<tr>
<th>Direction, Lane #</th>
<th>EB 1</th>
<th>EB 2</th>
<th>EB 3</th>
<th>EB 4</th>
<th>WB 1</th>
<th>WB 2</th>
<th>WB 3</th>
<th>WB 4</th>
<th>NB 1</th>
<th>SB 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Total</td>
<td>2</td>
<td>252</td>
<td>252</td>
<td>179</td>
<td>83</td>
<td>169</td>
<td>169</td>
<td>92</td>
<td>90</td>
<td>12</td>
</tr>
<tr>
<td>Volume Left</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>Volume Right</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>53</td>
</tr>
<tr>
<td>cSH</td>
<td>1126</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>906</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>556</td>
<td>413</td>
</tr>
<tr>
<td>Volume to Capacity</td>
<td>0.00</td>
<td>0.15</td>
<td>0.15</td>
<td>0.11</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.05</td>
<td>0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>Queue Length 85th (ft)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Control Delay (s)</td>
<td>8.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.7</td>
<td>14.0</td>
</tr>
<tr>
<td>Lane LOS</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay (s)</td>
<td>0.0</td>
<td>1.5</td>
<td>12.7</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intersection Summary

- Average Delay: 1.6
- Intersection Capacity Utilization: 32.1%
- ICU Level of Service: A
- Analysis Period (min): 15

* User Entered Value
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Lane Configurations | | | | | | | | | | | | | |
| Volume (vph) | 45 | 278 | 133 | 162 | 560 | 342 | 133 | 351 | 111 | 260 | 550 | 39 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s) | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
| Lane Util. Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Frt | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.85 | 1.00 | 1.00 | 0.89 |
| Fit Protected | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 0.95 | 1.00 |
| Satt. Flow (prot) | 1770 | 1863 | 1583 | 1770 | 1863 | 1583 | 1770 | 1863 | 1583 | 1770 | 1864 | 41 |
| Fit Permitted | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 |
| Satt. Flow (perm) | 1770 | 1863 | 1583 | 1770 | 1863 | 1583 | 1770 | 1863 | 1583 | 1770 | 1864 | 41 |
| Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Adj. Flow (vph) | 47 | 293 | 140 | 171 | 589 | 360 | 140 | 369 | 117 | 274 | 579 | 4 |
| RTOR Reduction (vph) | 0 | 0 | 105 | 0 | 0 | 199 | 0 | 0 | 86 | 0 | 10 |
| Lane Group Flow (vph) | 47 | 293 | 35 | 171 | 589 | 161 | 140 | 369 | 31 | 274 | 610 | 0 |
| Turn Type | Prot | NA | Perm | Prot | NA | Perm | Prot | NA | Perm | Prot |
| Protected Phases | 7 | 4 | 3 | 8 | 5 | 2 | 6 |
| Permitted Phases | 4 | 8 | 2 |
| Actuated Green, G (s) | 4.6 | 28.9 | 28.9 | 14.0 | 38.3 | 38.3 | 11.0 | 30.8 | 30.8 | 20.8 | 40.6 |
| Effective Green, g (s) | 4.6 | 28.9 | 28.9 | 14.0 | 38.3 | 38.3 | 11.0 | 30.8 | 30.8 | 20.8 | 40.6 |
| Actuated g/C Ratio | 0.04 | 0.25 | 0.25 | 0.12 | 0.33 | 0.33 | 0.10 | 0.27 | 0.27 | 0.18 | 0.35 |
| Clearance Time (s) | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
| Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| Lane Grp Cap (vph) | 71 | 470 | 399 | 216 | 623 | 529 | 170 | 501 | 425 | 321 | 653 |
| v/s Ratio Prot | 0.03 | 0.16 | 0.10 | 0.32 | 0.08 | 0.20 | 0.09 | 0.15 | 0.33 |
| w/s Ratio Perm | 0.02 | 0.10 | 0.02 |
| v/c Ratio | 0.66 | 0.62 | 0.09 | 0.79 | 0.95 | 0.30 | 0.82 | 0.74 | 0.07 | 0.85 | 0.93 |
| Uniform Delay, d1 | 54.2 | 38.0 | 32.7 | 48.8 | 37.1 | 28.2 | 50.8 | 38.2 | 31.2 | 45.4 | 38.7 |
| Progression Factor | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Incremental Delay, d2 | 20.8 | 2.6 | 0.1 | 17.7 | 23.2 | 0.3 | 26.4 | 5.6 | 0.1 | 19.2 | 20.6 |
| Delay (s) | 75.0 | 40.5 | 32.8 | 66.6 | 60.3 | 28.6 | 77.2 | 43.7 | 31.3 | 64.6 | 56.3 |
| Level of Service | E | D | C | E | C | E | D | C | E |
| Approach Delay (s) | 41.7 | 51.1 | 48.9 | 58.8 |
| Approach LOS | D | D | D | E |

Intersection Summary

HCM 2000 Control Delay	51.4	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.97		
Actuated Cycle Length (s)	114.5	Sum of lost time (s)	20.0
Intersection Capacity Utilization	88.2%	ICU Level of Service	E
Analysis Period (min)	15		
c	Critical Lane Group		

Year 2018 AM Peak Hour 12/16/2013 Without Project
Movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations													
Volume (vph)	41	523	101	73	324	156	84	486	117	194	383	85	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85	1.00	0.97
Fit Protected	0.95	1.00	0.95	1.00	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1863	1583	1812
Satd. Flow (perm)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1863	1583	1812
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	43	551	106	77	341	164	88	512	123	204	204	403	89
RTOR Reduction (vph)	0	0	72	0	0	108	0	0	86	0	7	0	0
Lane Group Flow (vph)	43	551	34	77	341	56	88	512	37	204	485	0	
Turn Type Prot	7	4	3	8	5	2	1	6					
Turn Type NA													
Turn Type Perm													
Protected Phases Prot	4	8											
Protected Phases NA	3	8											
Protected Phases Perm	5	2											
Permitted Phases													
Actuated Green, G (s)	5.4	37.3	37.3	7.1	39.0	39.0	8.6	34.9	15.4	41.7			
Effective Green, g (s)	5.4	37.3	37.3	7.1	39.0	39.0	8.6	34.9	15.4	41.7			
Actuated g/C Ratio	0.05	0.33	0.33	0.06	0.34	0.34	0.07	0.30	0.30	0.13	0.36		
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	83	605	514	109	633	538	132	566	481	237	658		
v/s Ratio Prot	0.02	c0.30	c0.04	0.18	0.05	c0.27							
v/s Ratio NA													
v/s Ratio Perm													
v/s Ratio SBR													
Uniform Delay, d1	53.4	37.1	26.7	52.8	30.6	25.9	51.7	38.3	28.4	48.6	31.7		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	5.4	18.0	0.1	18.8	0.9	12.0	17.9	0.1	25.8	4.3			
Delay (s)	58.7	55.1	26.8	71.6	31.5	26.0	63.7	56.2	28.5	74.4	38.0		
Level of Service E E E E C E E C E E E E D													
Approach Delay (s)	51.0	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2
Approach LOS D													
Analysis Period (min)	15												

Intersection Summary

- **HCM 2000 Control Delay**: 47.0
- **HCM 2000 Level of Service**: D
- **HCM 2000 Volume to Capacity ratio**: 0.88
- **Actuated Cycle Length (s)**: 114.7
- **Sum of lost time (s)**: 20.0
- **Intersection Capacity Utilization**: 84.6%
- **ICU Level of Service**: E
- **Analysis Period (min)**: 15
- **Critical Lane Group**: c

Year 2018 PM Peak Hour 12/16/2013 Without Project
HCM Signalized Intersection Capacity Analysis

12: Ft. Barrette Rd & Kamaaha Ave
12/18/2013

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations													
Volume (vph)	19	85	37	26	267	199	179	534	31	124	763	46	
Ideal Flow (vph/l)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	
FitProtected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	
Stdtd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1863	1583	
Fit Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	
Stdtd. Flow (perm)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1863	1583	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	
Adj. Flow (vph)	22	100	44	31	314	234	211	628	36	146	898	54	
RTOR Reduction (vph)	0	0	36	0	0	188	0	0	19	0	0	26	
Lane Group Flow (vph)	22	100	8	31	314	46	211	628	17	146	898	28	

Turn Type

<table>
<thead>
<tr>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Permitted Phases

| 4 | 8 | 2 | 6 |

Actuated Green, G (s)

| 2.6 | 20.8 | 20.8 | 3.2 | 21.4 | 21.4 | 8.3 | 51.6 | 51.6 | 12.2 | 55.5 | 55.5 |

Effective Green, g (s)

| 2.6 | 20.8 | 20.8 | 3.2 | 21.4 | 21.4 | 8.3 | 51.6 | 51.6 | 12.2 | 55.5 | 55.5 |

Actuated g/C Ratio

| 0.02 | 0.19 | 0.19 | 0.03 | 0.20 | 0.20 | 0.08 | 0.48 | 0.48 | 0.11 | 0.51 | 0.51 |

Clearance Time (s)

| 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |

Vehicle Extension (s)

| 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |

Lane Grp Cap (vph)

| 42 | 359 | 305 | 52 | 369 | 314 | 264 | 891 | 757 | 200 | 959 | 814 |

w/s Ratio Prot

| 0.01 | 0.05 | c0.02 | c0.17 | 0.06 | 0.34 | c0.08 | c0.48 |

w/s Ratio Perm

| 0.01 | 0.03 | 0.01 | 0.02 | 0.73 | 0.94 | 0.03 |

v/c Ratio

| 0.52 | 0.28 | 0.03 | 0.60 | 0.85 | 0.15 | 0.80 | 0.70 | 0.02 | 0.73 | 0.94 | 0.03 |

Uniform Delay, d1

| 52.0 | 37.1 | 35.3 | 51.7 | 41.7 | 35.7 | 48.9 | 22.1 | 14.8 | 46.2 | 24.5 | 12.9 |

Progression Factor

| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Incremental Delay, d2

| 11.3 | 0.4 | 0.0 | 17.0 | 16.9 | 0.2 | 15.4 | 2.6 | 0.0 | 12.5 | 15.8 | 0.0 |

Delay (s)

| 63.3 | 37.5 | 35.3 | 68.7 | 58.6 | 35.9 | 64.4 | 24.7 | 14.8 | 58.7 | 40.3 | 12.9 |

Level of Service

| E | D | D | E | E | D | C | B | E | D | B |

Approach Delay (s)

| 40.4 | 49.9 | 33.8 | 41.4 |

Approach LCS

| D | C | D | D |

Intersection Summary

HCM 2000 Control Delay	40.7	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.91		
Actuated Cycle Length (s)	107.8	Sum of lost time (s)	20.0
Intersection Capacity Utilization	73.6%	ICU Level of Service	D
Analysis Period (min)	15		
c	Critical Lane Group		
Movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations													
Volume (vph)	87	298	124	29	206	123	92	542	44	187	514	67	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	3433	1863	1583	1770	1863	1583	
Fit Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	
Satd. Flow (perm)	1770	1863	1583	1770	1863	1583	3433	1863	1583	1770	1863	1583	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	92	314	131	31	217	129	97	571	46	197	541	71	
RTOR Reduction (vph)	0	0	101	0	0	104	0	0	28	0	0	36	
Lane Group Flow (vph)	92	314	30	31	217	25	97	571	18	197	541	35	

Turn Type

<table>
<thead>
<tr>
<th>Turn Type</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protected Phases</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Permitted Phases</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuated Green, G (s)</td>
<td>7.1</td>
<td>23.1</td>
<td>23.1</td>
<td>3.1</td>
<td>19.1</td>
<td>19.1</td>
<td>5.2</td>
<td>38.1</td>
<td>38.1</td>
</tr>
<tr>
<td>Effective Green, g (s)</td>
<td>7.1</td>
<td>23.1</td>
<td>23.1</td>
<td>3.1</td>
<td>19.1</td>
<td>19.1</td>
<td>5.2</td>
<td>38.1</td>
<td>38.1</td>
</tr>
<tr>
<td>Actuated g/C Ratio</td>
<td>0.07</td>
<td>0.23</td>
<td>0.23</td>
<td>0.03</td>
<td>0.19</td>
<td>0.19</td>
<td>0.05</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>Clearance Time (s)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Vehicle Extension (s)</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Lane Grp Cap (vph)</td>
<td>125</td>
<td>429</td>
<td>365</td>
<td>54</td>
<td>355</td>
<td>302</td>
<td>178</td>
<td>709</td>
<td>602</td>
</tr>
<tr>
<td>v/s Ratio Prot</td>
<td>c0.05</td>
<td>c0.17</td>
<td>0.02</td>
<td>0.12</td>
<td>0.03</td>
<td>c0.31</td>
<td>c0.11</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>v/s Ratio Perm</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/c Ratio</td>
<td>0.74</td>
<td>0.73</td>
<td>0.08</td>
<td>0.57</td>
<td>0.61</td>
<td>0.08</td>
<td>0.54</td>
<td>0.81</td>
<td>0.03</td>
</tr>
<tr>
<td>Uniform Delay, d1</td>
<td>45.6</td>
<td>35.6</td>
<td>30.2</td>
<td>47.8</td>
<td>37.1</td>
<td>33.3</td>
<td>46.3</td>
<td>27.7</td>
<td>19.4</td>
</tr>
<tr>
<td>Progression Factor</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Incremental Delay, d2</td>
<td>20.0</td>
<td>63.0</td>
<td>0.1</td>
<td>13.9</td>
<td>3.1</td>
<td>0.1</td>
<td>3.4</td>
<td>6.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Delay (s)</td>
<td>65.6</td>
<td>42.0</td>
<td>30.3</td>
<td>61.8</td>
<td>40.2</td>
<td>33.4</td>
<td>49.7</td>
<td>34.3</td>
<td>19.4</td>
</tr>
<tr>
<td>Level of Service</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Approach Delay (s)</td>
<td>43.2</td>
<td>39.6</td>
<td>35.5</td>
<td>26.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intersection Summary

- **HCM 2000 Control Delay**: 34.7
- **HCM 2000 Level of Service**: C
- **HCM 2000 Volume to Capacity ratio**: 0.78
- **Actuated Cycle Length (s)**: 100.1
- **Sum of lost time (s)**: 20.0
- **Intersection Capacity Utilization**: 74.5%
- **ICU Level of Service**: D
- **Analysis Period (min)**: 15

Critical Lane Utilization
APPENDIX F

CAPACITY ANALYSIS CALCULATIONS
PROJECTED YEAR 2018 PEAK PERIOD TRAFFIC ANALYSIS WITH PROJECT
HCM Unsignalized Intersection Capacity Analysis

3: Kunehi St & Kapolei Pkwy

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Volume (veh/h)</td>
<td>2</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>94</td>
<td>0</td>
<td>182</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sign Control</td>
<td>Free</td>
<td>Free</td>
<td>Stop</td>
<td>Stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.77</td>
</tr>
<tr>
<td>Hourly flow rate (vph)</td>
<td>3</td>
<td>471</td>
<td>87</td>
<td>83</td>
<td>860</td>
<td>8</td>
<td>122</td>
<td>0</td>
<td>236</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Lane Width (ft)</td>
<td></td>
<td>12.0</td>
</tr>
<tr>
<td>Walking Speed (ft/s)</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Percent Blockage</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Right turn flare (veh)</td>
<td></td>
</tr>
<tr>
<td>Median type</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Median storage veh</td>
<td></td>
</tr>
<tr>
<td>Upstream signal (ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>594</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pX, platoon unblocked</td>
<td></td>
</tr>
<tr>
<td>vC, conflicting volume</td>
<td>868</td>
<td>570</td>
<td>986</td>
<td>1566</td>
<td>213</td>
<td>1429</td>
<td>1606</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vC1, stage 1 conf vol</td>
<td></td>
</tr>
<tr>
<td>vC2, stage 2 conf vol</td>
<td></td>
</tr>
<tr>
<td>vCu, unblocked vol</td>
<td>868</td>
<td>570</td>
<td>986</td>
<td>1566</td>
<td>213</td>
<td>1429</td>
<td>1606</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, single (s)</td>
<td>4.1</td>
<td>4.1</td>
<td>*6.5</td>
<td>6.5</td>
<td>*5.9</td>
<td>*5.9</td>
<td>6.5</td>
<td>*5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, 2 stage (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*2.5</td>
<td>4.0</td>
<td>*2.5</td>
<td>4.0</td>
<td>*2.5</td>
<td>4.0</td>
<td>*2.3</td>
</tr>
<tr>
<td>p0 queue free %</td>
<td>100</td>
<td>92</td>
<td>60</td>
<td>100</td>
<td>80</td>
<td>97</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cM capacity (veh/h)</td>
<td>772</td>
<td>988</td>
<td>307</td>
<td>100</td>
<td>1170</td>
<td>127</td>
<td>94</td>
<td>1065</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Direction, Lane #</th>
<th>EB 1</th>
<th>EB 2</th>
<th>EB 3</th>
<th>EB 4</th>
<th>WB 1</th>
<th>WB 2</th>
<th>WB 3</th>
<th>WB 4</th>
<th>NB 1</th>
<th>SB 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Total</td>
<td>3</td>
<td>189</td>
<td>189</td>
<td>181</td>
<td>83</td>
<td>344</td>
<td>344</td>
<td>180</td>
<td>358</td>
<td>5</td>
</tr>
<tr>
<td>Volume Left</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>122</td>
<td>4</td>
</tr>
<tr>
<td>Volume Right</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>236</td>
<td>1</td>
</tr>
<tr>
<td>cSH</td>
<td>772</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>988</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>598</td>
<td>163</td>
</tr>
<tr>
<td>Volume to Capacity</td>
<td>0.00</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.08</td>
<td>0.20</td>
<td>0.20</td>
<td>0.11</td>
<td>0.60</td>
<td>0.03</td>
</tr>
<tr>
<td>Queue Length 95th (ft)</td>
<td>9.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>19.6</td>
<td>27.8</td>
</tr>
<tr>
<td>Control Delay (s)</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Lane LOS</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Approach Delay (s)</td>
<td>0.0</td>
<td>0.8</td>
<td>19.6</td>
<td>27.8</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Approach LOS</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Intersection Summary

- **Average Delay**: 4.2
- **Intersection Capacity Utilization**: 42.3%
- **ICU Level of Service**: A
- **Analysis Period (min)**: 15

User Entered Value
HCM Unsignalized Intersection Capacity Analysis

3: Kunehi St & Kapolei Pkwy

12/18/2013

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Volume (veh/h)</td>
<td>2</td>
<td>605</td>
<td>68</td>
<td>118</td>
<td>405</td>
<td>7</td>
<td>50</td>
<td>0</td>
<td>51</td>
<td>9</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Sign Control</td>
<td>Free</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.92</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>Hourly flow rate (vph)</td>
<td>2</td>
<td>630</td>
<td>71</td>
<td>123</td>
<td>422</td>
<td>8</td>
<td>52</td>
<td>0</td>
<td>53</td>
<td>10</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Pedestrians</td>
<td></td>
</tr>
<tr>
<td>Lane Width (ft)</td>
<td></td>
</tr>
<tr>
<td>Walking Speed (ft/s)</td>
<td></td>
</tr>
<tr>
<td>Percent Blockage</td>
<td></td>
</tr>
<tr>
<td>Right turn flare (veh)</td>
<td></td>
</tr>
<tr>
<td>Median type</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Median storage veh</td>
<td></td>
</tr>
<tr>
<td>Upstream signal (ft)</td>
<td></td>
</tr>
<tr>
<td>vC, conflicting volume</td>
<td>429</td>
<td>701</td>
<td></td>
<td></td>
<td>1059</td>
<td>1345</td>
<td>245</td>
<td>939</td>
<td>1377</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vC1, stage 1 conf vol</td>
<td></td>
</tr>
<tr>
<td>vC2, stage 2 conf vol</td>
<td></td>
</tr>
<tr>
<td>vCu, unblocked vol</td>
<td>429</td>
<td>701</td>
<td></td>
<td></td>
<td>1059</td>
<td>1345</td>
<td>245</td>
<td>939</td>
<td>1377</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, single (s)</td>
<td>4.1</td>
<td>4.1</td>
<td>*6.5</td>
<td>6.5</td>
<td>*5.9</td>
<td>*6.5</td>
<td>6.5</td>
<td>*5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tC, 2 stage (s)</td>
<td>2.2</td>
<td>2.2</td>
<td>*2.5</td>
<td>4.0</td>
<td>*2.3</td>
<td>*2.5</td>
<td>4.0</td>
<td>*2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p0 queue free %</td>
<td>100</td>
<td>86</td>
<td>81</td>
<td>95</td>
<td>97</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM capacity (veh/h)</td>
<td>1126</td>
<td>882</td>
<td>288</td>
<td>129</td>
<td>1131</td>
<td>306</td>
<td>124</td>
<td>1293</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Direction, Lane #</th>
<th>EB 1</th>
<th>EB 2</th>
<th>EB 3</th>
<th>EB 4</th>
<th>WB 1</th>
<th>WB 2</th>
<th>WB 3</th>
<th>WB 4</th>
<th>NB 1</th>
<th>SB 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Total</td>
<td>2</td>
<td>252</td>
<td>252</td>
<td>197</td>
<td>123</td>
<td>169</td>
<td>169</td>
<td>92</td>
<td>105</td>
<td>12</td>
</tr>
<tr>
<td>Volume Left</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>123</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52</td>
<td>10</td>
</tr>
<tr>
<td>Volume Right</td>
<td>0</td>
<td>0</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>53</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>cSH</td>
<td>1126</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>892</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
<td>436</td>
<td>355</td>
</tr>
<tr>
<td>Volume to Capacity</td>
<td>0.00</td>
<td>0.15</td>
<td>0.15</td>
<td>0.12</td>
<td>0.14</td>
<td>0.10</td>
<td>0.10</td>
<td>0.05</td>
<td>0.24</td>
<td>0.03</td>
</tr>
<tr>
<td>Queue Length 95th (ft)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>Control Delay (s)</td>
<td>8.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>15.9</td>
</tr>
<tr>
<td>Lane LOS</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach Delay (s)</td>
<td>0.0</td>
<td>2.2</td>
<td>15.9</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach LOS</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intersection Summary

- Average Delay: 2.2
- Intersection Capacity Utilization: 35.5%
- ICU Level of Service: A
- Analysis Period (min): 15

* User Entered Value

Year 2018 PM Peak Period 12/16/2013 With Project
Synchro 8 Report
Page 1
HCM Signalized Intersection Capacity Analysis

7: Ft. Barrette Rd & Kapolei Pkwy

Movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations													
Volume (vph)	76	330	142	162	560	342	133	351	111	260	550	39	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Fr	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85	1.00	
Flt Protected	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00	
Sflt. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1844		
Sflt. Flow (perm)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1844		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	80	347	149	171	589	360	140	369	117	274	579	41	
RTOR Reduction (vph)	0	0	109	0	201	0	0	86	0	10	0		
Lane Group Flow (vph)	80	347	40	171	589	159	140	369	31	610	0		
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		
Protected Phases	7	4	3	8	5	2	1	6					
Permitted Phases	4				8							2	
Actuated Green, G (s)	7.8	32.1	32.1	14.7	39.0	39.0	11.6	31.7	31.7	20.3	40.4		
Effective Green, g (s)	7.8	32.1	32.1	14.7	39.0	39.0	11.6	31.7	31.7	20.3	40.4		
Actuated g/C Ratio	0.07	0.27	0.27	0.12	0.33	0.33	0.10	0.27	0.27	0.17	0.34		
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0				
Lane Grp Cap (vph)	116	503	427	219	611	519	172	497	422	302	627		
v/s Ratio Prot	0.05	0.19			c0.10	c0.32					c0.15	c0.33	
v/s Ratio Perm	0.03	0.10											
v/c Ratio	0.69	0.69	0.09	0.78	0.96	0.31	0.81	0.74	0.07	0.91	0.97		
Uniform Delay, d1	54.3	38.9	32.5	50.5	39.2	29.8	52.5	39.8	32.6	48.3	38.7		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	15.7	3.9	0.1	16.4	27.4	0.3	24.6	5.9	0.1	28.9	29.1		
Delay (s)	70.1	42.8	32.6	66.9	66.6	30.1	77.2	45.7	32.6	77.3	67.7		
Level of Service	E	D	C	E	E	C	E	D	C	E			
Approach Delay (s)	43.9			54.9			50.3			70.6			
Approach LOS	D			D			D			E			

Intersection Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM 2000 Control Delay</td>
<td>56.4</td>
</tr>
<tr>
<td>HCM 2000 Level of Service</td>
<td>E</td>
</tr>
<tr>
<td>HCM 2000 Volume to Capacity ratio</td>
<td>0.99</td>
</tr>
<tr>
<td>Actuated Cycle Length (s)</td>
<td>118.8</td>
</tr>
<tr>
<td>Sum of lost time (s)</td>
<td>20.0</td>
</tr>
<tr>
<td>Intersection Capacity Utilization</td>
<td>89.0%</td>
</tr>
<tr>
<td>ICU Level of Service</td>
<td>E</td>
</tr>
<tr>
<td>Analysis Period (min)</td>
<td>15</td>
</tr>
</tbody>
</table>

Synchro 8 Report
Page 2

Year 2018 AM Peak Hour 12/16/2013 With Project
HCM Signalized Intersection Capacity Analysis

7: Ft. Barrette Rd & Kapolei Pkwy

12/18/2013

Movement

<table>
<thead>
<tr>
<th>Movement</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WBL</th>
<th>WBT</th>
<th>WBR</th>
<th>NBL</th>
<th>NBT</th>
<th>NBR</th>
<th>SBL</th>
<th>SBT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane Configurations</td>
<td></td>
</tr>
<tr>
<td>Volume (vph)</td>
<td>41</td>
<td>523</td>
<td>101</td>
<td>73</td>
<td>331</td>
<td>156</td>
<td>89</td>
<td>486</td>
<td>117</td>
<td>194</td>
<td>383</td>
<td>111</td>
</tr>
<tr>
<td>Ideal Flow (vphpl)</td>
<td>1900</td>
</tr>
<tr>
<td>Total Lost time (s)</td>
<td>5.0</td>
</tr>
<tr>
<td>Lane Util. Factor</td>
<td>1.00</td>
</tr>
<tr>
<td>Frt</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
<td>1.00</td>
<td>0.85</td>
<td>1.00</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Fit Protected</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Std. Flow (prot)</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>Std. Flow (perm)</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1863</td>
<td>1583</td>
<td>1770</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>Peak-hour factor, PHF</td>
<td>0.95</td>
</tr>
<tr>
<td>Adj. Flow (vph)</td>
<td>43</td>
<td>551</td>
<td>106</td>
<td>77</td>
<td>348</td>
<td>164</td>
<td>94</td>
<td>512</td>
<td>123</td>
<td>204</td>
<td>403</td>
<td>117</td>
</tr>
<tr>
<td>RTOR Reduction (vph)</td>
<td>0</td>
<td>0</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>86</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Lane Group Flow (vph)</td>
<td>43</td>
<td>551</td>
<td>34</td>
<td>77</td>
<td>348</td>
<td>56</td>
<td>94</td>
<td>512</td>
<td>37</td>
<td>204</td>
<td>511</td>
<td>0</td>
</tr>
</tbody>
</table>

Turn Type

<table>
<thead>
<tr>
<th>Turn Type</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protected Phases</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permitted Phases</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuated Green, G (s)</td>
<td>5.4</td>
<td>37.3</td>
<td>37.3</td>
<td>7.1</td>
<td>39.0</td>
<td>39.0</td>
<td>8.7</td>
<td>34.9</td>
<td>34.9</td>
<td>15.4</td>
<td>41.6</td>
</tr>
<tr>
<td>Effective Green, g (s)</td>
<td>5.4</td>
<td>37.3</td>
<td>37.3</td>
<td>7.1</td>
<td>39.0</td>
<td>39.0</td>
<td>8.7</td>
<td>34.9</td>
<td>34.9</td>
<td>15.4</td>
<td>41.6</td>
</tr>
<tr>
<td>Actuated g/C Ratio</td>
<td>0.05</td>
<td>0.33</td>
<td>0.33</td>
<td>0.06</td>
<td>0.34</td>
<td>0.34</td>
<td>0.08</td>
<td>0.30</td>
<td>0.30</td>
<td>0.13</td>
<td>0.36</td>
</tr>
<tr>
<td>Clearance Time (s)</td>
<td>5.0</td>
</tr>
<tr>
<td>Vehicle Extension (s)</td>
<td>3.0</td>
</tr>
<tr>
<td>Lane Grp Cap (vph)</td>
<td>83</td>
<td>605</td>
<td>514</td>
<td>109</td>
<td>633</td>
<td>538</td>
<td>134</td>
<td>566</td>
<td>481</td>
<td>237</td>
<td>652</td>
</tr>
<tr>
<td>v/s Ratio Prot</td>
<td>0.02</td>
<td>0.30</td>
<td>c0.04</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/s Ratio Perm</td>
<td>c0.02</td>
<td>c0.04</td>
<td>0.05</td>
<td>c0.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/w Ratio</td>
<td>0.52</td>
<td>0.91</td>
<td>0.71</td>
<td>0.55</td>
<td>0.10</td>
<td>0.70</td>
<td>0.90</td>
<td>0.08</td>
<td>0.86</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>Uniform Delay, d1</td>
<td>53.4</td>
<td>37.1</td>
<td>26.7</td>
<td>52.8</td>
<td>30.7</td>
<td>25.9</td>
<td>51.7</td>
<td>38.3</td>
<td>28.4</td>
<td>48.6</td>
<td>32.5</td>
</tr>
<tr>
<td>Progression Factor</td>
<td>1.00</td>
</tr>
<tr>
<td>Incremental Delay, d2</td>
<td>5.4</td>
<td>18.0</td>
<td>0.1</td>
<td>18.8</td>
<td>1.0</td>
<td>0.1</td>
<td>15.3</td>
<td>17.9</td>
<td>0.1</td>
<td>25.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Delay (s)</td>
<td>58.7</td>
<td>55.1</td>
<td>26.8</td>
<td>71.6</td>
<td>31.7</td>
<td>26.0</td>
<td>67.0</td>
<td>56.2</td>
<td>28.5</td>
<td>74.4</td>
<td>38.7</td>
</tr>
<tr>
<td>Level of Service</td>
<td>E</td>
<td>E</td>
<td>C</td>
<td>E</td>
<td>C</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>C</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>Approach Delay (s)</td>
<td>51.0</td>
<td>35.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.8</td>
</tr>
<tr>
<td>Approach LOS</td>
<td>D</td>
</tr>
</tbody>
</table>

Intersection Summary

<table>
<thead>
<tr>
<th>HCM 2000 Control Delay</th>
<th>47.5</th>
<th>HCM 2000 Level of Service</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCM 2000 Volume to Capacity ratio</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuated Cycle Length (s)</td>
<td>114.7</td>
<td>Sum of lost time (s)</td>
<td>20.0</td>
</tr>
<tr>
<td>Intersection Capacity Utilization</td>
<td>84.6%</td>
<td>ICU Level of Service</td>
<td>E</td>
</tr>
<tr>
<td>Analysis Period (min)</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

- Critical Lane Group

Year 2018 PM Peak Period 12/16/2013 With Project

Synchro 8 Report

Page 2

B-57
Movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations													
Volume (vph)	19	85	37	26	267	199	179	564	32	124	763	46	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85	1.00	0.85			
Flt Protected		0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00				
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	3433	1863	1583	1770	1863	1583	
Flt Permitted		0.95	1.00	0.95	1.00	0.95	1.00	0.95	1.00				
Satd. Flow (perm)	1770	1863	1583	1770	1863	1583	3433	1863	1583	1770	1863	1583	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	
Adj. Flow (vph)	22	100	44	31	314	234	211	664	38	146	898	54	
RTOR Reduction (vph)	0	0.56	0	0	0	0	0	0	0	0	25		
Lane Group Flow (vph)	22	100	16	31	314	46	211	664	18	146	898	28	
Turn Type													
Protected Phases	7	4	3	8	5	2	1	6					
Permitted Phases	4	3	8	5	2	6							
Actuated Green, G (s)	2.6	20.8	20.8	3.2	21.4	21.4	8.3	51.6	51.6	12.2	55.5	55.5	
Effective Green, g (s)	2.6	20.8	20.8	3.2	21.4	21.4	8.3	51.6	51.6	12.2	55.5	55.5	
Actuated g/C Ratio	0.20	0.19	0.19	0.03	0.20	0.20	0.08	0.48	0.48	0.11	0.51	0.51	
Clearance Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	42	359	305	52	369	314	264	891	757	200	959	814	
v/s Ratio Prot	0.01	0.05	c0.02	c0.17	0.06	0.36	c0.08	c0.48					
v/s Ratio Perm													
v/c Ratio	0.52	0.28	0.03	0.60	0.85	0.15	0.80	0.75	0.02	0.73	0.94	0.03	
Uniform Delay, d1	52.0	37.1	35.3	51.7	41.7	35.7	48.9	22.8	46.2	24.5	12.9		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	11.3	4.0	0.0	17.0	16.9	0.2	15.4	3.4	0.0	12.5	15.8	0.0	
Delay (s)	63.3	37.5	36.3	68.7	58.6	35.9	64.4	26.2	14.8	58.7	40.3	12.9	
Level of Service	E	D	D	E	E	D	E	C	B	E	D	B	
Approach Delay (s)	40.4			49.9				34.5				41.4	
Approach LOS	D							D					

Intersection Summary

- HCM 2000 Control Delay: 40.9
- HCM 2000 Volume to Capacity ratio: 0.91
- HCM 2000 Level of Service: D
- Sum oflost time (s): 20.0
- ICU Level of Service: D
- Analysis Period (min): 15
- Critical Lane Group: c

Year 2018 AM Peak Hour 12/16/2013 With Project

Synchro 8 Report Page 1
Movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations													
Volume (vph)	87	298	124	34	206	123	92	542	44	187	535	67	
Ideal Flow (vph)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	0.85	1.00	1.00	0.85
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	
Satd. Flow (prot)	1770	1863	1583	1770	1963	1583	3433	1863	1583	1770	1863	1583	
Fit Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	
Satd. Flow (perm)	1770	1863	1583	1770	1963	1583	3433	1863	1583	1770	1863	1583	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	92	314	131	36	217	129	97	571	46	197	563	71	
RTOR Reduction (vph)	0	0	101	0	104	0	0	28	0	0	36		
Lane Group Flow (vph)	92	314	30	36	217	25	97	571	18	197	563	35	

Turn Type

<table>
<thead>
<tr>
<th>Turn Type</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
<th>Prot</th>
<th>NA</th>
<th>Perm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protected Phases</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Permitted Phases</td>
<td></td>
<td>4</td>
<td></td>
<td>8</td>
<td></td>
<td>2</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Actuated Green, G (s)</td>
<td>7.1</td>
<td>23.1</td>
<td>23.1</td>
<td>3.1</td>
<td>19.1</td>
<td>19.1</td>
<td>5.2</td>
<td>38.1</td>
<td>38.1</td>
</tr>
<tr>
<td>Effective Green, g (s)</td>
<td>7.1</td>
<td>23.1</td>
<td>23.1</td>
<td>3.1</td>
<td>19.1</td>
<td>19.1</td>
<td>5.2</td>
<td>38.1</td>
<td>38.1</td>
</tr>
<tr>
<td>Actuated g/C Ratio</td>
<td>0.07</td>
<td>0.23</td>
<td>0.23</td>
<td>0.03</td>
<td>0.19</td>
<td>0.19</td>
<td>0.05</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>Clearance Time (s)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Vehicle Extension (s)</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Lane Group Cap (vph)

Lane Grp Cap (vph)	125	429	365	54	355	302	178	709	602	279	906	770
w/s Ratio Prot	c0.05	c0.17	0.02	0.12	0.03	0.31	c0.11	0.30				
w/s Ratio Perm	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.02				
v/c Ratio	0.74	0.73	0.08	0.67	0.61	0.08	0.54	0.61	0.03	0.71	0.62	0.04
Uniform Delay, d1	45.6	35.6	30.2	48.0	37.1	33.3	46.3	27.7	19.4	39.9	18.9	13.5
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	20.0	6.3	0.1	26.9	3.1	1.0	3.4	6.6	0.0	7.9	1.3	0.0
Delay (s)	65.6	42.0	30.3	74.9	40.2	33.4	49.7	34.3	19.4	47.8	20.2	13.5
Level of Service	E	D	C	E	D	C	D	C	B	D	C	B
Approach Delay (s)	43.2			41.2			35.5			26.2		
Approach LOS	D			D			D			C		

Intersection Summary

HCM 2000 Control Delay	34.9	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.78		
Actuated Cycle Length (s)	100.1	Sum of lost time (s)	20.0
Intersection Capacity Utilization	74.6%	ICU Level of Service	D
Analysis Period (min)	15		

Critical Lane Group

Year 2018 PM Peak Period 12/16/2013 With Project

Synchro 8 Report

Page 3
APPENDIX C

ENVIRONMENTAL NOISE ASSESSMENT REPORT
Environmental Noise Assessment Report
Kapolei II Elementary School
Ewa, Oahu, Hawaii

January 2014

DLAA Project No. 13-45A
Contact: Dana Dorsch (ddorsch@dlaa.com)

Prepared for:
Belt Collins
Honolulu, Hawaii
TABLE OF CONTENTS

Section Page

1.0 EXECUTIVE SUMMARY 1

2.0 PROJECT DESCRIPTION 2

3.0 NOISE STANDARDS 2
 3.1 State of Hawaii Department of Health (HDOH) Community Noise Rule........ 2
 3.2 U.S. Federal Highway Administration (FHWA).. 3
 3.3 State of Hawaii Department of Transportation (HDOT)................................. 3
 3.4 Federal Aviation Administration (FAA)... 3
 3.5 State of Hawaii Department of Transportation (HDOTA), Airports Division 3
 3.6 State of Hawaii Department of Education EDSPECS (HDOE) 4
 3.7 ANSI Standard S12.60 – 2002 (ANSI).. 4

4.0 EXISTING ACOUSTICAL ENVIRONMENT 4
 4.1 Noise Measurement Procedures... 5
 4.2 Noise Measurement Locations.. 5
 4.3 Long-Term Noise Measurement Results.. 6
 4.4 Short-Term Noise Measurement Results.. 6
 4.5 Project Vicinity ... 6
 4.6 Kalaeloa Airport and Honolulu International Airport Noise Contours 6

5.0 POTENTIAL NOISE IMPACTS 7
 5.1 Project Construction Noise .. 7
 5.2 Project Generated Stationary Mechanical Noise and Compliance with State of Hawaii Community Noise Control Rule ... 7
 5.3 Compliance with FHWA/HDOT Noise Limits ... 7
 5.3.1 Vehicular Traffic Noise Impacts on the Project ... 8
 5.3.2 Vehicular Traffic Noise Impacts on the Surrounding Community 8
 5.4 Compliance with FAA and HDOT Airports Division Guidelines 8
 5.5 Compliance with HDOE EDSPECS and ANSI Noise Guidelines 8

6.0 NOISE MITIGATION 9
 6.1 Mitigation of Construction Noise .. 9
 6.2 FHWA Traffic Noise Mitigation .. 10
6.3 Mitigation of Aircraft Noise ... 10
6.4 Board of Education/ANSI Noise Mitigation... 10

REFERENCES.. 11
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>FAR Part 150 Recommendations for Land Use Compatibility in Yearly Day-Night Average Sound Levels</td>
</tr>
<tr>
<td>Table 2</td>
<td>HDOT Airports Division Recommendations for Local Land Use Compatibility in Yearly Day-Night Average Sound Levels (Ldn)</td>
</tr>
<tr>
<td>Table 3</td>
<td>Long Term Noise Measurement Results</td>
</tr>
<tr>
<td>Table 4</td>
<td>Vehicular Traffic Noise Analysis Constraints</td>
</tr>
<tr>
<td>Table 5</td>
<td>Predicted Traffic Noise Levels With and Without the Project and Resulting Increases Due to the Project</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Hawaii Maximum Permissible Sound Levels for Various Zoning Districts</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Federal Highways Administration Recommended Equivalent Hourly Sound Levels Based on Land Use</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Project Site and Noise Measurement Locations</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Graph of Long Term Noise Measurements – Location 1</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Graph of Long Term Noise Measurements – Location 2</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Typical Sound Levels from Construction Equipment</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Project Site and Predicted Traffic Noise Level Locations</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Existing (2013) - Sound Level Contours due to AM Vehicular Traffic</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Existing (2013) - Sound Level Contours due to PM Vehicular Traffic</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Future (2018) Without Project - Sound Level Contours due to AM Vehicular Traffic</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Future (2018) Without Project - Sound Level Contours due to PM Vehicular Traffic</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Future (2018) With Project - Sound Level Contours due to AM Vehicular Traffic</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Future (2018) With Project - Sound Level Contours due to PM Vehicular Traffic</td>
</tr>
</tbody>
</table>

LIST OF APPENDICES

APPENDIX

Appendix A-1 Acoustic Terminology
Appendix A-2 Photographs at Project Site
1.0 EXECUTIVE SUMMARY

1.1 The proposed Kapolei II Elementary School is a cluster of two story buildings over 100,000 gross square feet, along with a 3,200 square feet data center. In the future, four portable classrooms and a future two story classroom building might be added if necessary. Approximately 122,470 square feet of outdoor physical education components will also be provided. The proposed site is 12.349 acres located in the Ewa District, on the island of Oahu and is bounded by Fort Barrette road to the east, a vacant lot reserved for commercial construction and Kapolei Parkway to the north, Kunehi Street to the West and the La Hiki at Mehana residential subdivision to the south.

1.2 The ambient sound levels on site are relatively dynamic and depend on the vehicular traffic patterns of the surrounding roadways. Thus, higher ambient noise levels are apparent during peak traffic hours but drop off at night. Ambient noise levels range from 53 to 67 dBA during the daytime hours. The dominant noise sources are traffic, wind, birds, and occasional aircraft flyovers.

1.3 Development of project area will involve excavation, grading, and other typical construction activities. Construction activities are not expected to impact adjacent properties. Noise from construction activities should be short term and must comply with State Department of Health noise regulations.

1.4 The project design will incorporate stationary mechanical equipment that is typical of a school facility. Noise from this mechanical equipment and other exterior equipment must meet the State Department of Health noise regulations, which stipulate maximum permissible noise limits at the property line.

1.5 A vehicular traffic noise analysis was completed and noise level contours were calculated throughout the project site. The traffic volume projections indicate an insignificant increase in traffic noise levels at the school site. Traffic noise levels are also not expected to impact the surrounding residential neighborhoods or Kapolei High School.

1.6 Aircraft noise due to operations at nearby Kalaeloa Airport and the Honolulu International Airport may be audible at the project site. However, flights directly above the site are infrequent and the project site is on the L_{dn} 55 noise contour for both airports. Therefore, a significant noise impact due to aircraft noise is not expected.

1.7 Exterior noise levels at the school site do not exceed the State Department of Education EDSPECS noise limit of L_{10} 65 dBA and the ANSI noise guideline of L_{dn} 65 dBA. The proposed layout and exterior construction of the school will be designed such that exterior noise sources will not disturb learning activities and interfere with speech intelligibility.
2.0 PROJECT DESCRIPTION

The proposed Kapolei II Elementary School is a cluster of two story buildings over 100,000 gross square feet, along with a 3,200 square feet data center. In the future, four portable classrooms and a future two story classroom building might be added if necessary. Approximately 122,470 square feet of outdoor physical education components will also be provided. The proposed site is 12.349 acres located in the Ewa District, on the island of Oahu and is bounded by Fort Barrette road to the east, a vacant lot reserved for commercial construction and Kapolei Parkway to the north, Kunehi Street to the West and the La Hiki at Mehana residential subdivision to the south.

3.0 NOISE STANDARDS

Various local and federal agencies have established guidelines and standards for assessing environmental noise impacts and have set noise limits as a function of land use. A brief description of common acoustic terminology used in these guidelines and standards is presented in Appendix A.

3.1 State of Hawaii Department of Health (HDOH) Community Noise Rule

The State of Hawaii Community Noise Control Rule [Reference 1] defines three classes of zoning districts and specifies corresponding maximum permissible sound levels due to stationary noise sources such as air-conditioning units, exhaust systems, generators, compressors, pumps, etc. The Community Noise Control Rule does not address most moving sources, such as vehicular traffic noise, aircraft noise, or rail transit noise. However, the Community Noise Control Rule does regulate noise related to agricultural, construction, and industrial activities, which may not be stationary.

The maximum permissible noise levels for stationary mechanical equipment are enforced by the State Department of Health (HDOH) for any location at or beyond the property line and shall not be exceeded for more than 10% of the time during any 20-minute period. The specified noise limits which apply are a function of the zoning and time of day as shown in Figure 1. With respect to mixed zoning districts, the rule specifies that the primary land use designation shall be used to determine the applicable zoning district class and the maximum permissible sound level. In determining the maximum permissible sound level, the background noise level is taken into account by the HDOH.

The criteria for impulsive or impact noise is separate from stationary noise due to the nature of the sound. The HDOH defines impulsive noise as "any sound with a rapid rise and decay of sound pressure level, lasting less than one second, caused by sudden contact between two or more surfaces…". Noise from pile driving is considered impulsive noise and the maximum permissible noise level is 10 dB above the specified noise limits for stationary sources, as shown in Figure 1.
3.2 **U.S. Federal Highway Administration (FHWA)**

The FHWA regulation contains highway traffic noise abatement criteria (NAC) for seven land use activity categories and assigns corresponding maximum hourly equivalent sound levels, L_{eq}, for traffic noise exposure [Reference 2, 3]. These NAC are summarized in Figure 2 for each land use activity. For example, schools fall under Categories C and D and have a corresponding maximum exterior L_{eq} of 67 dBA and maximum interior L_{eq} of 52 dBA. In determining traffic noise impacts, primary consideration is given to exterior areas where frequent human use occurs. The interior impact criterion is defined for certain land use facilities that have sensitive interior uses, such as hospitals, churches, and schools.

3.3 **State of Hawaii Department of Transportation (HDOT)**

The HDOT has adopted FHWA’s design goals for traffic noise exposure in its Noise Analysis and Abatement Policy [Reference 4]. According to the policy, a traffic noise impact occurs when the predicted traffic noise levels “approach” or exceed FHWA’s design goals or when the predicted traffic noise levels “substantially exceed the existing noise levels.” The policy also states that “approach” means at least 1 dB less than FHWA’s design goals and “substantially exceed the existing noise levels” means an increase of at least 15 dB.

3.4 **Federal Aviation Administration (FAA)**

The FAA addresses guidelines for compatible land use that surrounds airports [Reference 5]. Noise contour maps are expressed in terms of yearly day-night average sound levels, L_{dn}, due to aircraft operations. The FAA states that schools outside of the L_{dn} 65 noise contour are compatible without restrictions. Schools between the L_{dn} 65 and 75 contours are only compatible if noise mitigation measures are incorporated into the building structure. Schools located inside of the L_{dn} 75 noise contour are generally not compatible. The compatibility of other land uses, such as residential, commercial, manufacturing, public, and recreation, are shown in Table 1.

3.5 **State of Hawaii Department of Transportation (HDOTA), Airports Division**

The State of Hawaii, Department of Transportation, Airports Division has adopted noise restrictions that are similar to the FAA’s, but more stringent [Reference 6]. Similar to the FAA, HDOTA expresses land use compatibility guidelines based on yearly day-night average sound levels, L_{dn}, due to aircraft operations. In most cases, the HDOTA states maximum noise limits that are 5 dB lower than the FAA. The HDOTA guidelines specify 60 dBA as the maximum allowable L_{dn} level for school uses without any mitigation measures. However, for schools sites located between the 60 and 75 L_{dn} contours, HDOTA states:

“Because the L_{dn} noise descriptor system represents a 24-hour average of individual aircraft noise events, each of which can be unique in respect to amplitude, duration, and tonal content, the NLR requirements should be evaluated for the specific land use, interior acoustical requirements, and
properties of the aircraft noise events. NLR requirements should not be based solely upon the exterior L_{dn} exposure level.

The compatibility of other land uses, such as residential, manufacturing, public, and recreation, are shown in Table 2.

3.6 **State of Hawaii Department of Education EDSPECS (HDOE)**

HDOE Educational Specifications for Elementary Schools [Reference 7] states that all school spaces shall meet a background ambient noise level not to exceed 50 dBA. Libraries and main reading rooms should meet a background ambient noise level not to exceed 45 dBA. Air conditioning shall be provided to facilities exposed to exterior noise levels greater than L_{10} = 65dBA if the exterior noise sources cannot be mitigated with measures such as a sound barrier. Additionally, if the site is close to busy roads or other exterior noise sources, the budget should account for the cost of noise mitigation measures.

3.7 **ANSI Standard S12.60 – 2002 (ANSI)**

Per ANSI Standard S12.60 – 2002, Acoustical Performance Criteria, Design Requirements, and Guidelines for Schools [Reference 8], school facilities should be sited and designed to limit the noise levels inside learning spaces from transportation noise sources such as aircraft and vehicular traffic. All core learning spaces shall meet the guideline for maximum A-weighted steady background noise levels of 35 dBA. An STC rating of 50 is the minimum for the exterior walls and roofs of a core learning space. However, this rating does not ensure conformance to the background noise limits for noise from major outdoor noise sources.

Furthermore, learning facilities should not be located at sites where the yearly average day-night average sound level, L_{dn}, exceeds 60 dB to 65 dB for conventional construction methods. However, if the external walls are designed to a minimum STC rating of 50, a site L_{dn} of 65 dB to 75 dB is acceptable. Under no conditions should a new learning facility be located at a site where the yearly average day-night average sound level exceeds, or is predicted to exceed, 75 dBA.

4.0 **EXISTING ACOUSTICAL ENVIRONMENT**

Two types of noise measurements were conducted to assess the existing acoustical environment in the vicinity of the project location. The locations are illustrated in Figure 3. The first noise measurement type consisted of continuous long-term ambient noise level measurements and the second type of noise measurement was short-term and included traffic counts and aircraft flyover monitoring. The purpose of the short-term noise measurements and corresponding traffic counts were to calibrate a traffic noise prediction model. The noise measurements were conducted between December 16, 2013 and December 18, 2013.
4.1 Noise Measurement Procedures

Long-Term Noise Measurements

Continuous, hourly, statistical sound levels were recorded for approximately 48 hours at each location. The measurements were taken using a Larson-Davis Laboratories, Model 820, Type-1 Sound Level Meter together with a Larson-Davis, Model 2560 Type-1 Microphone. Calibration was checked before and after the measurements with a Larson-Davis Model CAL200 calibrator. Both the sound level meter and the calibrator have been certified by the manufacturer within the recommended calibration period. The microphone was mounted on a tripod, approximately 6 feet above grade. A windscreen covered the microphone during the entire measurement period. The sound level meter was secured in a weather resistant case.

Short-Term Noise Measurements

An approximate 30-minute equivalent sound level, \(L_{eq}\), was measured at each location. Vehicular traffic counts and traffic mix were documented during the measurement period. In addition to the short term traffic noise measurement, spot measurements were conducted on-site during aircraft flyover events. The noise measurement was taken using a Larson-Davis Laboratories, Model 831, Type-1 Sound Level Meter together with a Larson-Davis, Model 377B20 Type-1 Microphone. Calibration was checked before and after the measurements with a Larson-Davis Model CAL200 calibrator. Both the sound level meter and the calibrator have been certified by the manufacturer within the recommended calibration period. The microphone and sound level meter were mounted on a tripod, approximately 5 feet above grade. A windscreen covered the microphone during the entire measurement period.

4.2 Noise Measurement Locations

Long-Term Noise Measurements

Location L1: On the project site, approximately 160 feet west of Fort Barrette Road. The dominant noise source was vehicular traffic and secondary noise sources include aircraft flyovers, birds, and wind.

Location L2: On the southwest corner of the project site, approximately 5 feet east of Kunehi Street. The dominant noise source was vehicular traffic and secondary noise sources include aircraft flyovers, birds, wind, and noises typical of a residential neighborhood.
Short-Term Noise Measurement Locations

Location S1: Positioned adjacent to Fort Barrette Road, approximately 140 feet west of the edge-of-pavement.

Location S2: Positioned adjacent to Kapolei Parkway, approximately 50 feet north of the edge-of-pavement.

4.3 Long-Term Noise Measurement Results

The ambient sound levels on site are relatively dynamic and depend significantly on the vehicular traffic patterns of the surrounding roadways. Thus, higher ambient noise levels are apparent during peak traffic hours but drop off at night. The measured equivalent sound levels, L_{eq}, in A-weighted decibels (dBA) are graphically presented in Figures 4 and 5 for locations L1 and L2, respectively. Noise measurement results are also summarized in Table 3.

4.4 Short-Term Noise Measurement Results

Several aircraft flyover events were observed during the measurement period. Typical aircraft included wide and narrow body jet airliners as well as propeller planes. All observed aircraft were on a descent to Honolulu International Airport. The peak sound level observed during flyover events ranged from 65 dBA to 70 dBA. Military aircraft (F16) were also observed (but not measured) and were subjectively louder than the commercial aircraft.

4.5 Project Vicinity

Existing residential developments immediately south and west of the project site include D.R.Horton’s La Hiki and Pulewa at Mehana. Vehicular noise from Fort Barrette Road and Kapolei Parkway dominate the ambient environment in the vicinity of these roadways. Across Fort Barrette Road is the new Kapolei High School which will experience an acoustical environment similar to the project site with vehicular traffic and occasional aircraft flyovers being dominant noise sources.

4.6 Kalaeloa Airport and Honolulu International Airport Noise Contours

The project is approximately one mile north of the Kalaeloa Airport and 8 miles west of Honolulu International Airport. Therefore, the project site was assessed for aircraft noise using airport noise contour maps. The Kalaeloa Master Plan [Reference 9, 10] includes year 2020 projections of airport operations and noise contour maps for airport alternates. Also included in the airport noise contour maps is the effect of the Honolulu International Airport (HIA) operations [Reference 6]. A complete description of the Kalaeloa Airport alternatives can be found in the Kalaeloa Master Plan. The Kapolei II Elementary School project site is outside of the L_{dn} 55 noise contours for both airports when considered individually. Noise contours for the Kalaeloa Airport including HIA show that the school site is sited directly on the L_{dn} 55 contour line.
5.0 POTENTIAL NOISE IMPACTS

5.1 Project Construction Noise

Development of project areas will involve excavation, grading, and other typical construction activities during construction. The various construction phases of the project will generate significant amounts of noise. Depending on when construction occurs, construction of the school facilities may impact existing adjacent properties, such as the La Hiki and Pulewa at Mehana residential development to the west and south of the project site. The exterior grounds of Kapolei High School will also experience elevated ambient sound levels during construction. The actual noise levels produced during construction will be a function of the methods employed during each stage of the construction process. Typical ranges of construction equipment noise are shown in Figure 6. Earthmoving equipment, e.g., bulldozers and diesel-powered trucks, will probably be the loudest equipment used during construction.

5.2 Project Generated Stationary Mechanical Noise and Compliance with State of Hawaii Community Noise Control Rule

The project design will incorporate stationary mechanical equipment that is typical of a school facility. Expected mechanical equipment may include air handling equipment, condensing units, refrigeration units, etc. Noise from this mechanical equipment and other equipment must meet the State noise rules, which stipulate maximum permissible noise limits at the property line. The noise limits are 60 dBA during the day and 50 dBA during the night, as shown in Figure 1. However, the HDOH takes into consideration background noise levels when assessing noise infractions. Mitigation of mechanical noise to meet the HDOH noise rules should be incorporated into the project design.

5.3 Compliance with FHWA/HDOT Noise Limits

A vehicular traffic noise analysis was completed using the DataKustik CadnaA (version 4.0) software program [Reference 11] for the existing conditions, future year 2018 projections with the “No Build” and “Build” conditions. The traffic noise analysis was based on the peak hour traffic volumes provided by the Traffic Consultant [Reference 12]. Intersection geometric configurations and future speed limits were also provided by the traffic consultant.

Vehicular traffic noise level contours were calculated throughout the project site. The short-term noise measurement and corresponding traffic counts were used to validate the software at noise measurement locations L1, L2, S1 and S2. The results of the traffic noise analysis for the existing and future year projections are summarized in Table 5 and shown graphically in Figures 7 to 13.
5.3.1 Vehicular Traffic Noise Impacts on the Project

Based on the current site plans, the covered play court is approximately 180 feet away from Fort Barrette Road and the Commons building is approximately 100 feet from Kunehi Street. Traffic noise levels at these buildings are currently well below the FHWA maximum noise limit of 67 dBA. The traffic volume projections indicate a minimal increase in traffic volume on Fort Barrette Road and a significant increase in traffic volume for Kunehi Street. However, due to the low speed limit, traffic noise levels from these roadways are not expected to significantly increase over current levels.

Although the FHWA criteria is not a regulatory requirement for this project, as it has no authority to enforce land use, its noise limit criteria is recommended by the FHWA to be used as a guideline for consideration of land use and the impact of traffic noise.

5.3.2 Vehicular Traffic Noise Impacts on the Surrounding Community

Existing residences located adjacent to Kunehi Street currently experience traffic noise levels below the FHWA maximum noise limit of 67 dBA. The proposed project is expected to approximately double the traffic volumes in the future. In addition, school buses are expected to be a new source of noise during the morning and afternoon pickup/drop off times. However, due to the low speed limit, traffic noise levels along Kunehi Street are not expected to significantly increase over current levels.

Traffic volume increases on Fort Barrette Road and Kapolei Parkway are not significant, therefore, traffic noise at the nearby residential neighborhoods and Kapolei High School is not expected to increase by a significant amount.

5.4 Compliance with FAA and HDOT Airports Division Guidelines

The Kapolei II Elementary School project site is on the 55 L_{dn} noise contours of the combined Noise Exposure Map for Honolulu International Airport and Kalaeloa Airport. Therefore, the project will not be impacted by aircraft noise.

As evidenced by the short term noise measurements, aircraft flyover events may still be audible at the project site. Ambient noise levels increase by up to 10 dB during a flyover event. Students and faculty may have to use a raised voice in order to communicate effectively when outdoors during a flyover event.

5.5 Compliance with HDOE EDSPECS and ANSI Noise Guidelines

The HDOE EDSPECS requires that air conditioning be installed for schools exposed to an exterior noise level of L_{10} 65dBA. Based on the ambient noise measurement data, the school site will not experience an L_{10} in excess of this requirement.
Kapolei II Elementary School is currently sited such that the school buildings are at least 100 feet from the nearest roadway. Based on the ambient noise measurement data, the daily L_{dn} will be less than 65 dBA so conventional construction methods will be acceptable for the exterior shell of the school buildings.

The building shell construction will be as follows:

Roof: Single ply top roof membrane, 3” minimum rigid tapered insulation, 3” concrete topping varies, 2” leg of precast double tee (24” deep stems). ~STC 52, OITC 47 (or greater)

Exterior Glazing: 1” Insulated Laminated. ~STC 36, OITC 29

Exterior Wall: 8” Precast Concrete, 2.5” Stud Pony Wall, 5/8” Gypsum Board. ~STC 65, OITC 57

The above building shell construction is adequate to achieve the ANSI recommended 35 dBA inside of all classrooms for the predicted traffic noise.

6.0 NOISE MITIGATION

6.1 Mitigation of Construction Noise

In cases where construction noise exceeds, or is expected to exceed the State’s "maximum permissible" property line noise levels [Reference 1], a permit must be obtained from the HDOH to allow the operation of vehicles, cranes, construction equipment, power tools, etc., which emit noise levels in excess of the "maximum permissible" levels.

In order for the HDOH to issue a construction noise permit, the Contractor must submit a noise permit application to the HDOH, which describes the construction activities for the project. Prior to issuing the noise permit, the HDOH may require action by the Contractor to incorporate noise mitigation into the construction plan. The HDOH may also require the Contractor to conduct noise monitoring or community meetings inviting the neighboring residents and business owners to discuss construction noise. The Contractor should use reasonable and standard practices to mitigate noise, such as using mufflers on diesel and gasoline engines, using properly tuned and balanced machines, etc. However, the HDOH may require additional noise mitigation, such as temporary noise barriers, or time of day usage limits for certain kinds of construction activities.

Specific permit restrictions for construction activities [Reference 1] are:

"No permit shall allow any construction activities which emit noise in excess of the maximum permissible sound levels ... before 7:00 a.m. and after 6:00 p.m. of the same day, Monday through Friday."
“No permit shall allow any construction activities which emit noise in excess of the maximum permissible sound levels... before 9:00 a.m. and after 6:00 p.m. on Saturday."

“No permit shall allow any construction activities which emit noise in excess of the maximum permissible sound levels on Sundays and on holidays."

The use of hoe rams and jack hammers 25 lbs. or larger, high pressure sprayers, chain saws, and pile drivers are restricted to 9:00 a.m. to 5:30 p.m., Monday through Friday. In addition, construction equipment and on-site vehicles or devices whose operations involve the exhausting of gas or air, excluding pile hammers and pneumatic hand tools weighing less than 15 pounds, must be equipped with mufflers [Reference 1].

The HDOH noise permit does not limit the noise level generated at the construction site, but rather the times at which noisy construction can take place. Therefore, noise mitigation for construction activities should be addressed using project management, such that the time restrictions within the HDOH permit are followed.

6.2 FHWA Traffic Noise Mitigation

Vehicular traffic noise levels are not expected to increase by a significant amount in the future at the school site or in the surrounding areas. Therefore, noise mitigation to attenuate vehicular traffic noise is not necessary.

6.3 Mitigation of Aircraft Noise

Noise mitigation to attenuate aircraft noise is not necessary as the project site is on the L_{dn} 55 dBA noise contour.

6.4 Board of Education/ANSI Noise Mitigation

The proposed exterior construction of the school buildings is sufficient to minimize audible noises from vehicular traffic and aircraft flyovers to the interior of the buildings. No additional mitigation will be required.
REFERENCES

TABLE 1:
FAR Part 150 Recommendations for Land Use Compatibility in Yearly Day-Night Average Sound Levels

<table>
<thead>
<tr>
<th>TYPE OF LAND USE</th>
<th>Yearly Day-Night Average Sound Level (L_{dn})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 65</td>
</tr>
<tr>
<td>RESIDENTIAL:</td>
<td></td>
</tr>
<tr>
<td>Residential (except mobile homes & transient lodgings)</td>
<td>Y</td>
</tr>
<tr>
<td>Mobile home parks</td>
<td>Y</td>
</tr>
<tr>
<td>Transient lodgings</td>
<td>Y</td>
</tr>
<tr>
<td>PUBLIC USE:</td>
<td></td>
</tr>
<tr>
<td>Schools</td>
<td>Y</td>
</tr>
<tr>
<td>Hospitals and nursing homes</td>
<td>Y</td>
</tr>
<tr>
<td>Churches, auditoriums, and concert halls</td>
<td>Y</td>
</tr>
<tr>
<td>Government services</td>
<td>Y</td>
</tr>
<tr>
<td>Transportation</td>
<td>Y</td>
</tr>
<tr>
<td>Parking</td>
<td>Y</td>
</tr>
<tr>
<td>COMMERCIAL USE:</td>
<td></td>
</tr>
<tr>
<td>Offices, business and professional</td>
<td>Y</td>
</tr>
<tr>
<td>Wholesale/Retail:(bldg. Mater., hardware, & farm equip.)</td>
<td>Y</td>
</tr>
<tr>
<td>Retail trade – general</td>
<td>Y</td>
</tr>
<tr>
<td>Utilities</td>
<td>Y</td>
</tr>
<tr>
<td>Communication</td>
<td>Y</td>
</tr>
<tr>
<td>RECREATIONAL USE:</td>
<td></td>
</tr>
<tr>
<td>Outdoor sports arenas and spectator sports</td>
<td>Y</td>
</tr>
<tr>
<td>Outdoor music shells, amphitheaters</td>
<td>Y</td>
</tr>
<tr>
<td>Nature exhibits and zoos</td>
<td>Y</td>
</tr>
<tr>
<td>Amusements, parks, resorts and camps</td>
<td>Y</td>
</tr>
<tr>
<td>Golf courses, riding stables and water recreation</td>
<td>Y</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses refer to the following notes.

1. Where the community determines that residential or school uses must be allowed, measures to achieve outdoor-to-indoor Noise Level Reduction (NLR) of at least 25 dB and 30 dB should be incorporated into building codes and be considered in individual approvals. Normal residential construction can be expected to provide a NLR of 20 dB, thus, the reduction requirements are often stated as 5, 10, or 15 dB over standard construction and normally assume mechanical ventilation and closed windows year round. However, the use of NLR criteria will not eliminate outdoor noise problems.

2. Measures to achieve NLR 25 must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas, or where the normal noise level is low.

3. Measures to achieve NLR 30 must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas, or where the normal noise level is low.

4. Measures to achieve NLR 35 must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas, or where the normal noise level is low.

5. Land use compatible provided special sound reinforcement systems are installed.

7. Residential buildings require a NLR of 30.

8. Residential buildings are not permitted.

Abbreviations:
- Y(Yes) = Land Use and related structures compatible w/o restrictions.
- N(No) = Land Use and related structures are not compatible and should be prohibited.
- NLR = Noise Level Reduction (outdoor-to-indoor) to be achieved through incorporation of noise attenuation into the design and construction of the structure.

Regulatory Note:
The designations contained in this table do not constitute a Federal determination that any use of land covered by the program is acceptable or unacceptable under Federal, State, or local law. The responsibility for determining the acceptable and permissible land uses and the relationship between specific properties and specific noise contours rests with the local authorities. FAA determinations under Part 150 are not intended to substitute federally determined land uses for those determined to be appropriate by local authorities in response to locally determined needs and values in achieving noise compatible land uses.

Source:
FAR Part 150, Appendix A, Table 1. “Land Use Compatibility with Yearly Day-Night Average Sound Levels.”
Because the LDN noise descriptor system represents a 24-hour average of individual aircraft noise events, each of which can be unique in respect to amplitude, duration, and tonal content, the NLR requirements should be evaluated for the specific land use, interior acoustical requirements, and properties of the aircraft noise events. NLR requirements should not be based solely upon the exterior LDN exposure level.

Measures to achieve required NLR must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas, or where the normal noise level is low.

Residential buildings require NLR. Residential buildings should not be located where exterior noise is greater than 65 LDN.

Impact of amplitude, duration, frequency, and tonal content of aircraft noise events should be evaluated.

Abbreviations:

Y(Yes) = Land Use and related structures compatible without restrictions.
N(No) = Land Use and related structures are not compatible and should be prohibited.

Source: Airports Division, Department of Transportation, State of Hawaii

TABLE 2:
State Department of Transportation Airports Division Recommendations for Local Land Use Compatibility in Yearly Day-Night Average Sound Levels (LDN)

<table>
<thead>
<tr>
<th>TYPE OF LAND USE</th>
<th>Yearly Day-Night Average Sound Level (LDN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 60</td>
</tr>
<tr>
<td>RESIDENTIAL:</td>
<td></td>
</tr>
<tr>
<td>Low density residential, resorts, & hotels (w/ outdoor fac)</td>
<td>Y(a)</td>
</tr>
<tr>
<td>Low density apartment w/ moderate outdoor use</td>
<td>Y</td>
</tr>
<tr>
<td>High density apartment with limited outdoor use</td>
<td>Y</td>
</tr>
<tr>
<td>Transient lodgings (w/limited outdoor use)</td>
<td>Y</td>
</tr>
<tr>
<td>PUBLIC USE:</td>
<td></td>
</tr>
<tr>
<td>Schools, day care centers, libraries, and churches</td>
<td>Y</td>
</tr>
<tr>
<td>Hospitals, nursing homes, clinics, and health facilities</td>
<td>Y</td>
</tr>
<tr>
<td>Indoor auditoriums, and concert halls</td>
<td>Y(c)</td>
</tr>
<tr>
<td>Government services and offices serving the public</td>
<td>Y</td>
</tr>
<tr>
<td>Transportation and parking</td>
<td>Y</td>
</tr>
<tr>
<td>COMMERCIAL USE:</td>
<td></td>
</tr>
<tr>
<td>Offices - government, business and professional</td>
<td>Y</td>
</tr>
<tr>
<td>Wholesale/Retail: bldg. Mater., hardware, & heavy equip</td>
<td>Y</td>
</tr>
<tr>
<td>Airport businesses - car rental, ticketing, lei stands, etc</td>
<td>Y</td>
</tr>
<tr>
<td>Retail trade, restaurants, shp. Centers, financial inst., etc</td>
<td>Y</td>
</tr>
<tr>
<td>Power plants, sewage treatment plants, & base yards</td>
<td>Y</td>
</tr>
<tr>
<td>Studios w/o outdoor sets, broadcasting & Production fac</td>
<td>Y(c)</td>
</tr>
<tr>
<td>MANUFACTURING AND PRODUCTION:</td>
<td></td>
</tr>
<tr>
<td>Manufacturing, general</td>
<td>Y</td>
</tr>
<tr>
<td>Photographic and optical</td>
<td>Y</td>
</tr>
<tr>
<td>Agriculture (except livestock) and forestry</td>
<td>Y</td>
</tr>
<tr>
<td>Livestock farming and breeding</td>
<td>Y</td>
</tr>
<tr>
<td>Mining and fishing, resource production and extraction</td>
<td>Y</td>
</tr>
<tr>
<td>RECREATIONAL USE:</td>
<td></td>
</tr>
<tr>
<td>Outdoor sports arenas and spectator sports</td>
<td>Y</td>
</tr>
<tr>
<td>Outdoor music shells, amphitheaters</td>
<td>Y(f)</td>
</tr>
<tr>
<td>Nature exhibits and zoos, neighborhood parks</td>
<td>Y</td>
</tr>
<tr>
<td>Amusements, beach parks, active playgrounds, etc</td>
<td>Y</td>
</tr>
<tr>
<td>Public golf courses, riding stable, cemeteries, gardens, etc</td>
<td>Y</td>
</tr>
<tr>
<td>Professional/resort sports facil., media event facil., etc</td>
<td>Y(f)</td>
</tr>
<tr>
<td>Extensive natural wildlife and recreation areas</td>
<td>Y(f)</td>
</tr>
</tbody>
</table>

Note: Letters in parentheses refer to the following notes.

(a) A noise level of 60 LDN does not eliminate all risks of adverse noise impacts from aircraft noise. However, the 60 LDN planning level has been selected by the State Airports Division as an appropriate compromise between the minimal risk of level of 55 LDN and the significant risk level of 65 LDN.

(b) Where the community determines that these uses should be allowed, Noise Level Reduction (NLR) measures to achieve interior levels of 45 LDN or less should be incorporated into building codes and be considered in individual approvals. Normal local construction employing natural ventilation can be expected to provide an average NLR of approximately 9 dB. Total closure plus air conditioning may be required to provide additional outdoor-to-indoor NLR, but will not eliminate outdoor noise problems.

(c) Because the LDN noise descriptor system represents a 24-hour average of individual aircraft noise events, each of which can be unique in respect to amplitude, duration, and tonal content, the NLR requirements should be evaluated for the specific land use, interior acoustical requirements, and properties of the aircraft noise events. NLR requirements should not be based solely upon the exterior LDN exposure level.

(d) Measures to achieve required NLR must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise sensitive areas, or where the normal noise level is low.

(e) Residential buildings require NLR. Residential buildings should not be located where exterior noise is greater than 65 LDN.

(f) Impact of amplitude, duration, frequency, and tonal content of aircraft noise events should be evaluated.
TABLE 3: Long Term Noise Measurement Results

<table>
<thead>
<tr>
<th></th>
<th>AM L_{eq}</th>
<th>PM L_{eq}</th>
<th>L_{dn} (Calculated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>53 - 63 dBA</td>
<td>47 - 57 dBA</td>
<td>61 dBA</td>
</tr>
<tr>
<td>L2</td>
<td>56 - 67 dBA</td>
<td>46 - 64 dBA</td>
<td>66 dBA</td>
</tr>
</tbody>
</table>

TABLE 4: Vehicular Traffic Noise Analysis Constraints

<table>
<thead>
<tr>
<th>Noise Prediction Location</th>
<th>Nearest Roadway</th>
<th>Distance to Edge-of-Pavement (ft)</th>
<th>Total Lanes</th>
<th>Speed Limit (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - KES Building G</td>
<td>Fort Barrette Road</td>
<td>180</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>B - KES Building C</td>
<td>Kunehi Street</td>
<td>100</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>C - La Hiki Neighborhood</td>
<td>Kunehi Street</td>
<td>30</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>D - Leihano Senior Living</td>
<td>Fort Barrette Road</td>
<td>430</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>E - Kapolei High School</td>
<td>Kapolei Parkway</td>
<td>180</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

TABLE 5: Predicted Traffic Noise Levels With and Without the Project and Resulting Increases Due to the Project

Noise levels shown in the table are based on peak-hour traffic volumes, and are expressed in A-weighted decibels (dBA). FHWA Noise Abatement Criteria is shown in Figure 2. Sound level increases greater than 3 dB are considered significant.

<table>
<thead>
<tr>
<th>Row ID</th>
<th>Traffic Analysis Conditions</th>
<th>Location A</th>
<th>Location B</th>
<th>Location C</th>
<th>Location D</th>
<th>Location E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
<td>PM</td>
<td>AM</td>
</tr>
<tr>
<td>A</td>
<td>Existing (Calculated)</td>
<td>57.4</td>
<td>56.0</td>
<td>52.3</td>
<td>52.4</td>
<td>59.2</td>
</tr>
<tr>
<td>B</td>
<td>Future Without Project (2018)</td>
<td>58.0</td>
<td>56.7</td>
<td>52.8</td>
<td>52.9</td>
<td>59.7</td>
</tr>
<tr>
<td>C</td>
<td>Future With Project (2018)</td>
<td>58.1</td>
<td>56.8</td>
<td>55.6</td>
<td>54.1</td>
<td>62.4</td>
</tr>
</tbody>
</table>

B-A	Future Increase Without Project (2018)	0.6	0.7	0.5	0.5	0.5	0.9	1.2	0.4	0.4	
C-A	Future Increase With Project (2018)	0.7	0.8	3.3	1.7	3.2	1.6	1.2	1.4	0.4	0.4
C-B	Future Increase Due to Project	0.1	0.1	2.8	1.2	2.7	1.1	0.3	0.2	0.0	0.0
Hawaii Department of Health Maximum Permissible Sound Levels

For Exterior Mechanical Equipment in Various Zoning Districts

Table

<table>
<thead>
<tr>
<th>Zoning District</th>
<th>Day Hours (7 AM to 10 PM)</th>
<th>Night Hours (10 PM to 7 AM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS A Residential, Conservation, Preservation, Public Space, Open Space</td>
<td>55 dBA (Exterior)</td>
<td>45 dBA (Exterior)</td>
</tr>
<tr>
<td>CLASS B Multi-Family Dwellings, Apartments, Business, Commercial, Hotel, Resort</td>
<td>60 dBA (Exterior)</td>
<td>50 dBA (Exterior)</td>
</tr>
<tr>
<td>CLASS C Agriculture, Country, Industrial</td>
<td>70 dBA (Exterior)</td>
<td>70 dBA (Exterior)</td>
</tr>
</tbody>
</table>

Diagram

- **CLASS A** (Residential, Conservation, Preservation, Public Space, Open Space)
 - Day: 55 dBA (Exterior)
 - Night: 45 dBA (Exterior)
- **CLASS B** (Multi-Family Dwellings, Apartments, Business, Commercial, Hotel, Resort)
 - Day: 60 dBA (Exterior)
 - Night: 50 dBA (Exterior)
- **CLASS C** (Agriculture, Country, Industrial)
 - Day & Night: 70 dBA (Exterior)

Project: Kapolei II Elementary School

Project No: 13-45A

Date: January 2014

Figure: 1
FEDERAL HIGHWAY ADMINISTRATION NOISE ABATEMENT CRITERIA FOR HIGHWAY NOISE

<table>
<thead>
<tr>
<th>ACTIVITY CATEGORY</th>
<th>ACTIVITY CATEGORY DESCRIPTION</th>
<th>HOURLY EQUIVALENT SOUND LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>LANDS ON WHICH SERENITY AND QUIET ARE OF EXTRAORDINARY SIGNIFICANCE AND SERVE AN IMPORTANT PUBLIC NEED AND WHERE THE PRESERVATION OF THOSE QUALITIES IS ESSENTIAL IF THE AREA IS TO CONTINUE TO SERVE ITS INTENDED PURPOSE.</td>
<td>57 dBA (EXTERIOR)</td>
</tr>
<tr>
<td>B</td>
<td>RESIDENTIAL</td>
<td>67 dBA (EXTERIOR)</td>
</tr>
<tr>
<td>C</td>
<td>ACTIVE SPORT AREAS, AMPHITHEATERS, AUDITORIUMS, CAMPGROUNDS, CEMETERIES, DAY CARE CENTERS, HOSPITALS, LIBRARIES, MEDICAL FACILITIES, PARKS, PICNIC AREAS, PLACES OF WORSHIP, PLAYGROUNDS, PUBLIC MEETING ROOMS, PUBLIC OR NONPROFIT INSTITUTIONAL STRUCTURES, RADIO STUDIOS, RECORDING STUDIOS, RECREATION AREAS, SECTION 4(F) SITES, SCHOOLS, TELEVISION STUDIOS, TRAILS, AND TRAIL CROSSINGS</td>
<td>67 dBA (EXTERIOR)</td>
</tr>
<tr>
<td>D</td>
<td>AUDITORIUMS, DAY CARE CENTERS, HOSPITALS, LIBRARIES, MEDICAL FACILITIES, PLACES OF WORSHIP, PUBLIC MEETING ROOMS, PUBLIC OR NONPROFIT INSTITUTIONAL STRUCTURES, RADIO STUDIOS, RECORDING STUDIOS, SCHOOLS, AND TELEVISION STUDIOS.</td>
<td>52 dBA (INTERIOR)</td>
</tr>
<tr>
<td>E</td>
<td>HOTELS, MOTELS, OFFICES, RESTAURANTS/BARS, AND OTHER DEVELOPED LANDS, PROPERTIES OR ACTIVITIES NOT INCLUDED IN A-D OR F.</td>
<td>72 dBA (EXTERIOR)</td>
</tr>
<tr>
<td>F</td>
<td>AGRICULTURE, AIRPORTS, BUS YARDS, EMERGENCY SERVICES, INDUSTRIAL, LOGGING, MAINTENANCE FACILITIES, MANUFACTURING, MINING, RAIL YARDS, RETAIL FACILITIES, SHIPYARDS, UTILITIES (WATER RESOURCES, WATER TREATMENT, ELECTRICAL), AND WAREHOUSING</td>
<td>N/A</td>
</tr>
<tr>
<td>G</td>
<td>UNDEVELOPED LANDS THAT ARE NOT PREMITTED</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Project Site and Noise Measurement Locations

Legend

- **Short Term Noise Measurement Location**
- **Long Term Noise Measurement Location**
- **Property Line**

L1 160 feet west of Fort Barrett Rd.
L2 5 feet east of Kunehi St.
S1 140 feet west of Fort Barrett Rd.
S2 50 feet north of Kapolei Pkwy
(all distances measured from the edge of pavement)
Graph of Long Term Noise Measurements - Location 1

Leq(DAY) = 59 dBA
Leq(NIGHT) = 53 dBA
LDN = 61 dBA

DATE & TIME OF MEASUREMENT

PROJECT:
Kapolei II Elementary School

PROJECT NO. 13-45A
DATE: January 2014
FIGURE: 4
Graph of Long Term Noise Measurements - Location 2

Leq
L(90)

Kapolei II Elementary School
January 2014

LEQ(DAY) = 64 dBA
LEQ(NIGHT) = 58 dBA
LDN = 66 dBA

Unknown Noise Sources

Date & Time of Measurement

PROJECT:
Kapolei II Elementary School

PROJECT NO.: 13-45A
DATE: January 2014
FIGURE: 5
Typical Noise Levels from Construction Equipment

<table>
<thead>
<tr>
<th>Noise Level in dBA at 50 Feet (dBA)</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
</table>

Earth Moving
- **Compactors (Rollers)**
- **Front Loaders**
- **Backhoes**
- **Hand Tamper**
- **Scrapers Graders**
- **Pavers**
- **Trucks**

Material Handling
- **Concrete Mixers**
- **Concrete Pumps**
- **Cranes (Movable)**
- **Cranes (Derrick)**

Stationary
- **Pumps**
- **Generators**
- **Compressors**

HDD Equipment
- **Drilling Unit**
- **Vacuum Excavator**
- **Recirculation Plant**

Trenching Equipment
- **Large Excavator**
- **Small Excavator**
- **Saw Cutter**

Note: Based on limited available data samples

D. L. Adams Associates

Project: Kapolei II Elementary School

Project No: 13-45A C-24

Date: January 2014

Figure: 6
Figure: Project Site and Predicted Traffic Noise Level Locations

Legend

- Predicted Traffic Noise Level Location
- Property Line

A KES Building G
B KES Building C
C La Kiki Neighborhood
D Leihano Senior Living
E Kapolei High School

Kapolei II Elementary School

<table>
<thead>
<tr>
<th>PROJECT NO.</th>
<th>DATE</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-45A</td>
<td>January 2013</td>
<td>7</td>
</tr>
</tbody>
</table>
EXISTING (2013) - SOUND LEVEL CONTOURS DUE TO PM VEHICULAR TRAFFIC

Leihano Senior Living (Under Construction)
Kapolei High School Buildings
Kapolei Pkwy
Kunehi St.
Residences

> 40 dBA
> 45 dBA
> 50 dBA
> 55 dBA
> 60 dBA
> 65 dBA
> 70 dBA
> 75 dBA
> 80 dBA
> 85 dBA

PROJECT:
Kapolei II ES

PROJECT NO.
13-45A

DATE:
January 2014

FIGURE:
9
Kapolei High School Buildings
Leihano Senior Living (Under Construction)
Kapolei Pkwy
Kunehi St.
Residences

> 40 dBA
> 45 dBA
> 50 dBA
> 55 dBA
> 60 dBA
> 65 dBA
> 70 dBA
> 75 dBA
> 80 dBA
> 85 dBA

PROJECT:
Kapolei II ES

PROJECT NO.
13-45A

DATE:
January 2014

FIGURE:
11
FUTURE (2018) WITH PROJECT - SOUND LEVEL CONTOURS DUE TO AM VEHICULAR TRAFFIC

Residences

Leihano Senior Living (Under Construction)

Kapolei High School Buildings

Kapolei Pkwy

Kunehi St.

Fort Barrette Rd.

> 40 dBA
> 45 dBA
> 50 dBA
> 55 dBA
> 60 dBA
> 65 dBA
> 70 dBA
> 75 dBA
> 80 dBA
> 85 dBA

PROJECT:
Kapolei II ES

PROJECT NO.
13-45A
C-30

DATE:
January 2014

FIGURE:
12
APPENDIX A

Acoustic Terminology
Acoustic Terminology

Sound Pressure Level

Sound, or noise, is the term given to variations in air pressure that are capable of being detected by the human ear. Small fluctuations in atmospheric pressure (sound pressure) constitute the physical property measured with a sound pressure level meter. Because the human ear can detect variations in atmospheric pressure over such a large range of magnitudes, sound pressure is expressed on a logarithmic scale in units called decibels (dB). Noise is defined as an unwanted sound.

Technically, sound pressure level (SPL) is defined as:

\[SPL = 20 \log \left(\frac{P}{P_{\text{ref}}} \right) \text{ dB} \]

where \(P \) is the sound pressure fluctuation (above or below atmospheric pressure) and \(P_{\text{ref}} \) is the reference pressure, 20 µPa, which is approximately the lowest sound pressure that can be detected by the human ear. For example:

- If \(P = 20 \) µPa, then \(SPL = 0 \) dB
- If \(P = 200 \) µPa, then \(SPL = 20 \) dB
- If \(P = 2000 \) µPa, then \(SPL = 40 \) dB

The sound pressure level that results from a combination of noise sources is not the arithmetic sum of the individual sound sources, but rather the logarithmic sum. For example, two sound levels of 50 dB produce a combined sound level of 53 dB, not 100 dB. Two sound levels of 40 and 50 dB produce a combined level of 50.4 dB.

Human sensitivity to changes in sound pressure level is highly individualized. Sensitivity to sound depends on frequency content, time of occurrence, duration, and psychological factors such as emotions and expectations. However, in general, a change of 1 or 2 dB in the level of sound is difficult for most people to detect. A 3 dB change is commonly taken as the smallest perceptible change and a 6 dB change corresponds to a noticeable change in loudness. A 10 dB increase or decrease in sound level corresponds to an approximate doubling or halving of loudness, respectively.

A-Weighted Sound Level

Studies have shown conclusively that at equal sound pressure levels, people are generally more sensitive to certain higher frequency sounds (such as made by speech, horns, and whistles) than most lower frequency sounds (such as made by motors and engines) at the same level. To address this preferential response to frequency, the A-weighted scale was developed. The A-weighted scale adjusts the sound level in each frequency band in much the same manner that the

Thus the A-weighted sound level (read as "dBA") becomes a single number that defines the level of a sound and has some correlation with the sensitivity of the human ear to that sound. Different sounds with the same A-weighted sound level are perceived as being equally loud. The A-weighted noise level is commonly used today in environmental noise analysis and in noise regulations. Typical values of the A-weighted sound level of various noise sources are shown in Figure A-1.

Figure A-1. Common Outdoor/Indoor Sound Levels
Equivalent Sound Level
The Equivalent Sound Level (Leq) is a type of average which represents the steady level that, integrated over a time period, would produce the same energy as the actual signal. The actual instantaneous noise levels typically fluctuate above and below the measured Leq during the measurement period. The A-weighted Leq is a common index for measuring environmental noise. A graphical description of the equivalent sound level is shown in Figure A-2.

![Graph of Equivalent and Statistical Sound Levels](image)

Figure A-2. Example Graph of Equivalent and Statistical Sound Levels

Statistical Sound Level
The sound levels of long-term noise producing activities such as traffic movement, aircraft operations, etc., can vary considerably with time. In order to obtain a single number rating of such a noise source, a statistically-based method of expressing sound or noise levels has been developed. It is known as the Exceedence Level, Ln. The Ln represents the sound level that is exceeded for n% of the measurement time period. For example, L10 = 60 dBA indicates that for the duration of the measurement period, the sound level exceeded 60 dBA 10% of the time. Typically, in noise regulations and standards, the specified time period is one hour. Commonly used Exceedence Levels include L01, L10, L50, and L90, which are widely used to assess community and environmental noise. A graphical description of the equivalent sound level is shown in Figure A-2.

Day-Night Equivalent Sound Level
The Day-Night Equivalent Sound Level, Ldn, is the Equivalent Sound Level, Leq, measured over a 24-hour period. However, a 10 dB penalty is added to the noise levels recorded between 10 p.m. and 7 a.m. to account for people's higher sensitivity to noise at night when the background noise level is typically lower. The Ldn is a commonly used noise descriptor in assessing land use compatibility, and is widely used by federal and local agencies and standards organizations.

Appendix A – Acoustic Terminology
Sound Exposure Level
The sound exposure level, SEL, is the total noise energy produced from a single noise event. The sound exposure level is used to describe the amount of noise from discrete moving sources such as an individual aircraft flyover or a single train passing by. The sound exposure level is the integration of all the acoustic energy contained within the event.
APPENDIX B

Photographs at Project Site
Location L1
Located 160 feet west of Fort Barrette Rd.

Location L2
Located 5 feet east of Kunehi St.
APPENDIX D

PHASE I ENVIRONMENTAL SITE ASSESSMENT
FINAL REPORT
OF
PHASE I ENVIRONMENTAL SITE ASSESSMENT

ELEMENTARY SCHOOL AT MEHANA
WEST OF FORT BARRETTE ROAD
KAPOLEI, HONOLULU COUNTY, HAWAI`I 96707

Prepared for:

D.R. HORTON - SCHULER HOMES, LLC
301 COMMERCE STREET
SUITE 500
FORT WORTH, TEXAS 76102

Prepared by:

TETRA TECH, INC.
2901 WILCREST DRIVE
SUITE 400
HOUSTON, TEXAS 77042

TETRA TECH PROJECT 112C04889.1301.HI0711A

JANUARY 23, 2014
January 23, 2014

Mr. Edward Perez
D.R. Horton - Schuler Homes, LLC
301 Commerce Street, Suite 500
Fort Worth, Texas 76102

Subject: REPORT OF PHASE I ENVIRONMENTAL SITE ASSESSMENT
Elementary School at Mehana
West of Fort Barrette Road
Kapolei, Honolulu County, Hawai`i 96707
Tetra Tech Project: 112C04889.1301.HI0711A

Dear Mr. Perez:

Tetra Tech, Inc. (Tetra Tech) is pleased to submit this report of our Phase I Environmental Site above referenced property. The purpose of our services was to characterize the general site and adjacent property conditions relative to environmental concerns and to identify recognized environmental conditions (RECs) and actual and potential environmental concerns.

The findings and recommendations presented herein are based upon the review of information, which was readily available at the time of our investigation, our interpretation of available data, and our experience on similar projects. The discovery of any additional information concerning the environmental conditions at the site should be reported to Tetra Tech for review so that we can reassess potential environmental impacts and modify our recommendations, if necessary.

This report has been prepared and is intended for the sole and exclusive use of D.R. Horton, Inc., its subsidiaries, the Department of Land and Natural Resources, the Department of Education and the State of Hawai`i. If other secondary clients wish to rely on this report, please have them contact Tetra Tech so that a mutual understanding and agreement of the terms and conditions for our services can be established prior to their use of this information. Our services have been performed under mutually agreed upon terms and conditions. Tetra Tech, Inc. does not extend or grant reliance of this report to recipients beyond D.R. Horton and its subsidiaries.

This report was prepared in accordance with the requirements of the American Society for Testing and Materials (ASTM) E 1527-05 Standard Practice for Environmental Site Assessments Phase I Environmental Site Assessment Process (E1527-05) and the requirements for satisfying “All Appropriate Inquiries” (as set forth in 40 Code of Federal Regulations (CFR) 312 et seq.; “AAI”). In meeting the objectives of E1527-05 and as a material requirement of 40 CFR 312.21(d) regarding requisite requirements of the environmental professional engaged in the preparation of this report Tetra Tech represents as follows:

We declare that, to the best of our professional knowledge and belief, we meet the definition of “environmental professional” as defined in Section 312.10 of 40 CFR 312. We have the specific qualifications based on the nature, history, and setting of the target property. We have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.
Sincerely,

TETRA TECH, INC.

[Signature]

Julie Helfrich
Project Manager

[Signature]

Dennis P. Welch, CHMM
Program Manager
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1

1.0 INTRODUCTION .. 1-1

2.0 PURPOSE, SCOPE, AND REPORT FORMAT .. 2-1

2.1 PURPOSE ... 2-1

2.2 SCOPE OF SERVICES ... 2-1

2.3 EXCEPTIONS, DEVIATIONS AND LIMITATIONS .. 2-2

2.4 REPORT FORMAT .. 2-2

3.0 SITE AND AREA RECONNAISSANCE ... 3-1

3.1 SITE RECONNAISSANCE .. 3-1

3.1.1 Underground Storage Tanks .. 3-2

3.1.2 Aboveground Storage Tanks .. 3-3

3.1.3 Hazardous Materials and Waste .. 3-3

3.1.4 Solid Waste ... 3-3

3.1.5 PCB-Containing Fluids ... 3-3

3.1.6 Water Supply/Utilities and Wells .. 3-4

3.1.7 Wastewater, Sewage Disposal, and Septic Tanks .. 3-4

3.1.8 Odors ... 3-4

3.1.9 Potential Wetlands Conditions .. 3-4

3.1.10 Pits, Ponds, Lagoons, and Other Surface Waters .. 3-4

3.1.11 Heating and Air Conditioning Systems .. 3-4

3.1.12 Staining and Corrosion .. 3-5

3.1.13 Drains, Sumps and Dry Wells .. 3-5

3.1.14 Stained Soil or Pavement .. 3-5

3.1.15 Stressed Vegetation .. 3-5

3.1.16 Oil and Gas Wells and Mine Shafts .. 3-5

3.1.17 Structures ... 3-5

3.2 AREA RECONNAISSANCE ... 3-5

3.2.1 North ... 3-6

3.2.2 East ... 3-6

3.2.3 South .. 3-6

3.2.4 West ... 3-6

4.0 HISTORICAL REVIEW .. 4-1

4.1 INTERVIEWS WITH OWNER OR REPRESENTATIVE .. 4-1

4.2 INTERVIEW WITH CURRENT AND PAST OCCUPANTS AND/OR SITE MANAGERS ... 4-1

4.3 OTHER INTERVIEWS .. 4-2

4.4 CORRESPONDENCE WITH GOVERNMENT OFFICIALS .. 4-2

4.5 CHAIN OF TITLE .. 4-2

4.6 PREVIOUS SITE USE .. 4-4

4.7 PREVIOUS SURROUNDING SITE USE ... 4-5

4.8 PREVIOUS ENVIRONMENTAL REPORTS .. 4-5

5.0 REGULATORY REVIEW .. 5-1

5.1 REGULATORY LISTED FACILITIES .. 5-1

5.1.1 EPA National Priorities List ... 5-3

5.1.2 EPA Proposed National Priorities List ... 5-3
PHYSICAL SETTINGS ... 6-1

OTHER POTENTIAL ISSUES OF CONCERN ... 7-1

Elementary School at Mehana, Kapolei, Honolulu County, Hawai‘i 96707

Tetra Tech, Inc. Project Number 112C04889.1301.HI0711A
January 23, 2014
Phase I Environmental Site Assessment
Elementary School at Mehana, Kapolei, Honolulu County, Hawai‘i 96707
Tetra Tech, Inc. Project Number 112C04889.1301.HI0711A
January 23, 2014

8.0 USER PROVIDED INFORMATION
8.1 TITLE RECORDS
8.2 ENVIRONMENTAL LIENS OR ACTIVITY AND USE LIMITATIONS
8.3 SPECIALIZED KNOWLEDGE
8.4 VALUATION REDUCTION FOR ENVIRONMENTAL ISSUES
8.5 OWNER, PROPERTY MANAGER, AND OCCUPANT INFORMATION
8.6 REASON FOR PERFORMING THE PHASE I ESA

9.0 CONCLUSIONS AND RECOMMENDATIONS

10.0 LIMITATIONS

11.0 SIGNATURES

FIGURES

Figure 1 – Site Location Map
Figure 2 – Site Map
Figure 3 – Aerial Photograph
Figure 4 – Topographic Map

APPENDICES

Appendix A – Photographs
Appendix B – EDR Report
Appendix C – Qualifications of Project Personnel
Appendix D – Cited References
Appendix E – User Questionnaire
EXECUTIVE SUMMARY
Elementary School at Mehana
West of Fort Barrette Road
Kapolei, Honolulu County, Hawai`i

D.R. Horton, Inc. (D.R. Horton) engaged Tetra Tech, Inc. (Tetra Tech) to perform a Phase I Environmental Site Assessment (ESA) of the above referenced property in conformance with the scope and limitations of the ASTM International (ASTM) Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process (E1527-05) and the requirements of “All Appropriate Inquiries” (“AAI”, at 40 CFR 312 et seq.). This site assessment for the Elementary School at Mehana (the target property), which was authorized by Myra Ingersoll on November 20, 2013 and confirmed by issue of Tetra Tech Project Order 112C04889.1301.HI0711A, was conducted in accordance with ASTM E 1527-05 in consideration of a real estate transaction. This report is prepared for use by D.R. Horton, its subsidiaries, the Department of Land and Natural Resources (DLNR), the Department of Education (DOE) and the State of Hawai`i (SOH). The project scope-of-work was designed and executed to assess the potential for recognized environmental conditions (RECs) associated with the target property.

PROPERTY DESCRIPTION

The target property, which is currently owned by D.R. Horton and retains no physical address at this time, consists of approximately 12.35 acres of cleared and graded land located southwest of the intersection at Fort Barrette Road and Kapolei Parkway. The target property is comprised by portions of two contiguous parcels, the majority of which is identified as Tax Map Key (TMK) No. (1) 9-1-016: Parcel 124. The target property’s western boundary is encompassed by portions of TMK No. (1) 9-1-016: Parcel 131. The target property is zoned by the City and County of Honolulu Planning Department as A-1-Agriculture and is classified under State zoning as U-Urban.

The target property is bordered to the north by undeveloped land with Kapolei Parkway beyond. To the east, the target property is bordered by Fort Barrette Road with Kapolei High School beyond. The target property is bordered to the south by a single-family residential development. To the west, the target property is bordered by Kunehi Street with a residential development beyond. The target property vicinity can be described as a residential setting with a high school campus located directly across Fort Barrette Road.
SITE RECONNAISSANCE

On November, 26, 2013, Tetra Tech representative Kelly Kolysko conducted a site reconnaissance of the target property. At the time of Tetra Tech’s site reconnaissance, the target property consisted of approximately 12.35 acres of cleared and graded land. The entire property was graded with a homogeneous yellow-colored coralline fill material, the origin and quality of which is further discussed in the On-Site Conditions section below. The sparse vegetation observed at the target property consisted of grasses and low-lying shrubs. The southern portions of the property sloped moderately to the south to a lower-lying area which exhibited moderate vegetative coverage. An area to the south and a portion of the southeastern corner of the target property formally comprised Kekona’s Pit, a large coral borrow pit which has been filled and is further discussed in the Off-Site Conditions section below. A drainage swale was observed along the eastern boundary which discharged into a storm drain on the southeastern corner of the target property. A chain-link fence also ran along portions of the eastern property boundary along Fort Barrette Road. Tetra Tech observed two small piles of debris in the southwestern and southeastern corners of the target property, respectively. Debris included wood pallets, a PVC pipe, and various household items. Additionally, one pad-mounted transformer was observed along the western boundary of the target property.

HISTORICAL REVIEW

Tetra Tech’s review of historical information included aerial photographs, a topographic map, and historical information indicates that the target property and immediate vicinity have long been historically used for commercial cultivation of sugar cane, dating back to at least 1951. Kekona’s Pit was first observed on the southern adjacent property in the 1951 aerial photograph.

REGULATORY REVIEW

Tetra Tech’s review of available regulatory information indicated no RECs or developmental conditions pertaining to the target property. Tetra Tech recommends no further investigation in this regard.

ON-SITE CONDITIONS

Tetra Tech did not identify any on-site RECs associated with the target property.
In 2006, over 200,000 cubic feet of fill material was imported to the site from Campbell Industrial Park for grading purposes across the target property. This fill reportedly originated from a harbor dredging operation located near the harbor at Barber’s Point. The depth of the fill was estimated to be to approximately 5 feet below ground surface (bgs) and variable across the property. Based on the unknown character of this material, Tetra Tech conducted Limited Phase II investigation at the target property on December 27 and 28, 2009. During this investigation, Tetra Tech collected four multi-incremental soil samples across the target property. These samples were analyzed for total petroleum hydrocarbons (TPH), Resource Conservation and Recovery Act (RCRA) 8 heavy metals including lead and arsenic, and poly-chlorinated biphenyls (PCBs). The laboratory analytical results were compared to Hawai‘i State Department of Health (HDOH) Tier 1 Environmental Action Levels (EALs) for non-restricted sites for properties above non-drinking aquifers receiving less than 200 inches of annual rainfall that are also greater than 150 meters from a surface water body. Analytical results revealed concentrations either below laboratory detection limits or below the respective HDOH Tier 1 EALs. Tetra Tech determined that no further action was necessary with regard to the imported fill material at the target property.

OFF-SITE CONDITIONS

Tetra Tech did not identify any off-site RECs to the target property.

An area to the south of the target property as well as a portion of the southeastern corner of the target property formally comprised Kekona’s Pit, an approximately 4-acre coral borrow pit which has since been filled. The majority of this former pit was located to the south and southeast of the target property and was reportedly a source of coralline utilized at developments throughout the island. When excavation activities encountered the Ewa caprock aquifer, a water “well” or trench was utilized for agricultural irrigation activities in the area by the Ewa Plantation Company and Oahu Sugar Company. As agricultural activities in the area diminished, off-site areas of the pit appear to have been utilized for vehicle salvage and incineration activities. During site re-development activities, conditions associated with vehicle salvage and incineration activities within the pit were removed and disposed off-site and backfilling accomplished. Since vehicle salvage and incineration activities occurred in locations of the former pit that were off-site and hydrologically down-gradient from the target property and conditions abated during site re-development activities, the Kekona’s Pit is not considered a REC to the target property. No further investigation is warranted at this time.
OTHER POTENTIAL ISSUES OF CONCERN

Tetra Tech conducted a review of other potential issues of concern, which may warrant further investigation. Issues of concern may impact or affect the manner or timeline in which development of the property can occur. Other potential issues of concern may include, but are not limited to the presence of suspect Asbestos-Containing Material (ACM) and damaged Lead-Based Paint (LBP) in structures located on the property, the presence of wetlands and threatened or endangered species, and the incidence of designated 100-year and 500-year flood zones in relation to the target property.

Based on our site reconnaissance of the target property and corresponding due diligence activities, none of the above-mentioned items are deemed apparent potential issues of concern for the target property.

CONCLUSIONS AND RECOMMENDATIONS

This Phase I has revealed no RECs in connection with the target property, and no further action is warranted. Tetra Tech performed this assessment in general conformance with the scope and limitations of ASTM E 1527-05 of the target property to identify RECs in connection with the target property including the presence, or likely presence, of hazardous substances or petroleum products on the target property under conditions that indicate an existing release, a past release, or a material threat of a release into structures on the target property or into the ground, groundwater, or surface water. This assessment included an evaluation to the extent practicable of the past and present land uses at the target property and on adjacent properties. Any exceptions to, or deletions from, the ASTM E 1527-05 scope are described in Sections 2.2 and 2.3 of this report.
1.0 INTRODUCTION

D.R. Horton, Inc. (D.R. Horton) engaged Tetra Tech, Inc. (Tetra Tech) to perform a Phase I Environmental Site Assessment (ESA) of the Elementary School at Mehana located southwest of the intersection at Fort Barrette Road and Kapolei Parkway, Kapolei, Honolulu County, Hawai`i, the target property, in conformance with the scope and limitations of the ASTM International (ASTM) Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process (E1527-05) and the requirements of “All Appropriate Inquiries” (“AAI”, at 40 CFR 312 et seq.).

The approximate 12.35-acre target property is comprised by portions of two contiguous parcels, the majority of which is identified as Tax Map Key (TMK) No. (1) 9-1-016: Parcel 124. The target property’s western boundary is encompassed by portions of TMK No. (1) 9-1-016: Parcel 131. The target property is zoned A-1-Agriculture and the State zoning is classified as U-Urban.

Ms. Kelly Kolysko of the Tetra Tech Hawai`i office performed the initial site reconnaissance on November 26, 2013. Ms. Kolysko is a Tetra Tech professional experienced in ESAs.
2.0 PURPOSE, SCOPE, AND REPORT FORMAT

2.1 PURPOSE

Pursuant to ASTM Standard E 1527-05, the purpose of Tetra Tech’s services was to identify the presence of Recognized Environmental Conditions (RECs) or developmental conditions resulting from practices and activities that have occurred on the target property or adjacent sites that could potentially contaminate the site, by conducting a Phase I ESA.

2.2 SCOPE OF SERVICES

The Phase I ESA is a non-intrusive, general characterization of environmental concerns to the target property, based on readily available information and site observations. The assessment was conducted in accordance with the requirements of AAI and the American Society of Testing and Materials, ASTM E 1527-05 “Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process,” which meets the objectives of satisfying the innocent land owner defense under the Comprehensive Environmental Response and Compensation Liability Act (CERCLA) and identifying business environmental risk associated with acquisition of the target property.

This Phase I ESA was performed as part of a real estate transaction between D.R. Horton, Inc. (D.R. Horton), its subsidiaries, the Department of Land and Natural Resources (DLNR), the Department of Education (DOE) and the State of Hawai‘i (SOH) to identify the potential for RECs or environmental concerns related to the target property.

The scope of services provided is summarized below:

- Tetra Tech performed a site and area reconnaissance and reviewed available topographic maps, published soils reports, geology and hydrogeology information of the target property and/ or general vicinity to assist in characterizing the area surface and subsurface drainage.

- Tetra Tech reviewed readily available historical documents, including maps, aerial photographs, and previous environmental studies conducted at the site. Additionally, Tetra Tech conducted an interview with the property owner and/or other individual to assist in determining the past use of the property.
Tetra Tech reviewed readily available environmental reports published by others, and by state and federal agencies, and contacted local and/or municipal agencies to determine if the target property or nearby properties are listed as having a present or past REC or environmental condition, are under investigation or are regulated by state, federal, or local environmental regulatory officials.

Tetra Tech performed a site and surrounding area reconnaissance to identify indications of present or past activities that have or could have contaminated the site. Any assessment of issues identified as “additional issues” in ASTM E 1527-05 such as asbestos, lead in paint, radon, and lead in drinking water were not performed as part of this assessment.

Tetra Tech prepared this report to present the findings, conclusions, and recommendations.

2.3 EXCEPTIONS, DEVIATIONS AND LIMITATIONS

During the course of this investigation no exceptions, deviations or limitations from the scope of work, in the form of “data gaps” (as described in AAI) were encountered with the exception of the following.

- Time gaps of more than 5 years were noted in available historical information. Tetra Tech does not believe that this deviation impacts the ability to render an opinion regarding potential RECs or de minimis conditions for the target property or the conclusions or recommendations of this report.

- Tetra Tech did not conduct an Environmental Lien Search as part of this assessment. D.R. Horton conducts title history research as part of their pre-acquisition process. D.R. Horton did not discover, nor notify Tetra Tech of any environmental liens related to the target property.

In summary, Tetra Tech concludes that none of the above-identified data gaps are likely to alter the conclusions or concentrations of this report.

2.4 REPORT FORMAT

The report is presented in the following format:

- Site and Area Reconnaissance
- Historical Review
- Regulatory Review
- Physical Settings
- User Provided Information
- Conclusions and Recommendations
- Limitations
3.0 SITE AND AREA RECONNAISSANCE

The site and area reconnaissance was performed to identify visual indications of present or past activities that have or could have contaminated the target property. The site reconnaissance was conducted on foot, while area reconnaissance was conducted on foot and also by vehicle. The site and area reconnaissance was conducted for the target property by Ms. Kelly Kolysko on November 26, 2013. Maps, which illustrate the general location and configuration of the site, are presented as Figures 1 and 2 (Appendix A), respectively. Site and area reconnaissance photographs are provided in Appendix A.

3.1 SITE RECONNAISSANCE

At the time of Tetra Tech’s site reconnaissance, the target property consisted of approximately 12.35 acres of cleared and graded land. The entire property was graded with a homogeneous yellow-colored coralline fill material, the origin and quality of which is further discussed in Section 4.8. The sparse vegetation observed at the target property consisted of grasses and low-lying shrubs. The southern portions of the property sloped moderately to the south to lower-lying area which exhibited moderate vegetative coverage. An approximately 4-acre area to the south and a portion of the southeastern corner of the target property formally comprised Kekona’s Pit, a coralline borrow pit which has been filled and is further discussed in Section 4.8. A drainage swale was observed along the eastern target property boundary which discharged into a storm drain at the southeastern corner of the target property. A chain link fence also ran along portions of the eastern property boundary along Fort Barrette Road. Tetra Tech observed two small piles of debris in the southwestern and southeastern corners of the target property, respectively. Debris included wood pallets, a PVC pipe, and various household items. Additionally, one pad-mounted transformer was observed along the western boundary of the target property.

A general review of the developer’s erosion control and storm water compliance efforts indicated no implementation of storm water best management practices (BMPs) at the target property; however, no evidence of erosion and washout was observed during the site reconnaissance.

The target property is bordered to the north by undeveloped land with Kapolei Parkway beyond. To the east, the target property is bordered by Fort Barrette Road with Kapolei High School beyond. The target property is bordered to the south by single-family residential development. To the west, the target property is bordered by Kunehi Street, with residential development beyond.
No obvious staining, stressed vegetation, landfill activities, or hazardous materials were observed on the target property.

The following table summarizes conditions observed on the target property. A discussion describing the significance of each observed condition listed and results of its evaluation with respect to the target property follows.

<table>
<thead>
<tr>
<th>On-Site Conditions/ Appurtenances</th>
<th>Exist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underground Storage Tanks</td>
<td>No</td>
</tr>
<tr>
<td>Aboveground Storage Tanks</td>
<td>No</td>
</tr>
<tr>
<td>Hazardous Materials and Wastes</td>
<td>No</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>Yes</td>
</tr>
<tr>
<td>Potential Polychlorinated Biphenyls containing equipment</td>
<td>Yes</td>
</tr>
<tr>
<td>Water Wells</td>
<td>No</td>
</tr>
<tr>
<td>Waste Water Sewage Disposal/Septic</td>
<td>No</td>
</tr>
<tr>
<td>Odors</td>
<td>No</td>
</tr>
<tr>
<td>Pits, Ponds, Lagoons and Other Surface Waters</td>
<td>No</td>
</tr>
<tr>
<td>HVAC</td>
<td>No</td>
</tr>
<tr>
<td>Staining and Corrosion</td>
<td>No</td>
</tr>
<tr>
<td>Drains, Sumps and Dry Wells</td>
<td>Yes</td>
</tr>
<tr>
<td>Stained Soils or Pavements</td>
<td>No</td>
</tr>
<tr>
<td>Stressed Vegetation</td>
<td>No</td>
</tr>
<tr>
<td>Potential Wetland Conditions</td>
<td>No</td>
</tr>
<tr>
<td>Oil and Gas Wells / Mine Shafts</td>
<td>No</td>
</tr>
<tr>
<td>Structures</td>
<td>No</td>
</tr>
</tbody>
</table>

3.1.1 Underground Storage Tanks

Tetra Tech's site reconnaissance revealed no underground storage tanks (USTs) containing regulated substances on the target property. Tetra Tech observed no evidence of past or present USTs on the target property. Tetra Tech observed no unusual ground conditions, to indicate the presence of USTs, waste oil
tanks, hydraulic lifts, or other environmental concerns, on the target property during Tetra Tech’s site reconnaissance.

3.1.2 Aboveground Storage Tanks

Tetra Tech observed no aboveground storage tanks (ASTs) on the target property.

3.1.3 Hazardous Materials and Waste

Tetra Tech observed no hazardous materials or wastes on the target property.

3.1.4 Solid Waste

Tetra Tech observed two small piles of debris in the southwestern and southeastern corners of the target property, respectively. Debris included wood pallets, a PVC pipe, and various household items. No staining, distressed vegetation or other concerns were noted in association with the solid waste observed at the target property. No additional solid waste or evidence of landfills was observed during Tetra Tech’s site reconnaissance.

3.1.5 PCB-Containing Fluids

Electrical transformers are often a source of environmental concern due to the potential presence of polychlorinated biphenyl (PCB)-containing cooling oils used in some units. Equipment containing hydraulic oil may also be PCB-containing. Utility companies will typically respond to reported spills associated with their equipment. One new pad-mounted transformer was observed along the western boundary of the target property. This transformer was observed to be in good condition with no evidence of leaks or spills; however, a “NO PCB” was not observed on the transformer. Based on the age and condition of the transformer, Tetra Tech concludes that the transformer does not represent an environmental risk to the target property.
3.1.6 Water Supply/Utilities and Wells

Potable water and municipal sewer services will be supplied by the Honolulu County of Board of Water and electricity will be provided by Hawai`i Electric. Natural gas will not be supplied to the target property.

Based on review of hydrologic data provided in the EDR Report, two water wells appear to be located on the northern portion of the target property. The first well is 12 inches in diameter and was installed to a depth of 77 feet below ground surface (bgs) in 1991. The second well was installed on October 26, 1989 to a depth of 80 feet bgs. Groundwater was measured at 50 feet bgs in this well on October 26, 1989. No evidence of water wells was observed during Tetra Tech’s site reconnaissance.

3.1.7 Wastewater, Sewage Disposal, and Septic Tanks

Municipal sewer services will be supplied by the Honolulu County of Board of Water. No evidence of a septic tank was observed during Tetra Tech’s site reconnaissance.

3.1.8 Odors

No unusual odors were detected during Tetra Tech’s site reconnaissance of the target property.

3.1.9 Potential Wetlands Conditions

No wetlands were observed on the target property.

3.1.10 Pits, Ponds, Lagoons, and Other Surface Waters

No pits, ponds, lagoons or other surface waters were observed on the target property.

3.1.11 Heating and Air Conditioning Systems

Heating or air-conditioning systems were not observed on the target property.
3.1.12 Staining and Corrosion

No staining or corrosion was observed on the target property.

3.1.13 Drains, Sumps and Dry Wells

A drainage swale was observed along the eastern target property boundary which discharged into a storm drain at the southeastern corner of the target property.

3.1.14 Stained Soil or Pavement

No stained soil or pavement was observed on the target property.

3.1.15 Stressed Vegetation

No stressed vegetation was observed on the target property.

3.1.16 Oil and Gas Wells and Mine Shafts

No evidence of oil wells, gas wells or related activities was noted on the target property.

3.1.17 Structures

No evidence of structures was observed on the target property.

3.2 AREA RECONNAISSANCE

An area reconnaissance was performed to identify visual indications of present or past activities that have or could have contaminated the target property. The area reconnaissance was conducted by automobile, and/or on foot, unless otherwise noted. The findings of the area reconnaissance are presented according to the geographic relationship to the target property.
3.2.1 North

The target property is bordered to the north by undeveloped land with Kapolei Parkway beyond.

3.2.2 East

To the east, the target property is bordered by Fort Barrette Road with Kapolei High School beyond.

3.2.3 South

The target property is bordered to the south by single-family residential development.

3.2.4 West

To the west, the target property is bordered by Kunehi Street, with residential development beyond.
4.0 HISTORICAL REVIEW

Tetra Tech reviewed available information in order to ascertain the historical uses of the target property and immediately adjacent properties to evaluate the presence of activity of potential environmental concern. A recent aerial photograph for the area in which the target property is located is presented as Figure 3.

TABLE 2

<table>
<thead>
<tr>
<th>Resource</th>
<th>Scale</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial photographs by Environmental Data Resources, Inc.</td>
<td>1:750</td>
<td>1951</td>
</tr>
<tr>
<td></td>
<td>1:500</td>
<td>1968</td>
</tr>
<tr>
<td></td>
<td>1:1,000</td>
<td>1975</td>
</tr>
<tr>
<td></td>
<td>1:750</td>
<td>1985</td>
</tr>
<tr>
<td></td>
<td>1:750</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>1:500</td>
<td>2001</td>
</tr>
<tr>
<td></td>
<td>1:500</td>
<td>2004</td>
</tr>
</tbody>
</table>

4.1 INTERVIEWS WITH OWNER OR REPRESENTATIVE

Tetra Tech interviewed the target property owner representatives, Mr. Peter Phillips with D.R. Horton Hawai`i. Based upon tax records, D.R. Horton became the grantor of the target property in 2005 (see Section 4.5). According to Mr. Phillips, D.R. Horton has owned this property since 2004 and he has been familiar with the property for approximately seven years. He was not aware of any current environmental concerns for the target property. Mr. Phillips stated that the land was previously utilized as agricultural land and a portion of the property was part of the former Kekona’s Pit. Mr. Phillips indicated that development of the property began in approximately 2006, when the target property was cleared and graded with fill from Campbell Industrial Park, discussed further in Section 4.8.

4.2 INTERVIEW WITH CURRENT AND PAST OCCUPANTS AND/OR SITE MANAGERS

Past or present site occupants were not available for interview.
4.3 OTHER INTERVIEWS

Tetra Tech also contacted Mr. Wilson Rivera, a pipeline/mooring analyst of Chevron Products Company to obtain additional information regarding the pipelines that are located off-site, approximately 750 feet south of the property. According to Mr. Rivera, two, 8-inch diameter carbon steel pipelines which transport highly-volatile liquid (HVL) are located off-site and to the south of the target property. Mr. Rivera cited that the pipelines were installed in 1959; one pipeline transports diesel and mogas, the other transports jet fuel and both operate at an approximate pressure of 600 pounds per square inch (psi). Additionally, both pipelines are inspected by the Federal Department of Transportation by cathodic protection and coating surveys, and the interior of the pipelines are cleaned and inspected with “smart pig” technology at least every four years. Tetra Tech could not ascertain the exact depth of the pipelines; however pipelines such as these are generally placed between 4 and 8 feet bgs.

4.4 CORRESPONDENCE WITH GOVERNMENT OFFICIALS

Tetra Tech contacted Honolulu Fire Department to obtain information regarding any fires, complaints, permits, or violations involving hazardous material use, USTs, or ASTs on record for the subject or adjoining properties. Tetra Tech has not received a response from the Bureau of Fire Prevention as of the date of this report. Tetra Tech will notify D.R. Horton if information from government sources is obtained that materially changes the conclusions and recommendations in this report.

4.5 CHAIN OF TITLE

A chain-of-title search was not conducted during the production of this Phase I ESA. However, a chain-of-title search was previously conducted for the target property during the Phase I ESA conducted by Tetra Tech in 2010. Details concerning this chain-of-title search are provided below.

The chain-of-title search was conducted at the City and County of Honolulu Real Property Tax office to identify prior ownership or uses that could reasonably have contributed to an environmental concern. According to the tax record search, the following Tables 3 and 4 list the record of previous ownership for the subject parcel TMK No. (1) 9-1-016: Parcel 124 and 131:
TABLE 3

Chain of Title: TMK No. (1) 9-1-016: 124

<table>
<thead>
<tr>
<th>Year of Transaction</th>
<th>TMK/Acre</th>
<th>Type of Record</th>
<th>Grantor</th>
<th>Grantee</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>TMK (1) 9-1-016: 124 / 11.3010 acres</td>
<td>Quitclaim Deed</td>
<td>James Campbell Trust Estate</td>
<td>D.R. Horton – Schuler Homes LLC</td>
</tr>
<tr>
<td>2002</td>
<td>TMK (1) 9-1-016: 124 / 11.3010 acres</td>
<td>Grant. Canceled power-line easement over lot 1906</td>
<td>James Campbell Trust Estate</td>
<td>N/A</td>
</tr>
<tr>
<td>2000</td>
<td>TMK (1) 9-1-016: 124 / 554.969 acres</td>
<td>Subdivision/Allotment and new parcel from (1) 9-1-016:001, 2303.959 acres</td>
<td>James Campbell Trust Estate</td>
<td>N/A</td>
</tr>
<tr>
<td>1970</td>
<td>TMK (1) 9-1-016: 001 / 2,303.959 acres</td>
<td>Surrender and Grant</td>
<td>United States of America</td>
<td>N/A</td>
</tr>
<tr>
<td>1968</td>
<td>TMK (1) 9-1-016: 001 / 2,303.959 acres</td>
<td>Easement grant to Standard Oil Co. of California</td>
<td>James Campbell Trust Estate</td>
<td>N/A</td>
</tr>
<tr>
<td>1963</td>
<td>TMK (1) 9-1-016: 001 / 2,300.999 acres</td>
<td>Subdivision/Allotment 4.86 acre dropped into outlying property</td>
<td>James Campbell Trust Estate</td>
<td>N/A</td>
</tr>
<tr>
<td>1940</td>
<td>TMK (1) 9-1-016: 001 / 2,300.999 acres</td>
<td>N/A</td>
<td>James Campbell Trust Estate</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TABLE 4

Chain of Title: TMK No. (1) 9-1-016: 131

<table>
<thead>
<tr>
<th>Year of Transaction</th>
<th>TMK/Acre</th>
<th>Type of Record</th>
<th>Grantor</th>
<th>Grantee</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>TMK (1) 9-1-016: 131 / 140.4600</td>
<td>Route Slip – Designation access and utility easement “9561” and “9562” affecting lot 16016</td>
<td>D.R. Horton – Schuler Homes LLC</td>
<td>N/A</td>
</tr>
<tr>
<td>2008</td>
<td>TMK (1) 9-1-016: 131 / 140.4600</td>
<td>Grant – Easement for installation of transformer</td>
<td>D.R. Horton – Schuler Homes LLC</td>
<td>N/A</td>
</tr>
<tr>
<td>2005</td>
<td>TMK (1) 9-1-016: 131 / 140.4600</td>
<td>Deed</td>
<td>James Campbell Trust Estate</td>
<td>D.R. Horton – Schuler Homes LLC</td>
</tr>
<tr>
<td>2005</td>
<td>TMK (1) 9-1-016: 131 / 140.4600</td>
<td>Subdivision/Allotment and new parcel from (1) 9-1-016:001, 2303.959 acres</td>
<td>WH McVay, PR Cassidy, CD Pratt Jr. and CR Churchill Trustees</td>
<td>State of Hawai`i</td>
</tr>
<tr>
<td>1970</td>
<td>TMK (1) 9-1-016: 001 / 2,303.959 acres</td>
<td>Surrender and Grant</td>
<td>United States of America</td>
<td>N/A</td>
</tr>
<tr>
<td>1968</td>
<td>TMK (1) 9-1-016: 001 / 2,303.959 acres</td>
<td>Easement grant to Standard Oil Co. of California</td>
<td>James Campbell Trust Estate</td>
<td>N/A</td>
</tr>
<tr>
<td>Year of Transaction</td>
<td>TMK/Acre</td>
<td>Type of Record</td>
<td>Grantor</td>
<td>Grantee</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1963</td>
<td>TMK (1) 9-1-016: 001 / 2,300.999 acres</td>
<td>Subdivision/Allotment 4.86 acre dropped into outlying property</td>
<td>James Campbell Trust Estate Lessee: Ewa Plantation</td>
<td>N/A</td>
</tr>
<tr>
<td>1940</td>
<td>TMK (1) 9-1-016: 001 / 2,300.999 acres</td>
<td>N/A</td>
<td>James Campbell Trust Estate Lessee: Ewa Plantation</td>
<td>N/A</td>
</tr>
</tbody>
</table>

No data gaps were identified through the review of this chain of title search. Based on this search, the target property had been leased by various agricultural entities to at least 1940.

4.6 PREVIOUS SITE USE

Tetra Tech’s review of readily available historical aerial photographs (1951, 1968, 1975, 1985, 1992, 2001, and 2004) indicated that the target property appeared to be vacant, agricultural land in the 1951 through 1992 aerial photographs. Historical information suggests that the crop likely grown on the property during this time was sugar cane.

A portion of the property near the southeastern corner comprises part of Kekona’s Pit, an approximately 4-acre coralline excavation, in all aerial photographs. The other historical uses of this pit are discussed further in Section 4.8. The pit appears to have originated as a small area of excavation located off-site and south of the target property in the 1951 aerial photograph, and per the 1968 aerial photograph, the northern portion of the pit appears to have extended into the southeast corner of the target property. In the 1975 aerial photograph, the pit is partially overgrown with vegetation and improved with an earthen access ramp that originates at grade within the southeast corner of the target property and extends to the bottom of the excavation, approximately 250 feet south of the target property. In the 1968 through 1985 aerial photographs, dirt haul roads can be seen traversing the agricultural fields on the target property. By the 2001 aerial photograph, the majority of the target property appears to have become fallow agricultural land. Tetra Tech did not identify any previous use that would represent a REC to the target property.
4.7 PREVIOUS SURROUNDING SITE USE

Based on the review of readily available historical aerial photographs, the areas surrounding the target property appeared to consist of agricultural land in the 1951 through 1985 aerial photographs. The bulk of Kekona’s Pit is located to the south of the target property and Commercial and military properties are also visible to the far south of the target property in all aerial photographs. A dirt roadway is seen along the eastern boundary of the target property leading to the pit in the 1951 aerial photograph. This road is extended in the 1968 aerial photograph, and by the 1975 aerial photograph the road (now Fort Barrette Road) has been paved. Kekona’s Pit has become more vegetated, and the bulk of the excavation appears to be located approximately 250 feet south of the target property. Dirt roadways lead from the north and west to the center of the excavation. In the 1985 and 2001 aerial photographs, water is visible in what appears to be the deepest part of the excavation. Beginning in the 2001 aerial photograph, single-family residential developments are visible to the northeast of the target property and the construction of Kapolei High School has begun to the east of the target property. The areas to the north, south, and west of the target property have become fallow agricultural land by the 2001 photograph. In the 2004 aerial photograph, construction of the high school sports fields has begun and continued development of the residential developments to the northeast of the target property is apparent. Kekona’s Pit has been largely vegetated and water is no longer discernable at the bottom of the pit in this aerial photograph. Tetra Tech did not identify any previous use of the adjacent properties that would represent a REC to the target property.

Based on the historical use of surrounding area as agricultural land, it is possible that environmentally persistent pesticides have been applied to crops grown around the target property. However, the normal use and application of agricultural chemicals generally does not trigger enforcement actions, assessments by regulatory agencies, or the recommendation for further assessment of the target property, unless there is evidence which indicates that misuse, dumping or improper storage of chemicals is present or has occurred. There are no indications of these types of activities, or evidence of off-site agricultural chemical mixing, large quantity storage, or materials processing.

4.8 PREVIOUS ENVIRONMENTAL REPORTS

As part of the due diligence for the target property, the following additional historical source was reviewed per the ASTM standard for Phase I Assessments (the ASTM standard refers to other historical
sources as those sources that are credible to a reasonable person and that identify past uses or occupancies of the target property). The findings of a previous Phase I ESA Report are presented below.

Tetra Tech’s previous Phase I ESA report for the target property identified no RECs for the target property, but noted the following housekeeping and/or developmental conditions obtained from a review of historical use information, regulatory records, and a site reconnaissance conducted on May 3, 2009.

- The target property was formally utilized as sugar cane fields. No evidence of agricultural chemical use, storage, or mixing was observed at the target property.

- An area to the south of the target property as well as a portion of the southeastern corner of the target property formally comprised Kekona’s Pit, a large coral borrow pit which has since been filled. The majority of this former pit was located to the south and southeast of the target property and was reportedly a source of coralline utilized at developments throughout the island. When excavation activities encountered the Ewa caprock aquifer, a water “well” or trench was utilized for agricultural irrigation activities in the area by the Ewa Plantation Company and Oahu Sugar Company. As agricultural activities in the area diminished, off-site areas of the pit appear to have been utilized for vehicle salvage and incineration activities. During site re-development activities, conditions associated with vehicle salvage and incineration activities within the pit were removed and disposed off-site and backfilling accomplished. Since vehicle salvage and incineration activities occurred in locations of the former pit that were off-site and hydrologically down-gradient from the target property and conditions abated during site re-development activities, the Kekona’s Pit is not considered a REC to the target property.

- In 2006, over 200,000 cubic feet of fill material was imported to the site from Campbell Industrial Park for grading purposes across the target property. This fill reportedly originated from a harbor dredging operation located near the harbor at Barber’s Point. The
depth of the fill was estimated to be to approximately 5 feet bgs and variable across the property. Based on the unknown character of this material, Tetra Tech conducted a limited Phase II investigation at the target property on December 27 and 28, 2009. During this investigation, Tetra Tech collected four multi-incremental soil samples across the target property. These samples were analyzed for total petroleum hydrocarbon (TPH), Resource Conservation and Recovery Act (RCRA) 8 heavy metals including lead and arsenic, and PCBs. The laboratory analytical results were compared to Hawaii State Department of Health (HDOH) Tier 1 Environmental Action Levels (EALs) for non-restricted sites for properties above non-drinking aquifers receiving less than 200 inches of annual rainfall that are also greater than 150 meters from a surface water body. Analytical results revealed concentrations either below laboratory detection limits or below the respective HDOH Tier 1 EALs. Tetra Tech determined that no further action was necessary with regard to the imported fill material at the target property.

- A state water well was identified on the Environmental Data Resources, Inc. (EDR) Report which was installed in 1991 to a depth of 70 feet bgs. A representative of Hawaii Land Management indicated that the well was not used for potable water; a well in this area was likely used in support of former agricultural activities. According to Ms. Vanessa Yanagawa, a Horton representative, the well has been plugged and abandoned; however no record of this abandonment could be located. No evidence of this well was observed during Tetra Tech’s site reconnaissance of the target property or Phase II activities. It is therefore assumed that this well was properly plugged, abandoned, and backfilled. This former well is not considered a REC to the target property.

Tetra Tech agrees with the results of this assessment without exception.
5.0 REGULATORY REVIEW

Tetra Tech contracted Environmental Data Resources Inc. (EDR) to perform a database search of information published by the state and federal regulatory agencies for the parent tract and adjacent and surrounding properties. Tetra Tech also contacted local and/or municipal agencies to determine if the target property or nearby properties are listed as having a past or present record of actual or potential environmental impact or are under investigation for an environmental impact.

It should be noted that regulatory listings are limited and include only those sites that are known to the regulatory agencies at the time of publication to be contaminated or in the process of evaluation for potential contamination. A copy of the regulatory data obtained and reviewed for this project and a plotted site map of the regulated facilities prepared by EDR is provided in Appendix B.

5.1 REGULATORY LISTED FACILITIES

The following table summarizes the results of the review of state and federal regulatory data. A discussion describing the significance of each regulatory agency, site listing and results of its evaluation with respect to the target property follows.

Due to the size of the parent tract, Tetra Tech requested the search radii to be extended. Since the search radii presented in the EDR report extend from approximately the center of the parent tract, some of the listed facilities are not accurately described within the EDR report. The following table summarizes the results of the review of federal, state, and local regulatory databases and may not correspond identically with the EDR report.

<table>
<thead>
<tr>
<th>Federal, State, County and Local Regulatory Listing</th>
<th>Search Radius (Miles)</th>
<th>Sites Within Minimum ASTM Designated Search Radius of Target Property</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TP</td>
</tr>
<tr>
<td>EPA NPL</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>EPA Proposed NPL</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>EPA CERCLIS</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>EPA CERC-NFRAP</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>EPA CORRACTS</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>RCRIS-TSDF</td>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE 5 (Continued)
Regulatory Database Listings

<table>
<thead>
<tr>
<th>Federal, State, County and Local Regulatory Listing</th>
<th>Search Radius (Miles)</th>
<th>Sites Within Minimum ASTM Designated Search Radius of Target Property</th>
<th>TP</th>
<th>TP to ¼</th>
<th>¼ to ⅛ mile</th>
<th>⅛ to ¼ mile</th>
<th>¼ to ½ mile</th>
<th>½ to 1 mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCRIS-LQG</td>
<td>0.25</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>RCRIS-SQG</td>
<td>0.25</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>RCRIS-CESQG</td>
<td>0.25</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>RCRA-NonGen</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>EPA ERNS</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>SHWS</td>
<td>1.0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SWF/LF</td>
<td>1.0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LUST</td>
<td>0.5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>UST</td>
<td>0.25</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>CONSENT</td>
<td>1.0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ROD</td>
<td>1.0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Delisted NPL</td>
<td>1.0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FINDS</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>HMIRsl</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>MLTS</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>MINES</td>
<td>0.25</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>PADS</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>ODI</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>DOD</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>FUDS</td>
<td>1.0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>INDIAN RESERV</td>
<td>1.0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>US ENG CONTROLS</td>
<td>0.5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>RAATS</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>TRIS</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>TSCA</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>FTTS</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>DRYCLEANERS</td>
<td>0.25</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Manufactured Gas Plant</td>
<td>1.0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>US BROWNFIELDS</td>
<td>TP</td>
<td></td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>US INST CONTROL</td>
<td>0.5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>BROWNFIELDs</td>
<td>0.5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

0 = No sites in radius identified

- **ALLSITES** = Facility/Site Identification System Listings
- **CERCLIS** = Comprehensive Environmental Response, Compensation, and Liability Information System
- **CERC – NFRAP** = CERCLIS No Further Remedial Action Planned
- **CESQG** = Conditionally Exempt Small Quantity Generator
- **CONSENT** = Superfund (CERCLA) Consent Decrees
- **CORRACTS** = RCRA Corrective Action Report
- **DOD** = Department of Defense Sites
- **EPA** = Environmental Protection Agency
- **ERNS** = Emergency Response Notification System
5.1.1 EPA National Priorities List

CERCLA established the U.S. Environmental Protection Agency (EPA) NPL of federal “Superfund” sites. These are contaminated sites that have been assigned a high ranking, in terms of potential public health effects, by EPA.

- The target property does not appear on the NPL.
- No facilities listed on the NPL are located within 1.0 mile of the target property.

5.1.2 EPA Proposed National Priorities List

The EPA proposed NPL contains sites that are proposed to be included on the NPL.

- The target property does not appear on the Proposed NPL.
- No facilities listed on the Proposed NPL are located within 1.0 mile of the target property.
5.1.3 EPA Comprehensive Environmental Response, Compensation, and Liability Information System List

The EPA CERCLIS list identifies documented and suspected contamination sites throughout the nation that were not ranked high enough to be listed on the NPL.

- The target property does not appear on the CERCLIS.
- No listed CERCLIS facilities are located within 0.5 mile of the target property.

5.1.4 EPA CERCLIS No Further Remedial Action Planned List

As of February 1995, CERCLIS sites designated NFRAP have been removed from CERCLIS. NFRAP sites may be sites where, following an initial investigation, no contamination was found, contamination was removed quickly without the need for the site to be placed on the NPL, or the contamination was not serious enough to require Federal Superfund action or NPL consideration. EPA has removed approximately 25,000 NFRAP sites to lift the unintended barriers to the redevelopment of these properties and has archived them as historical records so that EPA does not needlessly repeat the investigations in the future. This policy change is part of the EPA’s Brownfields Redevelopment Program to help cities, states, private investors, and affected citizens promote economic redevelopment of unproductive urban sites.

- The target property does not appear on the CERCLIS-NFRAP list.
- No listed CERCLIS-NFRAP facilities are located within 0.25 mile of the target property.

5.1.5 EPA Resource Conservation and Recovery Information System List

Resource Conservation and Recovery Information System (RCRIS) is the EPA database of facilities that generate, transport, treat, store, or dispose of hazardous wastes as defined by the Resource Conservation and Recovery Act (RCRA). Generators and transporters are found on the RCRIS List of Notifiers. Treatment, storage, and disposal (TSD) facilities are found on the RCRIS TSD list, and RCRIS facilities requiring corrective actions (CORRACTS) are found on the CORRACTS list.

- The target property does not appear on the RCRIS-TSD lists.
5.1.6 **EPA Resource Conservation and Recovery Information System Small Quantity Generator and Large Quantity Generator**

RCRIS includes selective information on sites which generate, transport, store, treat, and/or dispose of hazardous waste as defined by RCRA. Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month while large quantity generators (LQGs) generate over 1,000 kg of hazardous waste per month, or over 1 kg of acutely hazardous waste per month.

- The target property does not appear on the RCRIS-SQG or LQG list.
- No listed RCRIS-SQG or LQG facilities are located within 0.25 mile of the target property.

5.1.7 **EPA Resource Conservation and Recovery Information System Conditionally Exempt Small Quantity Generator**

RCRIS includes selective information on sites which generate, transport, store, treat, and/or dispose of hazardous waste as defined by RCRA. Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste per month.

- The target property does not appear on the RCRIS-CESQG list.
- No listed RCRIS-CESQG facilities are located within 0.25 mile of the target property.

5.1.8 **Resource Conservation and Recovery Act Non Generator**

RCRAInfo is EPA’s comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by RCRA. Non-generators do not presently generate
hazardous waste.

- The target property does not appear on the RCRA-NonGen list.

5.1.9 Emergency Response Notification System List

The U.S. Coast Guard National Response Center maintains the Emergency Response Notification System (ERNS) list, which is a list of hazardous material spills reported to various state and federal agencies.

- The target property does not appear on the ERNS list.

5.1.10 Site Remediation System Database

The Site Remediation System (SRS) database (also categorized as State Hazardous Waste Sites [SHWS]) includes all site that the State Superfund Program is dealing with or has dealt with. The Superfund Program identifies, investigates and determines appropriate cleanup plans for abandoned or uncontrolled hazardous waste sites where a release or potential release of a hazardous substance poses a risk to human health or the environment. The SHWS list is maintained by the HDOH – Hazard Evaluation and Emergency Response (HEER) Office.

- The target property does not appear on the SHWS/SRS list.
- No SHWS/SRS facilities are present within 1.0 mile of the target property.

5.1.11 Permitted Solid Waste Disposal Facilities

Solid Waste Facilities and Landfill (SWF/LF) type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D 4004 criteria for solid waste landfills or disposal sites. The SWF/LF list is maintained by the HDOH.

- The target property does not appear on the SWF/LF list.
- No SWF/LF facilities are located within 0.5 mile of the target property.
5.1.12 Leaking Underground Storage Tanks List

The LUST list is a record of tank systems that have reported a contents release in that UST system. The LUST list is maintained by the HDOH.

- The target property does not appear on the LUST list.
- One LUST facility is located within 0.5 mile of the target property.
 - **Nex Touch N Go Gas Station** is located approximately 2,250 feet south-southeast of the target property at the Barbers Point Naval Air Station and is listed on the LUST, UST, and Financial Assurance databases. Three 10,000-gallon gasoline USTs installed in February 1988 are listed at this facility. Two of the gasoline USTs are temporarily out of use and the third is listed as currently in use. One LUST incident is listed at this facility. A confirmed release was reported on July 25, 2013, and is undergoing monitored natural attenuation. Based on the distance and inferred east-southeasterly groundwater gradient, this facility is not considered to represent a REC to the target property.

5.1.13 Underground Storage Tank Database

USTs are regulated under Subtitle I of the RCRA and are registered with the HDOH.

- The target property does not appear on the UST list.
- One UST facility is located within 0.25 mile of the target property.
 - **GSA Office Building** is located approximately 1,220 feet southeast of the target property at 691-1085 Enterprise Avenue and is listed on the UST database. One 4,000-gallon diesel UST is listed as currently in use at this property. No leak incidents were reported. Based on the distance, regulatory status, and inferred east-southeasterly groundwater gradient, this facility is not considered to represent a REC to the target property.

5.1.14 Superfund (CERCLA) Consent Decrees

The CONSENT database lists major legal settlements that establish responsibility and standards for cleanup at NPL sites. The list is released periodically by United States District Courts after settlement by parties to the litigation matters.
• The target property does not appear on the CONSENT list.

• No CONSENT facilities are located within 1.0 mile of the target property.

5.1.15 Records of Decision

ROD documents mandate a permanent remedy at an NPL site containing technical and health information to aid in the cleanup. The ROD list is maintained by the EPA.

• The target property does not appear on the ROD list.

• No ROD facilities are located within 1.0 mile of the target property.

5.1.16 National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR.300.425(e), sites may be deleted from the NPL where no further response is appropriate.

• The target property does not appear on the Delisted EPA NPL list.

• No Delisted EPA NPL facilities are located within 1.0 mile of the target property.

5.1.17 Facility Index System/Facility Identification Initiative Program Summary Report

FINDS contains both facility information and ‘pointers’ to other sources that contain more detail. The following FINDS database were included in the EDR report that was reviewed for this ESA: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), and PADS (PCB Activity Data System).

• The target property does not appear on the FINDS list.
5.1.18 Hazardous Materials Information Reporting System

The HMIRS contains hazardous material spill incidents reported to the U.S. Department of Transportation (DOT).

- The target property does not appear on the HMIRS list.

5.1.19 Material Licensing Tracking System

The Nuclear Regulatory Commission’s (NRC) Material Licensing Tracking System (MLTS) contains a list of approximately 8,100 sites that possess or use radioactive materials and which are subject to NRC licensing requirements.

- The target property does not appear on the MLTS list.

5.1.20 Mines Master Index File

The MINES contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

- The target property does not appear on the MINES list.

5.1.21 PCB Activity Database System

PADS identifies generators, transporters, commercial storers and/or brokers and disposers of PCB’s who are required to notify the EPA of such activities.

- The target property does not appear on the PADS list.

5.1.22 Open Dump Inventory

The Open Dump Inventory (ODI) list contains information on open dumps, defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

- The target property does not appear on the ODI list.
5.1.23 Formerly Used Defense Sites

The FUDS listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

- The target property does not appear on the FUDS list.
- One FUDS facility is located within 1.0 mile of the target property.
 - Fort Barrette is located approximately 2,500 feet north of the target property and is listed on the FUDS database. According to the EDR Report, this site contains exposed manholes, underground concrete boxes, septic tanks, fuel tank vaults, and a reservoir. These structures pose potential safety hazards to future park visitors. This site consisted of 38.53 acres purchased by the US government in November 1931, and was passed to the navy on April 23, 1956. Based on the distance, this facility is not a REC to the target property.

5.1.24 Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

- The target property does not appear on the DOD list.
- No other DOD facilities are located within 1.0 mile of the target property.

5.1.25 Indian Reservations

This data set consists of Indian administered lands of the United States that have any area equal to or greater than 640 acres.

- The target property does not appear on the INDIAN RESERV list.
- No INDIAN RESERV facilities are located within 1.0 mile of the target property.
5.1.26 **RCRA Administrative Tracking System**

The RAATS list contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1996, data entry in the RAATS database was discontinued. EPA has retained the database for historical records.

- The target property does not appear on the RAATS list.

5.1.27 **Toxic Chemical Release Inventory System**

The TRIS identifies facilities which release toxic chemicals to the air, water, and land in reportable quantities under SARA Title III Section 313. The EPA maintains the TRIS list.

- The target property does not appear on the TRIS list.

5.1.28 **Toxic Substances Control Act**

The TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substances Inventory list. It includes data on the production volume of these substances by plant site and is maintained by the EPA.

- The target property does not appear on the TSCA list.

5.1.29 **Federal Insecticide, Fungicide, & Rodenticide Act (FIFRA)/TSCA Tracking System**

The FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA, and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the EPA on a quarterly basis.

- The target property does not appear on the FTTS or the Historical FTTS list.

5.1.30 **Spills Database**

The SPILLS database maintains a list of chemical spills registered with the HDOH.
• The target property does not appear on the SPILLS list.

5.1.31 EDR Proprietary Historical Databases (Manufactured Gas Plant [Coal Gas] Sites)

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR researchers. Manufactured gas sites were used in the United States from the 1800s to 1950s to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination. The existence and location of Coal Gas Sites is provided to EDR by Real property Scan, Inc.

• The target property does not appear on the Coal Gas list.
• No listed Coal Gas facilities are located within 1.0 mile of the target property.

5.1.32 Registered Drycleaning Facilities

This database contains a listing of coin-operated laundries and drycleaning; drycleaning plants, except rug cleaning; and industrial launderers.

• The target property does not appear on the DRYCLEANERS list.
• No DRYCLEANERS facilities are located within 0.25 mile of the target property.

5.1.33 Brownfields

This database contains a listing of sites within the Petroleum Brownfields Program that provides the technical assistance and liability assurance needed to expedite and facilitate the development, transfer, investigation and/or cleanup of property that is contaminated with petroleum.

• The target property does not appear on the BROWNFIELDS list.
• No BROWNFIELDS facilities are located within 0.5 mile of the target property.

5.1.34 Brownfield Sites List

The US BROWNFIELDS list includes brownfield properties addressed by Cooperative Agreement Recipients and brownfields properties addressed by Targeted Brownfields Assessments (TBA).

• The target property does not appear on the US BROWNFIELDS list.

• No US BROWNFIELDS facilities are located within 0.5 mile of the target property.

5.1.35 Federal Institutional Controls

The US ENG CONTROL database is an EPA listing of sites with engineering controls in place and the US INST CONTROL database is an EPA listing of sites with institutional controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site.

• The target property does not appear on the US ENG CONTROL or the US INST CONTROL list.

• No US ENG CONTROL or US INST CONTROL facilities are located within 0.5 mile of the target property.

5.1.36 Site Remediation Section Database

The INST CONTROL list is a database maintained by HDOH of sites that have an institutional control event.

• The target property does not appear on the INST CONTROL list.

• No INST CONTROL facilities are located within 0.5 mile of the target property.
5.2 ORPHAN SUMMARY

The orphan or unmapped site list consists of sites currently listed in Federal or State databases that have inadequate address information. However, if street addresses are available, the site locations are checked against the known location of the target property to determine their relative location to the minimum ASTM search distance from the target property. The EDR database report indicates that 20 properties could not be mapped in relation to the target property due to poor or inadequate address information. Based on the location information that was provided (municipality, street intersection, etc.) and/or the type of facility information in the EDR report, these facilities were not considered environmental concerns to the target property.
6.0 PHYSICAL SETTINGS

A consideration of hydrology and hydrogeology are of interest because they provide an indication of the direction that contaminants, if present, could be transported. Tetra Tech reviewed the following information regarding the physical settings and hydrogeology of the target property and the surrounding area:

<table>
<thead>
<tr>
<th>Information/Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topographic Map</td>
<td>USGS 7.5-minute series Topographic Maps of 21158-C1 Ewa, Hawaii, date not reported.</td>
</tr>
<tr>
<td>Environmental Data Resources, Inc.</td>
<td>Overview, Detail and Physical Setting Mapping and supporting soils and hydrogeologic information for the target property, as presented by EDR. The EDR Radius Map with GeoCheck®, “HI Elementary School at Mehana,” Inquiry Number: 3792103.1s, dated November 21, 2013.</td>
</tr>
</tbody>
</table>

6.1 GEOLOGIC SETTING AND HYDROGEOLOGY

The Island of Oahu is comprised of two volcanoes: the Ko`olau Volcano and the Waianae Volcano. The Waianae Range is the older of the two volcanoes and lies to the west of the younger Ko`olau Volcano. The Wai`anae Volcano is a shield volcano built up by a series of eruptions, which produced the Wai`anae Volcanic Series. The Wai`anae Mountains, the eroded remains of the Wai`anae Volcanic Shield, comprise western Oahu. The Ko`olau Volcano is an unusually elongate shield volcano built principally by eruptions along a northwest-southeast trending rift zone. The lavas produced during the shield-building phase of the volcano are known as the Ko`olau Volcanic Series and consist of tholeitic and olivine basalts with small amounts of oceanite. The Ko`olau Mountains, the eroded remains of the Ko`olau Volcanic Shield, are approximately 37 miles long, trending northwest-southeast, and comprise approximately two-thirds of Oahu (Macdonald et al, 1983).

A long period of volcanic quiescence followed the Ko`olau shield-building stage, during which erosion occurred and alluvium and marine sediments accumulated along coastal regions. Deep valleys were incised into the bedrock by major streams and subsequently filled with sediments. Following a long period of volcanic quiescence, volcanic activity resumed. These subsequent eruptions, such as Diamond
Head, constituted the Honolulu Volcanic Series. Lavas of the Honolulu Volcanic Series include nephelinites, melilite nephelinites, basanites, and alkalic olivine basalts (Macdonald et al, 1983).

The United States Geologic Survey (USGS) topographic map indicates the elevation of the property is approximately 61 feet above mean sea level and the overall gradient appears to slope to the east/southeast. The topography in the area of the target property generally slopes to the east-southeast towards the Ewa Beach shoreline, located over three miles away. A topographic map for the area in which the target property is located is presented as Figure 4.

According to “Aquifer Identification and Classification for Oahu” (Mink and Lau 1990), two aquifer systems exist within the Pearl Harbor Aquifer Sector across the target property. The western portion of the target property is located within the Ewa Aquifer System of the Pearl Harbor Aquifer Sector. This aquifer-type contains groundwater that is basal, unconfined, and found in sedimentary-type (non-volcanic lithology) geology. It is currently used but has not been designated for either drinking or ecological importance, is considered moderately fresh water with a salinity of between 1,000 to 5,000 milligrams per liter (mg/L) of chloride, is replaceable, and has a high vulnerability to contamination. A variation of the Ewa Aquifer System exists in the region. This aquifer type contains groundwater that is basal, confined, and found in flank-type (horizontally extensive lavas) geology. It is currently used but has not been designated for either drinking or ecological importance, is considered low salinity fresh water with a salinity of between 250 and 1,000 mg/L of chloride, is irreplaceable, and has a low vulnerability to contamination.

The site is located makai-side of or below the underground injection control (UIC) line. The UIC line was established by the State of HDOH Safe Drinking Water Branch to protect groundwater resources. Tetra Tech previously contacted Mr. Chauncey Hu from the HDOH Safe Drinking Water Branch to confirm the location of the site with reference to the UIC line in 2010. The target property’s location relative to the UIC line was confirmed by Mr. Hu to be south of the UIC line. Groundwater seaward (makai) of the UIC line is considered as non-potable and saline.

Based on review of hydrologic data provided in the EDR Report, there are five federal water wells, no federal public water supply systems, and 11 state water wells located within 1.0 mile of the target property. Two of these wells appear to be located on the northern portion of the target property. The first well is 12-inches in diameter and was installed to a depth of 77 feet bgs in 1991. The second well
was installed on October 26, 1989 to a depth of 80 feet bgs. Groundwater was measured at 50 feet bgs in this well on October 26, 1989. No evidence of the on-site water well was observed during Tetra Tech’s site reconnaissance. According to Ms. Vanessa Yanagawa, a Horton representative, the well has been plugged and abandoned; however no record of this abandonment was available for review. Additionally, EDR does not identify the existence of oil and gas wells on the target property or within 1.0 mile of the target property.

The target property has been filled and graded with an imported fill material originating from Campbell Industrial Park. The following soil characteristics have been identified for the underlying or native soils on or in the immediate vicinity of the target property:

<table>
<thead>
<tr>
<th>Soil Component Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HONOULIULI</td>
<td>Clay: Class D, Very slow infiltration rates. Soils are clayey, have a high water table, or are shallow to an impervious layer. Hydric Status: Not Hydric Corrosion Potential – Uncoated Steel: Moderate</td>
</tr>
</tbody>
</table>
7.0 OTHER POTENTIAL ISSUES OF CONCERN

Tetra Tech also conducted a review of other potential issues of concern, which may warrant further investigation. Issues of concern may impact or affect the manner or timeline in which development of the property can occur. Other potential issues of concern may include, but are not limited to the presence of suspect Asbestos-Containing Material (ACM) and damaged Lead-Based Paint (LBP) in structures located on the property, the presence of wetlands and threatened or endangered species, and the incidence of designated 100- year and 500-year flood zones in relation to the target property.

7.1 SUSPECT ASBESTOS-CONTAINING MATERIALS

No asbestos-containing materials were suspected on the target property.

7.2 LEAD-BASED PAINT

No LBP was suspected on the target property.

7.3 WETLANDS

Readily available data were reviewed to determine the site status with respect wetland designation, or potential wetlands existence. Among data sources reviewed include EDR Physical Setting Map, which illustrates site conditions as reported by EDR, the National Wetlands Inventory (NWI) Map, and an online query of the “Wetlands Interactive Mapper” made available by the U.S. Fish and Wildlife Service, National Wetlands Inventory web site. Based on Tetra Tech’s review of the listings, the target property is not recorded as a NWI listed site. The NWI map did not depict wetland areas on the target property.

7.4 THREATENED AND ENDANGERED SPECIES

Readily available data were reviewed to determine the listed status of the area or county with respect to the presence of threatened or endangered species. Among data sources reviewed include the U.S Fish and Wildlife Service endangered species protection program database. A review of endangered species list for Honolulu County identified the presence of 163 endangered species, five threatened species and
17 candidate species for the county. Tetra Tech did not observe any wildlife species on the target property during the site and area reconnaissance.

7.5 FLOODPLAIN

According to the EDR Report and the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map Community Panel Number 15003C0310G, dated January 19, 2011, the entire target property is located within unshaded Zone X, which represents areas determined to be outside the 0.2 percent chance of flooding (outside the boundaries of the 100 and 500-year floodplains).
8.0 USER PROVIDED INFORMATION

In accordance with the ASTM Standard 1527-05, the following section summarizes information (if any) provided by D.R. Horton and Department of Land and Natural Resources – Land Division with regard to the ESA.

8.1 TITLE RECORDS

Neither D.R. Horton nor DLNR provided information related to the title for the target property.

8.2 ENVIRONMENTAL LIENS OR ACTIVITY AND USE LIMITATIONS

Neither D.R. Horton nor DLNR provided information related to environmental liens or activity and use limitations for the target property.

8.3 SPECIALIZED KNOWLEDGE

Specialized knowledge provided by Mr. Peter Phillips is discussed in Section 4.1. No additional specialized knowledge was provided for the target property during the production of this report.

8.4 VALUATION REDUCTION FOR ENVIRONMENTAL ISSUES

Neither D.R. Horton nor DLNR was aware of no valuation reduction for environmental issues at the target property.

8.5 OWNER, PROPERTY MANAGER, AND OCCUPANT INFORMATION

The owner of the property is D.R. Horton. The key site contact who had knowledge of the uses and physical characteristics of the target property was Mr. Peter Phillips with D.R. Horton Hawai‘i. Mr. Cameron Nekota with D.R. Horton completed an ASTM User Questionnaire for the target property which is provided in Appendix E.
8.6 REASON FOR PERFORMING THE PHASE I ESA

This Phase I ESA was performed as part of a real estate transaction between D.R. Horton, Inc. and Department of Land and Natural Resources – Land Division to identify the potential for RECs or environmental concerns related to the target property.
9.0 CONCLUSIONS AND RECOMMENDATIONS

This Phase I has revealed no RECs in connection with the target property, and no further action is warranted. Tetra Tech performed this assessment in general conformance with the scope and limitations of ASTM E 1527-05 of the target property to identify RECs in connection with the site including the presence, or likely presence, of hazardous substances or petroleum products on the target property under conditions that indicate an existing release, a past release, or a material threat of a release into structures on the target property or into the ground, groundwater, or surface water. This assessment included an evaluation to the extent practicable of the past and present land uses at the target property and on adjacent properties. Any exceptions to, or deletions from, the ASTM E 1527-05 scope are described in Sections 2.2 and 2.3 of this report.
10.0 LIMITATIONS

The findings and opinions are relevant to the dates of Tetra Tech’s site work and should not be relied on to represent conditions at later dates.

The opinions included herein are based on information obtained during the study and Tetra Tech’s experience. If additional information becomes available that may materially affect the environmental conclusions, Tetra Tech requests the opportunity to review the information, reassess the potential concerns, and modify the opinion, if warranted. If this assessment included a review of reports prepared by other consultants, it must be recognized that Tetra Tech has no responsibility for the accuracy of information contained therein.

Although this assessment has attempted to identify the potential for contamination of the target property, it cannot be guaranteed that all potential sources of contamination are identified due to: (1) the limited scope of Phase I assessments; (2) the inaccuracy of public records; (3) the presence of undetected and unreported environmental accidents; (4) inaccessible areas; and/or (5) deliberate concealment of detrimental information.
11.0 SIGNATURES

We declare that, to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in Section 312.10 of 40 CFR 312. We have the specific qualifications based on education, training, and experience to assess a Property of the nature, history, and setting of the Property. We have developed and performed all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

We appreciate the opportunity to work with you on this project. If you have any questions concerning the findings and conclusions contained in this report, please call Mr. Dennis Welch at (832) 251-5178.

Prepared by:
Julie Helfrich
Project Manager

Reviewed by:
Dennis P. Welch, CHMM
Program Manager
FIGURES
APPROXIMATE TARGET PROPERTY BOUNDARY

SITE LOCATION MAP
ELEMENTARY SCHOOL AT MEHANA
WEST OF FORT BARRETTE ROAD
KAPOLEI, HONOLULU COUNTY, HAWAII 96707

Approximate Scale in Feet

FIGURE 1

Date: 12/6/2013
User: julie.helfrich
Path: S:\EMI Shared\Projects Directory\Private Sector - Houston\103DP4445 - DR Horton\103DP4445 - DR Horton\112C04889_13 (2013 Projects)\West\HI071 Elementary School at Mehana\Figures\GIS\Figure1_ElementarySchool.mxd

Tetra Tech, Inc. Project 112C04889.1301.HI0711A
SITE MAP
ELEMENTARY SCHOOL AT MEHANA
WEST OF FORT BARRETTE ROAD
KAPOLEI, HONOLULU COUNTY, HAWAII 96707

APPOMITE TARGET PROPERTY BOUNDARY
DEBRIS PILE
STORM DRAIN
PAD-MOUNTED TRANSFORMER
DRAINAGE SWALE
KEKONA'S PIT

Approximate Scale in Feet
0 100 200

FIGURE 2
APPROXIMATE TARGET PROPERTY BOUNDARY

AERIAL PHOTOGRAPH
ELEMENTARY SCHOOL AT MEHANA
WEST OF FORT BARRETTE ROAD
KAPOLEI, HONOLULU COUNTY, HAWAII 96707

Approximate Scale in Feet

Tetra Tech, Inc. Project 112C04889.1301.HI0711A
FIGURE 3
APPROXIMATE TARGET PROPERTY BOUNDARY

TOPOGRAPHIC MAP
ELEMENTARY SCHOOL AT MEHANA
WEST OF FORT BARRETTE ROAD
KAPOLEI, HONOLULU COUNTY, HAWAII 96707

SOURCE: USGS, EWA, HI QUADRANGLE,
DATE NOT REPORTED.

Approximate Scale in Feet
APPENDIX A

PHOTOGRAPHS
Photographic Documentation
Elementary School at Mehana
West of Fort Barrette Road
Kapolei, Honolulu County, Hawaii 96707
Tetra Tech Project: 112C04889.1301.HI0711A

Photo: 1

Description:
View along Kapolei Parkway to the north of the target property.

Orientation:
Facing East

Photo: 2

Description:
View of the western target property boundary along Kunehi Street.

Orientation:
Facing South

Tetra Tech, Inc. Taken by Kelly Kolysko on November 26, 2013
Photographic Documentation
Elementary School at Mehana
West of Fort Barrette Road
Kapolei, Honolulu County, Hawaii 96707
Tetra Tech Project: 112C04889.1301.HI0711A

Photo: 3
Description:
View of the property to the north/northwest of the target property across Kapolei Parkway.
Orientation:
Facing North

Photo: 4
Description:
View of the property to the north/northwest of the target property across Kapolei Parkway.
Orientation:
Facing Northwest
Photographic Documentation
Elementary School at Mehana
West of Fort Barrette Road
Kapolei, Honolulu County, Hawaii 96707
Tetra Tech Project: 112C04889.1301.HI0711A

Photo: 5
Description:
View of the adjoining property to the northwest of the target property across Kunehi Street.
Orientation:
Facing West

Photo: 6
Description:
View of adjoining property to the west of the target property across Kunehi Street.
Orientation:
Facing West
Photographic Documentation
Elementary School at Mehana
West of Fort Barrette Road
Kapolei, Honolulu County, Hawaii 96707
Tetra Tech Project: 112C04889.1301.HI0711A

Photo: 7

Description:
View of the target property from Kunehi Street.

Orientation:
Facing East

Photo: 8

Description:
View of the target property and adjoining property to the south from Kunehi Street.

Orientation:
Facing South
Photo: 9

Description:
View of the eastern portion of the target property.

Orientation:
Facing East

Photo: 10

Description:
View of the target property and adjoining property to the south.

Orientation:
Facing East
Photo: 11

Description:
View of pad-mounted transformers and other utilities observed on the target property along Kunehi Street.

Orientation:
Facing East

Photo: 12

Description:
View of the northeastern portion of the target property.

Orientation:
Facing Northeast
Photo: 13

Description:
View of the abandoned household debris observed at the southwestern corner of the target property.

Orientation:
Facing West

Photo: 14

Description:
View of the northern portion of the target property.

Orientation:
Facing North
Photographic Documentation
Elementary School at Mehana
West of Fort Barrette Road
Kapolei, Honolulu County, Hawaii 96707
Tetra Tech Project: 112C04889.1301.HI0711A

Photo: 15
Description:
View of the northern portion of the target property.
Orientation:
Facing Northwest

Photo: 16
Description:
View of the target property from Kapolei Parkway.
Orientation:
Facing South
Photographic Documentation
Elementary School at Mehana
West of Fort Barrette Road
Kapolei, Honolulu County, Hawaii 96707
Tetra Tech Project: 112C04889.1301.HI0711A

Photo: 17
Description:
View of the signs located at the corner of Kapolei Parkway and Fort Barrette Road.
Orientation:
Facing Southeast

Photo: 18
Description:
View of the eastern portion of the target property from Fort Barrette Road.
Orientation:
Facing West
Photographic Documentation
Elementary School at Mehana
West of Fort Barrette Road
Kapolei, Honolulu County, Hawaii 96707
Tetra Tech Project: 112C04889.1301.HI0711A

Photo: 19
Description:
View along the southern boundary of the target property.
Orientation:
Facing West

Photo: 20
Description:
View of the partial fence along the eastern property boundary.
Orientation:
Facing Northwest
Photo: 21

Description:

View of a storm drain manhole cover located at the southeastern corner of the target property.

Orientation:

Facing West

Photo: 22

Description:

View of wooden pallets and PVC piping observed at the southeastern corner of target property.

Orientation:

Facing South
Photographic Documentation

Elementary School at Mehana
West of Fort Barrette Road
Kapolei, Honolulu County, Hawaii 96707
Tetra Tech Project: 112C04889.1301.HI0711A

<table>
<thead>
<tr>
<th>Photo: 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>View of target property and the adjoining property to the west.</td>
</tr>
<tr>
<td>Orientation:</td>
</tr>
<tr>
<td>Facing West</td>
</tr>
</tbody>
</table>
HI Elementary School At Mehana
Fort Barrett Road and Renton Road
Kapolei, HI 96707

Inquiry Number: 3792103.1s
November 21, 2013

The EDR Radius Map™ Report with GeoCheck®
A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA’s Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-05) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

FORT BARRETT ROAD AND RENTON ROAD
KAPOLEI, HI 96707

COORDINATES

- Latitude (North): 21.3273000 - 21° 19’ 38.28”
- Longitude (West): 158.0719000 - 158° 4’ 18.84”
- Universal Tranverse Mercator: Zone 4
- UTM X (Meters): 596249.1
- UTM Y (Meters): 2358516.2
- Elevation: 61 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

- Target Property Map: 21158-C1 EWA, HI
- Most Recent Revision: Not reported

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR’s search of available (“reasonably ascertainable”) government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list

- NPL.................... National Priority List
- Proposed NPL........... Proposed National Priority List Sites
- NPL LIENS................ Federal Superfund Liens

Federal Delisted NPL site list

- Delisted NPL............. National Priority List Deletions
EXECUTIVE SUMMARY

Federal CERCLIS list
CERCLIS, Comprehensive Environmental Response, Compensation, and Liability Information System
FEDERAL FACILITY, Federal Facility Site Information listing

Federal CERCLIS NFRAP site List
CERC-NFRAP, CERCLIS No Further Remedial Action Planned

Federal RCRA CORRACTS facilities list
CORRACTS, Corrective Action Report

Federal RCRA non-CORRACTS TSD facilities list
RCRA-TSDF, RCRA - Treatment, Storage and Disposal

Federal RCRA generators list
RCRA-LQG, RCRA - Large Quantity Generators
RCRA-SQG, RCRA - Small Quantity Generators
RCRA-CESQG, RCRA - Conditionally Exempt Small Quantity Generator

Federal institutional controls / engineering controls registries
US ENG CONTROLS, Engineering Controls Sites List
US INST CONTROL, Sites with Institutional Controls
LUCIS, Land Use Control Information System

Federal ERNS list
ERNS, Emergency Response Notification System

State- and tribal - equivalent CERCLIS
SHWS, Sites List

State and tribal landfill and/or solid waste disposal site lists
SWF/LF, Permitted Landfills in the State of Hawaii

State and tribal leaking storage tank lists
INDIAN LUST, Leaking Underground Storage Tanks on Indian Land

State and tribal registered storage tank lists
INDIAN UST, Underground Storage Tanks on Indian Land
FEMA UST, Underground Storage Tank Listing

State and tribal institutional control / engineering control registries
ENG CONTROLS, Engineering Control Sites
INST CONTROL, Sites with Institutional Controls
EXECUTIVE SUMMARY

State and tribal voluntary cleanup sites
VCP. Voluntary Response Program Sites
INDIAN VCP. Voluntary Cleanup Priority Listing

State and tribal Brownfields sites
BROWNFIELDS. Brownfields Sites

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists
US BROWNFIELDS. A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites
DEBRIS REGION 9. Torres Martinez Reservation Illegal Dump Site Locations
ODI. Open Dump Inventory
INDIAN ODI. Report on the Status of Open Dumps on Indian Lands

Local Lists of Hazardous waste / Contaminated Sites
US CDL. Clandestine Drug Labs
CDL Listing
US HIST CDL. National Clandestine Laboratory Register

Local Land Records
LIENS 2. CERCLA Lien Information

Records of Emergency Release Reports
HMIRS. Hazardous Materials Information Reporting System
SPILLS. Release Notifications

Other Ascertainable Records
RCRA NonGen / NLR. RCRA - Non Generators
DOT OPS. Incident and Accident Data
DOD. Department of Defense Sites
CONSENT. Superfund (CERCLA) Consent Decrees
ROD. Records Of Decision
UMTRA. Uranium Mill Tailings Sites
US MINES. Mines Master Index File
TRIS. Toxic Chemical Release Inventory System
TSCA. Toxic Substances Control Act
FTTS. FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)
HIST FTTS. FIFRA/TSCA Tracking System Administrative Case Listing
SSTS. Section 7 Tracking Systems
ICIS. Integrated Compliance Information System
PADS. PCB Activity Database System
MLTS____________________Material Licensing Tracking System
RADINFO________________Radiation Information Database
FINDS_____________________Facility Index System/Facility Registry System
RAATS_____________________RCRA Administrative Action Tracking System
RMP______________________Risk Management Plans
UIC_______________________Underground Injection Wells Listing
DRYCLEANERS_____________Permitted Drycleaner Facility Listing
AIRS______________________List of Permitted Facilities
INDIAN RESERV____________Indian Reservations
SCRD DRYCLEANERS______State Coalition for Remediation of Drycleaners Listing
COAL ASH EPA___________Coal Combustion Residues Surface Impoundments List
COAL ASH DOE____________Steam-Electric Plant Operation Data
PCB TRANSFORMER_______PCB Transformer Registration Database
US FIN ASSUR____________Financial Assurance Information
EPA WATCH LIST___________EPA WATCH LIST
PRP_______________________Potentially Responsible Parties
US AIRS__________________Aerometric Information Retrieval System Facility Subsystem
2020 COR ACTION_________2020 Corrective Action Program List
LEAD SMELTERS___________Lead Smelter Sites
Financial Assurance________Financial Assurance Information Listing

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records
EDR MGP__________________EDR Proprietary Manufactured Gas Plants
EDR US Hist Auto Stat______EDR Exclusive Historic Gas Stations
EDR US Hist Cleaners______EDR Exclusive Historic Dry Cleaners

SURROUNDING SITES: SEARCH RESULTS
Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property. Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

State and tribal leaking storage tank lists
LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the Department of Health’s Active Leaking Underground Storage Tank Log Listing.

A review of the LUST list, as provided by EDR, and dated 09/06/2013 has revealed that there is 1 LUST
EXECUTIVE SUMMARY

site within approximately 0.5 miles of the target property.

<table>
<thead>
<tr>
<th>Lower Elevation</th>
<th>Address</th>
<th>Direction / Distance</th>
<th>Map ID</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEX TOUCH N GO GAS STATION</td>
<td>BLDG 1928 TANK 81, 82, SSE 1/4 - 1/2 (0.425 mi.)</td>
<td>SSE 1/4 - 1/2 (0.425 mi.)</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Facility Status: Monitored Natural Attenuation
Facility Status: Confirmed Release

State and tribal registered storage tank lists

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the Department of Health’s Listing of Underground Storage Tanks.

A review of the UST list, as provided by EDR, and dated 09/06/2013 has revealed that there is 1 UST site within approximately 0.25 miles of the target property.

<table>
<thead>
<tr>
<th>Lower Elevation</th>
<th>Address</th>
<th>Direction / Distance</th>
<th>Map ID</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSA OFFICE BUILDING</td>
<td>91-3100 ENTERPRISE AVE</td>
<td>SE 1/8 - 1/4 (0.243 mi.)</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records

FUDS: The Listing includes locations of Formerly Used Defense Sites Properties where the US Army Corps Of Engineers is actively working or will take necessary cleanup actions.

A review of the FUDS list, as provided by EDR, and dated 12/31/2011 has revealed that there is 1 FUDS site within approximately 1 mile of the target property.

<table>
<thead>
<tr>
<th>Equal/Higher Elevation</th>
<th>Address</th>
<th>Direction / Distance</th>
<th>Map ID</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORT BARRETTE</td>
<td>N 1/4 - 1/2 (0.472 mi.)</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Due to poor or inadequate address information, the following sites were not mapped. Count: 20 records.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Database(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAWAIIAN WESTERN STEEL, LTD</td>
<td>CERC-NFRAP, CORRACTS, RCRA NonGen / NLR, FINDS, RAATS,</td>
</tr>
<tr>
<td></td>
<td>SHWS, UST, SPILLS, INST CONTROL,</td>
</tr>
<tr>
<td></td>
<td>HAZNET, 2020 COR ACTION, PRP</td>
</tr>
<tr>
<td></td>
<td>SHWS, ENG CONTROLS, INST CONTROL</td>
</tr>
<tr>
<td>PRECISION WOOD OF HAWAII INC</td>
<td>FTTS, HIST FTTS</td>
</tr>
<tr>
<td>ISLAND PACIFIC SCHOOL</td>
<td>FTTS, FINDS</td>
</tr>
<tr>
<td>KAPELEI ELEMENTARY SCHOOL</td>
<td>SHWS</td>
</tr>
<tr>
<td>BARBERS POINT NAS STATION P</td>
<td>SHWS, SPILLS</td>
</tr>
<tr>
<td>KAPELEI PIPELINE FUEL SPILL</td>
<td>SHWS</td>
</tr>
<tr>
<td>KAPELEI II ELEMENTARY SCHOOL</td>
<td>SHWS, SPILLS</td>
</tr>
<tr>
<td>HANUA STREET FUGITIVE OIL</td>
<td>SHWS</td>
</tr>
<tr>
<td>HAWAII PROJECT MANAGEMENT (HPM) /</td>
<td>SHWS, SPILLS</td>
</tr>
<tr>
<td>TEXACO MALAKOLE STREET PIPELINE EX</td>
<td>SHWS</td>
</tr>
<tr>
<td>PUMP 15 STATION, FORMER OAHU SUGAR</td>
<td>SHWS, SPILLS</td>
</tr>
<tr>
<td>SINGLE BUOY MOORING</td>
<td>SHWS, SPILLS</td>
</tr>
<tr>
<td>TARGET STORE #T2411</td>
<td>RCRSA-SQG</td>
</tr>
<tr>
<td>COSTCO WHOLESALE NO 1038</td>
<td>RCRSA-SQG</td>
</tr>
<tr>
<td>MEHANA AT KAPOLEI - STOCKPILE AREA</td>
<td>FINDS</td>
</tr>
<tr>
<td>MEHANA AT KAPOLEI</td>
<td>FINDS</td>
</tr>
<tr>
<td>MEHANA AT KAPOLEI - STOCKPILE</td>
<td>FINDS</td>
</tr>
<tr>
<td>MEHANA AT KAPOLEI - MASS</td>
<td>FINDS</td>
</tr>
<tr>
<td>ZELINSKY AND SONS OF HI</td>
<td>HAZNET</td>
</tr>
<tr>
<td>1X BARBERS POINT ELEMENTARY SCHOOL</td>
<td>HAZNET</td>
</tr>
</tbody>
</table>
Target Property

- Sites at elevations higher than or equal to the target property
- Sites at elevations lower than the target property
- Manufactured Gas Plants
- Sensitive Receptors
- National Priority List Sites
- Dept. Defense Sites

Legend:

- Indian Reservations BIA
- Oil & Gas pipelines from USGS
- 100-year flood zone
- 500-year flood zone
- National Wetland Inventory

This report includes Interactive Map Layers to display and/or hide map information. The legend includes only those icons for the default map view.

SITE NAME: HI Elementary School At Mehana
ADDRESS: Fort Barrett Road and Renton Road
Kapolei HI 96707
LAT/LONG: 21.3273 / 158.0719

CLIENT: Tetra Tech EMI, Inc.
CONTACT: Dennis Welch
INQUIRY #: 3792103.1s
DATE: November 21, 2013 11:23 am

MAP FINDINGS SUMMARY

Search Target Property

<table>
<thead>
<tr>
<th>Database</th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD ENVIRONMENTAL RECORDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal NPL site list</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPL</td>
<td>1.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Proposed NPL</td>
<td>1.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>NPL LIENS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Federal Delisted NPL site list</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delisted NPL</td>
<td>1.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Federal CERCLIS list</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERCLIS</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>FEDERAL FACILITY</td>
<td>1.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Federal CERCLIS NFRAP site List</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERC-NFRAP</td>
<td>0.250</td>
<td></td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Federal RCRA CORRACTS facilities list</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORRACTS</td>
<td>1.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Federal RCRA non-CORRACTS TSD facilities list</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCRA-TSDF</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Federal RCRA generators list</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCRA-LQG</td>
<td>0.250</td>
<td></td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>RCRA-SQG</td>
<td>0.250</td>
<td></td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>RCRA-CESQG</td>
<td>0.250</td>
<td></td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Federal institutional controls / engineering controls registries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US ENG CONTROLS</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>US INST CONTROL</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>LUCIS</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Federal ERNS list</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERNS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>State- and tribal - equivalent CERCLIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHWS</td>
<td>1.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>State and tribal landfill and/or solid waste disposal site lists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWF/LF</td>
<td>1.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>State and tribal leaking storage tank lists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUST</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>NR</td>
<td>NR</td>
<td>1</td>
</tr>
<tr>
<td>INDIAN LUST</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>State and tribal registered storage tank lists</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UST</td>
<td>0.250</td>
<td></td>
<td>0</td>
<td>1</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>1</td>
</tr>
</tbody>
</table>
MAP FINDINGS SUMMARY

<table>
<thead>
<tr>
<th>Database</th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDIAN UST</td>
<td>0.250</td>
<td></td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>FEMA UST</td>
<td>0.250</td>
<td></td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

State and tribal institutional control / engineering control registries

<table>
<thead>
<tr>
<th></th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG CONTROLS</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>INST CONTROL</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

State and tribal voluntary cleanup sites

<table>
<thead>
<tr>
<th></th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCP</td>
<td>1.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>INDIAN VCP</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

State and tribal Brownfields sites

<table>
<thead>
<tr>
<th></th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROWNFIELDS</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

<table>
<thead>
<tr>
<th></th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>US BROWNFIELDS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

Local Lists of Landfill / Solid Waste Disposal Sites

<table>
<thead>
<tr>
<th></th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEBRIS REGION 9</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>ODI</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>INDIAN ODI</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

Local Lists of Hazardous waste / Contaminated Sites

<table>
<thead>
<tr>
<th></th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>US CDL</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>CDL</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>US HIST CDL</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

Local Land Records

<table>
<thead>
<tr>
<th></th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIENS 2</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

Records of Emergency Release Reports

<table>
<thead>
<tr>
<th></th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMIRS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>SPILLS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

Other Ascertainable Records

<table>
<thead>
<tr>
<th></th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCRA NonGen / NLR</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>DOT OPS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>DOD</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>FUDS</td>
<td>1.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>NR</td>
<td>1</td>
</tr>
<tr>
<td>CONSENT</td>
<td>1.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>ROD</td>
<td>1.000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>UMTRA</td>
<td>0.500</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>US MINES</td>
<td>0.250</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>TRIS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>TSCA</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>
MAP FINDINGS SUMMARY

<table>
<thead>
<tr>
<th>Database</th>
<th>Search Distance (Miles)</th>
<th>Target Property</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total Plotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTTS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>HIST FTTS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>SSTS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>ICIS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>PADS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>MLTS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>RADINFO</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>FINDS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>RAATS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>RMP</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>UIC</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>DRYCLEANERS</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>AIRS</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>INDIAN RESERV</td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>SCRD DRYCLEANERS</td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>COAL ASH EPA</td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>COAL ASH DOE</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>PCB TRANSFORMER</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>US FIN ASSUR</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>EPA WATCH LIST</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>PRP</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>US AIRS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>2020 COR ACTION</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>LEAD SMELTERS</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Financial Assurance</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

<table>
<thead>
<tr>
<th>EDR MGP</th>
<th>1.000</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>NR</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDR US Hist Auto Stat</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>EDR US Hist Cleaners</td>
<td>0.250</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

TP = Target Property
NR = Not Requested at this Search Distance
Sites may be listed in more than one database
1 GSA OFFICE BUILDING UST U004190455
91-3100 ENTERPRISE AVE N/A
KAPOLEI, HI 96707

SE 1/8-1/4 1284 ft.
0.243 mi.

Relative: Lower
Actual: 48 ft.

Facility ID: 9-203919
Owner: Archer Wester/Pankow
Owner Address: Not reported
Owner City,St,Zip: Kapolei, 96707 96707

Tank ID: m-1
Date Installed: Not reported
Tank Status: Currently in Use
Date Closed: Not reported
Tank Capacity: 4000
Substance: Diesel

2 NEX TOUCH N GO GAS STATION LUST U003221711
BLDG 1928 TANK 81, 82, 83 N/A
BARBERS POINT NAVAL AIR STATIO, HI 96862

SSE 1/4-1/2 2245 ft.
0.425 mi.

Relative: Lower
Actual: 45 ft.

Facility ID: 9-102001
Facility Status: Monitored Natural Attenuation
Facility Status Date: 08/24/2010
Release ID: 940200
Project Officer: Shaobin Li

Facility ID: 9-102001
Facility Status: Monitored Natural Attenuation
Facility Status Date: 08/24/2010
Release ID: 070005
Project Officer: Shaobin Li

Facility ID: 9-102001
Facility Status: Confirmed Release
Facility Status Date: 07/25/2013
Release ID: 130008
Project Officer: Shaobin Li

Facility ID: 9-102001
Owner: US Navy - Commandar Navy Region Hawaii
Owner Address: 850 Ticonderoga Street, Suite 110
Owner City,St,Zip: Barbers Point Naval Air Station, 96862 96862

Tank ID: 81
Date Installed: 02/28/1988
Tank Status: Temporarily out of Use
Date Closed: Not reported
Tank Capacity: 10000
Substance: Gasoline

Tank ID: 82
NEX TOUCH N GO GAS STATION (Continued)

Date Installed: 02/28/1988
Tank Status: Temporarily out of Use
Date Closed: Not reported
Tank Capacity: 10000
Substance: Gasoline

Tank ID: 83
Date Installed: 02/28/1988
Tank Status: Currently In Use
Date Closed: Not reported
Tank Capacity: 10000
Substance: Gasoline

HI Financial Assurance:
Alt Facility ID: 9-102001
Tank Id: 81
Tank Status: Temporarily out of Use
FRTYPE: Other
Expiration Date: Not reported

Alt Facility ID: 9-102001
Tank Id: 82
Tank Status: Temporarily out of Use
FRTYPE: Other
Expiration Date: Not reported

Alt Facility ID: 9-102001
Tank Id: 83
Tank Status: Currently In Use
FRTYPE: Other
Expiration Date: Not reported

FORT BARRETTE

FUDS: 1012129405
N/A

Relative:
Higher

Actual:
98 ft.

FUDS:

- **Federal Facility ID:** HI9799F3828
- **FUDS #:** H09HI0087
- **INST ID:** 54583
- **Facility Name:** FORT BARRETTE
- **City:** Not reported
- **State:** HI
- **EPA Region:** 09
- **County:** HONOLULU
- **Congressional District:** 02
- **US Army District:** Honolulu District (POH)
- **Fiscal Year:** 2011
- **Telephone:** 808-438-8317
- **NPL Status:** Not Listed
- **RAB:** Not reported
- **CTC:** 1352.7
- **Current Owner:** FEDERAL; PRIVATE
- **Current Prog:** Not reported
FORT BARRETTE (Continued) 1012129405

Future Prog: Not reported
Description: THE SITE CONTAINS EXPOSED CESS POOLS, EXPOSED MANHOLES, UNDERGROUND CONCRETE BOXES, SEPTIC TANKS AND FUEL TANK VAULTS, AN UNDERGROUND RESERVOIR. THESE STRUCTURES POSE POTENTIAL SAFETY HAZARDS TO FUTURE PARK VISITORS.
THE PROJECT SITE CONSISTED OF 38.53 ACRES PURCHASED BY THE US GOVERNMENT ON NOVEMBER 1931. ON APRIL 23, 1956 THE 38.53 ACRE INSTALLATION WAS DECLARED EXCESS TO THE NEEDS OF THE ARMY AND WAS TRANSFERRED TO THE NAVY.
<table>
<thead>
<tr>
<th>City</th>
<th>EDR ID</th>
<th>Site Name</th>
<th>Site Address</th>
<th>Zip</th>
<th>Database(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARBERS POINT NAS</td>
<td>S111704672</td>
<td>BARBERS POINT NAS STATION P</td>
<td>MISSION ST</td>
<td>96707</td>
<td>SHWS</td>
</tr>
<tr>
<td>EWA BEACH</td>
<td>1006819246</td>
<td>KAPOLEI PIPELINE FUEL SPILL</td>
<td>KAMOKILA BLVD</td>
<td>96707</td>
<td>SHWS, SPILLS</td>
</tr>
<tr>
<td>EWA BEACH</td>
<td>S113183482</td>
<td>ZELINSKY AND SONS OF HI</td>
<td>91 310 KOMOHANA</td>
<td>96707</td>
<td>HAZNET</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>1015874642</td>
<td>MEHANA AT KAPOLEI - STOCKPILE AREA</td>
<td>NO ADDRESS: WEST SIDE OF FORT</td>
<td></td>
<td>FINDS</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>1015874641</td>
<td>MEHANA AT KAPOLEI</td>
<td>NO ADDRESS: WEST SIDE OF FT. B</td>
<td></td>
<td>FINDS</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>1009404006</td>
<td>MEHANA AT KAPOLEI - STOCKPILE</td>
<td>FT. BARRETTE ROAD</td>
<td>96707</td>
<td>HAZNET</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>1009403961</td>
<td>MEHANA AT KAPOLEI - MASS</td>
<td>FT. BARRETTE ROAD</td>
<td>96707</td>
<td>SHWS</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>S113183381</td>
<td>1X BARBERS POINT ELEMENTARY SCHOOL</td>
<td>BOXER RD</td>
<td>96707</td>
<td>CERC-NFRAP, CORRACTS, RCRA</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>S113200467</td>
<td>KAPOLEI II ELEMENTARY SCHOOL</td>
<td>FORT BARRETTE RD</td>
<td>96707</td>
<td>NonGen / NLR, FINDS, RAATS,</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>1006820896</td>
<td>HANUA STREET FUGITIVE OIL</td>
<td>HANUA ST</td>
<td>96707</td>
<td>SHWS, UST, SPILLS, INST CONTRO</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>1000146688</td>
<td>HAWAIIAN WESTERN STEEL, LTD</td>
<td>91-150 HANUA ST</td>
<td>96707</td>
<td>HAZNET, 2020 COR ACTION, PRP</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>1009401508</td>
<td>ISLAND PACIFIC SCHOOL</td>
<td>909 HAUMEA STREET</td>
<td>96707</td>
<td>FTTS, HIST FTTS</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>1010349980</td>
<td>KAPOLEI ELEMENTARY SCHOOL</td>
<td>91-1110 KAKAHA LOOP</td>
<td>96707</td>
<td>FTTS, FINDS</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>S106817373</td>
<td>HAWAII PROJECT MANAGEMENT [HPM] /</td>
<td>KAOI LI</td>
<td>96707</td>
<td>SHWS</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>1012178255</td>
<td>TARGET STORE #T2411</td>
<td>4450 KAPOLEI PKWY STE 100</td>
<td>96707</td>
<td>RCRA-SQG</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>1012178246</td>
<td>COSTCO WHOLESALE NO 1038</td>
<td>4589 KAPOLEI PKWY</td>
<td>96707</td>
<td>RCRA-SQG</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>S113230516</td>
<td>PRECISION WOOD OF HAWAII INC</td>
<td>91-466 KOMOHANA ST</td>
<td>96707</td>
<td>SHWS, ENG CONTROLS, INST CON</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>1006819575</td>
<td>TEXACO MALAKOLE STREET PIPELINE EX</td>
<td>MALAKOLE ST</td>
<td>96707</td>
<td>SHWS, SPILLS</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>S106820144</td>
<td>PUMP 15 STATION, FORMER OAHU SUGAR</td>
<td>OLD FARRINGTON HWY</td>
<td>96707</td>
<td>SHWS</td>
</tr>
<tr>
<td>KAPOLEI</td>
<td>S107022635</td>
<td>SINGLE BUOY MOORING</td>
<td>SINGLE BUOY MOORING</td>
<td>96707</td>
<td>SHWS, SPILLS</td>
</tr>
</tbody>
</table>
To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

<table>
<thead>
<tr>
<th>Date of Government Version</th>
<th>Source</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/26/2013</td>
<td>EPA</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Date Data Arrived at EDR: 05/09/2013

Date Made Active in Reports: 07/10/2013

Number of Days to Update: 62

Next Scheduled EDR Contact: 01/20/2014

Data Release Frequency: Quarterly

NPL Site Boundaries

Sources:

- EPA's Environmental Photographic Interpretation Center (EPIC)
 - Telephone: 202-564-7333
- EPA Region 1
 - Telephone: 617-918-1143
- EPA Region 2
 - Telephone: 215-814-5418
- EPA Region 3
 - Telephone: 404-562-8033
- EPA Region 4
 - Telephone: 312-886-6686
- EPA Region 5
 - Telephone: 206-553-8665

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

<table>
<thead>
<tr>
<th>Date of Government Version</th>
<th>Source</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/26/2013</td>
<td>EPA</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Date Data Arrived at EDR: 05/09/2013

Date Made Active in Reports: 07/10/2013

Number of Days to Update: 62

Next Scheduled EDR Contact: 01/20/2014

Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

<table>
<thead>
<tr>
<th>Date of Government Version</th>
<th>Source</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/15/1991</td>
<td>EPA</td>
<td>202-564-4267</td>
</tr>
</tbody>
</table>

Date Data Arrived at EDR: 02/02/1994

Date Made Active in Reports: 03/30/1994

Number of Days to Update: 56

Next Scheduled EDR Contact: 11/28/2011

Data Release Frequency: No Update Planned
Federal Delisted NPL site list

DELISTED NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

- Date of Government Version: 04/26/2013
- Source: EPA
- Date Data Arrived at EDR: 05/09/2013
- Telephone: N/A
- Date Made Active in Reports: 07/10/2013
- Last EDR Contact: 11/11/2013
- Number of Days to Update: 62
- Next Scheduled EDR Contact: 01/20/2014
- Data Release Frequency: Quarterly

Federal CERCLIS list

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System

CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

- Date of Government Version: 04/26/2013
- Source: EPA
- Date Data Arrived at EDR: 05/29/2013
- Telephone: 703-412-9810
- Date Made Active in Reports: 08/09/2013
- Last EDR Contact: 11/11/2013
- Number of Days to Update: 72
- Next Scheduled EDR Contact: 12/09/2013
- Data Release Frequency: Quarterly

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPA Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

- Date of Government Version: 07/31/2012
- Source: Environmental Protection Agency
- Date Data Arrived at EDR: 10/09/2012
- Telephone: 703-603-8704
- Date Made Active in Reports: 12/20/2012
- Last EDR Contact: 10/11/2013
- Number of Days to Update: 72
- Next Scheduled EDR Contact: 01/20/2014
- Data Release Frequency: Varies

Federal CERCLIS NFRAP site List

CERCLIS-NFRAP: CERCLIS No Further Remedial Action Planned

Archived sites are sites that have been removed and archived from the inventory of CERCLIS sites. Archived status indicates that, to the best of EPA’s knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list this site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. This decision does not necessarily mean that there is no hazard associated with a given site; it only means that, based upon available information, the location is not judged to be a potential NPL site.

- Date of Government Version: 04/26/2013
- Source: EPA
- Date Data Arrived at EDR: 05/29/2013
- Telephone: 703-412-9810
- Date Made Active in Reports: 08/09/2013
- Last EDR Contact: 11/11/2013
- Number of Days to Update: 72
- Next Scheduled EDR Contact: 12/09/2013
- Data Release Frequency: Quarterly

Federal RCRA CORRACTS facilities list

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.
Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDf: RCRA - Treatment, Storage and Disposal
RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator onsite to a facility that can recycle, treat, store, or dispose of the waste. TSDs treat, store, or dispose of the waste.

Federal RCRA generators list

RCRA-LQG: RCRA - Large Quantity Generators
RCRAInfo is EPA’s comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

RCRA-SQG: RCRA - Small Quantity Generators
RCRAInfo is EPA’s comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

RCRA-CESQG: RCRA - Conditionally Exempt Small Quantity Generators
RCRAInfo is EPA’s comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.
Federal institutional controls / engineering controls registries

US ENG CONTROLS: Engineering Controls Sites List
A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 06/17/2013
Date Data Arrived at EDR: 06/21/2013
Date Made Active in Reports: 10/03/2013
Number of Days to Update: 104
Source: Environmental Protection Agency

US INST CONTROL: Sites with Institutional Controls
A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 06/17/2013
Date Data Arrived at EDR: 06/21/2013
Date Made Active in Reports: 10/03/2013
Number of Days to Update: 104
Source: Environmental Protection Agency

LUCIS: Land Use Control Information System
LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 08/20/2013
Date Data Arrived at EDR: 08/23/2013
Date Made Active in Reports: 11/01/2013
Number of Days to Update: 70
Source: Department of the Navy

Federal ERNS list

ERNS: Emergency Response Notification System
Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances.

Date of Government Version: 12/31/2012
Date Data Arrived at EDR: 01/17/2013
Date Made Active in Reports: 02/15/2013
Number of Days to Update: 29
Source: National Response Center, United States Coast Guard

State- and tribal - equivalent CERCLIS

SHWS: Sites List
Facilities, sites or areas in which the Office of Hazard Evaluation and Emergency Response has an interest, has investigated or may investigate under HRS 128D (includes CERCLIS sites).

Date of Government Version: 01/17/2013
Date Data Arrived at EDR: 02/28/2013
Date Made Active in Reports: 04/09/2013
Number of Days to Update: 40
Source: Department of Health

State and tribal landfill and/or solid waste disposal site lists
SWF/LF: Permitted Landfills in the State of Hawaii

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 09/17/2012
Source: Department of Health
Telephone: 808-586-4245
Last EDR Contact: 10/04/2013
Next Scheduled EDR Contact: 01/13/2014
Number of Days to Update: 37
Data Release Frequency: Varies

State and tribal leaking storage tank lists

LUST: Leaking Underground Storage Tank Database

Leaking Underground Storage Tank Incident Reports. LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state.

Date of Government Version: 09/06/2013
Source: Department of Health
Telephone: 808-586-4228
Last EDR Contact: 09/03/2013
Next Scheduled EDR Contact: 12/16/2013
Number of Days to Update: 12
Data Release Frequency: Semi-Annually

INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land

LUSTs on Indian land in Arizona, California, New Mexico and Nevada

Date of Government Version: 03/01/2013
Source: Environmental Protection Agency
Telephone: 415-972-3372
Last EDR Contact: 10/28/2013
Next Scheduled EDR Contact: 02/11/2014
Number of Days to Update: 42
Data Release Frequency: Quarterly

INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land

Date of Government Version: 07/29/2013
Source: EPA Region 10
Telephone: 206-553-2857
Last EDR Contact: 10/28/2013
Next Scheduled EDR Contact: 02/11/2014
Number of Days to Update: 94
Data Release Frequency: Quarterly

INDIAN LUST R7: Leaking Underground Storage Tanks on Indian Land

LUSTs on Indian land in Iowa, Kansas, and Nebraska

Date of Government Version: 08/27/2013
Source: EPA Region 7
Telephone: 913-551-7003
Last EDR Contact: 10/28/2013
Next Scheduled EDR Contact: 02/11/2014
Number of Days to Update: 66
Data Release Frequency: Quarterly

INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land

LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.

Date of Government Version: 08/27/2012
Source: EPA Region 8
Telephone: 303-312-6271
Last EDR Contact: 10/28/2013
Next Scheduled EDR Contact: 02/11/2014
Number of Days to Update: 49
Data Release Frequency: Quarterly
INDIAN LUST R5: Leaking Underground Storage Tanks on Indian Land
Leaking underground storage tanks located on Indian Land in Michigan, Minnesota and Wisconsin.

Date of Government Version: 08/20/2013
Date Data Arrived at EDR: 08/23/2013
Date Made Active in Reports: 11/01/2013
Number of Days to Update: 70
Source: EPA, Region 5
Telephone: 312-886-7439
Last EDR Contact: 10/28/2013
Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Varies

INDIAN LUST R1: Leaking Underground Storage Tanks on Indian Land
A listing of leaking underground storage tank locations on Indian Land.

Date of Government Version: 02/01/2013
Date Data Arrived at EDR: 05/01/2013
Date Made Active in Reports: 11/01/2013
Number of Days to Update: 184
Source: EPA Region 1
Telephone: 617-918-1313
Last EDR Contact: 11/01/2013
Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Varies

INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land
LUSTs on Indian land in Florida, Mississippi and North Carolina.

Date of Government Version: 08/01/2013
Date Data Arrived at EDR: 08/02/2013
Date Made Active in Reports: 11/01/2013
Number of Days to Update: 91
Source: EPA Region 4
Telephone: 404-562-8677
Last EDR Contact: 10/28/2013
Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Semi-Annually

INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land
LUSTs on Indian land in New Mexico and Oklahoma.

Date of Government Version: 09/12/2011
Date Data Arrived at EDR: 09/13/2011
Date Made Active in Reports: 11/11/2011
Number of Days to Update: 59
Source: EPA Region 6
Telephone: 214-665-6597
Last EDR Contact: 10/28/2013
Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Varies

State and tribal registered storage tank lists

UST: Underground Storage Tank Database
Registered Underground Storage Tanks. UST’s are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

Date of Government Version: 09/06/2013
Date Data Arrived at EDR: 09/06/2013
Date Made Active in Reports: 09/18/2013
Number of Days to Update: 12
Source: Department of Health
Telephone: 808-586-4228
Last EDR Contact: 09/03/2013
Next Scheduled EDR Contact: 12/16/2013
Data Release Frequency: Semi-Annually

INDIAN UST R1: Underground Storage Tanks on Indian Land
The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal Nations).

Date of Government Version: 09/28/2012
Date Data Arrived at EDR: 11/07/2012
Date Made Active in Reports: 04/12/2013
Number of Days to Update: 156
Source: EPA, Region 1
Telephone: 617-918-1313
Last EDR Contact: 11/01/2014
Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Varies
INDIAN UST R4: Underground Storage Tanks on Indian Land
The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations).

Date of Government Version: 08/01/2013 Source: EPA Region 4
Date Data Arrived at EDR: 08/02/2013 Telephone: 404-562-9424
Date Made Active in Reports: 11/01/2013 Last EDR Contact: 10/28/2013
Number of Days to Update: 91 Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Semi-Annually

INDIAN UST R5: Underground Storage Tanks on Indian Land
The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 5 (Michigan, Minnesota and Wisconsin and Tribal Nations).

Date of Government Version: 08/20/2013 Source: EPA Region 5
Date Data Arrived at EDR: 08/23/2013 Telephone: 312-886-6136
Date Made Active in Reports: 11/01/2013 Last EDR Contact: 10/28/2013
Number of Days to Update: 70 Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Varies

INDIAN UST R6: Underground Storage Tanks on Indian Land
The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).

Date of Government Version: 05/10/2011 Source: EPA Region 6
Date Data Arrived at EDR: 05/11/2011 Telephone: 214-665-7591
Date Made Active in Reports: 06/14/2011 Last EDR Contact: 10/28/2013
Number of Days to Update: 34 Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Semi-Annually

INDIAN UST R7: Underground Storage Tanks on Indian Land
The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).

Date of Government Version: 12/31/2012 Source: EPA Region 7
Date Data Arrived at EDR: 02/28/2013 Telephone: 913-551-7003
Date Made Active in Reports: 04/12/2013 Last EDR Contact: 10/28/2013
Number of Days to Update: 43 Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Semi-Annually

INDIAN UST R8: Underground Storage Tanks on Indian Land
The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).

Date of Government Version: 07/29/2013 Source: EPA Region 8
Date Data Arrived at EDR: 08/01/2013 Telephone: 303-312-6137
Date Made Active in Reports: 11/01/2013 Last EDR Contact: 10/28/2013
Number of Days to Update: 92 Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Quarterly

INDIAN UST R10: Underground Storage Tanks on Indian Land

Date of Government Version: 02/05/2013 Source: EPA Region 10
Date Data Arrived at EDR: 02/06/2013 Telephone: 206-553-2857
Date Made Active in Reports: 04/12/2013 Last EDR Contact: 10/28/2013
Number of Days to Update: 65 Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Quarterly
INDIAN UST R9: Underground Storage Tanks on Indian Land
The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).

Date of Government Version: 02/21/2013 Source: EPA Region 9
Date Data Arrived at EDR: 02/26/2013 Telephone: 415-972-3368
Date Made Active in Reports: 04/12/2013 Last EDR Contact: 10/28/2013
Number of Days to Update: 45 Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Quarterly

FEMA UST: Underground Storage Tank Listing
A listing of all FEMA owned underground storage tanks.

Date of Government Version: 01/01/2010 Source: FEMA
Date Data Arrived at EDR: 02/16/2010 Telephone: 202-646-5797
Date Made Active in Reports: 04/12/2010 Last EDR Contact: 10/17/2013
Number of Days to Update: 55 Next Scheduled EDR Contact: 01/27/2014
Data Release Frequency: Varies

State and tribal institutional control / engineering control registries

ENG CONTROLS: Engineering Control Sites
A listing of sites with engineering controls in place.

Date of Government Version: 01/17/2013 Source: Department of Health
Date Data Arrived at EDR: 02/28/2013 Telephone: 404-586-4249
Date Made Active in Reports: 04/09/2013 Last EDR Contact: 08/30/2013
Number of Days to Update: 40 Next Scheduled EDR Contact: 12/09/2013
Data Release Frequency: Varies

INST CONTROL: Sites with Institutional Controls
Voluntary Remediation Program and Brownfields sites with institutional controls in place.

Date of Government Version: 01/17/2013 Source: Department of Health
Date Data Arrived at EDR: 02/28/2013 Telephone: 808-586-4249
Date Made Active in Reports: 04/09/2013 Last EDR Contact: 08/30/2013
Number of Days to Update: 40 Next Scheduled EDR Contact: 12/09/2013
Data Release Frequency: Varies

State and tribal voluntary cleanup sites

INDIAN VCP R1: Voluntary Cleanup Priority Listing
A listing of voluntary cleanup priority sites located on Indian Land located in Region 1.

Date of Government Version: 09/28/2012 Source: EPA, Region 1
Date Data Arrived at EDR: 10/02/2012 Telephone: 617-918-1102
Date Made Active in Reports: 10/16/2012 Last EDR Contact: 10/01/2013
Number of Days to Update: 14 Next Scheduled EDR Contact: 01/13/2014
Data Release Frequency: Varies

INDIAN VCP R7: Voluntary Cleanup Priority Listing
A listing of voluntary cleanup priority sites located on Indian Land located in Region 7.

Date of Government Version: 03/20/2008 Source: EPA, Region 7
Date Data Arrived at EDR: 04/22/2008 Telephone: 913-551-7365
Date Made Active in Reports: 05/19/2008 Last EDR Contact: 04/20/2009
Number of Days to Update: 27 Next Scheduled EDR Contact: 07/20/2009
Data Release Frequency: Varies
VCP: Voluntary Response Program Sites
Sites participating in the Voluntary Response Program. The purpose of the VRP is to streamline the cleanup process in a way that will encourage prospective developers, lenders, and purchasers to voluntarily cleanup properties.

Date of Government Version: 01/17/2013 Source: Department of Health
Date Data Arrived at EDR: 02/28/2013 Telephone: 808-586-4249
Date Made Active in Reports: 04/09/2013 Last EDR Contact: 08/30/2013
Number of Days to Update: 40 Next Scheduled EDR Contact: 12/09/2013
Data Release Frequency: Varies

State and tribal Brownfields sites

BROWNFIELDS: Brownfields Sites
With certain legal exclusions and additions, the term 'brownfield site' means real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.

Date of Government Version: 01/17/2013 Source: Department of Health
Date Data Arrived at EDR: 02/28/2013 Telephone: 808-586-4249
Date Made Active in Reports: 04/09/2013 Last EDR Contact: 08/30/2013
Number of Days to Update: 40 Next Scheduled EDR Contact: 12/09/2013
Data Release Frequency: Varies

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites
Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

Date of Government Version: 06/24/2013 Source: Environmental Protection Agency
Date Data Arrived at EDR: 06/25/2013 Telephone: 202-566-2777
Date Made Active in Reports: 09/21/2013 Last EDR Contact: 09/24/2013
Number of Days to Update: 45 Next Scheduled EDR Contact: 01/08/2014
Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations
A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.

Date of Government Version: 01/12/2009 Source: EPA, Region 9
Date Data Arrived at EDR: 05/07/2009 Telephone: 415-947-4219
Date Made Active in Reports: 09/21/2009 Last EDR Contact: 10/28/2013
Number of Days to Update: 137 Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: No Update Planned

ODI: Open Dump Inventory
An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

Date of Government Version: 06/30/1985 Source: Environmental Protection Agency
Date Data Arrived at EDR: 08/09/2004 Telephone: 800-424-9346
Date Made Active in Reports: 09/17/2004 Last EDR Contact: 06/09/2004
Number of Days to Update: 39 Next Scheduled EDR Contact: N/A
Data Release Frequency: No Update Planned
INDIAN ODI: Report on the Status of Open Dumps on Indian Lands
Location of open dumps on Indian land.

Source: Environmental Protection Agency
Telephone: 703-308-8245
Last EDR Contact: 11/04/2013
Next Scheduled EDR Contact: 02/17/2014
Data Release Frequency: Varies

Local Lists of Hazardous waste / Contaminated Sites

US CDL: Clandestine Drug Labs
A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this
web site as a public service. It contains addresses of some locations where law enforcement agencies reported
they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites.
In most cases, the source of the entries is not the Department, and the Department has not verified the entry
and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example,
contacting local law enforcement and local health departments.

Source: Drug Enforcement Administration
Telephone: 202-307-1000
Last EDR Contact: 09/04/2013
Next Scheduled EDR Contact: 12/16/2013
Data Release Frequency: Quarterly

CDL: Clandestine Drug Lab Listing
A listing of clandestine drug lab site locations.

Source: Department of Health
Telephone: 808-586-4249
Last EDR Contact: 09/03/2013
Next Scheduled EDR Contact: 12/16/2013
Data Release Frequency: Varies

US HIST CDL: National Clandestine Laboratory Register
A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this
web site as a public service. It contains addresses of some locations where law enforcement agencies reported
they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites.
In most cases, the source of the entries is not the Department, and the Department has not verified the entry
and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example,
contacting local law enforcement and local health departments.

Source: Drug Enforcement Administration
Telephone: 202-307-1000
Last EDR Contact: 03/23/2009
Next Scheduled EDR Contact: 06/22/2009
Data Release Frequency: No Update Planned

Local Land Records

LIENS 2: CERCLA Lien Information
A Federal CERCLA ("Superfund") lien can exist by operation of law at any site or property at which EPA has spent
Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination.
CERCLIS provides information as to the identity of these sites and properties.

Source: Environmental Protection Agency
Telephone: 202-564-6023
Last EDR Contact: 11/13/2013
Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Varies
Records of Emergency Release Reports

HMIRS: Hazardous Materials Information Reporting System
Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

- Date of Government Version: 12/31/2012
- Source: U.S. Department of Transportation
- Telephone: 202-366-4555

Date of Government Version: 12/31/2012
- Date Data Arrived at EDR: 01/03/2013
- Date Made Active in Reports: 02/27/2013
- Number of Days to Update: 55
- Next Scheduled EDR Contact: 01/13/2014
- Data Release Frequency: Annually

SPILLS: Release Notifications
Releases of hazardous substances to the environment reported to the Office of Hazard Evaluation and Emergency Response since 1988.

Date of Government Version: 03/01/2013
- Date Data Arrived at EDR: 08/27/2013
- Date Made Active in Reports: 09/18/2013
- Number of Days to Update: 22
- Next Scheduled EDR Contact: 12/09/2013
- Data Release Frequency: Varies

Other Ascertainable Records

RCRA NonGen / NLR: RCRA - Non Generators
RCRAInfo is EPA’s comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

- Date of Government Version: 07/11/2013
- Source: Environmental Protection Agency
- Telephone: (415) 495-8895

Date of Government Version: 07/11/2013
- Date Data Arrived at EDR: 08/08/2013
- Date Made Active in Reports: 09/13/2013
- Number of Days to Update: 36
- Next Scheduled EDR Contact: 01/13/2014
- Data Release Frequency: Varies

DOT OPS: Incident and Accident Data
Department of Transportation, Office of Pipeline Safety Incident and Accident data.

- Date of Government Version: 07/31/2012
- Source: Department of Transportation, Office of Pipeline Safety
- Telephone: 202-366-4595

Date of Government Version: 07/31/2012
- Date Data Arrived at EDR: 08/07/2012
- Date Made Active in Reports: 09/18/2012
- Number of Days to Update: 42
- Next Scheduled EDR Contact: 02/17/2014
- Data Release Frequency: Varies

DOD: Department of Defense Sites
This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

- Date of Government Version: 12/31/2005
- Source: USGS
- Telephone: 888-275-8747

Date of Government Version: 12/31/2005
- Date Data Arrived at EDR: 11/10/2006
- Date Made Active in Reports: 01/11/2007
- Number of Days to Update: 62
- Next Scheduled EDR Contact: 01/27/2014
- Data Release Frequency: Semi-Annually

FUDS: Formerly Used Defense Sites
The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.
<table>
<thead>
<tr>
<th>Date of Government Version</th>
<th>Source</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Data Arrived at EDR:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date Made Active in Reports:</td>
<td>Date Made Active in Reports:</td>
<td>Number of Days to Update:</td>
</tr>
<tr>
<td>Date Made Active in Reports:</td>
<td>Date Made Active in Reports:</td>
<td>Number of Days to Update:</td>
</tr>
<tr>
<td>Last EDR Contact:</td>
<td>Last EDR Contact:</td>
<td>Next Scheduled EDR Contact:</td>
</tr>
<tr>
<td>Data Release Frequency:</td>
<td>Data Release Frequency:</td>
<td>Data Release Frequency:</td>
</tr>
</tbody>
</table>

CONSENT: Superfund (CERCLA) Consent Decrees
Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

- **Date of Government Version:** 06/30/2013
- **Source:** Department of Justice, Consent Decree Library
- **Telephone:** Varies
- **Last EDR Contact:** 09/30/2013
- **Next Scheduled EDR Contact:** 01/13/2014
- **Data Release Frequency:** Varies

ROD: Records Of Decision
Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

- **Date of Government Version:** 04/26/2013
- **Source:** EPA
- **Telephone:** 703-416-0223
- **Last EDR Contact:** 09/13/2013
- **Next Scheduled EDR Contact:** 12/23/2013
- **Data Release Frequency:** Varies

UMTRA: Uranium Mill Tailings Sites
Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

- **Date of Government Version:** 09/14/2010
- **Source:** Department of Energy
- **Telephone:** 505-845-0011
- **Last EDR Contact:** 05/28/2013
- **Next Scheduled EDR Contact:** 09/09/2013
- **Data Release Frequency:** Annually

US MINES: Mines Master Index File
Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

- **Date of Government Version:** 08/01/2013
- **Source:** Department of Labor, Mine Safety and Health Administration
- **Telephone:** 303-231-5959
- **Last EDR Contact:** 09/05/2013
- **Next Scheduled EDR Contact:** 12/16/2013
- **Data Release Frequency:** Semi-Annually

TRIS: Toxic Chemical Release Inventory System
Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

- **Date of Government Version:** 12/31/2011
- **Source:** EPA
- **Telephone:** 202-566-0250
- **Last EDR Contact:** 08/30/2013
- **Next Scheduled EDR Contact:** 12/09/2013
- **Data Release Frequency:** Annually

TSCA: Toxic Substances Control Act
Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant site.
FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)
FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

FTTS INSPI: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)
A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing
A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

HIST FTTS INSPI: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing
A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

SSTS: Section 7 Tracking Systems
Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.
ICIS: Integrated Compliance Information System
The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 07/20/2011
Date Data Arrived at EDR: 11/10/2011
Date Made Active in Reports: 01/10/2012
Number of Days to Update: 61
Source: Environmental Protection Agency
Telephone: 202-564-5088
Last EDR Contact: 10/09/2014
Next Scheduled EDR Contact: 01/27/2014
Data Release Frequency: Quarterly

PADS: PCB Activity Database System
PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 06/01/2013
Date Data Arrived at EDR: 07/17/2013
Date Made Active in Reports: 11/01/2013
Number of Days to Update: 107
Source: EPA
Telephone: 202-566-0500
Last EDR Contact: 10/18/2013
Next Scheduled EDR Contact: 01/27/2014
Data Release Frequency: Annually

MLTS: Material Licensing Tracking System
MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 07/22/2013
Date Data Arrived at EDR: 08/02/2013
Date Made Active in Reports: 11/01/2013
Number of Days to Update: 91
Source: Nuclear Regulatory Commission
Telephone: 301-415-7169
Last EDR Contact: 09/10/2013
Next Scheduled EDR Contact: 12/23/2013
Data Release Frequency: Quarterly

RADINFO: Radiation Information Database
The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 09/30/2013
Date Data Arrived at EDR: 10/09/2013
Date Made Active in Reports: 11/01/2013
Number of Days to Update: 23
Source: Environmental Protection Agency
Telephone: 202-343-9775
Last EDR Contact: 10/09/2013
Next Scheduled EDR Contact: 01/20/2014
Data Release Frequency: Quarterly

FINDS: Facility Index System/Facility Registry System
Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 03/08/2013
Date Data Arrived at EDR: 03/21/2013
Date Made Active in Reports: 07/10/2013
Number of Days to Update: 111
Source: EPA
Telephone: (415) 947-8000
Last EDR Contact: 09/11/2013
Next Scheduled EDR Contact: 12/23/2013
Data Release Frequency: Quarterly
RAATS: RCRA Administrative Action Tracking System
RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version:	04/17/1995	Source: EPA
Date Data Arrived at EDR:	07/03/1995	Telephone: 202-564-4104
Date Made Active in Reports:	08/07/1995	Last EDR Contact: 06/02/2008
Number of Days to Update:	35	Next Scheduled EDR Contact: 09/01/2008

RMP: Risk Management Plans
When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g. the fire department) should an accident occur.

Date of Government Version:	05/08/2012	Source: Environmental Protection Agency
Date Data Arrived at EDR:	05/25/2012	Telephone: 202-564-8600
Date Made Active in Reports:	07/10/2012	Last EDR Contact: 10/28/2013
Number of Days to Update:	46	Next Scheduled EDR Contact: 02/11/2014

BRS: Biennial Reporting System
The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version:	12/31/2011	Source: EPA/NTIS
Date Data Arrived at EDR:	02/26/2013	Telephone: 800-424-9346
Date Made Active in Reports:	04/19/2013	Last EDR Contact: 08/26/2013
Number of Days to Update:	52	Next Scheduled EDR Contact: 12/09/2013

UIC: Underground Injection Wells Listing
A listing of underground injection well locations.

Date of Government Version:	02/07/2013	Source: Department of Health
Date Data Arrived at EDR:	02/12/2013	Telephone: 808-586-4258
Date Made Active in Reports:	04/09/2013	Last EDR Contact: 09/03/2013
Number of Days to Update:	56	Next Scheduled EDR Contact: 12/16/2013

DRYCLEANERS: Permitted Drycleaner Facility Listing
A listing of permitted drycleaner facilities in the state.

Date of Government Version:	12/31/2012	Source: Department of Health
Date Data Arrived at EDR:	01/25/2013	Telephone: 808-586-4200
Date Made Active in Reports:	02/28/2013	Last EDR Contact: 10/07/2013
Number of Days to Update:	34	Next Scheduled EDR Contact: 01/20/2014

Data Release Frequency: Varies
AIRS: List of Permitted Facilities
A listing of permitted facilities in the state.
Date of Government Version: 06/30/2013
Date Data Arrived at EDR: 08/09/2013
Date Made Active in Reports: 08/12/2013
Number of Days to Update: 3
Source: Department of Health
Telephone: 808-586-4200
Last EDR Contact: 10/07/2013
Next Scheduled EDR Contact: 01/20/2014
Data Release Frequency: Varies

INDIAN RESERV: Indian Reservations
This map layer portrays Indian administered lands of the United States that have any area equal to or greater than 640 acres.
Date of Government Version: 12/31/2005
Date Data Arrived at EDR: 12/08/2006
Date Made Active in Reports: 01/11/2007
Number of Days to Update: 34
Source: USGS
Telephone: 202-208-3710
Last EDR Contact: 10/18/2013
Next Scheduled EDR Contact: 01/27/2014
Data Release Frequency: Semi-Annually

SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners Listing
The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.
Date of Government Version: 03/07/2011
Date Data Arrived at EDR: 03/09/2011
Date Made Active in Reports: 05/02/2011
Number of Days to Update: 54
Source: Environmental Protection Agency
Telephone: 615-532-8599
Last EDR Contact: 11/18/2013
Next Scheduled EDR Contact: 02/03/2014
Data Release Frequency: Varies

2020 COR ACTION: 2020 Corrective Action Program List
The EPA has set ambitious goals for the RCRA Corrective Action program by creating the 2020 Corrective Action Universe. This RCRA cleanup baseline includes facilities expected to need corrective action. The 2020 universe contains a wide variety of sites. Some properties are heavily contaminated while others were contaminated but have since been cleaned up. Still others have not been fully investigated yet, and may require little or no remediation. Inclusion in the 2020 Universe does not necessarily imply failure on the part of a facility to meet its RCRA obligations.
Date Data Arrived at EDR: 05/18/2012
Date Made Active in Reports: 05/25/2012
Number of Days to Update: 7
Source: Environmental Protection Agency
Telephone: 703-308-4044
Last EDR Contact: 11/15/2013
Next Scheduled EDR Contact: 02/24/2014
Data Release Frequency: Varies

LEAD SMELTER 2: Lead Smelter Sites
A list of several hundred sites in the U.S. where secondary lead smelting was done from 1931 and 1964. These sites may pose a threat to public health through ingestion or inhalation of contaminated soil or dust
Date of Government Version: 04/05/2001
Date Data Arrived at EDR: 10/27/2010
Date Made Active in Reports: 12/02/2010
Number of Days to Update: 36
Source: American Journal of Public Health
Telephone: 703-305-6451
Last EDR Contact: 12/02/2009
Next Scheduled EDR Contact: N/A
Data Release Frequency: N/A

LEAD SMELTER 1: Lead Smelter Sites
A listing of former lead smelter site locations.
Date of Government Version: 01/29/2013
Date Data Arrived at EDR: 02/14/2013
Date Made Active in Reports: 02/27/2013
Number of Days to Update: 13
Source: Environmental Protection Agency
Telephone: 703-603-8787
Last EDR Contact: 09/24/2013
Next Scheduled EDR Contact: 01/20/2014
Data Release Frequency: Varies
Financial Assurance: Financial Assurance Information Listing
A listing of financial assurance information for underground storage tank facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.

Date of Government Version: 09/24/2013
Date Data Arrived at EDR: 09/25/2013
Date Made Active in Reports: 10/21/2013
Number of Days to Update: 26
Source: Department of Health
Telephone: 808-586-4226
Next Scheduled EDR Contact: 12/30/2013
Data Release Frequency: Varies

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List
A listing of coal combustion residues surface impoundments with high hazard potential ratings.

Date of Government Version: 08/17/2010
Date Data Arrived at EDR: 01/03/2011
Date Made Active in Reports: 03/21/2011
Number of Days to Update: 77
Source: Environmental Protection Agency
Telephone: N/A
Last EDR Contact: 09/13/2013
Next Scheduled EDR Contact: 12/23/2013
Data Release Frequency: Varies

COAL ASH DOE: Steam-Electric Plan Operation Data
A listing of power plants that store ash in surface ponds.

Date of Government Version: 12/31/2005
Date Data Arrived at EDR: 08/07/2009
Date Made Active in Reports: 10/22/2009
Number of Days to Update: 76
Source: Department of Energy
Telephone: 202-586-8719
Last EDR Contact: 10/15/2013
Next Scheduled EDR Contact: 01/27/2014
Data Release Frequency: Varies

PCB TRANSFORMER: PCB Transformer Registration Database
The database of PCB transformer registrations that includes all PCB registration submittals.

Date of Government Version: 02/01/2011
Date Data Arrived at EDR: 10/19/2011
Date Made Active in Reports: 01/10/2012
Number of Days to Update: 83
Source: Environmental Protection Agency
Telephone: 202-566-0517
Last EDR Contact: 11/01/2013
Next Scheduled EDR Contact: 02/11/2014
Data Release Frequency: Varies

US FIN ASSUR: Financial Assurance Information
All owners and operators of facilities that treat, store, or dispose of hazardous waste are required to provide proof that they will have sufficient funds to pay for the clean up, closure, and post-closure care of their facilities.

Date of Government Version: 03/04/2013
Date Data Arrived at EDR: 03/15/2013
Date Made Active in Reports: 05/10/2013
Number of Days to Update: 56
Source: Environmental Protection Agency
Telephone: 202-566-1917
Last EDR Contact: 11/18/2013
Next Scheduled EDR Contact: 03/03/2014
Data Release Frequency: Quarterly

EPA WATCH LIST: EPA WATCH LIST
EPA maintains a "Watch List" to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. Being on the Watch List does not mean that the facility has actually violated the law only that an investigation by EPA or a state or local environmental agency has led those organizations to allege that an unproven violation has in fact occurred. Being on the Watch List does not represent a higher level of concern regarding the alleged violations that were detected, but instead indicates cases requiring additional dialogue between EPA, state and local agencies - primarily because of the length of time the alleged violation has gone unaddressed or unresolved.

Date of Government Version: 06/30/2013
Date Data Arrived at EDR: 08/13/2013
Date Made Active in Reports: 09/13/2013
Number of Days to Update: 31
Source: Environmental Protection Agency
Telephone: 617-520-3000
Last EDR Contact: 11/15/2013
Next Scheduled EDR Contact: 02/24/2014
Data Release Frequency: Quarterly
PRP: Potentially Responsible Parties
A listing of verified Potentially Responsible Parties
Date of Government Version: 04/15/2013 Source: EPA
Date Data Arrived at EDR: 07/03/2013 Telephone: 202-564-6023
Date Made Active in Reports: 09/13/2013 Last EDR Contact: 10/04/2013
Number of Days to Update: 72 Next Scheduled EDR Contact: 01/13/2014
Data Release Frequency: Quarterly

US AIRS (AFS): Aerometric Information Retrieval System Facility Subsystem (AFS)
The database is a sub-system of Aerometric Information Retrieval System (AIRS). AFS contains compliance data on air pollution point sources regulated by the U.S. EPA and/or state and local air regulatory agencies. This information comes from source reports by various stationary sources of air pollution, such as electric power plants, steel mills, factories, and universities, and provides information about the air pollutants they produce. Action, air program, air program pollutant, and general level plant data. It is used to track emissions and compliance data from industrial plants.
Date of Government Version: 01/23/2013 Source: EPA
Date Data Arrived at EDR: 01/30/2013 Telephone: 202-564-5962
Date Made Active in Reports: 05/10/2013 Last EDR Contact: 09/30/2013
Number of Days to Update: 100 Next Scheduled EDR Contact: 01/13/2014
Data Release Frequency: Annually

FEDLAND: Federal and Indian Lands
Date Data Arrived at EDR: 02/06/2006 Telephone: 888-275-8747
Date Made Active in Reports: 01/11/2007 Last EDR Contact: 10/18/2013
Number of Days to Update: 339 Next Scheduled EDR Contact: 01/27/2014
Data Release Frequency: N/A

US AIRS MINOR: Air Facility System Data
A listing of minor source facilities.
Date of Government Version: 01/23/2013 Source: EPA
Date Data Arrived at EDR: 01/30/2013 Telephone: 202-564-5962
Date Made Active in Reports: 05/10/2013 Last EDR Contact: 09/30/2013
Number of Days to Update: 100 Next Scheduled EDR Contact: 01/13/2014
Data Release Frequency: Annually

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: EDR Proprietary Manufactured Gas Plants
The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR’s researchers. Manufactured gas sites were used in the United States from the 1800’s to 1950’s to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.
Date of Government Version: N/A Source: EDR, Inc.
Date Data Arrived at EDR: N/A Telephone: N/A
Date Made Active in Reports: N/A Last EDR Contact: N/A
Number of Days to Update: N/A Next Scheduled EDR Contact: N/A
Data Release Frequency: No Update Planned
EDR US Hist Auto Stat: EDR Exclusive Historic Gas Stations
EDR has searched selected national collections of business directories and has collected listings of potential
gas station/filling station/service station sites that were available to EDR researchers. EDR’s review was limited
to those categories of sources that might, in EDR’s opinion, include gas station/filling station/service station
establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station,
filling station, auto, automobile repair, auto service station, service station, etc. This database falls within
a category of information EDR classifies as “High Risk Historical Records”, or HRHR. EDR’s HRHR effort presents
unique and sometimes proprietary data about past sites and operations that typically create environmental concerns,
but may not show up in current government records searches.

Date of Government Version: N/A
Date Data Arrived at EDR: N/A
Date Made Active in Reports: N/A
Number of Days to Update: N/A
Source: EDR, Inc.
Telephone: N/A
Last EDR Contact: N/A
Next Scheduled EDR Contact: N/A
Data Release Frequency: Varies

EDR US Hist Cleaners: EDR Exclusive Historic Dry Cleaners
EDR has searched selected national collections of business directories and has collected listings of potential
dry cleaner sites that were available to EDR researchers. EDR’s review was limited to those categories of sources
that might, in EDR’s opinion, include dry cleaning establishments. The categories reviewed included, but were
not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls
within a category of information EDR classifies as “High Risk Historical Records”, or HRHR. EDR’s HRHR effort presents
unique and sometimes proprietary data about past sites and operations that typically create environmental concerns,
but may not show up in current government records searches.

Date of Government Version: N/A
Date Data Arrived at EDR: N/A
Date Made Active in Reports: N/A
Number of Days to Update: N/A
Source: EDR, Inc.
Telephone: N/A
Last EDR Contact: N/A
Next Scheduled EDR Contact: N/A
Data Release Frequency: Varies

EDR US Hist Cleaners: EDR Proprietary Historic Dry Cleaners - Cole
EDR has searched selected national collections of business directories and has collected listings of potential
dry cleaner sites that were available to EDR researchers. EDR’s review was limited to those categories of sources
that might, in EDR’s opinion, include dry cleaning establishments. The categories reviewed included, but were
not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls
within a category of information EDR classifies as “High Risk Historical Records”, or HRHR. EDR’s HRHR effort presents
unique and sometimes proprietary data about past sites and operations that typically create environmental concerns,
but may not show up in current government records searches.

Date of Government Version: N/A
Date Data Arrived at EDR: N/A
Date Made Active in Reports: N/A
Number of Days to Update: N/A
Source: N/A
Telephone: N/A
Last EDR Contact: N/A
Next Scheduled EDR Contact: N/A
Data Release Frequency: Varies

EDR has searched selected national collections of business directories and has collected listings of potential
gas station/filling station/service station sites that were available to EDR researchers. EDR’s review was limited to those categories of sources that might, in EDR’s opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as “High Risk Historical Records”, or HRHR. EDR’s HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A
Date Data Arrived at EDR: N/A
Date Made Active in Reports: N/A
Number of Days to Update: N/A
Source: N/A
Telephone: N/A
Last EDR Contact: N/A
Next Scheduled EDR Contact: N/A
Data Release Frequency: Varies

OTHER DATABASE(S)
Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information data does not necessarily mean that wetlands do not exist in the area covered by the report.

Oil/Gas Pipelines: This data was obtained by EDR from the USGS in 1994. It is referred to by USGS as GeoData Digital Line Graphs from 1:100,000-Scale Maps. It was extracted from the transportation category including some oil, but primarily gas pipelines.

Electric Power Transmission Line Data
Source: Rextag Strategies Corp.
Telephone: (281) 769-2247
U.S. Electric Transmission and Power Plants Systems Digital GIS Data
Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:
Source: American Hospital Association, Inc.
Telephone: 312-280-5991
The database includes a listing of hospitals based on the American Hospital Association’s annual survey of hospitals.

Medical Centers: Provider of Services Listing
Source: Centers for Medicare & Medicaid Services
Telephone: 410-786-3000
A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services, a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes
Source: National Institutes of Health
Telephone: 301-594-6248
Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools
Source: National Center for Education Statistics
Telephone: 202-502-7300
The National Center for Education Statistics’ primary database on elementary and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states.

Private Schools
Source: National Center for Education Statistics
Telephone: 202-502-7300
The National Center for Education Statistics’ primary database on private school locations in the United States.

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 2003 & 2011 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 and 2005 from the U.S. Fish and Wildlife Service.

Scanned Digital USGS 7.5’ Topographic Map (DRG)
Source: United States Geologic Survey
A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey topographic map. The map images are made by scanning published paper maps on high-resolution scanners. The raster image is georeferenced and fit to the Universal Transverse Mercator (UTM) projection.

STREET AND ADDRESS INFORMATION

© 2010 Tele Atlas North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.
TARGET PROPERTY ADDRESS

HI ELEMENTARY SCHOOL AT MEHANA
FORT BARRETT ROAD AND RENTON ROAD
KAPOLEI, HI 96707

TARGET PROPERTY COORDINATES

Latitude (North): 21.3273 - 21° 19' 38.28"
Longitude (West): 158.0719 - 158° 4' 18.84"
Universal Tranverse Mercator: Zone 4
UTM X (Meters): 596249.1
UTM Y (Meters): 2358516.2
Elevation: 61 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: 21158-C1 EWA, HI
Most Recent Revision: Not reported

EDR’s GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principal investigative components:

1. Groundwater flow direction, and
2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.
GROUNDWATER FLOW DIRECTION INFORMATION
Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION
Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY
General Topographic Gradient: General ESE

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5’ Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.
HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Target Property County: HONOLULU, HI
Flood Plain Panel at Target Property: 15003C - FEMA DFIRM Flood data
Additional Panels in search area: Not Reported

NATIONAL WETLAND INVENTORY

NWI Quad at Target Property: EWA
Additional Panels in search area: Not Reported

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>LOCATION</th>
<th>GENERAL DIRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Reported</td>
<td>FROM TP</td>
<td>GROUNDWATER FLOW</td>
</tr>
</tbody>
</table>

TC3792103.1s Page A-3
GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

<table>
<thead>
<tr>
<th>Era</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>-</td>
</tr>
<tr>
<td>Series</td>
<td>-</td>
</tr>
<tr>
<td>Code</td>
<td>N/A (decoded above as Era, System & Series)</td>
</tr>
</tbody>
</table>

GEOLOGIC AGE IDENTIFICATION

Category: -

Soil Map ID: 1

Soil Component Name: Honouliuli
Soil Surface Texture: clay
Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high water table, or are shallow to an impervious layer.
Soil Drainage Class: Well drained
Hydric Status: Not hydric
Corrosion Potential - Uncoated Steel: Moderate
Depth to Bedrock Min: > 0 inches
Depth to Watertable Min: > 0 inches

<table>
<thead>
<tr>
<th>Layer</th>
<th>Boundary</th>
<th>Soil Texture</th>
<th>Classification</th>
<th>Saturated hydraulic conductivity micro m/sec</th>
<th>Soil Reaction (pH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 inches</td>
<td>14 inches</td>
<td>clay</td>
<td>Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils. FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.</td>
<td>Max: 4 Min: 0.42 Max: 7.3 Min: 6.6</td>
</tr>
<tr>
<td>2</td>
<td>14 inches</td>
<td>68 inches</td>
<td>clay</td>
<td>Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils. FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.</td>
<td>Max: 1.41 Min: 0.01 Max: 7.8 Min: 6.6</td>
</tr>
</tbody>
</table>

Soil Map ID: 2

Soil Component Name: Ewa
Soil Surface Texture: silty clay loam
Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.
Soil Drainage Class: Well drained
GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

Soil Layer Information

<table>
<thead>
<tr>
<th>Layer</th>
<th>Boundary</th>
<th>Soil Texture Class</th>
<th>Classification</th>
<th>Saturated hydraulic conductivity</th>
<th>Soil Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper</td>
<td>Lower</td>
<td>AASHTO Group</td>
<td>micro m/sec</td>
<td>(pH)</td>
</tr>
<tr>
<td>1</td>
<td>0 inches</td>
<td>7 inches</td>
<td>Silty-Clay</td>
<td>FINE-GRAINED SOILS, Silts and</td>
<td>Max: 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Materials (more</td>
<td>Clays (liquid limit 50% or</td>
<td>Min: 4.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>than 35 pct.</td>
<td>more), Fat Clay.</td>
<td>Min: 6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>passing No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200), Clayey</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soils.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 inches</td>
<td>29 inches</td>
<td>Silty-Clay</td>
<td>FINE-GRAINED SOILS, Silts and</td>
<td>Max: 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Materials (more</td>
<td>Clays (liquid limit 50% or</td>
<td>Min: 4.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>than 35 pct.</td>
<td>more), Fat Clay.</td>
<td>Min: 6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>passing No.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200), Clayey</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soils.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>29 inches</td>
<td>38 inches</td>
<td>Bedrock</td>
<td>Not reported</td>
<td>Max: 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min: 1</td>
</tr>
</tbody>
</table>

Soil Map ID: 3

Soil Component Name: Quarry

Soil Surface Texture: Silty clay loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.

Soil Drainage Class: Unknown

Hydric Status: Unknown

Corrosion Potential - Uncoated Steel: Not Reported

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

No Layer Information available.
Soil Map ID: 4

Soil Component Name: Coral outcrop
Soil Surface Texture: bedrock
Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high water table, or are shallow to an impervious layer.
Soil Drainage Class: Excessively drained
Hydric Status: Not hydric
Corrosion Potential - Uncoated Steel: Not Reported
Depth to Bedrock Min: > 0 inches
Depth to Watertable Min: > 0 inches

<table>
<thead>
<tr>
<th>Layer</th>
<th>Boundary</th>
<th>Soil Texture Class</th>
<th>Classification</th>
<th>Saturated hydraulic conductivity micro m/sec</th>
<th>Soil Reaction (pH)</th>
</tr>
</thead>
</table>
| 1 | 0 inches | 59 inches | bedrock | Not reported | Not reported | Max: 42
Min: 1.41 | Max: Min: |

Soil Map ID: 5

Soil Component Name: Mamala
Soil Surface Texture: stony silty clay loam
Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high water table, or are shallow to an impervious layer.
Soil Drainage Class: Well drained
Hydric Status: Not hydric
Corrosion Potential - Uncoated Steel: Moderate
Depth to Bedrock Min: > 48 inches
Depth to Watertable Min: > 0 inches
Soil Layer Information

<table>
<thead>
<tr>
<th>Layer</th>
<th>Upper</th>
<th>Lower</th>
<th>Soil Texture Class</th>
<th>Classification</th>
<th>Saturated hydraulic conductivity micro m/sec</th>
<th>Soil Reaction (pH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 inches</td>
<td>7 inches</td>
<td>stony silty clay loam</td>
<td>Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.</td>
<td>FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.</td>
<td>Max: 14 Min: 4.23 Max: 7.3 Min: 6.6</td>
</tr>
<tr>
<td>2</td>
<td>7 inches</td>
<td>18 inches</td>
<td>stony silty clay loam</td>
<td>Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.</td>
<td>FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.</td>
<td>Max: 14 Min: 4.23 Max: 7.8 Min: 7.4</td>
</tr>
<tr>
<td>3</td>
<td>18 inches</td>
<td>29 inches</td>
<td>bedrock</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Max: 0.42 Min: 0.02 Max: Min:</td>
</tr>
</tbody>
</table>

Soil Map ID: 6

- **Soil Component Name:** Waialua
- **Soil Surface Texture:** silty clay
- **Hydrologic Group:** Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.
- **Soil Drainage Class:** Moderately well drained
- **Hydric Status:** Not hydric
- **Corrosion Potential - Uncoated Steel:** Moderate
- **Depth to Bedrock Min:** > 0 inches
- **Depth to Watertable Min:** > 0 inches

Soil Layer Information

<table>
<thead>
<tr>
<th>Layer</th>
<th>Upper</th>
<th>Lower</th>
<th>Soil Texture Class</th>
<th>Classification</th>
<th>Saturated hydraulic conductivity micro m/sec</th>
<th>Soil Reaction (pH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 inches</td>
<td>11 inches</td>
<td>silty clay</td>
<td>Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.</td>
<td>FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.</td>
<td>Max: 14.11 Min: 1.41 Max: 7.3 Min: 6.1</td>
</tr>
</tbody>
</table>
GEOCHECK® - PHYSICAL SETTINGS SOURCE SUMMARY

Soil Layer Information

<table>
<thead>
<tr>
<th>Layer</th>
<th>Boundary</th>
<th>Classification</th>
<th>Unified Soil</th>
<th>Saturated hydraulic conductivity (micro m/sec)</th>
<th>Soil Reaction (pH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>11 inches</td>
<td>Silty clay</td>
<td>FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.</td>
<td>Max: 4.23 Min: 1.41</td>
<td>Max: 7.3 Min: 6.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Boundary</th>
<th>Soil Texture Class</th>
<th>AASHTO Group</th>
<th>Unified Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>11 inches</td>
<td>Silty clay</td>
<td>Silt-Clay</td>
<td>FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.</td>
</tr>
</tbody>
</table>

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

<table>
<thead>
<tr>
<th>DATABASE</th>
<th>SEARCH DISTANCE (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal USGS</td>
<td>1.000</td>
</tr>
<tr>
<td>Federal FRDS PWS</td>
<td>Nearest PWS within 1 mile</td>
</tr>
<tr>
<td>State Database</td>
<td>1.000</td>
</tr>
</tbody>
</table>

FEDERAL USGS WELL INFORMATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>WELL ID</th>
<th>LOCATION FROM TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>USGS40000269873</td>
<td>0 - 1/8 Mile North</td>
</tr>
<tr>
<td>B5</td>
<td>USGS40000269840</td>
<td>1/8 - 1/4 Mile SE</td>
</tr>
<tr>
<td>C6</td>
<td>USGS40000269942</td>
<td>1/2 - 1 Mile North</td>
</tr>
<tr>
<td>D10</td>
<td>USGS40000269847</td>
<td>1/2 - 1 Mile West</td>
</tr>
<tr>
<td>E12</td>
<td>USGS40000269831</td>
<td>1/2 - 1 Mile WSW</td>
</tr>
</tbody>
</table>

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>WELL ID</th>
<th>LOCATION FROM TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No PWS System Found</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATE DATABASE WELL INFORMATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>WELL ID</th>
<th>LOCATION FROM TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>HI80000000002431</td>
<td>0 - 1/8 Mile North</td>
</tr>
</tbody>
</table>
STATE DATABASE WELL INFORMATION

<table>
<thead>
<tr>
<th>MAP ID</th>
<th>WELL ID</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>HI80000000002432</td>
<td>0 - 1/8 Mile North</td>
</tr>
<tr>
<td>B4</td>
<td>HI80000000002418</td>
<td>1/8 - 1/4 Mile SE</td>
</tr>
<tr>
<td>C7</td>
<td>HI80000000002543</td>
<td>1/2 - 1 Mile North</td>
</tr>
<tr>
<td>D8</td>
<td>HI80000000002427</td>
<td>1/2 - 1 Mile West</td>
</tr>
<tr>
<td>D9</td>
<td>HI80000000002426</td>
<td>1/2 - 1 Mile West</td>
</tr>
<tr>
<td>E11</td>
<td>HI80000000002402</td>
<td>1/2 - 1 Mile WSW</td>
</tr>
<tr>
<td>13</td>
<td>HI80000000002486</td>
<td>1/2 - 1 Mile ENE</td>
</tr>
<tr>
<td>14</td>
<td>HI80000000002558</td>
<td>1/2 - 1 Mile North</td>
</tr>
<tr>
<td>F15</td>
<td>HI80000000002505</td>
<td>1/2 - 1 Mile ENE</td>
</tr>
<tr>
<td>F16</td>
<td>HI80000000002506</td>
<td>1/2 - 1 Mile ENE</td>
</tr>
</tbody>
</table>
A1
North
0 - 1/8 Mile
Lower

<table>
<thead>
<tr>
<th>Objectid:</th>
<th>856</th>
<th>Wid:</th>
<th>3-1904-002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Island:</td>
<td>Oahu</td>
<td>Well name:</td>
<td>Makakilo G C 1</td>
</tr>
<tr>
<td>Old name:</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr drilled:</td>
<td>1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driller:</td>
<td>ROSCOE MOSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quad map:</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long83dd:</td>
<td>-158.071944444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat83dd:</td>
<td>21.3280555556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gps:</td>
<td>0</td>
<td>Utm:</td>
<td>-1</td>
</tr>
<tr>
<td>Owner user:</td>
<td>Puu Makakilo</td>
<td>Old number:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Well type:</td>
<td>PER</td>
<td>Casing dia:</td>
<td>12</td>
</tr>
<tr>
<td>Ground el:</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well depth:</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid case:</td>
<td>57</td>
<td>Perf case:</td>
<td>77</td>
</tr>
<tr>
<td>Use:</td>
<td>ABN - Sealed</td>
<td>Use year:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init head:</td>
<td>Not Reported</td>
<td>Init head2:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init head3:</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init cl:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date:</td>
<td>11/22/1991</td>
<td>Test gpm:</td>
<td>450</td>
</tr>
<tr>
<td>Test ddown:</td>
<td>4.5</td>
<td>Test chlor:</td>
<td>860</td>
</tr>
<tr>
<td>Test temp:</td>
<td>Not Reported</td>
<td>Test unit:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump gpm:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft mgy:</td>
<td>Not Reported</td>
<td>Head feet:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Max chlor:</td>
<td>Not Reported</td>
<td>Min chlor:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Geology:</td>
<td>PLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump yr:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft yr:</td>
<td>Not Reported</td>
<td>Bot hole:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Bot solid:</td>
<td>Not Reported</td>
<td>Bot perf:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Spec capac:</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump mgd:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft mgd:</td>
<td>Not Reported</td>
<td>Pump elev:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump depth:</td>
<td>Not Reported</td>
<td>Tmk:</td>
<td>(1) 9-1-016:001</td>
</tr>
<tr>
<td>Aqui code:</td>
<td>30208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pir:</td>
<td>Not Reported</td>
<td>Surveyor:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>T:</td>
<td>Not Reported</td>
<td>Site id:</td>
<td>HI8000000002431</td>
</tr>
</tbody>
</table>

A2
North
0 - 1/8 Mile
Lower

<table>
<thead>
<tr>
<th>Objectid:</th>
<th>857</th>
<th>Wid:</th>
<th>3-1904-003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Island:</td>
<td>Oahu</td>
<td>Well name:</td>
<td>Makakilo G C 2</td>
</tr>
<tr>
<td>Old name:</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr drilled:</td>
<td>1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driller:</td>
<td>ROSCOE MOSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quad map:</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long83dd:</td>
<td>-158.071944444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat83dd:</td>
<td>21.3280555556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gps:</td>
<td>0</td>
<td>Utm:</td>
<td>-1</td>
</tr>
<tr>
<td>Owner user:</td>
<td>Puu Makakilo</td>
<td>Old number:</td>
<td>Not Reported</td>
</tr>
</tbody>
</table>

TC3792103.1s Page A-13
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well type</td>
<td>PER</td>
</tr>
<tr>
<td>Ground el</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Well depth</td>
<td>70</td>
</tr>
<tr>
<td>Solid case</td>
<td>50</td>
</tr>
<tr>
<td>Use</td>
<td>ABN - Sealed</td>
</tr>
<tr>
<td>Init head</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test date</td>
<td>1/7/1992</td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump gpm</td>
<td>0</td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Spec capa</td>
<td>121</td>
</tr>
<tr>
<td>Pump mgd</td>
<td>0</td>
</tr>
<tr>
<td>Pump elev</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Aquifer code</td>
<td>30208</td>
</tr>
<tr>
<td>Latest hd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pir</td>
<td>Not Reported</td>
</tr>
<tr>
<td>T</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Org. Identifier</td>
<td>USGS-HI</td>
</tr>
<tr>
<td>Formal name</td>
<td>USGS Hawaii Water Science Center</td>
</tr>
<tr>
<td>Monloc Identifier</td>
<td>USGS-211953158042801</td>
</tr>
<tr>
<td>Monloc name</td>
<td>3-1904-02 MAKAKILO</td>
</tr>
<tr>
<td>Monloc type</td>
<td>Well</td>
</tr>
<tr>
<td>Monloc desc</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Huc code</td>
<td>20060000</td>
</tr>
<tr>
<td>Drainagearea Units</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Contrib drainagearea units</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Longitude</td>
<td>-158.0717003</td>
</tr>
<tr>
<td>Horiz Acc measure</td>
<td>1</td>
</tr>
<tr>
<td>Horiz Collection method</td>
<td>Interpolated from map</td>
</tr>
<tr>
<td>Horiz coord refsys</td>
<td>NAD83</td>
</tr>
<tr>
<td>Vert measure units</td>
<td>feet</td>
</tr>
<tr>
<td>Vert measure val</td>
<td>30</td>
</tr>
<tr>
<td>Vert accmeasure units</td>
<td>feet</td>
</tr>
<tr>
<td>Vert measure val</td>
<td>.5</td>
</tr>
<tr>
<td>Vert collection method</td>
<td>Level or other surveying method</td>
</tr>
<tr>
<td>Vert coord refsys</td>
<td>HILOCAL</td>
</tr>
<tr>
<td>Aquifer name</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Aquifer name</td>
<td>HILOCAL</td>
</tr>
<tr>
<td>Aquifer type</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Aquifer type</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Construction date</td>
<td>19891026</td>
</tr>
<tr>
<td>Welldepth units</td>
<td>ft</td>
</tr>
<tr>
<td>Wellholedepth units</td>
<td>80</td>
</tr>
</tbody>
</table>

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS
Ground-water levels, Number of Measurements: 1

<table>
<thead>
<tr>
<th>Foot below Surface</th>
<th>Feet to Sealevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989-10-26 50.</td>
<td></td>
</tr>
</tbody>
</table>

B4

<table>
<thead>
<tr>
<th>Island</th>
<th>Oahu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old name</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Yr drilled</td>
<td>1965</td>
</tr>
<tr>
<td>Driller</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Quad map</td>
<td>6</td>
</tr>
<tr>
<td>Long83dd</td>
<td>-158.07</td>
</tr>
<tr>
<td>Lat83dd</td>
<td>21.3261111111</td>
</tr>
<tr>
<td>Gps</td>
<td>0</td>
</tr>
<tr>
<td>Owner user</td>
<td>Campbell Estate</td>
</tr>
<tr>
<td>Well type</td>
<td>DUG</td>
</tr>
<tr>
<td>Ground el</td>
<td>5</td>
</tr>
<tr>
<td>Well depth</td>
<td>8</td>
</tr>
<tr>
<td>Solid case</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Use</td>
<td>UNU - Unused</td>
</tr>
<tr>
<td>Init head</td>
<td>2.2</td>
</tr>
<tr>
<td>Init head3</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init cl</td>
<td>405</td>
</tr>
<tr>
<td>Test date</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test gpm</td>
<td>790</td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test temp</td>
<td>2.1</td>
</tr>
<tr>
<td>Test chlor</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test chlor</td>
<td>415</td>
</tr>
<tr>
<td>Pump gpm</td>
<td>0</td>
</tr>
<tr>
<td>Draft mgy</td>
<td>1445</td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Geology</td>
<td>PLS</td>
</tr>
<tr>
<td>Geology</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump yr</td>
<td>0</td>
</tr>
<tr>
<td>Draft yr</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Bot solid</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Spec capac</td>
<td>376</td>
</tr>
<tr>
<td>Pump mgd</td>
<td>0</td>
</tr>
<tr>
<td>Draft mgd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump mgd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Aqui code</td>
<td>30208</td>
</tr>
<tr>
<td>Latest hd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pir</td>
<td>Not Reported</td>
</tr>
<tr>
<td>T</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Site id</td>
<td>Hi8000000002418</td>
</tr>
</tbody>
</table>

B5

<table>
<thead>
<tr>
<th>Island</th>
<th>Oahu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old name</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Yr drilled</td>
<td>1965</td>
</tr>
<tr>
<td>Driller</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Quad map</td>
<td>6</td>
</tr>
<tr>
<td>Long83dd</td>
<td>-158.07</td>
</tr>
<tr>
<td>Lat83dd</td>
<td>21.3261111111</td>
</tr>
<tr>
<td>Gps</td>
<td>0</td>
</tr>
<tr>
<td>Owner user</td>
<td>Campbell Estate</td>
</tr>
<tr>
<td>Well type</td>
<td>DUG</td>
</tr>
<tr>
<td>Ground el</td>
<td>5</td>
</tr>
<tr>
<td>Well depth</td>
<td>8</td>
</tr>
<tr>
<td>Solid case</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Use</td>
<td>UNU - Unused</td>
</tr>
<tr>
<td>Init head</td>
<td>2.2</td>
</tr>
<tr>
<td>Init head3</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init cl</td>
<td>405</td>
</tr>
<tr>
<td>Test date</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test gpm</td>
<td>790</td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test temp</td>
<td>2.1</td>
</tr>
<tr>
<td>Test chlor</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test chlor</td>
<td>415</td>
</tr>
<tr>
<td>Pump gpm</td>
<td>0</td>
</tr>
<tr>
<td>Draft mgy</td>
<td>1445</td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Geology</td>
<td>PLS</td>
</tr>
<tr>
<td>Geology</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump yr</td>
<td>0</td>
</tr>
<tr>
<td>Draft yr</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Bot solid</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Spec capac</td>
<td>376</td>
</tr>
<tr>
<td>Pump mgd</td>
<td>0</td>
</tr>
<tr>
<td>Draft mgd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump mgd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Aqui code</td>
<td>30208</td>
</tr>
<tr>
<td>Latest hd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pir</td>
<td>Not Reported</td>
</tr>
<tr>
<td>T</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Site id</td>
<td>Hi8000000002418</td>
</tr>
<tr>
<td>Org. Identifier:</td>
<td>USGS-HI</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Formal name:</td>
<td>USGS Hawaii Water Science Center</td>
</tr>
<tr>
<td>Monloc Identifier:</td>
<td>USGS-211945158042201</td>
</tr>
<tr>
<td>Monloc name:</td>
<td>3-1904-01 D 42 BRB P</td>
</tr>
<tr>
<td>Monloc desc:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Huc code:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Drainagearea Units:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Contrib drainagearea:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Construction date:</td>
<td>19650101</td>
</tr>
<tr>
<td>Welldepth units:</td>
<td>ft</td>
</tr>
<tr>
<td>Welldepth:</td>
<td>8</td>
</tr>
<tr>
<td>Wellholedepth units:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Wellholedepth:</td>
<td>Not Reported</td>
</tr>
</tbody>
</table>

Ground-water levels, Number of Measurements: 0

<table>
<thead>
<tr>
<th>Org. Identifier:</th>
<th>USGS-HI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal name:</td>
<td>USGS Hawaii Water Science Center</td>
</tr>
<tr>
<td>Monloc Identifier:</td>
<td>USGS-212019158043201</td>
</tr>
<tr>
<td>Monloc name:</td>
<td>3-2004-01 W275 MAKIL</td>
</tr>
<tr>
<td>Monloc type:</td>
<td>Well</td>
</tr>
<tr>
<td>Monloc desc:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Huc code:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Drainagearea Units:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Contrib drainagearea:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Construction date:</td>
<td>19650101</td>
</tr>
<tr>
<td>Welldepth units:</td>
<td>ft</td>
</tr>
<tr>
<td>Welldepth:</td>
<td>147</td>
</tr>
<tr>
<td>Wellholedepth units:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Wellholedepth:</td>
<td>Not Reported</td>
</tr>
</tbody>
</table>

Ground-water levels, Number of Measurements: 0
Geographic Setting Source Map Findings

C7
North
- **1/2 - 1 Mile**
- **Higher**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Database</th>
<th>EDR ID Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectid</td>
<td>1014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island</td>
<td>Oahu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old name</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr drilled</td>
<td>1933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driller</td>
<td>MCCANDLESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quad map</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long83dd</td>
<td>-158.072777778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat83dd</td>
<td>21.3355555556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gps</td>
<td>0</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>Owner user</td>
<td>U S Navy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well type</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground el</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well depth</td>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid case</td>
<td>96</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>Use</td>
<td>UNU - Unused</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head</td>
<td>19.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head3</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>Not Reported</td>
<td></td>
<td>465</td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft mgy</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology</td>
<td>TWB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump yr</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bot solid</td>
<td>-7</td>
<td></td>
<td>-13</td>
</tr>
<tr>
<td>Spec capac</td>
<td>930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft y:</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bot perf</td>
<td>-58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump mgd</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft mgy:</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump depth</td>
<td>Not Reported</td>
<td></td>
<td>(1) 9-1-016:002</td>
</tr>
<tr>
<td>Aqui code</td>
<td>30204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latest hd</td>
<td>Not Reported</td>
<td></td>
<td>01/01/1933</td>
</tr>
<tr>
<td>Pir</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D8
West
- **1/2 - 1 Mile**
- **Lower**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Database</th>
<th>EDR ID Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectid</td>
<td>864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island</td>
<td>Oahu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old name</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yr drilled</td>
<td>1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driller</td>
<td>ROSCOE MOSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quad map</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long83dd</td>
<td>-158.0811111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lat83dd</td>
<td>21.3272222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gps</td>
<td>0</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>Owner user</td>
<td>Honolulu BWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old number</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well type</td>
<td>PER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground el</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well depth</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid case</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perf case</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>IRR - Landscape/Water Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head2</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head3</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use year</td>
<td>1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test unit</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test unit</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>IRR - Landscape/Water Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head2</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head3</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use year</td>
<td>1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test unit</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>IRR - Landscape/Water Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head2</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head3</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use year</td>
<td>1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test unit</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>IRR - Landscape/Water Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head2</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head3</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use year</td>
<td>1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test unit</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>IRR - Landscape/Water Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head2</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head3</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use year</td>
<td>1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test unit</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>IRR - Landscape/Water Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head2</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head3</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use year</td>
<td>1994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test unit</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>IRR - Landscape/Water Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head2</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Init head3</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test date</td>
<td>4/10/1991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test gpm</td>
<td>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test ddown</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test chlor</td>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump gpm</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D10
West
1/2 - 1 Mile
Lower

Org. Identifier: USGS-HI
Formal name: USGS Hawaii Water Science Center
Monloc Identifier: USGS-211947158050401
Monloc name: 3-1905.04
Monloc type: Well
Monloc desc: Not Reported
Huc code: 20060000
Drainagearea Units: Not Reported
Drainagearea: Not Reported
Contribution Drainagearea units: Not Reported
Contribution Drainagearea: Not Reported
Longitude: -158.0817
Source map scale: 24000
Horiz Acc measure: 5
Horiz Acc measure units: seconds
Horiz Collection method: Interpolated from map
Horiz coord refsys: NAD83
Vert measure units: feet
Vert measure: 55.00
Vert measure val: 4
Vert acc measure units: feet
Vert acc measure: Interpolated from topographic map
Vert coord refsys: HLOCAL
Vert coord: HILOCAL
Vert acc measure units: feet
Vert acc measure: 4
Vert acc measure val: 55.00
Vert acc measure val: 4
Countrycode: US
Aquifer name: Not Reported
Formation type: Not Reported
Aquitard type: Not Reported
Construction date: 19800901
Well depth: Not Reported
Well depth units: Not Reported
Well depth: 35
Well depth units: ft
Ground-water levels, Number of Measurements: 0

E11
WSW
1/2 - 1 Mile
Lower

Objectid: 859
Wid: 3-1905-003
Island: Oahu
Old name: Not Reported
Yr drilled: 1966
Driller: ROSCOE MOSS
Quad map: 6
Long83ddd: -158.082777778
Lat83ddd: 21.3244444444
Gps: 0
Utm: -1
Owner user: Hawaiian Tel Co
Old number: 275-4

HI WELLS
6-1-01
Barbers Point

H80000000002402

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well type</td>
<td>PER</td>
</tr>
<tr>
<td>Ground el:</td>
<td>56</td>
</tr>
<tr>
<td>Well depth:</td>
<td>70</td>
</tr>
<tr>
<td>Solid case:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Perf case:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Use:</td>
<td>Other</td>
</tr>
<tr>
<td>Use year:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init head:</td>
<td>2.3</td>
</tr>
<tr>
<td>Init head2:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init cl:</td>
<td>288</td>
</tr>
<tr>
<td>Test date:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test gpm:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test temp:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test chlor:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test unit:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump gpm:</td>
<td>0</td>
</tr>
<tr>
<td>Draft mgy:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Head feet:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Max chlor:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Min chlor:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Geology:</td>
<td>PLS</td>
</tr>
<tr>
<td>Pump yr:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Bot solid:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Bot perf:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Spec capac:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump mgd:</td>
<td>0</td>
</tr>
<tr>
<td>Draft mgd:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump elev:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Aqui code:</td>
<td>30208</td>
</tr>
<tr>
<td>Latest hd:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Wcr:</td>
<td>01/01/1966</td>
</tr>
<tr>
<td>Monloc desc:</td>
<td>Well</td>
</tr>
<tr>
<td>Monloc type:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Monloc:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Typ:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Huc code:</td>
<td>200600000</td>
</tr>
<tr>
<td>Drainagearea value:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Contrib drainagearea:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Lat:</td>
<td>-158.0828113</td>
</tr>
<tr>
<td>Long:</td>
<td>21.324343</td>
</tr>
<tr>
<td>Longitude:</td>
<td>Sourcemap scale: 2000</td>
</tr>
<tr>
<td>Horiz Acc measure:</td>
<td>1</td>
</tr>
<tr>
<td>Horiz Acc measure units:</td>
<td>seconds</td>
</tr>
<tr>
<td>Horiz Collection method:</td>
<td>Interpolated from map</td>
</tr>
<tr>
<td>Horiz coord refsys:</td>
<td>NAD83</td>
</tr>
<tr>
<td>Vert measure units:</td>
<td>feet</td>
</tr>
<tr>
<td>Vert measure val:</td>
<td>56.00</td>
</tr>
<tr>
<td>Vert accmeasure units:</td>
<td>feet</td>
</tr>
<tr>
<td>Vert accmeasure val:</td>
<td>2</td>
</tr>
<tr>
<td>Vertcollection method:</td>
<td>Interpolated from topographic map</td>
</tr>
<tr>
<td>Vert coord refsys:</td>
<td>HILOCAL</td>
</tr>
<tr>
<td>Countrycode:</td>
<td>US</td>
</tr>
<tr>
<td>Aquifername:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Formation type:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Aquifer type:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Construction date:</td>
<td>19660718</td>
</tr>
<tr>
<td>Well depth:</td>
<td>70</td>
</tr>
<tr>
<td>Well depth units:</td>
<td>ft</td>
</tr>
<tr>
<td>Wellhole depth:</td>
<td>70</td>
</tr>
<tr>
<td>Wellhole depth units:</td>
<td>ft</td>
</tr>
<tr>
<td>Field</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Objectid</td>
<td>1010</td>
</tr>
<tr>
<td>Island</td>
<td>Oahu</td>
</tr>
<tr>
<td>Old name</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Yr drilled</td>
<td>1991</td>
</tr>
<tr>
<td>Driller</td>
<td>ROSCOE MOSS</td>
</tr>
<tr>
<td>Quad map</td>
<td>6</td>
</tr>
<tr>
<td>Long83dd</td>
<td>-158.061667</td>
</tr>
<tr>
<td>Lat83dd</td>
<td>21.331944</td>
</tr>
<tr>
<td>Gps</td>
<td>0</td>
</tr>
<tr>
<td>Utm</td>
<td>-1</td>
</tr>
<tr>
<td>Owner user</td>
<td>State HHFDC</td>
</tr>
<tr>
<td>Old number</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Well type</td>
<td>PER</td>
</tr>
<tr>
<td>Casing dia</td>
<td>12</td>
</tr>
<tr>
<td>Ground el</td>
<td>59</td>
</tr>
<tr>
<td>Well depth</td>
<td>73</td>
</tr>
<tr>
<td>Solid case</td>
<td>53</td>
</tr>
<tr>
<td>Perf case</td>
<td>73</td>
</tr>
<tr>
<td>Use</td>
<td>IRR - Golf Course</td>
</tr>
<tr>
<td>Use year</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init head</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init head2</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init cl</td>
<td>370</td>
</tr>
<tr>
<td>Test date</td>
<td>9/24/1991</td>
</tr>
<tr>
<td>Test gpm</td>
<td>360</td>
</tr>
<tr>
<td>Test temp</td>
<td>24.4</td>
</tr>
<tr>
<td>Test unit</td>
<td>C</td>
</tr>
<tr>
<td>Pump gpm</td>
<td>500</td>
</tr>
<tr>
<td>Draft mgy</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Geology</td>
<td>PLS</td>
</tr>
<tr>
<td>Pump yr</td>
<td>1998</td>
</tr>
<tr>
<td>Draft yr</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Bot hole</td>
<td>-14</td>
</tr>
<tr>
<td>Bot solid</td>
<td>6</td>
</tr>
<tr>
<td>Bot perf</td>
<td>-14</td>
</tr>
<tr>
<td>Spec capac</td>
<td>360</td>
</tr>
<tr>
<td>Pump mgd</td>
<td>.72</td>
</tr>
<tr>
<td>Draft mgd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump elev</td>
<td>-5</td>
</tr>
<tr>
<td>Aqui code</td>
<td>30208</td>
</tr>
<tr>
<td>Latest hd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Wcr</td>
<td>09/16/1991</td>
</tr>
<tr>
<td>PIR</td>
<td>2/21/2013</td>
</tr>
<tr>
<td>Surveyor</td>
<td>RUSS FIGUEIROA</td>
</tr>
<tr>
<td>Site id</td>
<td>HI80000000002486</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectid</td>
<td>13</td>
</tr>
<tr>
<td>Island</td>
<td>ENE</td>
</tr>
<tr>
<td>Old name</td>
<td>1/2 - 1 Mile</td>
</tr>
<tr>
<td>Yr drilled</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Driller</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Quad map</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Long83dd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Lat83dd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Gps</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Utm</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Owner user</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Old number</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Well type</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Casing dia</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Ground el</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Well depth</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Solid case</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Perf case</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Use</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Use year</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init head</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init head2</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init cl</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test date</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test gpm</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test temp</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Test unit</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump gpm</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Draft mgy</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Head feet</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Max chlor</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Min chlor</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Geology</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump yr</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Draft yr</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Bot hole</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Bot solid</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Bot perf</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Spec capac</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump mgd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Draft mgd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pump elev</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Aqui code</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Latest hd</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Wcr</td>
<td>Not Reported</td>
</tr>
<tr>
<td>PIR</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Surveyor</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Site id</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Field</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Objectid:</td>
<td>1017</td>
</tr>
<tr>
<td>Island:</td>
<td>Oahu</td>
</tr>
<tr>
<td>Old name:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Yr drilled:</td>
<td>1991</td>
</tr>
<tr>
<td>Driller:</td>
<td>ROSCOE MOSS</td>
</tr>
<tr>
<td>Quad map:</td>
<td>6</td>
</tr>
<tr>
<td>Long83dd:</td>
<td>-158.071111</td>
</tr>
<tr>
<td>Lat83dd:</td>
<td>21.338611</td>
</tr>
<tr>
<td>Gps:</td>
<td>-1</td>
</tr>
<tr>
<td>Owner user:</td>
<td>Honolulu BWS</td>
</tr>
<tr>
<td>Well type:</td>
<td>PER</td>
</tr>
<tr>
<td>Ground el:</td>
<td>141</td>
</tr>
<tr>
<td>Well depth:</td>
<td>268</td>
</tr>
<tr>
<td>Solid case:</td>
<td>188</td>
</tr>
<tr>
<td>Use:</td>
<td>MUN - County</td>
</tr>
<tr>
<td>Init head:</td>
<td>14.9</td>
</tr>
<tr>
<td>Init head3:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init cl:</td>
<td>248</td>
</tr>
<tr>
<td>Test date:</td>
<td>4/10/1981</td>
</tr>
<tr>
<td>Test ddown:</td>
<td>0.8</td>
</tr>
<tr>
<td>Test temp:</td>
<td>23.9</td>
</tr>
<tr>
<td>Pump gpm:</td>
<td>0</td>
</tr>
<tr>
<td>Draft mgy:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Max chlor:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Geology:</td>
<td>TBW</td>
</tr>
<tr>
<td>Pump yr:</td>
<td>0</td>
</tr>
<tr>
<td>Draft yr:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Bot solid:</td>
<td>-47</td>
</tr>
<tr>
<td>Spec capac:</td>
<td>1398</td>
</tr>
<tr>
<td>Pump mgd:</td>
<td>0</td>
</tr>
<tr>
<td>Draft mgd:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Aqui code:</td>
<td>30204</td>
</tr>
<tr>
<td>Latest hd:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pir:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>T:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Site id:</td>
<td>H8000000002558</td>
</tr>
</tbody>
</table>

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectid:</td>
<td>1009</td>
</tr>
<tr>
<td>Island:</td>
<td>Oahu</td>
</tr>
<tr>
<td>Old name:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Yr drilled:</td>
<td>1991</td>
</tr>
<tr>
<td>Driller:</td>
<td>ROSCOE MOSS</td>
</tr>
<tr>
<td>Quad map:</td>
<td>6</td>
</tr>
<tr>
<td>Long83dd:</td>
<td>-158.058888889</td>
</tr>
<tr>
<td>Lat83dd:</td>
<td>21.3333333333</td>
</tr>
<tr>
<td>Gps:</td>
<td>-1</td>
</tr>
<tr>
<td>Owner user:</td>
<td>State HCDC</td>
</tr>
<tr>
<td>Well type:</td>
<td>PER</td>
</tr>
<tr>
<td>Ground el:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Well depth:</td>
<td>77</td>
</tr>
<tr>
<td>Solid case:</td>
<td>52</td>
</tr>
<tr>
<td>Use:</td>
<td>ABN - Sealed</td>
</tr>
<tr>
<td>Init head:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init head3:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Init cl:</td>
<td>390</td>
</tr>
<tr>
<td>Test date:</td>
<td>8/6/1991</td>
</tr>
<tr>
<td>Test ddown:</td>
<td>0.3</td>
</tr>
</tbody>
</table>

HI WELLS

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site id:</td>
<td>HI80000000002505</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test temp:</td>
<td>25</td>
</tr>
<tr>
<td>Pump gpm:</td>
<td>0</td>
</tr>
<tr>
<td>Draft mgy:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Max chlor:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Geology:</td>
<td>PLS</td>
</tr>
<tr>
<td>Pump yr:</td>
<td>0</td>
</tr>
<tr>
<td>Draft yr:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Bot solid:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Spec capac:</td>
<td>1667</td>
</tr>
<tr>
<td>Pump mgd:</td>
<td>0</td>
</tr>
<tr>
<td>Draft mgd:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Aqui code:</td>
<td>30208</td>
</tr>
<tr>
<td>Latest hd:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pir:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>T:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Draft mgd:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Aqui code:</td>
<td>30208</td>
</tr>
<tr>
<td>Latest hd:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Pir:</td>
<td>Not Reported</td>
</tr>
<tr>
<td>T:</td>
<td>Not Reported</td>
</tr>
</tbody>
</table>

Test temp: 25, **Test unit:** C
Pump gpm: 0
Draft mgy: Not Reported
Max chlor: Not Reported
Geology: PLS
Pump yr: 0
Draft yr: Not Reported
Bot solid: Not Reported
Spec capac: 1667
Pump mgd: 0
Draft mgd: Not Reported
Aqui code: 30208
Latest hd: Not Reported
Pir: Not Reported
T: Not Reported
AREA RADON INFORMATION

Federal EPA Radon Zone for HONOLULU County: 3

Note: Zone 1 indoor average level > 4 pCi/L.
 - Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.
 - Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 96707

Number of sites tested: 7

<table>
<thead>
<tr>
<th>Area</th>
<th>Average Activity</th>
<th>% <4 pCi/L</th>
<th>% 4-20 pCi/L</th>
<th>% >20 pCi/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Living Area - 1st Floor</td>
<td>0.143 pCi/L</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Living Area - 2nd Floor</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
</tr>
<tr>
<td>Basement</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
<td>Not Reported</td>
</tr>
</tbody>
</table>
TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)
 Source: United States Geologic Survey
 EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Scanned Digital USGS 7.5' Topographic Map (DRG)
 Source: United States Geologic Survey
 A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey topographic map. The map images are made by scanning published paper maps on high-resolution scanners. The raster image is georeferenced and fit to the Universal Transverse Mercator (UTM) projection.

HYDROLOGIC INFORMATION

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 2003 & 2011 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 and 2005 from the U.S. Fish and Wildlife Service.

HYDROGEOLOGIC INFORMATION

AQUIFLOW\textregistered Information System
 Source: EDR proprietary database of groundwater flow information
 EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

STATSGO: State Soil Geographic Database
 Source: Department of Agriculture, Natural Resources Conservation Services
 The U.S. Department of Agriculture’s (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database
 Source: Department of Agriculture, Natural Resources Conservation Services (NRCS)
 Telephone: 800-672-5559
 SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Services, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.
LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems
Source: EPA/Office of Drinking Water
Telephone: 202-564-3750
Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data
Source: EPA/Office of Drinking Water
Telephone: 202-564-3750

USGS Water Wells: USGS National Water Inventory System (NWIS)
This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

Well Index Database
Source: Commission on Water Resource Management
Telephone: 808-587-0214
CWRM maintains a Well Index Database to track specific information pertaining to the construction and installation of production wells in Hawaii.

OTHER STATE DATABASE INFORMATION

RADON

Area Radon Information
Source: USGS
Telephone: 703-356-4020
The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones
Source: EPA
Telephone: 703-356-4020
Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities
Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater
Source: Department of Commerce, National Oceanic and Atmospheric Administration
APPENDIX C

QUALIFICATIONS OF PROJECT PERSONNEL
DENNIS P. WELCH, CHMM

Project Manager/IAQ Specialist

Tetra Tech EM Inc. - Houston

EDUCATION/SPECIAL TRAINING

B.S., Ecology, Texas A & M University, College Station, Texas, 1997
AIHA, Fundamentals of Industrial Hygiene, 2005
MEHRC, Developing a Remediation Strategy and Writing Specifications for a Mold Abatement Project, 2002
MEHRC, Water Damage: Why Does it Happen, 2002
NATEC of Texas, Mold Investigation and Remediation Training Course, 2001
Enviro/Con Services, Mold Assessment Consultant Training Course, 2006
Enviro/Con Services, Asbestos Abatement for Project Designers, 2001 to present
Enviro/Con Services, Asbestos Management Planner Training Course, 2001 to present
Enviro/Con Services, Asbestos Inspector Training Course, 1998 to present
NATEC of Texas, Asbestos Air Monitoring Technician Training Course, 1998 to present
NATEC of Texas, Lead Abatement Inspector and Risk Assessor, 1998
ERC, Airborne Fiber Sampling and Evaluation Techniques (NIOSH 582), 1998
OSHA 29 CFR 1910.120, 40-Hour Health and Safety Training and Annual Refreshers 1999 to present
USACE, Ordinary High Water Mark Delineation, 2005
California Climate Action Registry, Lead Certifier Training, 2007
CPR/First Aid, 1995 to present

REGISTRATIONS/CERTIFICATIONS

Certified Hazardous Materials Manager
TDSHS Licensed Mold Consultant
TDSHS Licensed Asbestos Consultant
EPA Accredited Asbestos Project Designer
EPA Accredited Asbestos Building Inspector
EPA Accredited Asbestos Management Planner
OSHA 40hr HAZWOPER Certified
OSHA HAZWOPER Supervisor Certified
California Registry Lead Certifier
CPR and First Aid Certified

QUALIFICATIONS

Dennis P. Welch is a scientist with approximately 12 years experience in environmental due diligence (Phase I Environmental Site Assessment), environmental compliance audits, soil and groundwater investigations, soil and groundwater remediation, waste characterization and
coordinating waste disposal, indoor air quality surveys, interpretation of laboratory analytical results, data management, technical support for preparation of site documentation, lead paint and asbestos-related testing and surveys, and generation of detailed technical reports. As a Project Manager, he has developed work plans, health & safety plans, proposals, estimated costs and project duration for investigations, and coordinated team members and contractors.

Mr. Welch is a Texas licensed mold assessment consultant, a Texas licensed asbestos consultant, an EPA accredited asbestos project designer, management planner, inspector and project manager and is NIOSH 582 qualified for asbestos analysis by Phase Contrast Microscopy who has managed projects ranging from comprehensive mold and asbestos surveys to abatement and demolition projects. Mr. Welch has extensive experience in conducting industrial hygiene, indoor air quality and environmental monitoring projects and programs. Experience includes documented successes in technical project design and management, directing programs, and leading teams, work units, and departments to a successful completion. Mr. Welch has comprehensive experience in quality control and improvement of industrial hygiene departments.

Mr. Welch has managed and conducted numerous HUD-type assessments of apartment complexes to locate lead-based paint and supervised lead-based paint and lead dust abatement and demolition projects. In addition, Mr. Welch has worked with lead in drinking water and radon gas issues as they pertain to developed commercial properties.

Mr. Welch has managed many soil/groundwater subsurface investigations using direct push and drilling rig methods for sampling soils and groundwater and installing monitoring wells. Mr. Welch has also conducted and been involved with numerous Phase I, II, and III environmental assessments and remedial services. Mr. Welch has conducted wetland and environmental surveys at properties such as commercial and industrial sites and several military establishments. Mr. Welch is trained in First Aid and CPR and has received training to work at hazardous waste sites under the OSHA 40-Hour Training Course.

RELEVANT EXPERIENCE

Industrial Hygiene (Mold, Asbestos, Radon, Lead Based Paint)

Mr. Welch has managed and performed numerous Industrial Hygiene projects which involved indoor air quality, mold, bacteria, asbestos, lead-based paints, lead in drinking water, radon, particulates, volatile organic compounds, etc. Many of the projects began with initial assessments and progressed to sampling and eventually abatement activities. Several example projects are discussed briefly below.

- **Municipality in Western Montana** – Responsible for managing field teams that conducted asbestos sampling throughout an entire town in Western Montana. Duties included interacting with citizens, scheduling teams, assessing results, health and safety, and interacting with government officials.

- **Office Building Complex in Dallas, Texas** – Determined sources for water intrusion, performed inspections for mold and developed work plans and sampling procedures during a $6,000,000
project involving structural, water and mold issues at six buildings totaling approximately 880,000 square feet. All work was conducted with strict confidentiality and minimal impact to on-going building operations.

- **Decommissioned Power Plant in Austin, Texas** – Performed asbestos and lead clearance sampling during a $1,000,000 project involving the removal of asbestos contaminated building materials and lead paint. Lead paint abatement was accomplished using a variety of methods including mechanical and chemical stripping and using shot blast with walnut shells.

- **Downtown Office Building in Houston, Texas** – Performed indoor air quality assessment and system design and maintenance evaluation. The study consisted of measurements of CO₂, CO, temperature, relative humidity, particulates, volatile organic compounds, and flow rates at fresh air intakes, diffusers and air returns. Distribution system was evaluated for design adequacy and filter and ductwork conditions. Performed air balance to equalize flow rates and meet ASHREA standards.

- **Children’s Daycare in Downtown Office Building in Houston, Texas** – Determined sources for water intrusion, performed inspections for mold and developed work plans and sampling procedures during a $250,000 project involving the removal of mold contaminated building materials. All work was conducted after hours and on weekends during a six month period so that Daycare operations were minimally affected.

- **Historic Downtown Building Converted into Lofts in Houston, Texas** – Conducted inspections of approximately 80 units and diagnosed a systemic problem throughout the building in the water connections of the refrigerators and hot water heaters. Developed mold remediation guidelines for in-house maintenance personnel to remediate the small areas of water damaged materials without spreading the mold spores.

- **Apartment Complex in Austin, Texas** – Developed work plans and provided project oversight for a $1,000,000 project involving the cleaning of ducts and renovation of the evaporative coils and mixing boxes in apartment units which were improperly installed and were causing mold growth in the apartment units.

- **Banking facilities in Houston, Texas** – Performed indoor air quality assessments and made recommendations for several banking facilities. The assessment consisted of measurements of CO₂, CO, temperature, relative humidity, particulates, volatile organic compounds, and inspections of the building HVAC system.

- **Multi-story Apartment Complex in Washington, D.C.** – Developed an inspection checklist for inspecting over 600 units for water intrusion problems in the units. Identified a systemic problem with the drains of the HVAC units which were leaking into the return air ducts and causing elevated humidity levels leading to mold growth in the units.

- **Office Building Complex in Dallas, Texas** – Conducted a comprehensive inspection, developed remedial specifications and provided project oversight during a $3,000,000 project involving the abatement of asbestos HVAC pipes throughout the hallways of the buildings. All abatement work and replacement of the HVAC units took place on a very tight schedule and required 24 hour crews from Friday afternoon to Monday morning with minimal interruption of tenant operations.
School District in Houston, Texas – Conducted inspections and reviewed management plans in over 100 schools to determine if upcoming repairs and renovations would disturb asbestos containing materials.

Downtown Office Building in Houston, Texas – Performed indoor air quality assessments on a biannual basis and asbestos consulting and sampling services for a multi-story office building. The assessments consisted of measurements of CO₂, CO, Temperature, Relative Humidity, Ozone, Formaldehyde and mold on every floor throughout the building.

Medical Building in Houston, Texas – Performed indoor air quality assessments on a biannual basis and asbestos consulting and sampling services for a multi-story office building. Asbestos projects involved abating entire floors while still providing limited access to hospital staff for day-to-day operations.

Property Condition Assessments

Mr. Welch has performed Property Condition Assessments (PCAs) for private sector clients as part of due diligence in refinancing or acquiring the properties. Facility inspections included assessing the structural frame and building envelope, mechanical and electrical systems, life safety/fire protection, interior elements and exterior elements. An example project is discussed briefly below.

Banking Facilities Located in Florida and Texas – Performed PCAs for a portion of a large portfolio of banking facilities. Scope of work for Phase I audits included a site visit, review of title and appraisal documents and permits and in-depth interviews to determine site history and compliance. Portfolio was completed in a short time period.

Phase I Environmental Site Assessments

Mr. Welch has performed and/or managed over 500 Phase I Environmental Site Assessments (ESAs) for many private sector clients as part of due diligence in refinancing or acquiring the properties. Approximately 100 Phase I ESAs were conducted for facilities located in Mexico. Facility inspections include strip shopping centers, restaurants, hospitals, apartment complexes, automobile dealerships, an oil-field equipment yard, undeveloped wetlands, office buildings, light industrial facilities, etc. Several example projects are discussed briefly below.

Nationwide Homebuilder – Program Manager for environmental work from a nationwide homebuilder. Responsible for complete management of project including staffing, budget, quality control, technical reviews, and client interaction. Projects ranged from Phase I ESA’s to subsurface investigation and remediation to closure activities with government agencies.

Large Portfolios of Steel Tubing Facilities Located in MI, GA, OH, and TN – Directed/Managed ten Phase I and II Environmental Site Assessments. Scope of work for Phase I audits included a site visit, review of historical aerial photographs and review of regulatory database information. Phase II assessments were conducted to investigate soil and groundwater in areas of concern identified during the Phase I site visits. The assessments were performed as part of due diligence in acquiring the properties.
- **Multiple Residential Facilities in Dallas, Texas** – Performed ESAs and comprehensive asbestos inspections of multi-family and single family residences that were being purchased for redevelopment.

- **Multiple Automotive Dealership facilities in Texas and Oklahoma** – Performed ESAs of automotive dealership facilities which included detailed inspections of hydraulic lifts and wastewater systems. Conducted detailed inspections of the wastewater devices, including supervision of the cleanout and inspection of all drains and collection systems.

- **Portfolio of Retail Gasoline Service Stations in Tennessee** – Performed ESAs of retail gasoline service stations which included detailed inspections of the fuel USTs and delivery systems.

- **Commercial Warehouses in Ohio, Michigan, Illinois, Pennsylvania, Florida and Texas** – Performed nine Phase I environmental site assessments of commercial warehouses and evaluated storage practices, management of wastes and potential health and environmental resource risks.

- **Portfolio of Shopping Centers in Atlanta, Georgia** – Performed ESAs of seven shopping centers which included detailed tenant history research. Managed a Phase II investigation due to an on-site drycleaner at the same time that included an on-site mobile lab for soil/groundwater delineation. Prepared work plans, health and safety plans and final reports. Total project was completed in three weeks.

- **Shopping Centers in South Carolina** – Performed ESAs of two shopping centers which included detailed tenant history research. Managed a Phase II investigation at both facilities due to on-site drycleaners that included an on-site mobile lab for soil/groundwater delineation. Prepared work plans, health and safety plans and final reports.

- **Portfolio of Apartment Complexes in Ohio** – Performed ESAs of six apartment complexes which included lead-in-water sampling, radon sampling, perchlorate research and detailed tenant history research. Managed a Phase II investigation at three of the locations due historic environmental concerns discovered during the Phase I ESAs. Prepared work plans, health and safety plans and final reports. Total project was completed in five weeks.

Phase II Environmental Site Inspections

Mr. Welch has conducted and/or managed numerous investigations of potential hazardous waste sites. As project manager, he designs the project sampling plans based on available information, and then coordinates the actions of the sampling teams. He has designed monitoring wells and developed detailed work plans for their installation at numerous facilities. Mr. Welch provides cost estimates to the client for services including initial remedial actions and site characterization activities to final closure of the Site. Several example projects are discussed briefly below.

- **Multiple Petrochemical Facilities in Texas** – Developed and implemented a site characterization plan to determine the extent of affected soil and groundwater. Soil and groundwater assessment was performed to determine the source and extent of target analyte migration at the Site, the aerial extent of soil and groundwater requiring remedial action to meet the cleanup objectives and the estimated costs and time to meet these objectives.

- **Multiple Dry-Cleaning Facilities in Houston and Dallas, Texas** – Managed intrusive site characterizations of numerous commercial dry-cleaning facilities in Houston and Dallas, Texas.
Developed site characterization strategies, including the use of real-time analytical data used to delineate soil/groundwater contaminated by chlorinated solvents and performed sewer evaluations to identify potential contamination sources. Negotiated off-site access agreements to allow characterization of contaminated groundwater on third party properties. Coordinated all phases of the investigations and subsequent reporting to and negotiations with the TCEQ.

- **Steel Tubing Facility Located in Houston, Texas** – Developed and implemented a site characterization plan to determine the extent of affected soil and groundwater. Soil and groundwater assessment was performed to determine the source and extent of target analyte migration at the Site, the aerial extent of soil and groundwater requiring remedial action to meet the cleanup objectives and the estimated costs and time to meet these objectives. The assessments were performed as part of due diligence in acquiring the properties.

Phase III Environmental Remediation

Mr. Welch has conducted numerous applications of In-Situ Chemical Oxidation to remediate hydrocarbon and other organic contamination in groundwater and saturated soil. Experienced in conducting soil remediation by various methods including conducting/supervising soil excavations and installation of and monitoring soil vapor extraction units. Several example projects are discussed briefly below.

- **In-Situ Chemical Oxidation Applications at Six Facilities** – Conducted field activities during the application of oxidant formulations and reagent dosages to effectively oxidize contaminants in-situ as an alternative to excavation and disposal. Facilities included retail gasoline service stations, a gasoline terminal facility, commercial dry-cleaning facilities, and an automobile dealership. Performed real time evaluation of field data and monitored parameters during the application to ensure the optimal generation of hydroxyl radicals and most effective treatment.

Federal Government

- **Hurricane Response in New Orleans, Louisiana** – Performed various environmental sampling duties for the EPA under the Superfund Technical Assessment and Response Team (START) contract. Acted as the Deputy Branch Director for Environmental Assessment which involved direct interaction with EPA personnel and scheduling of up to 25 EPA contractors.

- **Hurricane Response in Biloxi, Mississippi** – Performed various environmental reconnaissance duties for the EPA under the Superfund Technical Assessment and Response Team (START) contract. Primary duty was to locate, document and provide GPS coordinates for household hazardous waste.

PROFESSIONAL ORGANIZATIONS/ASSOCIATIONS

Institute of Hazardous Materials Management
Gulf Coast Chapter of Certified Hazardous Materials Managers
American Industrial Hygiene Association
American Industrial Hygiene Association - Gulf Coast Section
Greater Houston Industrial Hygiene Council
Texas Association of Environmental Professionals

EMPLOYMENT HISTORY

2005 - Present Tetra Tech, EM Inc.
 Houston, Texas

2000 - 2005 MECX, LLC (Formerly Mantech Environmental Corporation)
 Houston, Texas

1998 - 2000 Environmental Resource Consultants
 Houston, Texas

1998 Reliance Environmental Corporation
 Houston, Texas

1998 Phase One Technologies
 Houston, Texas

1995 - 1997 US Army Corps of Engineers
 Somerville, Texas
JULIE HELFRICH
Scientist II
Tetra Tech, Inc. – Houston, TX

EDUCATION
B.S., Geological Sciences: Hydrogeology/Environmental Geology, University of Texas at Austin, Austin, TX, 2010

REGISTRATIONS/CERTIFICATIONS
American Red Cross, Adult First Aid and CPR certified, 2012
Member of the Geologic Society of America

AREAS OF EXPERTISE
• Technical report preparation
• Environmental regulatory review
• Scientific research
• GIS and AutoCAD support

QUALIFICATIONS
Ms. Helfrich has over 2 years of experience working as an environmental scientist in the environmental industry. As a Scientist, Ms. Helfrich primarily prepares environmental regulatory reports and conducts Phase I Environmental Due Diligence Assessments for real estate transactions. Her primary responsibilities include environmental permitting and identifying current and historical recognized environmental conditions to make client recommendations. Ms. Helfrich also offers GIS and AutoCAD support for Tetra Tech clients and employees.

PROFESSIONAL EXPERIENCE
Environmental Reporting and Permitting – Ms. Helfrich has contributed to numerous state and federal regulatory reports including Texas Risk Reduction Program reports such as APARs, RAPs, and RCRAs. Additionally, Ms. Helfrich has contributed to Annual Progress Reports, Annual Groundwater Monitoring Reports, Biennial Reports, SWPPPs, and SPCC Plans. Ms. Helfrich has also created Cumulative Hydrologic Impact Assessment Reports (CHIAs) which assess current watershed conditions and predict future environmental impacts.

Mapping – Ms. Helfrich utilizes GIS and AutoCAD to create site maps for various projects. Ms. Helfrich expanded the Division of Mined Land Reclamation ArcGIS system by adding historical information not previously captured in the state and federal system.

Site Investigations – Ms. Helfrich has conducted groundwater gauging, product recovery, groundwater sampling (including low-flow sampling methods), and geologic core logging on client sites as well as
private property. She has familiarity with the use of an interface probe, hand bailer, YSI meter, peristaltic pump, PID meter, and Brunton compass.

Environmental Permit Review – Ms. Helfrich conducted hydrogeological reviews of Surface Mining Control and Reclamation Act (SMCRA) and National Pollution Discharge Elimination System (NPDES) permits for adherence to state and federal regulations. This included site visits and evaluation of hydrologic data.

Research – Ms. Helfrich worked as an assistant to senior researchers at the Bureau of Economic Geology with various geologic research projects. She updated and maintained databases with research data, measured grain sizes using a petrographic microscope, and digitized well logs.

Interpretative Programming – As a member of the Student Conservation Association, Ms. Helfrich developed her own unique interpretive program for visitors at Black Canyon of the Gunnison National Park. She served as a knowledgeable contact for visitors on park resources and geology in the visitor center and roving front-country and back-country trails. Additionally, Ms. Helfrich managed the implementation of the Visitor Survey Card project administered to park visitors on a voluntary basis. She coordinated with co-workers to make sure this project was preformed professionally in a timely manner to completion.

ADDITIONAL EXPERIENCE

- Proficient in Microsoft Office Suite, ArcGIS, AutoCAD, STEERS, TRRP Commander
- Completed Tetra Tech Technical Writing Online Training Course, December 2012
- Participation in Underground Mining Technology (Athens, Ohio) and Erosion and Sediment Control (Austin, Texas) National Technical Training Program courses led by the United States Office of Surface Mining Reclamation and Enforcement
- Participation in AMDTreat: Mine Drainage Treatment Cost Calculation Software (Big Stone Gap, Virginia) and CAD201: Carlson Mining Site Design for Permitting & Reclamation (Big Stone Gap, Virginia) Technical Innovation and Professional Services courses led by the United States Office of Surface Mining Reclamation and Enforcement
- Participation in the investigation of possible groundwater sites for Austin organic farm using geophysical techniques, infiltration studies, and gauging water levels in groundwater wells as a part of Hydrogeology Field Camp at the University of Texas
- Extensive hiking experience, including backcountry hiking experience
- Completed geological and environmental investigations and reporting as part of 3 week Geology Field Camp at the University of Texas
- Experience designing and conducting individual research projects in upper division environmental geoscience classes
- Completed Intellectual Entrepreneurship independent research project in Fall 2009, Long Term Trends in Discharge, Dissolved Oxygen, and Specific Conductance of Barton Springs in Austin, Texas, supervised by Dr. John M. Sharp, Jr.
EMPLOYMENT HISTORY

2012 – Present Scientist II, Tetra Tech EM Inc., Houston, Texas
2011 – 2012 Staff Geologist, EarthCon Environmental Consulting, Inc., Stafford, Texas
2010-2011 Hydrogeologist, Virginia Department of Mines, Minerals, and Energy
2008 SCA Interpretation Intern, Black Canyon of the Gunnison National Park
2007, 2009 Research Assistant, University of Texas Bureau of Economic Geology

PROFESSIONAL REFERENCES

Available upon request.
KELLY KOLYSKO

Environmental Geologist Tetra Tech, Inc. – Honolulu, HI

EDUCATION

REGISTRATIONS/CERTIFICATIONS
American Red Cross, Adult First Aid and CPR certified, 2013
Member of the Pacific Islands Environmental Professionals

AREAS OF EXPERTISE
• Technical report preparation
• Environmental regulatory review
• Scientific research
• GIS and AutoCAD support
• Supervising and performing field and field related activities

QUALIFICATIONS
Ms. Kolysko has sixteen years experience with various laboratory techniques, field work, and environmental work and report preparation. She has coordinated and implemented management and environmental field duties for quarterly monitoring and sampling projects, assisted visiting project geologist with baseline field surveys, assisted with testing of methane mitigation systems during installation, assisted in emergency spill response projects, monitored and sampled methane monitoring probes and risers and maintains, calibrates, and tests methane monitoring systems. She has supervised removal of underground petroleum storage tanks (UST), and assisted engineers and developers with critical issues evaluation and permitting plan for proposed waste-to-energy facility in Honolulu. She also authors soil evaluation and hazardous materials inspection reports as well as environmental management plans, engineering control plans, UST closure reports, release response reports, and Phase I environmental site assessments (ESA) in addition to serving as Site Manager for several hazardous waste clean up sites.

PROFESSIONAL EXPERIENCE
Environmental Reporting and Permitting – Ms. Kolysko has authored numerous soil evaluation and hazardous materials inspection reports as well as environmental management plans, engineering control plans, SPCC, UST closure reports, release response reports, and Phase I environmental site assessments and contributed to a critical issues evaluation and permitting plan for proposed waste-to-energy facility.
Mapping – Ms. Kolysko utilizes GIS and AutoCAD to create site maps for various projects.

Site Investigations – Ms. Kolysko has conducted groundwater gauging, product recovery, groundwater sampling (including low-flow sampling methods), and geologic core logging on federal and state owned sites, client sites as well as private property. She has familiarity with the use of an interface probe, hand bailer, YSI meter, peristaltic pump, PID meter, soil and soil gas sampling implements, GPS and Brunton compass.

Research – Ms. Kolysko was awarded National Science Foundation’s Research Experience for Undergraduates (REU) Fellowship in 1997 for volcanological field and geochemistry study of Kilauea volcano, Hawai`i. Ms. Kolysko prepared all rock and mineral samples for petrographic, XRF, isotope, and microprobe analysis.

Professional Publications – Kolysko, Kelly, Michael O. Garcia, and Aaron Pietruszka, Fireworks to Usher in the New Year: The December 31, 1974, Eruption at Kilauea Volcano, Hawai`i (in prep.)

ADDITIONAL EXPERIENCE

- Proficient in Microsoft Office Suite, UNIX, AutoCAD, ENVI, and C and BASIC programming
- Experienced with total sample preparation for X-ray Florescence (XRF), isotope, Inductively Coupled Mass Spectrometry (ICP-MS), Electron Microprobe analysis, complete sample preparation of thin sections for petrographic analysis and the use of petrographic microscopes and electron microprobes
- Attended special courses in land surveying
- Prepared and curated samples for three marine research cruises: January 1999 R/V Moana Wave, submarine flank of Mauna Loa Volcano, (Dr. Michael O. Garcia, Chief Scientist), October 2002 R/V Thomas Thompson and ROV Jason, submarine flank, of Mauna Loa Volcano and Loihi Seamount, (Dr. Michael O. Garcia, Chief Scientist), October 2003 RV Kilo Moana research cruise, submarine flank of East Maui Volcano (Haleakala); (Eric Bergmanis, Chief Scientist)
- Volunteer for Nature Conservancy and Sierra Club projects
- Outrigger canoe paddler (completed Molokai Hoe -Na Wahini O ke Kai race 1999)

EMPLOYMENT HISTORY

2013 – Present Environmental Geologist for Tech Services, Tetra Tech INC, Honolulu, Hawaii
2000- 2013 Project Geologist, TRC, Honolulu, Hawaii
2008- Present Principle Environmental Geologist, Makakilo Environmental, Kapolei, Hawaii
2008 - 2009 Environmental Geologist, Globeteck Group, Inc, Honolulu, Hawaii
1996-1999 Petrologist/Petrographer, University of Hawaii, Honolulu, Hawaii

PROFESSIONAL REFERENCES

Available upon request.
APPENDIX D

CITED REFERENCES
CITED REFERENCES

Environmental Data Resources (EDR), The EDR Aerial Photo Decade Package, “HI Kapolei Parkway Residential,” Inquiry Number: 3706175.5, dated August 26, 2013.

APPENDIX E

USER QUESTIONNAIRE
PHASE I ENVIRONMENTAL SITE ASSESSMENT
ASTM 1527-05 USER QUESTIONNAIRE

Please Fax Completed Questionnaire to (832) 251-5170 or email to caitlin.andersen@tetratech.com. Thank You.

Property Name: MEHANA (SCHOOL SITE)
Property Address: 930 KOA KOA ST., KAPOLEI, HI, 96707

In order to qualify for one of the Landowner Liability Protections (LLPs)* offered by the Small Business Liability Relief and Brownfields Revitalization Act of 2001 (the “Brownfields Amendments”)**, the user of the Phase I Environmental Site Assessment report must provide the following information (if available) to the environmental professional. Failure to provide this information could result in a determination that “all appropriate inquiry” is not complete.

(1.) Environmental cleanup liens that are filed or recorded against the site (40CFR312.25).
Are you aware of any environmental cleanup liens against the property that are filed or recorded under federal, tribal, state or local law? Yes □ No □

If yes, please provide the details: __
__

(2.) Activity and land use limitations that are in place on the site or that have been filed or recorded in a registry (40CFR312.26).
Are you aware of any activity and use limitations (AULs), such as engineering controls, land use restrictions or institutional controls that are in place at the site and/or have been filed or recorded in a registry under federal, tribal, state or local law? Yes □ No □

If yes, please provide the details: __
__

(3.) Specialized knowledge or experience of the person seeking to qualify for the LLP (40CFR312.28).
As the user of this ESA, do you have any specialized knowledge or experience related to the property or nearby properties? For example, are you involved in the same line of business as the current or former occupants of the property or an adjoining property so that you would have specialized knowledge of the chemicals and processes used by this type of business? Yes □ No □

If yes, please provide the details: __
__

__

__

__

Page 1 of 3 2901 Wilcrest Drive, Houston, TX 77042
Tel (832) 251-5160 Fax (832) 251-5170
www.tetratech.com
(4.) Relationship of the purchase price to the fair market value of the property if it were not contaminated (40CFR312.29).

Does the purchase price being paid for this property reasonably reflect the fair market value of the property? If you conclude that there is a difference, have you considered whether the lower purchase price is because contamination is known or believed to be present at the property?

Yes \[\circ \] No

If yes, please provide the details: The property is being conveyed to the State Dept. of Education in fulfillment of school impact fees. DOE is not paying for the property.

(5.) Commonly known or reasonably ascertainable information about the property (40CFR312.30).

Are you aware of commonly known or reasonably ascertainable information about the property that would help the environmental professional to identify conditions indicative of releases or threatened releases? For example, as user,

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Do you know the past uses of the property?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Do you know of specific chemicals that are present or once were present at the property?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(c) Do you know of spills or other chemical releases that have taken place at the property?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(d) Do you know of any environmental cleanups that have taken place at the property?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

If yes, please provide the details: __

__

(6.) The degree of obviousness of the presence of likely presence of contamination at the property, and the ability to detect the contamination by appropriate investigation (40CFR312.31).

As the user of this ESA, based on your knowledge and experience related to the property, are there any obvious indicators that point to the presence or likely presence of contamination at the property?

Yes \[\circ \] No

If yes, please provide the details: __

__

In addition, certain information should be collected, if available, and provided to the environmental professional selected to conduct the Phase I. This information is intended to assist the environmental professional but is not necessarily required to qualify for one of the LLPs. The information includes:

(a) the reason why the Phase I is required,
(b) the type of property and type of property transaction, for example, sale, purchase, exchange, etc.,

(c) the complete and correct address for the property (a map or other documentation showing property location and boundaries is helpful),

(e) identification of the site contact and how the contact can be reached,

(f) any other knowledge or experience with the property that may be pertinent to the environmental professional (for example, copies of any available prior environmental site assessment reports, title records, documents, correspondence, etc., concerning the property and its environmental condition).

*Landowner Liability Protections, or LLPs, is the term used to describe the three types of potential defenses to Superfund liability in EPA’s Interim Guidance Regarding Criteria Landowners Must Meet in Order to Quality for Bona Fide Prospective Purchaser, Contiguous Property Owner, or Innocent Landowner Limitations on CERCLA Liability (“Common Elements” Guide) issued on March 6, 2003.

** P.L. 107-118.

PERSON COMPLETING QUESTIONNAIRE

Name: [Signature] Title: VP, ENTITLEMENTS MANAGER

Company: DR Horton Years familiar with property: 1

Signed: CAMERON NEKOTA Date: 12/12/13