Final Environmental Assessment for Proposed Shipbreaking of a Coast Guard Island Class Cutter at USCG Base Honolulu, Hawai`i

Order Number: HSCG23-17-F-PA7539
Contract Number: GS-00F-314CA

Photo Credit: USCG

Prepared for:

UNITED STATES COAST GUARD
Asset Project Office
711 East Ordnance Road
Suite 711
Baltimore, MD 21226

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc.
104 West Anapamu Street, Suite 204A
Santa Barbara, CA 93101
(805) 962-0992

November 2017
The Coast Guard proposes to dispose the Coast Guard Cutter (CGC) GALVESTON ISLAND (WPB 1349) – a 110-foot Island Class Cutter – currently positioned at Coast Guard Base Honolulu. The cutter has been deemed excess property by the USCG and would be stripped of major equipment, paneling, insulation, and wiring. All component tanks would be cleaned of fuel, oil, wastewater, and black water. The USCG intends to have the cutter toed to a regional, permitted facility, and scrapped through crushing, smashing, shearing, cutting, breaking, melting, burning, slashing, or other effective means that would render materials incapable of restoration, rehabilitation, or re-manufacture as an item usable for its originally intended purpose before turn-in to any disposal facility or activity. The USCG proposes a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the hull and dispose of the scrap property in a permitted procedure.

Summary of the Results of the Environmental Impact Evaluation: The Environmental Assessment (EA) prepared for this proposal presents the purpose and need for the action, the proposed action and alternatives, a description of the affected environment, and an analysis of direct, indirect, and cumulative environmental consequences. Based on the findings of the EA, the USCG concluded that the proposed action will have no significant impacts on the environment.

Mitigation Commitments (Including Monitoring), if any, that will be implemented to Reduce Otherwise Significant Impacts: No significant impacts identified; no mitigation commitments required.

This FONSI is based on the attached contractor-prepared EA which has been independently evaluated by the Coast Guard and determined to adequately and accurately discuss the environmental issues and impacts of the proposed project and provides sufficient evidence and analysis for determining that an environmental impact statement is not required. The Coast Guard takes full responsibility for the accuracy, scope, and content of the attached EA.

I reviewed the EA, which is the basis for this FONSI, and submitted my written comments to the Proponent.

[Signature]
Environmental Protection Specialist
Title/Position

21 Nov 17
Date
Raven J. Smith
Environmental Reviewer

I reviewed the EA, which is the basis for this FONSI, and submitted my written comments to the Proponent.

[Signature]
Senior Environmental Professional
Title/Position

21 Nov 17
Date
Raven J. Smith

In reaching my decision/recommendation on the Coast Guard’s proposed action, I considered the information contained in this EA/FONSI and considered and acknowledged the written comments submitted to me from the Environmental and Legal Reviewers. Based on the information in the EA and this FONSI document, I agree that the proposed action as described above, and in the EA, will have no significant impact on the environment.

[Signature]
Commanding Officer, Asset Project Office
Title/Position

21 Nov 17
Date
Robert A. Bevins, Captain

1 Signature of the Environmental Reviewer/Senior Environmental Professional for the Bridge Administration Program may be that of the Preparer’s.
United States Coast Guard (Coast Guard) Environmental Assessment for Proposed Shipbreaking of a Coast Guard Island Class Cutter at Coast Guard Base Honolulu, Hawaii

This Coast Guard Environmental Assessment (EA) for the proposed shipbreaking of a Coast Guard Island Class Cutter currently moored at Coast Guard Base Honolulu, Hawaii was prepared in accordance with National Environmental Policy Act (NEPA) Implementing Procedures and Policy for Considering Environmental Impacts, COMDTINST M16475.1D and is in compliance with the National Environmental Policy Act of 1969 (42 U.S.C. §§ 4321 to 4370h) and the Council of Environmental Quality Regulations dated 28 November 1978 (40 C.F.R. Parts 1500-1508).

This EA serves as a concise public document to briefly provide sufficient evidence and analysis for determining the need to prepare an Environmental Impact Statement (EIS) or a Finding of No Significant Impact (FONSI). This EA concisely describes the proposed action, the need for the proposal, the alternatives, and the environmental impacts of the proposal and alternatives. This EA also contains a comparative analysis of the action and alternatives, a statement of the environmental significance of the preferred alternative, and a list of the agencies and persons consulted during EA preparation.

21 Nov 17
Michael J. Clagett
Document Preparer

Deputy Cutter Transition Division
Title/Position

I reviewed the EA and submitted my written comments to the Proponent.

21 Nov 17
Raven J. Smith
Environmental Reviewer

Environmental Protection Specialist
Title/Position

I reviewed the EA and submitted my written comments to the Proponent.

21 Nov 17
Raven J. Smith
Senior Environmental Professional

Environmental Protection Specialist
Title/Position

In reaching my decision/recommendation on the Coast Guard’s proposed action, I considered the information contained in this EA and considered and acknowledged the written comments submitted to me from the Environmental and Legal Reviewers.

21 Nov 17
Robert A. Bevens, Captain
Commanding Officer, Asset Project Office
Title/Position

1 The USCG Preparer signs for NEPA documents prepared in-house. The USCG environmental project manager signs for NEPA documents prepared by an applicant, a contractor, or another outside party.
2 Signature of the Environmental Reviewer/Senior Environmental Professional for the Bridge Administration Program may be that of the Preparer’s.
CONTENTS

ACRONYMS AND ABBREVIATIONS .. v

SECTION 1 PURPOSE AND NEED FOR ACTION ... 1-1
 1.1 INTRODUCTION .. 1-1
 1.2 BACKGROUND .. 1-1
 1.3 OVERVIEW .. 1-2
 1.3.1 USCG Mission ... 1-2
 1.3.2 Fourteenth Coast Guard District .. 1-3
 1.3.3 Base Honolulu ... 1-4
 1.4 CGC GALVESTON ISLAND ... 1-7
 1.5 PURPOSE OF THE PROPOSED ACTION ... 1-7
 1.6 NEED FOR THE PROPOSED ACTION ... 1-8
 1.7 AGENCY AND PUBLIC INVOLVEMENT PROCESS ... 1-8
 1.8 SUMMARY OF ENVIRONMENTAL STUDY REQUIREMENTS 1-8
 1.8.1 National Environmental Policy Act ... 1-8
 1.8.2 Fish and Wildlife Coordination Act ... 1-9
 1.8.3 Endangered Species Act .. 1-9
 1.8.4 Magnuson-Stevens Fishery Conservation and Management Act 1-10
 1.8.5 Marine Mammal Protection Act ... 1-10
 1.8.6 Clean Air Act and Conformity Requirements ... 1-11
 1.8.7 Wetland and Water Resources Regulatory Requirements 1-11
 1.8.8 Coastal Zone Consistency Determination ... 1-12
 1.8.9 HRS Chapter 343 .. 1-12
 1.8.10 City and County of Honolulu Zoning Regulations 1-13
 1.8.11 Cultural Resources Regulatory Requirements .. 1-13
 1.8.12 Sustainability and Greening ... 1-14
 1.8.13 Invasive Species ... 1-15
 1.8.14 Uniform National Discharge Standards (UNDS) for Vessels of the Armed Forces (80 Federal Register [FR] 3173) .. 1-16
 1.8.15 Oil and Hazardous Material Transfer Operations (33 CFR § 156, Subpart A) .. 1-16
 1.9 SCOPE OF THE ENVIRONMENTAL ASSESSMENT ... 1-17

SECTION 2 PROPOSED ACTION AND ALTERNATIVES .. 2-1
 2.1 PROPOSED ACTION .. 2-2
 2.1.1 General Shipbreaking Activities ... 2-2
 2.1.2 Typical Shipbreaking Process .. 2-3
 2.1.3 Shipbreaking CGC GALVESTON ISLAND .. 2-5
 2.1.4 USCG Operational Guidance related to Marine Resources 2-6
CONTENTS (CONTINUED)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>ALTERNATIVE 1: PREPARING THE CGC GALVESTON ISLAND FOR SCRAPPING AT BASE HONOLULU</td>
<td>2-7</td>
</tr>
<tr>
<td>2.3</td>
<td>ALTERNATIVE 2: PREPARING THE CGC GALVESTON ISLAND FOR SCRAPPING AT SECTOR HONOLULU PIER 4</td>
<td>2-7</td>
</tr>
<tr>
<td>2.4</td>
<td>ALTERNATIVE 3: COMPLETE SCRAPPING AT A SHIPBREAKING FACILITY</td>
<td>2-7</td>
</tr>
<tr>
<td>2.5</td>
<td>NO-ACTION ALTERNATIVE</td>
<td>2-8</td>
</tr>
<tr>
<td>2.6</td>
<td>ALTERNATIVES IDENTIFIED BUT NOT CARRIED FORWARD FOR DETAILED ANALYSIS</td>
<td>2-8</td>
</tr>
</tbody>
</table>

SECTION 3 AFFECTED ENVIRONMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>AIR QUALITY AND CLIMATE CHANGE</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2</td>
<td>WATER RESOURCES</td>
<td>3-1</td>
</tr>
<tr>
<td>3.3</td>
<td>BIOLOGICAL RESOURCES</td>
<td>3-1</td>
</tr>
<tr>
<td>3.4</td>
<td>CULTURAL RESOURCES</td>
<td>3-1</td>
</tr>
<tr>
<td>3.5</td>
<td>HAZARDOUS MATERIALS AND WASTES</td>
<td>3-1</td>
</tr>
</tbody>
</table>

SECTION 4 ENVIRONMENTAL CONSEQUENCES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>AIR QUALITY AND CLIMATE CHANGE</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2</td>
<td>WATER RESOURCES</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3</td>
<td>BIOLOGICAL RESOURCES</td>
<td>4-1</td>
</tr>
</tbody>
</table>
CONTENTS (CONTINUED)

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1</td>
<td>Approach to Analysis</td>
<td>4-13</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Impacts from Proposed Action Alternatives</td>
<td>4-13</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Impacts from No-Action Alternative</td>
<td>4-21</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Special Procedures</td>
<td>4-21</td>
</tr>
<tr>
<td>4.4</td>
<td>CULTURAL RESOURCES</td>
<td>4-23</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Approach to Analysis</td>
<td>4-23</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Impacts from Proposed Action Alternatives</td>
<td>4-24</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Impacts from No-Action Alternative</td>
<td>4-25</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Special Procedures</td>
<td>4-25</td>
</tr>
<tr>
<td>4.5</td>
<td>HAZARDOUS MATERIALS AND WASTES</td>
<td>4-26</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Approach to Analysis</td>
<td>4-26</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Impacts from Proposed Action Alternatives</td>
<td>4-26</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Impacts from No-Action Alternative</td>
<td>4-29</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Special Procedures</td>
<td>4-29</td>
</tr>
<tr>
<td>5</td>
<td>SECTION 5 CUMULATIVE IMPACTS</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1</td>
<td>PROJECTS CONSIDERED</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2</td>
<td>EVALUATION OF CUMULATIVE EFFECTS</td>
<td>5-1</td>
</tr>
<tr>
<td>6</td>
<td>SECTION 6 SUMMARY OF FINDINGS</td>
<td>6-1</td>
</tr>
<tr>
<td>7</td>
<td>SECTION 7 SPECIAL PROCEDURES</td>
<td>7-1</td>
</tr>
<tr>
<td>8</td>
<td>SECTION 8 REFERENCES</td>
<td>8-1</td>
</tr>
<tr>
<td>9</td>
<td>SECTION 9 LIST OF PREPARERS</td>
<td>9-1</td>
</tr>
<tr>
<td></td>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>List of Agencies Contacted</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Scoping Letter and Responses</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Notice of Availability</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Request for Comment Letter, Agency Responses, and Comment Summary</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Historic Resources Evaluation</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>USFWS and NOAA Correspondence</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Declaration of Inspection Form</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1.</td>
<td>Base Honolulu and Vicinity</td>
<td>1-5</td>
</tr>
<tr>
<td>Figure 1-2.</td>
<td>Coast Guard Base Honolulu</td>
<td>1-6</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3-1.</td>
<td>National and State of Hawai`i Ambient Air Quality Standards</td>
<td>3-4</td>
</tr>
<tr>
<td>Table 3-2.</td>
<td>Marine Mammals that occur in Hawaiian Waters</td>
<td>3-20</td>
</tr>
<tr>
<td>Table 3-3.</td>
<td>Local Hazardous Waste Sites: Sand Island</td>
<td>3-32</td>
</tr>
<tr>
<td>Table 5-1.</td>
<td>Cumulative Projects and Plans</td>
<td>5-2</td>
</tr>
</tbody>
</table>
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>ACHP</td>
<td>Advisory Council on Historic Preservation</td>
</tr>
<tr>
<td>ACM</td>
<td>asbestos-containing material</td>
</tr>
<tr>
<td>AFNSI</td>
<td>Administrative Finding of No Significant Impact</td>
</tr>
<tr>
<td>AIRFA</td>
<td>American Indian Religious Freedom Act</td>
</tr>
<tr>
<td>AIS</td>
<td>Aquatic Invasive Species</td>
</tr>
<tr>
<td>ANS</td>
<td>aquatic nuisance species</td>
</tr>
<tr>
<td>AOR</td>
<td>Area of Responsibility</td>
</tr>
<tr>
<td>AST</td>
<td>aboveground storage tank</td>
</tr>
<tr>
<td>BA</td>
<td>Biological Assessment</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practice</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CGC</td>
<td>Coast Guard Cutter</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>COMDTINST</td>
<td>Coast Guard Commandant Instruction</td>
</tr>
<tr>
<td>CuNi</td>
<td>copper-nickel</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>CZM</td>
<td>Coastal Zone Management</td>
</tr>
<tr>
<td>CZMA</td>
<td>Coastal Zone Management Act</td>
</tr>
<tr>
<td>D14</td>
<td>Fourteenth Coast Guard District</td>
</tr>
<tr>
<td>DLNR</td>
<td>Department of Land and Natural Resources</td>
</tr>
<tr>
<td>DoDI</td>
<td>Department of Defense Instruction</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Education</td>
</tr>
<tr>
<td>DOH</td>
<td>Department of Health</td>
</tr>
<tr>
<td>DOH-CAB</td>
<td>Department of Health, Clean Air Branch</td>
</tr>
<tr>
<td>DOI</td>
<td>Declaration of Inspection</td>
</tr>
<tr>
<td>DOT-H</td>
<td>Department of Transportation, Harbors Division</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EFH</td>
<td>Essential Fish Habitat</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EISPN</td>
<td>EIS Preparation Notice</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>FCMA</td>
<td>Fishery Conservation and Management Act</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FIFRA</td>
<td>Federal Insecticide, Fungicide, and Rodenticide Act</td>
</tr>
<tr>
<td>FONSI</td>
<td>Finding of No Significant Impact</td>
</tr>
</tbody>
</table>
ACRONYMS AND ABBREVIATIONS (CONTINUED)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRC</td>
<td>Fast Response Cutter</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>HECO</td>
<td>Hawaiian Electric</td>
</tr>
<tr>
<td>HIDOT</td>
<td>Hawai`i Department of Transportation</td>
</tr>
<tr>
<td>HRS</td>
<td>Hawai`i Revised Statutes</td>
</tr>
<tr>
<td>HWSF</td>
<td>Hazardous Waste Storage Facility</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>KBPH</td>
<td>Kalaeloa Barbers Point Harbor</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of Service</td>
</tr>
<tr>
<td>MARAD</td>
<td>Maritime Administration</td>
</tr>
<tr>
<td>MBTA</td>
<td>Migratory Bird Treaty Act</td>
</tr>
<tr>
<td>MMPA</td>
<td>Marine Mammal Protection Act</td>
</tr>
<tr>
<td>MRCI</td>
<td>Marine Research Consultants, Inc.</td>
</tr>
<tr>
<td>MTBE1</td>
<td>methyl tert butyl ether</td>
</tr>
<tr>
<td>N₂O</td>
<td>nitrous oxide</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NAGPRA</td>
<td>Native American Graves Protection and Repatriation Act</td>
</tr>
<tr>
<td>NDRF</td>
<td>National Defense Reserve Fleet</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NH₄</td>
<td>ammonium</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>NO₂</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOₓ</td>
<td>nitrogen oxides</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>O₃</td>
<td>ozone</td>
</tr>
<tr>
<td>ODS</td>
<td>ozone depleting substance</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>Pb</td>
<td>lead</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PIC</td>
<td>Person-in-Charge</td>
</tr>
<tr>
<td>PIFSC</td>
<td>Pacific Islands Fisheries Science Center</td>
</tr>
<tr>
<td>PM</td>
<td>particulate matter</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>particulate matter 10 microns or less</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>particulate matter 2.5 microns or less</td>
</tr>
<tr>
<td>POL</td>
<td>petroleum, oil, and lubricants</td>
</tr>
<tr>
<td>POW</td>
<td>Prisoner of War</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SFA</td>
<td>Sustainable Fisheries Act</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Office</td>
</tr>
<tr>
<td>SHPD</td>
<td>State Historic Preservation Division</td>
</tr>
<tr>
<td>SINKEX</td>
<td>sink at-sea live-fire training exercises</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SMA</td>
<td>Special Management Area</td>
</tr>
<tr>
<td>SO₂</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SOₓ</td>
<td>sulfur oxides</td>
</tr>
<tr>
<td>SPCC</td>
<td>Spill Prevention, Control, and Countermeasure</td>
</tr>
<tr>
<td>SQG</td>
<td>Small quantity generator</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
<tr>
<td>TSS</td>
<td>total suspended solids</td>
</tr>
<tr>
<td>UNDS</td>
<td>Uniform National Discharge Standards</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>USACE</td>
<td>US Army Corps of Engineers</td>
</tr>
<tr>
<td>USC</td>
<td>US Code</td>
</tr>
<tr>
<td>USCG</td>
<td>US Coast Guard</td>
</tr>
<tr>
<td>USEPA</td>
<td>US Environmental Protection Agency</td>
</tr>
<tr>
<td>USFWS</td>
<td>US Fish and Wildlife Service</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
<tr>
<td>WHWS</td>
<td>West Honolulu Watershed</td>
</tr>
<tr>
<td>WPB</td>
<td>Island Class Cutter</td>
</tr>
<tr>
<td>WPFMC</td>
<td>Western Pacific Fisheries Management Council</td>
</tr>
<tr>
<td>WWPS</td>
<td>Wastewater Pump Station</td>
</tr>
<tr>
<td>WWTP</td>
<td>Wastewater Treatment Plant</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
SECTION 1
PURPOSE AND NEED FOR ACTION

1.1 INTRODUCTION

This Environmental Assessment (EA) has been prepared in accordance with the requirements of the National Environmental Policy Act (NEPA) (42 United States Code [USC]); Council on Environmental Quality (CEQ) Regulations for Implementing NEPA (40 Code of Federal Regulations [CFR] §§1500-1508) and associated CEQ guidelines; Department of Homeland Security Management Directive 023-01; and Coast Guard Commandant Instruction (COMDTINST) M16475.1D, National Environmental Policy Act Implementing Procedures and Policy for Considering Environmental Impacts. This section specifies the purpose and need for the proposed dismantling and disposal of one United States Coast Guard (USCG) Island Class Cutter at Coast Guard Base Honolulu, located in Honolulu Harbor, Honolulu, Hawai`i.

1.2 BACKGROUND

The USCG is proposing the decommissioning and disposal of Coast Guard Cutter (CGC) GALVESTON ISLAND (WPB 1349)—a 110-foot Island Class Cutter—currently operating from USCG Base Honolulu at Honolulu Harbor. The vessel is nearing the end of its service life and has been determined to be excess property. Due to the overall lack of interest in further operations by other United States (US) Government and local agencies or private parties, the Coast Guard proposes to have: 1) the cutter stripped of major equipment, paneling, insulation, and wiring; 2) component tanks drained and cleaned of fuel, oil, wastewater, and black water; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the hull and dispose of the scrap property in a permitted procedure.

Pursuant to NEPA, the USCG has prepared this EA to evaluate the potential effects on the environment from having the vessel drained, stripped, and towed from its current location at Honolulu Harbor to a regionally located, permitted shipbreaking facility. CEQ regulations and COMDTINST M16475.1D require that an EA identify and evaluate all reasonable alternatives, including a “No-Action
Alternative” in which the Proposed Action is not undertaken. The information and analysis contained in this EA will serve as the basis for a USCG decision if the Proposed Action would result in a significant impact to the environment, which would require the preparation of an Environmental Impact Statement (EIS), or if no significant impacts would occur and therefore a Finding of No Significant Impact (FONSI) would be appropriate.

1.3 OVERVIEW

1.3.1 USCG Mission

The USCG is this nation’s first and oldest maritime agency. The USCG Area of Responsibility (AOR) includes more than 95,000 miles of US coastlines, waterways, and harbors; more than 3.36 million square miles of Exclusive Economic Zone and US territorial seas; and international waters or other maritime regions of importance to the US. The USCG is a multi-missioned military and maritime service within the Department of Homeland Security.

The USCG’s 11 fundamental missions are ports, waterways, and coastal security; illegal drug interdiction; aids to navigation; search and rescue; living marine resources; marine safety; defense readiness; migrant interdiction; marine environmental protection; ice operations; and other law enforcement. Examples of these fundamental missions are:

- Protect all US ports, inland waterways, harbors, navigable waters, the Great Lakes, territorial seas, contiguous waters, customs waters, coastal seas, littoral areas, the US Exclusive Economic Zone, oceanic regions of the US national interest, sea lanes to the US, US maritime approaches, and high seas surrounding the nation;
- Protect the US Marine Transportation System, which is comprised of the intermodal connections, vessels, vehicles, and system users, as well as all federal maritime navigation systems;
- Maintain maritime border security against illegal drugs, illegal aliens, firearms, and weapons of mass destruction;
- Ensure that US military assets can be rapidly supplied and deployed by keeping USCG units at a high state of readiness, and by keeping marine
transportation open for the transit of assets and personnel from other branches of the armed forces;

- Coordinate efforts and intelligence with federal, state, and local agencies;
- Respond to calls of distress, whether from commercial or recreational boats or downed aircraft;
- Support programs to ensure that boats are safe for public use and that boats contain appropriate safety equipment;
- Protect against illegal fishing and indiscriminate destruction of living marine resources; and
- Prevent and respond to oil and hazardous material spills – both accidental and intentional.

1.3.2 Fourteenth Coast Guard District

In 1939, the Fourteenth Coast Guard District (D14) was established ashore in Honolulu with 230 personnel. Today, more than 1,150 active duty, 150 reserve, 80 civilian, and 400 auxiliary men and women support D14. The district’s AOR includes more than 12.2 million square miles of land and sea, with units on O`ahu, Maui, Kaua`i, Island of Hawai`i, and in American Samoa, Saipan, Guam, Singapore, and Japan. D14’s boundaries of responsibility stretch from the Hawaiian Islands and across most of the Central and Western Pacific. The District Commander oversees 25 operational units ashore and afloat throughout the Pacific, which regularly perform missions in maritime safety, protection of natural resources, maritime security, homeland security, and national defense (USCG 2014).

USCG vessels operating within D14 conduct a variety of daily operations in support of the USCG’s statutory missions, including conducting search and rescue, patrolling the coast and Pacific Ocean to enforce safety and fisheries regulations, conducting safety and compliance inspections and exams on commercial vessels and waterfront facilities, and protecting national strategic defense and critical infrastructure. D14 enforces federal laws on the high seas and navigable waters of the US and its possessions, including illegal alien and drug interdiction, and the protection of living marine resources. It maintains aids to navigation such as buoys and harbor entrance day boards. It manages a maritime environmental protection program aimed at preventing, detecting, and
controlling pollution in Hawai‘i’s waters and throughout the Pacific, and also administers a boating safety program (in concert with the Coast Guard Auxiliary).

1.3.3 Base Honolulu

Base Honolulu is a multi-mission shore facility with its primary mission being distress response. Fulfillment of this mission includes: training personnel, maintaining awareness of emergent distress through lookout activities and communications watches, and responding to distress situations. Secondary missions include: safety inspections, security and law enforcement patrols (including fisheries enforcement activities), and providing initial pollution response. Various vessels are homeported and/ or in transition and stationed at Base Honolulu including the CGC KITTIWAKE, CGC KISKA, CGC GALVESTON ISLAND, and CGC WALNUT. A new Fast Response Cutter (FRC), the CGC OLIVER BERRY, is scheduled to arrive in Honolulu in late 2017.

Base Honolulu occupies approximately 40.76 acres on Sand Island in Honolulu (USCG 1992). Sand Island is located along the southern border of the Honolulu Harbor, south of downtown Honolulu and is linked to Downtown Honolulu by the Sand Island Parkway which bridges the Kalihi Channel and Kapalama Basin (Figure 1-1). The facility maintains mooring facilities along the entire northeast limit of the Base’s property; the harbor opens to Honolulu Channel to the east of the Base. The wharf design along the northeastern perimeter of the Base provides seven berths.
No warranty is made by the USCG as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data. This map is a "living document," in that it is intended to change as new data become available and are incorporated into the GIS database.
No warranty is made by the USCG as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data. This map is a "living document," in that it is intended to change as new data become available and are incorporated into the GIS database.

Aerial Source: Google 2015.
1.4 CGC GALVESTON ISLAND

The vessel class of Island Class Cutters (or WPBs) – to which the CGC GALVESTON ISLAND belongs – was commissioned between 1984 and 1992. These cutters are 110 feet long, armed with one stabilized, remotely operated 25-millimeter chain gun and two crew-served .50 caliber machine guns, and crew capabilities to hold 22 people. These cutters can perform independently for a maximum of 5 days at sea and are at sea an average of 1,800 hours per year. Their missions have been to provide offshore surveillance, law enforcement, and search-and-rescue operations. As these cutters near the end of their service lives, these aging assets increase operations and maintenance costs, lack the systems infrastructure necessary for modern mission demands, and increase operational safety risks. Further, these 110-foot WPBs are not adequate to support new or changing mission requirements associated with the USCG’s homeland security mandate.

The CGC GALVESTON ISLAND was officially commissioned on 5 June 1992 and operates out of USCG Base Honolulu, where it is moored at Berth G.

1.5 PURPOSE OF THE PROPOSED ACTION

Following a determination that USCG-controlled property – which may include vessels – is excess property (as that term is defined\(^1\) in the Federal Property and Administrative Services Act of 1949, as amended\(^2\)), the USCG must decide how to dispose of such property. The USCG has determined that various 110-foot WPBs across its fleet have reached or are approaching the end of their service lives while the USCG’s missions are increasing in number and tempo. The purpose of the Proposed Action is to decommission and dispose of the CGC GALVESTON ISLAND, which is currently positioned at Honolulu Harbor and has been determined to be excess property.

\(^1\) "Excess property’ means any property under the control of any Federal agency not required for its needs and responsibilities as determined by the head thereof.” 40 USC §472.

\(^2\) Public Law 152, Chapter 288, 63 Statute 377. This public law, as amended, is codified in 40 USC and 41 USC.
1.6 **NEED FOR THE PROPOSED ACTION**

The overarching need for the Proposed Action is to dispose of excess property that is approaching or beyond the end of its economic service life, at a time when the demand for USCG services and infrastructure is increasing. At Base Honolulu, the need is further exacerbated in that the CGC GALVESTON ISLAND is currently occupying berthing space in Honolulu Harbor that could be used more effectively to support the overarching USCG mission.

1.7 **AGENCY AND PUBLIC INVOLVEMENT PROCESS**

On June 19, 2017, scoping letters were distributed by the USCG to solicit input on the Proposed Action from interested agencies and stakeholders. The notices provided an 11-day period during which comments could be submitted on key issues that stakeholders felt should be addressed during the environmental review process (see Appendix A, Agency Distribution List, and Appendix B, Scoping Letter and Agency Response). A Notice of Availability for the Draft EA were published in the Honolulu Star-Advertiser on August 23, 2017 announcing the availability of the document for review and a timeline for submitting comment and input.

1.8 **SUMMARY OF ENVIRONMENTAL STUDY REQUIREMENTS**

This EA has been prepared in accordance with the Department of Homeland Security Management Directive 023-01 and USCG COMDTINST M16475.1D and is in compliance with requirements of NEPA and CEQ Regulations dated 28 November 1978 (40 CFR §§1500-1508). The primary legislation affecting these agencies’ decision-making process is NEPA. This act and other facets of the environmental impact assessment process are described below.

1.8.1 **National Environmental Policy Act**

NEPA requires that federal agencies consider potential environmental consequences of their proposed actions. The law’s intent is to protect, restore, or enhance the environment through well-informed federal decisions. The CEQ was established under NEPA for the purpose of implementing and overseeing federal
policies as they relate to this process. In 1978, the CEQ issued Regulations for Implementing the Procedural Provisions of the National Environmental Policy Act (40 CFR §§1500-1508). These regulations specify that an EA be prepared to:

- Briefly provide sufficient analysis and evidence for determining whether to prepare an EIS or a FONSI;
- Aid in an agency’s compliance with NEPA when no EIS is necessary; and
- Facilitate preparation of an EIS if one is necessary.

Further, to comply with other relevant environmental requirements (e.g., Endangered Species Act [ESA], National Historic Preservation Act [NHPA], Clean Water Act [CWA], etc.) in addition to NEPA, and to assess potential environmental impacts, the decision-making process for the Proposed Action involves a thorough examination of all environmental issues pertinent to the Proposed Action.

1.8.2 Fish and Wildlife Coordination Act

The Fish and Wildlife Coordination Act of 1934, as amended, requires that wildlife, including fish, receive equal consideration, and in coordination with other aspects of water resource development. This is accomplished by requiring consultation with US Fish and Wildlife Service (USFWS), National Oceanic and Atmospheric Administration (NOAA) Fisheries, and appropriate state agencies whenever any body of water is proposed to be modified in any way and a federal permit or license is required. In the case of this Proposed Action, no modification to any waterbody is proposed; nevertheless, coordination with these regulatory agencies has occurred as part of the NEPA and other legislative (e.g., ESA) processes. The USCG notified USFWS and NOAA National Marine Fisheries Service (NMFS) of the Proposed Action in a letter dated June 26, 2017, which also requested regional information on federally protected species, federally designated critical habitats, and Essential Fish Habitat (EFH) (Appendix F).

1.8.3 Endangered Species Act

The ESA of 1973 (16 USC §§1531–1544, as amended) established measures for the protection of plant and animal species that are federally listed as threatened or
endangered, and for the conservation of habitats that are critical to the continued existence of those species. Federal agencies must evaluate the effects of their proposed actions through a set of defined procedures, which can include the preparation of a Biological Assessment (BA) and can require formal consultation with the USFWS and/or NMFS under Section 7 of the ESA.

1.8.4 Magnuson-Stevens Fishery Conservation and Management Act

The Magnuson-Stevens Fishery Conservation and Management Act (FCMA), as amended (16 USC 1801 et seq.) established: 1) a fishery conservation zone between the territorial seas of the US and 200 nautical miles offshore; 2) an exclusive US fishery management authority over fish within the fishery conservation zone (excluding highly migratory species); 3) regulations for foreign fishing within the fishery conservation zone through international fishery agreements, permits, and import prohibitions; and 4) national standards for fishery conservation and management and eight regional fishery management councils to apply national standards established in fishery management plans.

Congress enacted the 1996 amendments to the Act, known as the Sustainable Fisheries Act (SFA) (Public Law 104-297), to address the substantially reduced fish stocks that declined as a result of direct and indirect habitat loss. The SFA requires that agencies consult with NMFS concerning actions that may adversely impact EFH.

There is a requirement for USCG to consult with the NMFS per the EFH provision if there “may be adverse effect to EFH” from implementation of the Proposed Action.

1.8.5 Marine Mammal Protection Act

The Marine Mammal Protection Act of 1972 prohibits the taking of marine mammals. The term “take” means to harass, hunt, capture, or kill, or attempt to harass, hunt, capture, or kill any marine mammal. The USCG has determined that the proposed shipbreaking activities would avoid the take of marine mammals through the USCG operating requirements related to marine mammals described in Section 2.1.4, Operational Guidance related to Marine Resources.
1.8.6 Clean Air Act and Conformity Requirements

The Clean Air Act (CAA) (42 USC §§7401–7671, as amended) provided the authority for the US Environmental Protection Agency (USEPA) to establish nationwide air quality standards to protect public health and welfare. Federal standards, known as the National Ambient Air Quality Standards (NAAQS), were developed for six criteria pollutants: ozone (O\textsubscript{3}), nitrogen dioxide (NO\textsubscript{2}), carbon monoxide (CO), sulfur dioxide (SO\textsubscript{2}), particulate matter (particulate matter equal or less than ten microns in diameter [PM\textsubscript{10}] and 2.5 microns in diameter [PM\textsubscript{2.5}]), and lead (Pb). The CAA also requires that each state and territory to prepare a State Implementation Plan (SIP) for maintaining and improving air quality and eliminating violations of the NAAQS. The SIP for Hawai`i was approved in 1983 and updated in 2012. Under the CAA Amendments of 1990, federal agencies are required to determine whether their undertakings are in conformance with the applicable SIP and demonstrate that their actions will not cause or contribute to a new violation of the NAAQS; increase the frequency or severity of any existing violation; or delay timely attainment of any standard, emission reduction, or milestone contained in the SIP. The USEPA has set forth regulations in 40 CFR §51, Subpart W, which require the proponent of a proposed action to perform an analysis to determine if implementation of the action would conform to the SIP.

1.8.7 Wetland and Water Resources Regulatory Requirements

The CWA of 1977 (33 USC 1251 et seq.) regulates pollutant discharges that could affect aquatic life forms or human health and safety. Section 404 of the CWA, and Executive Order 11990, Protection of Wetlands, regulate development activities in or near streams or wetlands. Section 404 also regulates development in streams and wetlands and requires a permit from the US Army Corps of Engineers (USACE) for dredging and filling in wetlands. Executive Order 11988, Floodplain Management, as revised by Executive Order 13690, Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting and Considering Stakeholder Input, requires federal agencies to take action to reduce the risk of flood damage; minimize the impacts of floods on human safety, health, and welfare; and to restore and preserve the natural and beneficial values served by floodplains.
Federal agencies are directed to consider the proximity of their actions to or within floodplains.

1.8.8 Coastal Zone Consistency Determination

The Federal Coastal Zone Management Act (CZMA) of 1972 creates a state-federal partnership to ensure the protection of coastal resources. In compliance with this law and in order to address coastal problems and provide a means for resolving them the State of Hawai‘i developed Hawai‘i’s Coastal Zone Management (CZM) Program (Hawai‘i Revised Statutes [HRS] 205A-2). The CZM Program is designed to protect valuable and vulnerable coastal resources by reducing coastal hazards and improving the review process for activities proposed within the coastal zone. The CZM Program focuses on ten objectives and policies related to the following: recreational resources; historic resources; scenic and open space resources; coastal ecosystems; economic uses; coastal hazards; managing development; public participation; beach protection; and marine resources. The CZM program also includes a permit system to control development within Special Management Areas (SMAs), which include lands within 300 feet from the shoreline.

1.8.9 HRS Chapter 343

Compliance with HRS Chapter 343 in the form of environment impact analysis is required for any one of nine defined actions that propose: 1) the use of state or county lands or the use of state or county funds; 2) use of land classified as conservation district; 3) use within a shoreline area (as defined in Section 205A); 4) use within any historic site as designated in the National Register or Hawai‘i Register; 5) use with the Waikiki area of O‘ahu; 6) any amendments to existing county general plans resulting in specific designation impacts; 7) any reclassification of land classified as a conservation district; 8) any construction of new or modification of existing helicopter facilities; or 9) water treatment unit, waste-to-energy facility, landfill, oil refinery, or power-generating facility. The proposed shipbreaking action contemplated by the USCG does entail a use, construction, or plan amendment as identified in HRS Chapter 343; therefore, compliance with HRS 343 is not required.
1.8.10 City and County of Honolulu Zoning Regulations

Under Chapter 25 of the Revised Ordinances of Honolulu, regulations and procedures have been established for lands that are considered SMAs. Base Honolulu and Sector Honolulu are within an SMA boundary, however, no construction, demolition, or land use alterations are proposed by the USCG at the Base or within the Sector; the only action proposed is removal of the sea vessel’s contents and a one-time tow of the ship to a shipbreaking facility. Therefore, no SMA Use permit would be required through the Department of Planning and Permitting for the City and County of Honolulu. Further, Base Honolulu is within the P-1 Restricted Preservation and/or F-1 Military and Federal Preservation Districts. Per the City and County of Honolulu scoping letter dated June 29, 2017 (included in Appendix B), activities conducted within these zoning designations are not subject to City and County of Honolulu zoning regulations.

1.8.11 Cultural Resources Regulatory Requirements

The NHPA of 1966 (16 USC §470) established the National Register of Historic Places (NRHP) and the Advisory Council on Historic Preservation (ACHP) which outline procedures for the management of cultural resources on federal property. Cultural resources can include archaeological remains, architectural structures, and traditional cultural properties such as ancestral settlements, historic trails, and places where significant historic events occurred. The NHPA requires federal agencies to consider potential impacts to cultural resources that are listed, nominated to, or eligible for listing on the NRHP; designated a National Historic Landmark; or valued by modern Native Americans for maintaining their traditional culture. Section 106 of NHPA requires federal agencies to consult with the appropriate State Historic Preservation Office (SHPO) if their undertaking might affect such resources. Protection of Historic and Cultural Properties (36 CFR §800) provides an explicit set of procedures necessary for federal agencies to meet their obligations under the NHPA, which includes inventorying of resources and consultation with SHPO.

Executive Order 13007, Indian Sacred Sites, directs federal land (any land or interests in land owned by the US, including leasehold interests held by the US,
except Indian trust lands) managing agencies to accommodate access to, and
ceremonial use of, Indian sacred sites (any specific, discrete, narrowly delineated
location on federal land that is identified by an Indian tribe [an Indian or Alaska
Native tribe, band, nation, Pueblo, village, or community that the Secretary of the
Interior acknowledges to exist as an Indian tribe pursuant to Public Law 103-454,
108 Statute 4791. An “Indian” refers to a member of such an Indian tribe] or
Indian individual determined to be an appropriately authoritative representative
of an Indian religion, as sacred by virtue of its established religious significance
to, or ceremonial use by, an Indian religion) provided that the tribe or
appropriately authoritative representative of an Indian religion has informed the
agency of the existence of such a site.

The American Indian Religious Freedom Act (AIRFA) (42 USC §1996) established
federal policy to protect and preserve the rights of Native Americans to believe,
express, and exercise their traditional religions, including providing access to
sacred sites. The Native American Graves Protection and Repatriation Act
(NAGPRA) (25 USC §§3001–3013) requires consultation with Native American
Tribes prior to excavation or removal of human remains and certain objects of
cultural importance.

1.8.12 Sustainability and Greening

Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic
Performance, strives to improve efficiency and environmental performance in
federal agencies by setting goals in the areas of energy efficiency, greenhouse gas
emission mitigation, water conservation, waste management and recycling,
green procurement, pollution prevention, and livable communities, among
others. The Executive Order specifies that every federal organization and agency
must make the reduction of greenhouse gas emissions a priority and establishes
specific goal-setting, inventoring, and reporting requirements for federal
agencies. This includes an order for each agency to develop, implement, and
update a Strategic Sustainability Performance Plan, which should work toward
continual improvement of sustainable practices associated with federal actions.
1.8.13 Invasive Species

Executive Order 13112, Invasive Species, was issued in 1999 and calls upon federal agencies to take steps to prevent the introduction and spread of invasive species and to support efforts to eradicate and control those invasives that are established. The order defines an "invasive species" as a species: 1) that is nonnative to the ecosystem under consideration, and 2) whose introduction causes or is likely to cause economic or environmental harm or harm to human health. Nonnative species become invasive in a new environment when the natural predators, diseases, or other biological mechanisms that kept the species in check within its former habitat are missing in its new environment. Lacking this biological balance, the invading species effectively changes the biodiversity of a locale leading to both environmental upset and economic loss.

Issued in 2016, Executive Order 13751, Safeguarding the Nation from the Impacts of Invasive Species, amended Executive Order 13112 and directs actions to continue coordinated federal prevention and control efforts related to invasive species. The order maintains the National Invasive Species Council (Council) and the Invasive Species Advisory Committee; expands the membership of the Council; clarifies the operations of the Council; incorporates considerations of human and environmental health, climate change, technological innovation, and other emerging priorities into federal efforts to address invasive species; and strengthens coordinated, cost-efficient federal action.

The Federal Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990, amended by the National Invasive Species Act of 1996, calls for the development of State and regional management plans. Using guidance from the Federal Aquatic Nuisance Species Task Force, as well as input from Hawai`i representatives of state and federal agencies, industry, non-governmental organizations, and other entities, the State of Hawai`i has issued an Aquatic Invasive Species Management Plan (Hawai`i Department of Land and Natural Resources [DLNR] 2003). In addition, Hawai`i has a number of agencies and partners dedicated to working on the complex issue of invasive species including:
The Hawai`i Invasive Species Council was established for cabinet-level coordination and policy direction amongst the various agencies that deal with a portion of the invasive species problem.

The Hawai`i Department of Agriculture regulates activities related to pests including importation of species into Hawai`i, intrastate quarantine, noxious weeds, pests for control.

The Hawai`i DLNR regulates the transport of and release of wildlife and manages aquatic and terrestrial resources.

Department of Business, Economic Development, and Tourism administers the CZM Program and The Hawai`i Tourism authority.

The Hawai`i Department of Transportation has developed a statewide noxious invasive pest program to minimize invasive species concerns.

1.8.14 Uniform National Discharge Standards (UNDS) for Vessels of the Armed Forces (80 Federal Register [FR] 3173)

Uniform National Discharge Standards (UNDS) (80 Federal Register [FR] 3173). Section 312(n) of the Clean Water Act (CWA) requires the USEPA and the Department of Defense (DoD) to establish discharge standards to control discharges incidental to the normal operation of a vessel of the Armed Forces. The discharge standards are intended to reduce the adverse environmental impacts associated with the discharges, stimulate the development of improved pollution control devices, and advance the development of environmentally sound ships by the military. UNDS applies to discharges incidental to the normal operation of a vessel of the Armed Forces (i.e., Army, US Navy, Marine Corps, US Air Force, Military Sealift Command, and USCG vessels) and discharges in waters of the US extending seaward out to 12 nautical miles from the coastline.

1.8.15 Oil and Hazardous Material Transfer Operations (33 CFR § 156, Subpart A).

Oil and Hazardous Material Transfer Operations Standards were established to provide procedures that facilitate the safe transfer of oil and hazardous materials. In order to help prevent spills and damage to USCG facilities and vessels, over water transfers of fuel and other hazardous materials can only be performed under the control of specially trained designated employees known as Persons in Charge (PICs), utilizing specific transfer procedures. All PICs must carry
evidence of designation when he/she is involved in transfer operations. During all transfers there must be one PIC designated to the vessel and another to the facility or other vessel. Before the transfer begins, both PICs must complete and sign a Declaration of Inspection (DIO) form, consistent with 33 CFR 156.150, which describes specific requirements for mooring, loading equipment, and discharge containment systems as well as personnel and communication requirements. The PIC is responsible for ensuring that each involved person is aware of the details of the transfer, their specific responsibilities, and how to shut off the transfer in the event of a spill or threat of spill.

1.9 **Scope of the Environmental Assessment**

This EA considers the Proposed Action and evaluates potential environmental impacts to those resources that would likely be affected by implementation of the Proposed Action. In this case, this EA evaluates the following environmental resources:

- Air Quality and Climate Change
- Water Resources
- Biological Resources
- Cultural Resources
- Hazardous Materials and Wastes

The Proposed Action evaluated in this EA is not anticipated to cause environmental impacts to resources listed below. Per NEPA, environmental resource areas that are anticipated to experience either no or negligible environmental impact under implementation of the Proposed Action or its alternatives are not examined in detail. The environmental resources not examined further in this EA include:

- **Noise**

Existing noise levels at Base Honolulu are typical of marine harbor areas. Noise sources include marine vessel traffic, cargo loading and unloading machines, vehicular traffic from local access roads operating at Level of Service (LOS) A-B (i.e., free-flowing traffic), routine building and grounds maintenance activities at the Base, and breaking surf in front of Sand Island State Recreation Area. Honolulu Channel is utilized for cruise and
cargo ships, as well as recreational and fishing vessels, operations of which can result in additional noise in the vicinity of Base Honolulu.

Implementation of the Proposed Action would not entail increasing noise levels above existing noise levels and would not represent a long-term or substantive change in noise generated from local or regional vessel activity. Sources of noise associated with implementation of the Proposed Action may include truck use, pumping equipment, and vessel operations.

- **Land Use**

 No new development, construction, demolition, or alterations to existing development, and no changes to existing planning guidance at Base Honolulu or the immediate vicinity would occur as part of the Proposed Action; the shipbreaking activity (i.e., draining, stripping, cleaning, towing, and scrapping) are compatible and consistent with existing land use guidelines and ongoing activities at Base Honolulu, Port of Honolulu, and other surrounding port facilities in the region. Therefore, no impacts to land use would result from the proposed shipbreaking.

- **Coastal Resources**

 Activities associated with the Proposed Action would occur within an SMA. The federal regulations implementing the CZM Program require the state agency to inform the federal agency of its agreement or disagreement with the federal agency’s consistency determination. Therefore, alternatives identified to meet the purpose and need of Proposed Action analyzed in this EA may require the USCG to submit a consistency determination to the Hawai‘i Office of Planning and a response from the State of Hawai‘i of either agreement or disagreement with that determination.

- **Geological Resources**

 No infrastructure development, ground-disturbing activities, or seafloor-disturbing activities would occur as part of the Proposed Action;
therefore, no impacts to geology, soils, or topography and no increased susceptibility to geological hazards (e.g., seismic activity, volcanic activity) would result from the proposed shipbreaking.

- **Transportation**

Honolulu Harbor provides over 30 major berth facilities with over 5 linear miles of mooring space in total. According to the USACE’s U.S. Waterborne Container Traffic by Port/Waterway report, Honolulu Harbor saw 1,013,474 in- and outbound domestic container ships and another 787,281 in- and outbound foreign container ships in 2012 (USACE Waterborne Commerce Statistics Center 2012a). During this same time, Honolulu Harbor handled a total of 14,320,504 tons of cargo, including nearly 968,193 tons of foreign trade and over 13,352,311 tons of domestic cargo (USACE Waterborne Commerce Statistics Center 2012b). In addition to cargo traffic, Honolulu Harbor houses recreational, fishing, and commercial passenger vessels, including cruise ships.

Implementation of the Proposed Action would entail the potential use of a tanker truck to transport drained fluids and one-time tow of the CGC GALVESTON ISLAND to a regionally located, permitted shipbreaking facility. No new development or alterations to existing development, and no changes to surface transportation networks at Base Honolulu or in the vicinity would occur as part of the Proposed Action. The proposed towing would not generate short- or long-term changes in surface traffic vehicle trips or traffic patterns.

The limited truck and/ or vessel use to support implementation of the Proposed Action would not significantly increase traffic use in the immediate vicinity or surrounding area. The proposed activities daily and routine activities that currently existing within the harbor.
• **Visual Resources**

No new development or alterations to existing development would occur under the Proposed Action; therefore, no impacts to visual resources would result from its implementation.

• **Socioeconomics and Environmental Justice**

Although the proposed draining, stripping, cleaning, towing, and scrapping activity may result in beneficial local services spending, the amount would be temporary (i.e., this would be a one-time activity) and not significant in the context of the local or regional economy. No disturbance to existing infrastructure, ground-disturbing activities, or seafloor-disturbing activities would occur and no significant environmental impacts would result; as such, no minority populations or low-income populations would be disproportionately affected by its implementation (refer to Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations).

Implementation of the Proposed Action would not represent a long-term or substantive change in local or regional vessel activity in the region. Fishing activities currently operate within the context of this shipping environment and would not be expected to be impacted by the Proposed Action.

• **Utilities**

No short- or long-term use of utilities beyond typical usage would result from implementation of the Proposed Action.
SECTION 2

PROPOSED ACTION AND ALTERNATIVES

Under the Proposed Action, the US Coast Guard (USCG) is proposing the disposal of the CGC GALVESTON ISLAND – a 110-foot Island Class Cutter – currently positioned at Base Honolulu, which has been determined to be excess property.

As described in Section 1, Purpose and Need, this asset is beyond its economic service life, at a time when the demand for USCG services and functional infrastructure is increasing. At Base Honolulu, the need is further exacerbated in that the CGC GALVESTON ISLAND is currently occupying berthing space along Berth G that could be used to support the next generation of USCG assets.

As discussed above the Proposed Action includes dismantling and disposing of the CGC GALVESTON ISLAND. It is unknown at this time whether or not the vessel would be drained and stripped while berthed at Base Honolulu, while berthed at Sector Honolulu at Pier 4 in Honolulu Harbor, or towed to the shipbreaking facility fully loaded to be drained and stripped. Therefore, the Proposed Action includes three potential action alternatives:

Alternative 1 – Alternative 1 would include: 1) draining the component tanks of the CGC GALVESTON ISLAND of fuel, oil, wastewater, and black water to low suction levels while moored at Base Honolulu and disposal of the fluids in a permitted procedure; 2) the removal of major equipment from the vessel; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the cutter (which includes the cleaning component tanks of the cutter and disposing of fluids in a permitted procedure, having the cutter stripped of remaining equipment, paneling, insulation, and wiring; and disposal of the scrap property in a permitted procedure).

Alternative 2 – Alternative 2 would include: 1) draining the component tanks of the CGC GALVESTON ISLAND of fuel, oil, wastewater, and black water to low suction levels while moored at the USCG facility at Pier 4 in Honolulu Harbor and disposal of the fluids in a permitted procedure; 2) the removal of major equipment from the vessel; and 3) a one-time tow of the cutter to a licensed and
permitted facility to demolish (or shipbreak) the cutter (which includes the cleaning component tanks of the cutter and disposing of fluids in a permitted procedure, having the cutter stripped of remaining equipment, paneling, insulation, and wiring; and disposal of the scrap property in a permitted procedure).

Alternative 3 – Alternative 3 would include removing major equipment from the CGC GALVESTON ISLAND and towing the fully loaded vessel to a licensed and permitted facility to be drained, cleaned, stripped, and demolished.

2.1 PROPOSED ACTION

2.1.1 General Shipbreaking Activities

Shipbreaking primarily involves the dismantling and disposal of obsolete ships, barges, and mobile off-shore drilling units. Until 1997, much of this work was contracted to overseas companies; however, the export of ships from the US to foreign countries for scrapping raised criticism due to concerns over worker conditions and adverse environmental impacts resulting from oftentimes absence of rigorous environmental regulations at foreign locations. As a result, the exporting of ships for scrapping was stopped by the Navy in 1997 and by the Maritime Administration (MARAD) in 1998. Consequently, shipbreaking – to include dismantling, recycling, and/or scrapping) domestically has grown rapidly.

Dismantling of vessels is usually conducted at a pier, drydock, or dismantling slip and may include a full range of activities, from removing all gear and equipment to cutting and recycling a vessel’s structure. The structural complexity of some vessels makes shipbreaking a challenging process and involves many safety, health, and environmental issues. In response, the Occupational Safety and Health Administration (OSHA) has developed guidelines to address such concerns in its Safe Work Practices for Shipbreaking (OSHA 2010).

In December 1996, the Department of the Navy, MARAD, and the USCG among other agencies initiated discussions regarding shipbreaking program
improvements and to share evaluation procedures and oversight information. In February 1998, the group was formally chartered as the Interagency Panel on Ship Scrapping. The work of this group resulted in a set of recommendations that were presented in the April 20, 1998, Report of the Interagency Panel on Ship Scrapping. The recommendations addressed multiple aspects of the shipbreaking industry, including contracting improvements, performance bonds, data gathering and pilot projects, hazardous materials/hazardous wastes guidance, regulatory oversight, and international issues. Under the category of regulatory oversight, the panel developed a comprehensive compliance guide entitled A Guide for Ship Scrappers (US Environmental Protection Agency [USEPA] 2000) which outlines relevant environmental and occupational safety and health requirements applicable to shipbreaking. The guide contains recommendations for completing shipbreaking operations in a safe and environmentally compliant manner (OSHA 2010).

2.1.2 Typical Shipbreaking Process

Most vessel scrapping is performed pier-side in slips, which are typically dredged openings located adjacent to shipping channels. Slips are approximately 400 to 1,000 feet long and 100 to 140 feet wide at their entrance. Shipbreaking is generally performed by cutting away large sections of the vessel, which are then moved to shore for further dismantling. A large winch at the head of the slip is used to drag the hull farther out of the water as work progresses. The scrapping process usually occurs in a series of steps, as follows (OSHA 2010):

Prepare Work Plans. Draft written plans to guide process and protect human health and safety and the environment, including: 1) a Technical Plan; 2) a Safety and Health Plan; and 3) an Environmental Technical Plan.

Conduct Vessel Survey. Conduct a vessel survey to identify areas that may contain hazardous materials such as fuels, oils, asbestos, polychlorinated biphenyls (PCBs), lead (Pb), and other hazardous wastes. Surveys rely on diagrams of compartments, tanks, and storage areas to identify areas that may contain hazardous materials such as fuels, oils, asbestos, PCBs, Pb, and other hazardous wastes. Sampling and analyses are typically conducted; however, in some cases it can be presumed that certain items contain hazardous materials,
and shipbreaking plans can be developed to include disposal of these items, rather than undertaking extensive sampling.

Vessel Transport. The vessel is towed or self-propelled to a site where shipbreaking and scrapping occurs. Dead-vessel tows are regulated by the USCG; administrative procedures for towing vessels are established by local USCG Sectors. A request for a dead-ship tow is required to be submitted at least 48 hours in advance if the tow is within the port, and seven days in advance if the tow is outside the port. Typically, this action is handled by a contracted towing company. Generally, the request must contain information about the towed vessel: name, call sign, flag, length, draft, sail height, and the type, amount, and locations of any oil and other hazardous materials onboard. Tank diagrams are provided to detail locations of oil and other hazardous materials. The request must also contain the total number of tugs and their horsepower, place of departure and destination, the date and time of departure, the duration of the tow, and the name and 24-hour telephone number of the responsible party.

Dismantling. The vessel is scrapped while moored to a pier, anchored, beached, or dry-docked (including graving docks). Dismantling the vessel would involve multiple steps (some elements of this procedure may be executed prior to transport of the vessel):

- Remove fuels, oils, other liquids and combustible materials;
- Remove equipment;
- Prepare surfaces for cutting;
- Cut metal;
- Dispose of major components;
- Recycle remaining reusable materials; and
- Dispose of wastes.

If the vessel is still operational, the internal vessel fuel, oil, and product transfer systems would be used to reduce fluid levels to low suction. All fluids would be transferred directly into a containment system or tanker trucks. A designated Person-in-Charge (PIC) would be assigned to oversee the transfer for both the vessel side and shoreside ends of the overwater transfer of fuels and oils. Each PIC would be required to complete and sign a Declaration of Inspection (DOI) prior to proceeding with the transfer.
2.1.3 Shipbreaking CGC GALVESTON ISLAND

The CGC GALVESTON ISLAND is currently moored at Berth G, located at the northwestern end of Base Honolulu. The CGC GALVESTON ISLAND has recently been operational and therefore is currently fully loaded with fuel, oil, water, and equipment. The USCG would begin the shipbreaking process by stripping the vessel of major equipment, paneling, insulation, and wiring. All component tanks would then be drained. Because the vessel is still operational, the internal vessel fuel, oil, and product transfer systems would be used to bring fluid levels down to low suction. Fluids removed during the over-water transfer would be stored in 55-gallon drums on approved containment pallets prior to disposal at an approved facility.

The steel hull weighs approximately 120 tons, with aluminum superstructures and copper-nickel (CuNi) piping. Once the cutter has already been stripped of major equipment, paneling, insulation, and wiring, the vessel would be towed to the shipbreaking facility. While at the shipbreaking facility, all component tanks and cutter voids would cleaned of fuel, oil, wastewater, and black water.

The cutter would be scrapped through crushing, smashing, shearing, cutting, breaking, melting, burning, slashing, or other effective means that would render materials incapable of restoration, rehabilitation, or re-manufacture as an item usable for its originally intended purpose before turn-in to any disposal facility or activity. The scrapping process would be documented through daily “before” and “after” photographs of activities.

The USCG would ensure that following procedures are followed during shipbreaking execution:

- Plans will be developed and followed to guide process and protect human health, safety, and the environment, including a Technical Plan, Safety and Health Plan, and Environmental Technical Plan.
- Scrapping actions will be conducted in accordance with all applicable local, state, and federal environmental and safety regulations during the disposal of metal.
- Stability of the vessel while transporting, berthing, and/or removing from the water (i.e., landing) will be maintained. The term landing indicates that
the vessel will be removed from the water by way of lifting, hauling, dry-docking, or any other means capable of handling the vessel’s dimensions and weight.

- Procedures in the Vessel Strike Avoidance Measures and Reporting for Mariners (NMFS 2008) will be followed.
- All metal will be disposed via an USEPA-certified recycling facility by a certified recycler / scrapper; a certificate for disposal of the metal will serve as documentation.

2.1.4 USCG Operational Guidance related to Marine Resources

USCG operational guidance in place which addresses the protection of living marine resources would apply to proposed shipbreaking operations, specifically the transport of vessels. This guidance includes:

Vessel Environmental Manual (COMDTINST M 16455.1A). This manual describes measures for protecting marine wildlife applicable to USCG vessels. In accordance with this instruction, all Commanding Officers and Officers in Charge must plan and act to protect marine mammals during operations and planning. Whale avoidance measures are prescribed, including requiring that vessels be especially alert for activity, and proceed with caution, in areas of known whale migration routes or high animal density, and that the vessel does not approach whales head on during non-emergency maneuvering. All marine mammal and turtle species should be avoided by a minimum of 100 yards, except when assisting in an animal rescue effort or enforcing the ESA.

Maritime Law Enforcement Manual (COMDTINST 16247.1D). Per this manual, during all maritime law enforcement activities the USCG shall seek to avoid collision with a whale during the course of normal operations; operators of USCG vessels transiting critical habitat, migratory routes, and high-use areas shall use caution, remain alert, and reduce speeds, as appropriate. Additional reductions in speed are considered when a whale is sighted or known to be in the vicinity or within 5 nautical miles of the vessel.

Protected Living Marine Resources Program (COMDTINST 16475.7). This instruction outlines USCG actions during its operations to support the recovery of protected living marine resources through internal compliance with and
enforcement of federal, state, and international laws designed to preserve marine protected species.

2.2 ALTERNATIVE 1: PREPARING THE CGC GALVESTON ISLAND FOR SCRAPPING AT BASE HONOLULU

Implementation of Alternative 1 would include: 1) draining the component tanks of fuel, oil, wastewater, and black water of the CGC GALVESTON ISLAND to low suction levels while moored at Base Honolulu and disposal of the fluids in a permitted procedure; 2) the removal of major equipment from the vessel; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the cutter (which includes the cleaning component tanks of the cutter and disposing of fluids in a permitted procedure, having the cutter stripped of remaining equipment, paneling, insulation, and wiring; and disposal of the scrap property in a permitted procedure).

2.3 ALTERNATIVE 2: PREPARING THE CGC GALVESTON ISLAND FOR SCRAPPING AT SECTOR HONOLULU PIER 4

Implementation of Alternative 2 would include: 1) draining the component tanks of fuel, oil, wastewater, and black water of the CGC GALVESTON ISLAND to low suction levels while moored at Pier 4 at Sector Honolulu and disposal of the fluids in a permitted procedure; 2) the removal of major equipment from the vessel; and 3) a one-time tow of the cutter to a regionally located, licensed and permitted facility to demolish (or shipbreak) the cutter (which includes the cleaning component tanks of the cutter and disposing of fluids in a permitted procedure, having the cutter stripped of remaining equipment, paneling, insulation, and wiring; and disposal of the scrap property in a permitted procedure).

2.4 ALTERNATIVE 3: COMPLETE SCRAPPING AT A SHIPBREAKING FACILITY

Under Alternative 3 the USCG would remove any major equipment from the CGC GALVESTON ISLAND at its current location; however, the USCG would not drain component tanks of fuel, oil, wastewater, and black water while moored in place. Instead, the vessel would be towed fully loaded with fluids to a
licensed and the shipbreaking facility where it would be drained, cleaned, stripped, and demolished in a permitted procedure.

2.5 **No-Action Alternative**

CEQ regulations implementing NEPA require that a No-Action Alternative be analyzed to provide a baseline for comparison with the Proposed Action. The No-Action Alternative identifies and describes the potential environmental impacts of the status quo (i.e., if the Proposed Action were to not be implemented).

Under the No-Action Alternative, the USCG would not take action to dismantle and dispose of the CGC GALVESTON ISLAND (determined to be excess property) at Base Honolulu. The No Action Alternative further assumes the deteriorating vessel would remain berthed at Base Honolulu occupying space that could be used more effectively to support the needs of the overarching USCG mission.

2.6 **Alternatives Identified but not Carried Forward for Detailed Analysis**

Several alternatives to the proposed disposal action were identified and preliminarily evaluated with respect to meeting the intent of the project (refer to Section 1, Purpose and Need). These alternatives were screened for the ability to fully satisfy the purpose and need, be viable and economically feasible, and not result in significant adverse impacts to the human or physical environment. These alternatives and a succinct evaluation of their disposition with respect to implementation follows.

Transfer to another Federal Agency or to a State agency (for use as a vessel) through the General Services Administration. The USCG has determined that the CGC GALVESTON ISLAND is beyond its economic service life. While the vessel is still currently in operation, it is not suitable over the long-term for use as an ocean-going vessel due to excessive hull deformation.
Transfer to a Foreign Government under the Department of Foreign Military Sales Program. The USCG has determined that the CGC GALVESTON ISLAND is beyond its economic service life and due to excessive hull deformations, unable to effectively support on-going USCG missions. Further, as the USCG inventory modernizes, newer assets are given higher priority and will require mobilization to Base Honolulu.

Transfer to MARAD to serve in the National Defense Reserve Fleet. The USCG has determined that the CGC GALVESTON ISLAND is beyond its economic service life and unable to effectively support on-going USCG missions. Although the vessel is still currently in operation, it is not suitable for National Defense repurposing due to excessive hull deformation.

Transfer for donation as a museum or memorial. Although, the CGC GALVESTON ISLAND maintains most of its original physical integrity, the vessel is less than 50 years old. As supporting documentation to this EA, a Cultural Resources Evaluation was prepared for the CGC GALVESTON ISLAND, focusing on its historic significance per the NHPA and eligibility criteria for listing on the NRHP. National Register Criteria for Evaluation exclude properties that achieved significance within the past 50 years unless they are of exceptional importance; 50 years is a general estimate of the time needed to develop historical perspective and to evaluate significance. The Cultural Resources Evaluation determined that the CGC GALVESTON ISLAND is not exceptionally important or eligible for listing on the NRHP (see Appendix E); hence, the vessel does not carry intrinsic value as a donation to either a museum or memorial.

Artificial Reefing. The MARAD Artificial Reef Program was established in 1972 via Public Law 92-402 to enable the transfer of obsolete vessels in the National Defense Reserve Fleet (NDRF) to states filing the appropriate application “at no cost to the federal government” and the state would take custody in an “as is, where is” condition. The law was amended in 1984 to include any NDRF ship designated for recycling; the law was further amended in 2004 to permit MARAD to accept applications for artificial reefing projects from states, US territories and possessions, and from foreign governments. There has been no expressed interest in artificial reefing of the cutter given its current location and
the significant economic commitment required to take possession, relocate the cutter, coordinate permitting, and establish an artificial reef.

Transfer to the Navy for use in sink at-sea live-fire training exercises (SINKEX). The USCG has contacted the Office of the Chief of Naval Operations about transferring the cutter for use in SINKEX; however, due to US Navy scheduling and the relatively remote location of the cutter, the US Navy has not expressed interest in obtaining the vessel.

Transfer to another Federal agency [MARAD, the Defense Logistics Agency, etc.] for Disposal. The USCG has met with MARAD about accepting the CGC GALVESTON ISLAND for transfer and subsequent disposal. Due to the small size of the vessel, MARAD is unwilling to accept fewer than a bundle of six Island Class Cutters in order to make scrapping economically feasible. The Defense Logistics Agency has also been contacted but has also declined accepting the CGC GALVESTON ISLAND for disposition.
SECTION 3
AFFECTED ENVIRONMENT

This section describes pertinent existing environmental conditions for resources potentially affected by the Proposed Action. In compliance with the NEPA, Council of Environmental Quality (CEQ) regulations, and USCG Commandant’s Instruction Manual M16475.1D, the description of the affected environment focuses on only those aspects potentially subject to impacts.

In the case of the Proposed Action, the affected environment description is limited primarily to Base Honolulu, Sector Honolulu and, regionally, to the adjacent areas in Honolulu Harbor. Resource descriptions focus on the resources that would have the potential to be affected by implementation of the Proposed Action activities, including:

- Air Quality and Climate Change
- Water Resources
- Biological Resources
- Cultural Resources
- Hazardous Materials and Wastes

The Proposed Action evaluated in this EA is not anticipated to cause environmental impact to the resources listed below. Per NEPA, those environmental resource areas that are anticipated to experience either no or negligible environmental impact under implementation of the Proposed Action or its alternatives are not examined in detail. The environmental resources not examined further in this EA include:

- Noise
- Land Use
- Coastal Resources
- Geologic Resources
- Transportation
- Visual Resources
- Socioeconomics and Environmental Justice
- Utilities
3.1 **AIR QUALITY AND CLIMATE CHANGE**

3.1.1 **Definition of Resource**

Air quality in a given location is determined by the concentration of various pollutants in the atmosphere. NAAQS are established by the U.S. Environmental Protection Agency (USEPA) for criteria pollutants, including: O₃, CO, NO₂, SO₂, PM₁₀ and PM₂.₅, and lead (Pb). NAAQS represent maximum levels of background pollution that are considered safe, with an adequate margin of safety, to protect public health and welfare.

3.1.1.1 **Criteria Pollutants**

Air quality is affected by stationary sources (e.g., urban and industrial development) and mobile sources (e.g., motor vehicles). Air quality at a given location is a function of several factors, including the quantity and type of pollutants emitted locally and regionally, and the dispersion rates of pollutants in the region. Primary factors affecting pollutant dispersion are wind speed and direction, atmospheric stability, temperature, the presence or absence of inversions, and topography. In the vicinity of the Project Area, the following criteria pollutants are of potential concern:

Ozone (O₃). In April 2004, the USEPA issued the final rule for 8-hour O₃, revising the 1-hour O₃ NAAQS standard. The 8-hour standard is more stringent than the 1-hour standard, and non-attainment areas for 8-hour O₃ are now designated. As of June 15, 2005, the 1-hour standard was revoked for all areas except those without effect dates for 8-hour O₃ designations (USEPA 2008a). On March 12, 2008, the USEPA revised the 8-hour O₃ NAAQS to a level of 0.075 parts per million (ppm) from the previous level of 0.08 ppm. The change, which was designed to improve the protection of public health, went into effect on May 27, 2008 (USEPA 2008a).

Particulate Matter (PM₁₀ and PM₂.₅). Particulate Matter (PM) is a mixture of small particles ranging in size, shape, and chemical composition, and are defined only by their size. PM can include metals, soot, soil, pollen, dust, and other airborne particulates. Sources of PM₁₀ typically include crushing or grinding...
operations, and dust from unpaved roads, whereas sources of PM$_{2.5}$ typically result from combustion of various sources (motorized vehicles, wood burning, etc.). Exposure to PM at high levels can result in increased lung- and heart-related respiratory illnesses. The USEPA has concluded that finer particles have higher potential to contribute to health problems than larger particles.

Other criteria pollutants, including CO, nitrogen oxides (NO$_x$), sulfur oxides (SO$_x$), airborne Pb, and hazardous air pollutants do not occur at levels warranting detailed evaluation in the vicinity of the Proposed Action (Hawai`i Department of Health [DOH] 2015).

3.1.1.2 Clean Air Act Amendments

The CAA Amendments of 1990 place most of the responsibility to achieve compliance with NAAQS on individual states. To this end, USEPA requires each state to prepare a SIP. A SIP is a compilation of goals, strategies, schedules, and enforcement actions that will lead the state into compliance with all NAAQS. Areas not in compliance with a standard can be declared nonattainment areas by USEPA or the appropriate state or local agency. In order to reach attainment, NAAQS may not be exceeded more than once per year (USEPA 2017a).

NAAQS are enforced by the states via local air quality agencies. States may choose to adopt their own air quality standards, but state standards must be at least as stringent as federal standards. Hawai`i has adopted their own air quality standards, and enforces them through the State of Hawai`i Department of Health, Clean Air Branch (DOH-CAB). Both the Hawai`i state standards and the federal primary standards are presented in Table 3-1.
Table 3-1. National and State of Hawai`i Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Air Pollutant</th>
<th>Hawai`i Standard</th>
<th>Federal Primary Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-hour average</td>
<td>9 ppm</td>
<td>35 ppm</td>
</tr>
<tr>
<td>8-hour average</td>
<td>4.4 ppm</td>
<td>9 ppm</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-month average</td>
<td>1.5 μg/m³ (calendar quarter)</td>
<td>0.15 μg/m³ (running 3-month)</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-hour average</td>
<td>None</td>
<td>100 ppb</td>
</tr>
<tr>
<td>Annual average</td>
<td>0.04 ppm</td>
<td>53 ppb</td>
</tr>
<tr>
<td>Particulate Matter (PM₁₀)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hour block average</td>
<td>150 μg/m³</td>
<td>150 μg/m³</td>
</tr>
<tr>
<td>Annual average</td>
<td>50 μg/m³</td>
<td>None</td>
</tr>
<tr>
<td>Particulate Matter (PM₂.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hour block average</td>
<td>None</td>
<td>35 μg/m³</td>
</tr>
<tr>
<td>Annual average</td>
<td>None</td>
<td>12 μg/m³</td>
</tr>
<tr>
<td>Ozone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-hour rolling average</td>
<td>0.08 ppm</td>
<td>0.070 ppm</td>
</tr>
<tr>
<td>Sulfur Dioxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-hour average</td>
<td>None</td>
<td>75 ppb</td>
</tr>
<tr>
<td>3-hour block average</td>
<td>0.5 ppm</td>
<td>None</td>
</tr>
<tr>
<td>24-hour block average</td>
<td>0.14 ppm</td>
<td>None</td>
</tr>
<tr>
<td>Annual average</td>
<td>0.03 ppm</td>
<td>None</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-hour average</td>
<td>25 ppb</td>
<td>None</td>
</tr>
</tbody>
</table>

ppb = parts per billion
ppm = parts per million
μg/m³ = micrograms per cubic meter

3.1.1.3 Greenhouse Gases

Greenhouse gas (GHG) emissions are a primary contributor to global warming and include carbon dioxide (CO₂), Methane (CH₄), Nitrous Oxide (N₂O), and fluorinated gasses. Hawai`i’s Climate Change Law (i.e., Act 234, Session Laws of Hawai`i) recognizes climate change as a serious threat to the economic well-being, public health, natural resources, and the environment of Hawai`i (State of Hawai`i 2017). The focus of the act was to achieve cost-effective GHG emission reductions at or below Hawai`i’s GHG estimates by January 1, 2020.

The State of Hawai`i Office of Planning is the lead agency responsible for the coordination of a climate change adaption policy for the State of Hawai`i.
Hawai`i Administrative Rules, Chapter 11-60.1 was amended to incorporate rules to assist the reduction of GHG pollution.

3.1.2 Existing Conditions

3.1.2.1 Local Air Quality

Air pollution originates from industrial activity, motor vehicles, power equipment, and energy production. Because the State of Hawai`i is not impacted by pollution from neighboring states and it benefits from virtually constant ocean breezes, the islands, including O`ahu, have some of the best air quality in the nation. Fifteen monitoring stations are located across the State of Hawai`i, four of which are located in Honolulu County and are maintained by the DOH-CAB (State of Hawai`i 2012a). The O`ahu DOH-CAB ambient air monitoring systems have two locations within the City of Honolulu: at Sand Island, and at 1250 Punchbowl Street; and at two locations further west in Honolulu County: at Kapolei near Campbell Industrial Park and at Pearl Harbor. The Sand Island site monitors for O₃ and PM₂.₅, while the Punchbowl Street site measures PM₁₀ and PM₂.₅, as well as CO, and SO₂. The Kapolei Site monitors for these chemicals as well as trace SO₂, Pb, PM speciation, total NOₓ, Wind Speed/Wind Direction (State of Hawai`i 2014). Data gathered from these stations indicate that the Island of O`ahu and the State of Hawai`i are in attainment for all state and federal criteria pollutants (State of Hawai`i 2015).

In addition, GHG emissions are monitored periodically. The latest monitoring report, completed in 2008, identified that a modest increase in total emissions of 5 percent occurred between 1990 and 2007. The sources most responsible for growth in emissions include electric power, ground transportation, marine transportation, and substitutes of ozone depleting substances (ODS). Sources most responsible for decreases in emissions include aviation and industrial energy use (Hawai`i Department of Business, Economic Development & Tourism 2008).
3.1.2.2 Emissions at Base Honolulu

Operations at Base Honolulu result in pollutant emissions associated with use of vessels, periodic maintenance dredging operations, and the commute of Base Honolulu personnel. Such emissions are considered minor on a regional scale and the Base is not required to provide air quality reporting or operate under a permit.

3.1.2.3 Emissions at Sector Honolulu Pier 4

Operations at Sector Honolulu result in pollutant emissions associated with use of vessels, periodic maintenance and dredging operations, and the commute of personnel. Such emissions are considered minor on a regional scale and the Sector is not required to provide air quality reporting or operate under a permit.

3.1.2.4 Climate and Climate Change

USCG Base Honolulu, located on Sand Island within Honolulu Harbor, is just 0.15 miles southeast of the City of Honolulu, in Honolulu County, which comprises the entire Island of O`ahu. Sector Honolulu Pier 4 is located in downtown Honolulu, across the harbor from Base Honolulu. The major characteristics of Honolulu’s climate are mild temperatures, with annual averages ranging from 69.8 to 84 degrees Fahrenheit; and heavy annual rainfall, averaging approximately 20.87 inches (Western Regional Climate Center 2017). Ecosystems on land are experiencing impacts from a warming climate including the reduction of native plants including species such as Haleakala silversword (USEPA 2016).

Honolulu also experiences persistent northeasterly trade winds, variations of rainfall within short distances, infrequent large storms, with mild seasonal variations. (Western Regional Climate Center 2017). The primary factors influencing Honolulu’s climate are its location, including latitude and the surrounding ocean, the local storm tracks and the Pacific Anticyclone, and local terrain and resulting rainfall (Price 1983). Rainfall in Hawai`i has been decreasing; however, projections of future rainfall are uncertain (USEPA 2016).
The major Hawaiian Islands are located within the tropics, yet have a subtropical climate due to the cooling influence of currents from the Bering Sea. Their location in the tropics also results in relatively uniform lengths of daylight year-round, with daylight ranging between approximately 11 and 13.5 hours. This consistency in length of day results in small seasonal variation of incoming solar radiation (Price 1983).

Honolulu is located more than 2,000 miles from the nearest continental landmass, and experiences moderate temperatures based on climatic factors related to its proximity to the Pacific Ocean. The ocean influences temperatures; for example, by the time it reaches Hawai`i, the temperature of cold arctic air may increase by as much as 100 degrees during its passage of the Pacific in winter months. The temperature moderation generated by the ocean also serves as a seasonal lag time for the islands, where the peak of summer and winter are as much as two months behind corresponding seasonal peaks experienced on continental North America (Price 1983).

Other factors that influence the climate in Hawai`i include storms and pressure systems. These light and variable southwest winds bring hot, humid weather in the summer and occasional fierce storms with high waves, wind, and rain in the winter. The waters around Oahu are vulnerable to climate change factors such as sea level rise, warming waters, increasing ocean acidity, and storm surge. Sea level has risen between 2-8 inches relative to Hawai`i `s shoreline since 1960 (USEPA 2016) which can accelerate coastal erosion. The warming waters around Hawai`i are damaging Hawai`i `s coral reefs and marine ecosystems. Further in increasing acidity of the Pacific Ocean (which as increased about 25 percent in the past three centuries) casus further damage to corals and marine organisms (USEPA 2016).
3.2 WATER RESOURCES

3.2.1 Definition of Resource

Water resources analyzed for this EA include surface and groundwater resources. The quality and availability of surface and groundwater and potential for flooding are addressed in this section. Surface water resources comprise lakes, rivers, and streams and are important for a variety of reasons including economic, ecological, recreational, and human health. Groundwater comprises the subsurface hydrologic resources of the physical environment and is an essential resource in many areas; groundwater is commonly used for potable water consumption, agricultural irrigation, and industrial applications. Groundwater properties are often described in terms of depth to aquifer, aquifer or well capacity, water quality, and surrounding composition.

The CWA mandates that each state and territory develop a program to monitor and report on the quality of its waters and prepare a report describing the status of its water quality. The relevant CWA sections are Section 305(b), which requires that the quality of all waterbodies be characterized, and Section 303(d) which requires that states list any waterbodies that do not meet water quality standards.

Water resources are also important because of their role in determining historical migratory and settlement patterns of virtually all mammals; influence on nesting and migratory activities of many bird species; contribution to the evolution of landforms through their roles in the erosion process; and their participation in critical global systems including hydrologic cycle, temperature modification, and oxygen replenishment.

3.2.1.1 Floodplains

Other issues relevant to water resources include watershed areas affected by existing and potential runoff and hazards associated with floodplains. Floodplains are belts of low, level ground present on one or both sides of a stream channel and are subject to either periodic or infrequent inundation by floodwater. Inundation dangers associated with floodplains have prompted
federal, state, and local legislation that limits development in these largely to recreation and preservation activities. For example, Executive Order 11988, Floodplains Management, requires actions to minimize flood risk and impacts. Under this order, development alternatives must be considered, and development must be in accordance with specific federal, state, and local floodplain regulations.

3.2.1.2 Wetlands

Wetlands are defined by the USACE and USEPA as “those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas” (33 CFR 328.3[b]; 1984). Hydric soils are those that are saturated, flooded, or ponded for sufficient periods during the growing season and that develop anaerobic conditions in their upper horizons (i.e., layers). Wetland hydrology is determined by the frequency and duration of inundation and soil saturation; permanent or periodic water inundation or soil saturation is considered an important force in wetland establishment and proliferation. Jurisdictional wetlands are those subject to regulatory authority under Section 404 of the CWA and Executive Order 11990, Protection of Wetlands. There is no formal wetland program in the DOH; however, the DOH does use their authority under CWA §401 (Water Quality Certification) to certify, waive, or deny water quality certification for CWA §404 permits issued by the USACE for dredge/ fill activities in waters of the US (DOH, Clean Water Branch 2016).

3.2.2 Existing Conditions

Surface Water

Hydrologic processes in Hawai`i are highly dependent on climatic and geological features, and stream flow is influenced by rainfall and wind patterns (State of Hawai`i 2011). Annual average rainfall on O`ahu ranges from less than 20 inches on the leeward coast to almost 300 inches near the central crest of the Ko`olau Range. Such a marked difference over a distance of less than 15 miles
has a significant effect upon the island's water resources (Department of General Planning City & County of Honolulu 1990). Additionally, permeable underlying rock may cause some streams on O‘ahu to have lengthy dry reaches under natural conditions. The majority of perennial streams on O‘ahu are located in the windward Ko‘olau Range which produces a larger amount of orographic precipitation compared to the leeward side (State of Hawai‘i 2011). These streams on the leeward side of the Ko‘olau Range are generally sustained by leakage from high-level dike compartments as well as from springs and seeps (Department of General Planning City & County of Honolulu 1990).

The watershed surrounding and including the City of Honolulu is known as the West Honolulu Watershed (WHWS), and measures 21,416 acres, or 33.46 square miles. The watershed spans from the top of Ko‘olau Mountains to the near-shore receiving waters of Honolulu Harbor and Ke‘ehi Lagoon, and includes Sand Island. Within this watershed, the 2,140-acre Kapalama Watershed, to the west, and the 6,550-acre Nu‘uanu Watershed, to the east, both feed directly into, and influence the condition of, the Honolulu Harbor. The upper extent of the Kapalama Watershed is a forested heterogeneous mix of native and non-native trees, with residential uses through its transitional area and industrial and port uses along the coast. The watershed empties into the Kapalama, constructed in 1961. Designed to reduce flood damage, the canal has historically tested for elevated levels of fecal coliforms, likely due to illegal or inadequate sewage connections nearby (Honolulu Board of Water Supply et al. 2003). The Nu‘uanu Watershed is a wider, longer valley and includes the Nu‘uanu Reservoir 4, which is used for flood management. The upper reaches of this watershed are surrounded by a conservation district, forested with introduced and native species. Large parts of the main valley are developed with residential uses, with commercial uses in the lower reach, and port activities at the receiving waters in Honolulu Harbor and along Sand Island. Water of the Nu‘uanu Stream, which originates from this reservoir, contains elevated levels of organochloride pesticides and trace elements, at higher levels in water, fish tissue, and sediment samples than other WHWS streams (Honolulu Board of Water Supply et al. 2003).

Section 303(d) of the CWA requires states to identify waters that do not meet water quality standards and for which a Total Maximum Daily Load (TMDL)
evaluation must be performed. The most recent State of Hawai`i Water Quality Monitoring and Assessment Report prepared by the Department of Health, Clean Water Branch includes various locations in Honolulu Harbor on the 2016 303 (d) list (HIDOH, Clean Water Branch 2016). The majority of Honolulu Harbor shows “insufficient data” and unable to evaluate. A few location identify the listing for ammonium (NH₄) and turbidity. In addition, total suspended solids (TSS), trash, metals, and pathogens were also detected. Overall, waters located adjacent to the north of Base Honolulu, are listed as requiring TMDL evaluation but as a low priority for the assessment cycle ending October 31, 2015 (DOH, Clean Water Branch 2014).

Groundwater

O`ahu has a vast amount of groundwater, divided into seven major areas, which supplies most of the island’s domestic water supply (Oki et al. 1999). Volcanic rocks ranging in age from Pliocene to Holocene, make up most of O`ahu and compose the most important aquifers. Quaternary-age consolidated sedimentary deposits, which are principally coralline limestone, form productive aquifers in the lowlands and nearshore areas but generally contain brackish water or saltwater and are not suitable for human consumption. Water levels in the freshwater lens of the southeastern O`ahu area generally are less than 10 feet above sea level near the western boundary; however, the levels decrease to the east. Water levels in the southern O`ahu groundwater area generally range from about 25 to 30 feet above sea level inland to about 15 to 20 feet above sea level near the shore where the water is under artesian pressure because it is confined by caprock. In the north-central O`ahu groundwater area, water levels in the freshwater lens range from more than 20 feet above sea level in the southwestern part where the caprock is thick, to less than 3 feet above sea level nearshore in the northern part where the caprock is thin (Oki et al. 1999).

Wetlands

Throughout Honolulu Harbor, a number of estuarine and marine wetlands occur along high surface reefs or sandbar areas between river mouths and the outer shelf of fill lands, such as near Honolulu International Airport and Sand Island. The southern and western perimeter of Sand Island, more than 1,800 feet from
Base Honolulu, has shoreline composed of approximately 7.96 acres of marine wetland (USFWS 2017b). This border is characterized as a high-energy water regime coastline with salinity exceeding 30 parts per thousand, and as an intertidal unconsolidated shore, such that substrates are unconsolidated with less than 75 percent of areal cover by stones, boulders or bedrock, and less than 30 percent areal is covered by vegetation (USFWS 2017b). In addition to these marine wetlands there are three identified freshwater ponds along the southern portion of Sand Island. These artificial, man-made ponds are characterized as being non-tidal, palustrine systems, covered by trees, shrubs, emergents, mosses, and lichens on less than 30 percent of the surface, with at least 25 percent cover by particles smaller than stones (USFWS 2017b). There are no wetlands located within Base Honolulu or Sector Honolulu.

Floodplains

Maps generated by Federal Emergency Management Agency (FEMA) indicate the northern Channel portion of Base Honolulu is partially located within the 100-year floodplain. The Base is classified as lying partially within the FEMA AE Zone, defined as areas subject to inundation by the 1-percent-annual-chance flood event, with a flood level of 5 feet (USEPA 2014). Sector Honolulu is also classified as lying within the FEMA AE Zone (FEMA 2011). The western, southern, and eastern portions of Sand Island, and a portion of Base Honolulu is characterized as lying within an AE Zone of EL 8 feet and EL 9 feet (FEMA 2011) and are vulnerable to storm surge. No other elements of Base Honolulu are located within a mapped 100-year floodplain.
3.3 **BIological Resources**

3.3.1 Definition of Resource

Biological resources include native or naturalized plants and wildlife and the habitats in which they occur. Sensitive biological resources are defined as those plant and wildlife species listed as threatened or endangered, or proposed as such, by the USFWS or the NOAA, NMFS. The Federal ESA of 1973 protects listed species against take, which includes killing, harming, harassing, or any action that may damage their habitat. Federal candidate species receive no statutory protection under the ESA; however, cooperative conservation of these species is encouraged because they are, by definition, species that may warrant future protection under the ESA (USFWS 2014).

3.3.2 Existing Conditions

Both U.S. Coast Guard (USCG) Base Honolulu and Sector Honolulu Pier 4 are located in Honolulu Harbor on O`ahu. The harbor is highly developed and used primarily for commercial purposes. It serves as the principal seaport of Honolulu and the State of Hawai`i, providing more than 200 acres of container yard and over 30 major berth facilities with over 5 linear miles of mooring space. Honolulu Harbor is 40 feet deep and contains five components: the Main Channel, Main Harbor Basin, Kapalama Channel, Kapalama Basin, and Kalihi Channel (Hawai`i Department of Transportation [HIDOT] 2012). In addition to berthing wharves, the Base consists of developed upland areas including parking lots, buildings, loading docks, parks, and other landscaped areas.

Vegetation within Base Honolulu is limited to manicured landscaping (e.g., annual grasses and ornamental trees) around buildings, parking lots, and recreational fields. No vegetation occurs at Sector Honolulu Pier 4. Because of the highly-developed nature of Honolulu Harbor and the adjacent Port facilities, no substantial native shoreline vegetation occurs within the project area.
3.3.2.1 Federally Listed Threatened or Endangered Species

The federal ESA, as amended, protects species that are endangered, threatened, or proposed for listing. As previously described, USCG Base Honolulu and Sector Honolulu are heavily developed with no functionally intact terrestrial upland habitat types; as such, according to the USFWS, no federally listed terrestrial species have the potential to occur in the general vicinity of the project (USFWS 2017). No federally or state-listed plant species are found on any area of Sand Island (USCG 1992, 2005). No federally listed threatened or endangered coral species were observed at Base Honolulu during previous surveys (MRCI 2015; Foster and Sukhraj 2015); however, they are known to occur in the waters of Honolulu Harbor.

Seven threatened or endangered aquatic species may occur in waters near Sand Island, including the green sea turtle, Hawksbill sea turtle, leatherback sea turtle, loggerhead sea turtle, Olive Ridley sea turtle, false killer whale, and Hawaiian monk seal; however, only three species, the green sea turtle, Hawksbill sea turtle, and Hawaiian monk seal are expected to occur in the project area (USFWS 2017).

Green Sea Turtle

The green sea turtle (Chelonia mydas) is listed as a federally threatened species within the vicinity of Honolulu Harbor. The species is the largest of the cheloniid sea turtles, with adults that can exceed more than 3 feet in shell length and more than 200 pounds in body mass. The green sea turtle is a circumglobal species found in tropical seas and, to a lesser extent, in subtropical waters with temperatures greater than 68 degrees Fahrenheit (°F). Green turtles inhabiting the Hawaiian Islands are among the best known in the Pacific in terms of their nearshore benthic foraging pastures and associated underwater habitats.

Green sea turtles were originally listed under the ESA because of overexploitation for commercial and other purposes, the lack of adequate regulatory mechanisms and effective enforcement, evidence of declining numbers, and habitat loss and degradation. Overall, the survival status of green sea turtles throughout the Pacific Islands region has likely continued to decline due to directed harvest (both illegal and legal) and negative impacts to essential
habitats. While green turtles in the Hawaiian Islands have demonstrated some signs of population recovery after protective efforts, the conservation outlook for the future remains challenged by the mortality of turtles from poaching, capture in nearshore gillnets, and the increasing scope and magnitude of a tumor affliction disease known as fibropapilloma (Balazs et al. 1992; Balazs and Pooley 1991).

Hawksbill Sea Turtle

The Hawksbill sea turtle (*Eretmochelys imbricata*) is listed as a federally endangered species in the vicinity of the Project Area (35 FR 8491 9498; June 2, 1970). Hawksbills are recognized by their relatively small size, narrow head with tapering beak, thick, and overlapping shell plates. In Hawai`i, Hawksbills nest only on main island beaches, primarily along the east coast of the island of Hawai`i. Two of these sites (Halape and Apua Point) are in Hawai`i Volcanoes National Park (Balazs et al. 1992; Katahira et al. 1994). Other beaches on the island of Hawai`i with recorded Hawksbill nesting include Kamehame, Punaluu, Horseshoe, Ninole, Kawa, and Pohue. Kamehame Point on Hawai`i and a black sand beach at the river mouth of Halawa Valley at the east end of Molokai are the most consistently used beaches.

Hawaiian Monk Seal

The Hawaiian monk seal (*Monachus schauinslandi*) is a federally endangered earless seal that is endemic to the waters off the Hawaiian Islands. Hawaiian monk seals commonly haul out of the water onto sandy beaches and less frequently on rocky beaches to rest. The remote northwestern Hawaiian Islands are considered critical habitat for monk seals; recently, waters surrounding Oahu – including Honolulu Harbor – have been designated as critical habitat.

The Hawaiian monk seal is rarely seen in Honolulu Harbor. The majority of monk seal sighting information collected in the main Hawaiian Islands is reported by the general public and may be considered biased by location and reporting effort. The Pacific Islands Fisheries Science Center (PIFSC) conducted systematic seal counts in 2000-2001 and in 2008 via aerial surveys for all the main Hawaiian Islands. One complete survey of Oahu was conducted for each of these
years. The 2000 survey was conducted from an airplane and the 2001 and 2008 surveys were both conducted by helicopter. No Hawaiian monk seals were sighted within Honolulu Harbor during these three surveys (PIFSC 2009, 2012).

Reports by the general public, which are non-systematic and not representative of overall seal use of main Hawaiian Islands shorelines, have been collected in the main Hawaiian Islands since the 1980s. A total of four Hawaiian monk seal sightings have been reported for Honolulu Harbor: in 2002, 2004, 2005, and 2009. Although no recent sightings have been documented the use of Honolulu Harbor by monk seals, we have assumed that they can, and do, occur in the project area.

The shoreline at USCG Base Honolulu and Sector Honolulu comprises developed berths – all of which are characterized as hardened shorelines with vertical bulkheads and no sloping or open access. Therefore, use of the base as a haul-out site for monk seals is not supported; further, there are no beaches within close proximity to the base that could serve as a haul-out site.

3.3.2.2 Critical Habitat

The USACE recently completed an EA to dredge the navigation channel within Honolulu Harbor (USACE 2015). The USACE identified that more than 99 percent of the harbor is characterized as unconsolidated sediment, largely mud. This characterization is consistent with what divers identified along most of the pier / wharf area during a habitat and species survey conducted on February 8, 2016.

Critical habitat is defined as specific areas within the geographical area occupied by the species at the time of listing, if they contain physical or biological features essential to conservation, and those features may require special management considerations or protection; and outside the geographical area occupied by the species if the agency determines that the area itself is essential for conservation (NMFS 2017b).

As mentioned above, critical habitat designation for the Hawaiian monk seal exists at Base Honolulu, Sector Honolulu, and within Honolulu Harbor. No other critical habitat designations occur at Base Honolulu or Sector Honolulu.
3.3.2.3 Migratory Birds

The Migratory Bird Treaty Act (MBTA) of 1918 is the domestic law that affirms, or implements, the commitment of the US to four international conventions (with Canada, Japan, Mexico, and Russia) for the protection of a shared migratory bird resource. Each of the conventions protect selected species of birds that are common to both countries (i.e., species occur in both countries at some point during their annual lifecycle). The act protects all migratory birds and their parts (including eggs, nests, and feathers). Executive Order 13186, Responsibilities of Federal Agencies to Protect Migratory Birds, directs federal agencies to take certain actions to further implement the MBTA and to conserve migratory birds. The order prohibits the take of migratory birds or their eggs, feathers, or nests. Many waterfowl, songbirds, raptors, and other species are migratory and are protected under the MBTA. The Honolulu harbor area supports a large number of migratory birds including seabirds such as the Bristle-thighed curlew (Numenius tahitiensis), Pacific golden plover (Pluvialis fulva), sanderling (Calidris alba), Ruddy turnstone (Arenaria interpres), wandering tattler (Tringa incana), and wedge-tailed shearwater (Puffinus pacificus chlororhynchus), together collectively referred to as Hawaiian seabirds could transit the area.

3.3.2.4 Essential Fish Habitat

The Magnuson-Stevens FCMA requires federal agencies to consult with the NMFS to address activities that may adversely affect EFH, which is defined as “those waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity.” Such “waters” include “aquatic areas and their associated physical, chemical, and biological properties that are used by fish” and may include aquatic areas historically used by fish. “Substrate” includes “sediment, hard bottom, structures underlying the waters, and associated biological communities” (NMFS 2004).

The Western Pacific Fisheries Management Council (WPFMC) and NMFS Pacific Island Regional Office manage fisheries in the Hawaiian Islands and Guam. No federally threatened or endangered fish species have been documented or observed within the project area; however, within the Kapalama Channel and
Main Harbor Basin, EFH has been mapped for Hawai`i Bottomfish and Main Hawaiian Island Coral Reef Ecosystems (NMFS 2015b).

Hawai`i Bottomfish

Except for several of the major commercial species, very little is known about the life histories, habitat utilization patterns, food habits, or spawning behavior of most adult bottomfish and seamount groundfish species. Further, very little is known about the distribution and habitat requirements of juvenile bottomfish. Generally, the distribution of adult bottomfish in the Western Pacific Region is closely linked to suitable physical habitat. Unlike the U.S. mainland, with its continental shelf ecosystems, Pacific islands are primarily volcanic peaks with steep drop-offs and limited shelf ecosystems. Adult bottomfish are usually found in habitats characterized by a hard substrate of high structural complexity. The total extent and geographic distribution of the preferred habitat of bottomfish is not well known. To reduce the complexity and the number of EFH identifications required for individual species and life stages, EFH has been designated for bottomfish assemblages. The species complex designations include deep-slope bottomfish (shallow water and deep water) and seamount groundfish complexes. The designation of these complexes is based on the ecological relationships among species and their preferred habitat. Given the uncertainty concerning the life histories and habitat requirements, EFH was designated for adult and juvenile bottomfish as the water column and all bottom habitat extending from the shoreline to a depth of approximately 1,300 feet and encompassing the steep drop-offs and high-relief habitats that are important for bottomfish throughout the Western Pacific Region (WPRFMC 2009).

Hawaiian Coral Reef Ecosystems

In designating EFH for Coral Reef Ecosystem, Management Unit Species are linked to specific habitat “composites” (e.g., sand, live coral, seagrass beds, mangrove, and/ or open ocean) for each life history stage. Except for several of the major coral reef associated species, very little is known about the life histories, habitat utilization patterns, food habits, or spawning behavior of most coral reef associated species. For this reason, EFH was designated using a two-tiered approach including: Currently Harvested Coral Reef Taxa and Potentially
Harvested Coral Reef Taxa categories. To reduce the complexity and the number of EFH identifications required for individual species and life stages, the EFH has been designated by assemblages (WPRFMC 2009).

A marine survey conducted on February 8, 2016 at Base Honolulu identified no coral species at Berths A, B, C, or D – which are characterized as shadowed unconsolidated sediments. Surveys in 2015 and 2016 did identify coral at Berths F and G; and offshore the neighboring Anuenue Fishery Research Center. The dominant species observed include Porites lobata, Pocillopora meandrina, Montipora capitata, and Montipora patula (MRCI 2015). No surveys have been completed at Pier 4 of Sector Honolulu.

No federally or state-listed coral species were documented or observed during dive surveys conducted by MRCI (2015), Foster and Sukhraj (2015) at Base Honolulu.

3.3.2.5 Marine Mammals

A number of marine mammals (protected under the Marine Mammals Protection Act [MMPA]) are known to occur off the coast of the Hawaiian Islands. These species are listed below in Table 3-2.

Both the humpback whale and false killer whale are known to move among the main Hawaiian Islands. Only the humpback whale is expected to enter Honolulu Harbor on occasion.

3.3.2.6 Invasive Species

Invasive species are managed under a variety of federal, state and local statutes including Executive Orders 13112 and 13751. Aquatic Invasive Species (AIS), including algae and fouling organisms, pose a major threat to many native ecosystems.
Table 3-2. Marine Mammals that occur in Hawaiian Waters

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td></td>
</tr>
<tr>
<td>Blainville’s beaked whale</td>
<td>Mesoplodon densirostris</td>
</tr>
<tr>
<td>Blue whale</td>
<td>Balaenoptera musculus</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>Tursiops truncatus</td>
</tr>
<tr>
<td>Bryde’s whale</td>
<td>Balaenoptera edeni</td>
</tr>
<tr>
<td>Common dolphin</td>
<td>Delphinus delphis</td>
</tr>
<tr>
<td>Cuvier’s beaked whale</td>
<td>Ziphius cavirostris</td>
</tr>
<tr>
<td>Dwarf sperm whale</td>
<td>Kogia sima</td>
</tr>
<tr>
<td>False killer whale</td>
<td>Pseudorca crassidens</td>
</tr>
<tr>
<td>Fin whale</td>
<td>Balaenoptera physalus</td>
</tr>
<tr>
<td>Fraser’s dolphin</td>
<td>Lagenodelphis hosei</td>
</tr>
<tr>
<td>Hawaiian monk seal</td>
<td>Monachus schauinslandi</td>
</tr>
<tr>
<td>Humpback whale</td>
<td>Megaptera novaeangliae</td>
</tr>
<tr>
<td>Killer whale</td>
<td>Orcinus orca</td>
</tr>
<tr>
<td>Melon-headed whale</td>
<td>Peponocephala electra</td>
</tr>
<tr>
<td>Northern elephant seal</td>
<td>Mirounga angustirostris</td>
</tr>
<tr>
<td>Pantropical spotted dolphin</td>
<td>Stenella attenuata</td>
</tr>
<tr>
<td>Pygmy killer whale</td>
<td>Feresa attenuate</td>
</tr>
<tr>
<td>Pygmy sperm whale</td>
<td>Kogia breviceps</td>
</tr>
<tr>
<td>Risso’s dolphin</td>
<td>Grampus griseus</td>
</tr>
<tr>
<td>Rough-toothed dolphin</td>
<td>Steno bredanensis</td>
</tr>
<tr>
<td>Short-finned pilot whale</td>
<td>Globicephala macrorhynchus</td>
</tr>
<tr>
<td>Sperm whale</td>
<td>Physeter macrocephalus</td>
</tr>
<tr>
<td>Spinner dolphin</td>
<td>Stenella longirostris</td>
</tr>
<tr>
<td>Striped dolphin</td>
<td>Stenella coeruleolabla</td>
</tr>
</tbody>
</table>

Algae

At least 19 species of macroalgae have been intentionally or passively introduced into Hawai’i since the mid-1950s with five known species of non-native algae becoming invasive (Hawai’i DLNR 2003). These include Prickly Seaweed (Acanthophora spicifera), Leather Mudweed (Avrainvillea amadelpha), Hookweed (Hypnea musciformis), Smothering Seaweed (Kappaphycus spp.), and Gorilla Ogo (Gracilaria salicornia).
Prickly Seaweed: is characterized by solid, cylindrical branches covered with many distinctive small spiny branches. It attaches to hard, rocky surfaces and coral rubble, and tends to inhabit calm, shallow reef flats, tidepools, and rocky intertidal benches. Prickly seaweed was unintentionally introduced to the Hawaiian Islands in the mid-20th century, and is thought to have been attached to the hull of a barge.

Leather Mudweed: is characterized by the presence of fan-shaped, spongy blades densely clustered on a thick stock. It forms clusters of individuals and tends to inhabit calm, sandy areas. It is unknown how Leather Mudweed first arrived in Hawai`i, but it was first reported in the 1980’s, and has now spread the many of the Hawaiian islands including O`ahu. The tight clusters of Leather Mudweed work to trap sediment on the ocean floor, thus changing the nature of the substrate and encouraging change in the community structure of the area. Leather Mudweed is known to compete with and displace populations of the endemic seagrass *Halophila hawaiiana*.

Hookweed: is characterized by long (10-30 centimeters), tendril-like branches with flattened, broad “hooks” at the end. It is most often found on calm intertidal and shallow subtidal reef flats. It can attach to a variety of substrates, from rocks to coral to other types of larger algae. Hookweed was illegally imported to O`ahu and Maui in 1974 for mariculture, but quickly spread to other islands. Aside from the negative aspects of this invasive algae, it has been identified as a significant food source for the above mentioned endangered green sea turtle.

Smothering Seaweeds: are characterized by thick, warty, plastic-like irregularly branching algae growing in large clusters. Smothering seaweed was introduced in 1974 for aquaculture, but quickly spread out of control. Smothering seaweeds have extremely high growth rates, and can double their size in 15-30 days. They are also extremely effective at reproducing vegetatively, so pieces that break off a cluster can quickly colonize a new area.

Gorilla Ogo: is characterized by brittle, irregular cylindrical branches which often fork at the tips. It has a high growth rate, and reproduces vegetatively. Gorilla Ogo is usually found in intertidal to shallow waters, and grows over coral,
shading and killing it. Gorilla Ogo was first introduced in the 1970's, and is known to exist on O`ahu, Molokai, and Hawai`i.

Fouling Organisms

A fouling organism is an animal or plant species that exists in water and attaches to the surface of a material immersed in water. The organisms that generally foul vessel hulls are those species found in intertidal and subtidal fouling communities including arthropods (barnacles, amphipods, and crabs), mollusks (mussels, clams, and sea slugs), sponges, bryozoans, coelenterates, protozoans, annelids, and chordates, as well as macroalgea (Godwin et al 2004). Commonly, these surfaces fouling organisms will attach themselves to include a ship's hull, propeller, bilge keel, or inlet gratings; essentially any part of the ship that is submerged in water. It is estimated that up to 75 percent of alien marine species have been introduced to the islands as a result of vessel biofouling.

Introduced marine invertebrates have arrived in Hawai`i through hull fouling and from ballast water and solid ballast from ships, establishing communities in marine and brackish waters. 7 percent of the known marine and brackish water invertebrate fauna in the Hawaiian Islands are considered non-native including 201 introduced species and 86 cryptogenic species. Of the 287 introduced and cryptogenic species, 248 (87 percent) have become established, 15 (5 percent) arrived but failed to become established, 6 (2 percent) were intercepted, and the population status of 18 species (6 percent) is unknown (Hawai`i DLNR 2003).

Observed invasive fouling organisms within in Honolulu harbor include: barnacle (*Chthamalus proteus*), sponges (*Gelliodes fibrosa*), *Mycole armata*, and *Haliclona caerulea*), mollusk (*Chama macerophylla*), macroalgea (*Kappaphycus* sp.), and fish (*Lutjanus*) (Godwin 2010). According to the State of Hawai`i Aquatic Invasive Species (AIS) Management Plan (Hawai`i DLNR 2003), the invasive barnacle *Chthamalus proteus*, a management class 3 species (i.e. species that are established; potential for impacts-no known effective or practical control techniques) and the *Mycole armata* and *Haliclona caerulea*, and two bryozoans, *Amathia distans* and *Schizoporella errata*. Are management class 4 species (species that are established; impacts unclear).
In-water cleaning can be an effective way to reduce biofouling, and thus reducing the likelihood that a ship would transport species. However, it must be performed with caution. In-water cleaning can release viable fragments, organisms, juveniles, and gametes into the water where the cleaning occurs. Many marine species, including various sponges, algae, and tunicates can survive cleaning and regrow from the fragments released in the process of the cleaning.
3.4 Cultural Resources

3.4.1 Definition of Resource

Cultural resources represent and document activities, accomplishments, and traditions of previous civilizations and link current and former inhabitants of an area. Depending on their conditions and historic use, these resources may provide insight to living conditions in previous civilizations and may retain cultural and religious significance to modern groups.

Archaeological resources comprise areas where prehistoric or historic activity measurably altered the environment or deposits of physical remains (e.g., arrowheads, bottles) discovered therein. Architectural resources include standing buildings, districts, bridges, dams, and other structures of historic or aesthetic significance. Architectural resources generally must be more than 50 years old to be considered for inclusion in the NRHP, an inventory of culturally significant resources identified in the US; however, more recent structures, such as Cold War-era resources, may warrant protection if they have the potential to gain significance in the future. Traditional cultural resources can include archaeological resources, structures, neighborhoods, prominent topographic features, habitats, plants, animals, and minerals that that Native Hawaiians or other groups consider essential for the persistence of traditional culture. These resources are protected by the State under HRS Chapter 6E, Historic Preservation.

The principal federal law addressing cultural resources is the NHPA of 1966, as amended (16 USC Section 470), and its implementing regulations (36 CFR 800). The regulations, commonly referred to as the Section 106 process, describe the procedures for identifying and evaluating historic properties; assessing the effects of federal actions on historic properties; and consulting to avoid, reduce, or minimize adverse effects. As part of the Section 106 process, agencies are required to consult with the SHPO.

The term “historic properties” refers to cultural resources that meet specific criteria for eligibility for listing on the NRHP; historic properties need not be formally listed on the NRHP. Section 106 of the NHPA does not require the preservation of historic properties, but ensures that the decisions of federal...
agencies concerning the treatment of these places result from meaningful considerations of cultural and historic values and of the options available to protect the properties. The Proposed Action is an undertaking as defined by 36 CFR 800.3 and is subject to requirements outlined in Section 106 of the NHPA.

The DoD American Indian and Alaska Native Policy governs the department's interactions with federally recognized tribes. The policy outlines DoD trust obligations, communication procedures with tribes on a government-to-government basis, consultation protocols, and actions to recognize and respect the significance that tribes ascribe to certain natural resources and properties of traditional cultural or religious importance. The policy requires consultation with federally recognized tribes for proposed activities that could substantially affect tribal resources or interests. In addition, the Department of Defense Instruction (DoDI) 4710.02, Department of Defense Interactions with Federally-Recognized Tribes (2006) governs DoD interactions with Federally-recognized tribes.

3.4.2 Existing Conditions

3.4.2.1 Regional History

Current models of Hawaiian history indicate that permanent settlement on the Island of O`ahu occurred on the windward side of the island beginning sometime between 0 and 900 AD. During those years, residents often visited the leeward sides of the island to exploit various resources such as fishing areas, bird colonies, and shellfish bays. Small campsites associated with those visits are thought to exist throughout the leeward area. According to Hawaiian oral histories and modern archaeological studies, a settlement at Honolulu, which means sheltered harbor, is likely to have emerged around 1100 AD (City and County of Honolulu 2011). It was not until 1804, when King Kamehameha I conquered O`ahu that the royal court of the Hawaiian empire finally came to O`ahu, first in Waikiki, and then by 1809 relocating to Honolulu. By this time, Honolulu Harbor had already been discovered by its first outsider, when in 1794, after Captain Cook had overlooked this location, Captain William Brown entered the harbor, calling it Fair Haven (City and County of Honolulu 2011).
Honolulu became the most important shipping port in Hawai‘i, and it flourished as an exporter of sandalwood, sugar, and pineapple; as a whaling supply port; and as a light manufacturing hub. Both tourism and defense installations followed the early rise, and those activities remain to this day. Westernization of the Islands was conducted by seaman, colonizers, and merchants from America and Europe, with the arrival of the 1820 New England missionaries leaving the largest imprint as evidenced by modern religion, education, economics, and politics. “Immigrants from Asia brought other cultural values and practices that helped fashion the unique Hawaiian culture of today (City and County of Honolulu 2011).” Despite periods of Russian, French, and British occupation of the harbor, Honolulu was reclaimed and proclaimed the Capitol of Kamehameha III’s kingdom by 1850; the City remains the State Capitol to this day.

Dredging of Honolulu Harbor resulted in the infill of sediment on naturally formed reefs and tidelands, including the barrier island originally known as Quarantine Island in the nineteenth century, a location where ships were required to moor if there was concern that they carried contagious diseases. This newly filled island provided greater protection to the inland side of the harbor for ships, and was re-named Sand Island. In the early 1900s, approximately 40 percent of the population in Hawai‘i was Japanese; as tensions over relations with Japan rose, preparations were made for potential internment if a situation arose. Then, on December 9, 1941, two days after the attack on Pearl Harbor, Sand Island was opened as the primary camp that all Hawai‘i internees passed through; with no bridge to Honolulu at the time, Sand Island was an isolated location. The internees were initially housed in tents for 6 weeks while proper barracks were constructed, then housed in barracks temporarily as they were processed for other camp locations. The camp was finally closed on March 1, 1943, and internees were transferred (Japanese Cultural Center of Hawai‘i 2010).

O‘ahu currently has 332 historic sites on record, according to the Hawai‘i Register of Historic Places, and 161 records listed on the NRHP (Hawai‘i DLNR 2017). An additional 7,108 archaeological sites have been recorded, according to the State Inventory of Historic Places (State of Hawai‘i, State Historic Preservation Division 2014). The NRHP further identifies 103 specific historic places and districts within the City of Honolulu (US Department of the Interior, National Park Service 2014). None of these historic sites are located on Sand
Island, and despite the historic use of Sand Island, no remnants of the Sand Island Internment Camp or Prisoner of War (POW) Camp are documented or preserved within a recognized historic park; however, some structures developed for use during World War II are visible within the State Recreation Area.

Two listings were identified within 1,500 feet of Pier 4 at Sector Honolulu, including the US Immigration Office located at 595 Ala Moana Boulevard (NRHP Identification [ID] 73000664), and the Kakaako Pumping Station located at 653 Ala Moana Boulevard (NRHP ID 78001022).

3.4.2.2 CGC GALVESTON ISLAND

The US Department of Interior through its NRHP Bulletin #15, How to Apply the National Register Criteria for Evaluation (US Department of the Interior 2002), established guidelines to determine the eligibility and integrity of listing to the NRHP for cultural resources. Further, Bulletin #20, Nominating Historic Vessels and Shipwrecks to the National Register of Historic Places, helps provide definite themes and aspects of evaluations specific to seafaring vessels.

The evaluation criteria follow:

- **Criterion A:** Association with a famous event. This criterion involves the association of a resource with an important event specifically in American prehistory or history (such as World War II) or a specific historical pattern or trend that significantly contributed to local, state, or national history (such as the development of agriculture within the state). In the case of vessels, it should be determined that the resource was involved in important maritime trade, naval, recreational, government, or commercial activities.

- **Criterion B:** Association with a significant historical figure. This criterion involves the association with a person at a local, state, or national level who has contributed greatly to the history of naval architecture (design), engineering, technologies, exploration, transportation, or tied directly to a military career. The resource should “illustrate” rather than “commemorate” these contributions and must be properly documented before eligibility will be granted.
• **Criterion C**: Association with a distinctive type/period/method of construction, a master designer or builder, high artistry, or whose components lack individual merit. This criterion accounts for the physical design of a vessel, including its architecture, technologies, engineering, or artistry. According to the last part of the criterion, historic districts have been nominated for eligibility due to their characteristics as a group of resources, allowing for the nomination of resources that individually do not satisfy any of the NRHP criteria, but contribute to a grouping of resources that do.

• **Criterion D**: Association with the ability to yield information regarding prehistory or history. This criterion provides a means for saving any physical cultural resources that offer important information regarding human history. This criterion tends to apply mainly to archaeological sites, although in some instances it is used for buildings. Overall, it helps test hypotheses about people or events, or substantiates existing information.

In addition to identifying if a resource is potentially eligible for NRHP listing according to the four criteria above, a property’s integrity must be identified. As stated in Bulletin #15, “Integrity is the ability of a property to convey significance” (US Department of the Interior 2002). Integrity of a building must be judged in accordance with the four criteria, and while it is “...sometimes a subjective judgment...it must always be grounded in an understanding of a property’s physical features and how they relate to its significance” (US Department of the Interior 2002). There are seven aspects of integrity (or Criteria Considerations) as identified in Bulletin #15 by the Department of Interior:

 A. Location
 B. Design
 C. Setting
 D. Materials
 E. Workmanship
 F. Feeling
 G. Association

Since the resources are less than 50 years of age, National Register Bulletin #22, Guidelines for Evaluating and Nominating Properties that Have Achieved Significance
within the Past Fifty Years, was consulted to assist with evaluating the resources under Criteria Consideration:

- **Criterion Consideration G**: Structures just at 50 years of age must be of exceptional national significance and must be associated with important persons and/or definitive events or themes, such as the development of the USCG, the Cold War, or the maritime industry in Guam. The CGC GALVESTON ISLAND was identified as occurring post-Cold War.

The Amec Foster Wheeler applied these criteria to determine eligibility of the CGC GALVESTON ISLAND for listing to the NRHP. According to the Historic Resources Evaluation (see Appendix E) prepared specifically for this action, the CGC GALVESTON ISLAND is not recommended as eligible for individual NRHP listing or as a contributing resource to a USCG or local historic district due to a lack of historic significance and integrity based on the four NRHP criteria and themes identified during research (see findings below).

Criterion A. Under Criterion A, based on background research, the CGC GALVESTON ISLAND was not found to be associated with any historic event significant to history, either nationally or locally. Patrol boats, such as the CGC GALVESTON ISLAND, were designed primarily for maritime law enforcement, such as drug and illegal immigration activities, and rarely combat missions. Research suggests that the CGC GALVESTON ISLAND was not involved in any historically significant missions or events.

Criterion B. Under Criterion B, no evidence was located during research in that indicated person or persons of historical significance were associated with the CGC GALVESTON ISLAND. There were no individuals identified that served in significant missions or had nationally significant maritime careers. Moreover, as is typical within the USCG, crews are frequently being transferred which drastically reduces the association between an individual and a specific vessel.

Criterion C. Under Criterion C, the vessel does not embody distinctive characteristics and was not outfitted with historically significant equipment or special engineering. This class of cutters is minimally modified from a widely popular British design that is seen throughout the world. The CGC GALVESTON ISLAND is one of 49 Island Class Cutters that were built between
1986 and 1992 using common design plans in a utilitarian form, and neither is a unique nor an exemplary model.

Criterion D. This criterion provides a means for saving any physical cultural resources that offer important information regarding human history. This criterion tends to apply mainly to archaeological sites, although in some instances it is used for buildings. Given the age and mobility of the vessel, Criterion D does not apply.

Criterion Consideration G. The CGC GALVESTON ISLAND was constructed after the Cold War. Further, the CGC GALVESTON ISLAND was considered a common patrol boat, tasked with maritime law enforcement, and was not associated with any prominent historic events. Therefore, the CGC GALVESTON ISLAND was deemed ineligible under Criterion Consideration G. Further, while structures less than 50 years of age may be eligible under Criterion Consideration G, they must have exceptional national importance, such as an advancement of vessel design, technologies, materials, or practice. Since the CGC GALVESTON ISLAND is one of many vessels constructed based on common cutter designs and systems that were used by a variety shipyards worldwide, they are recommended as not eligible under Criterion Consideration G.

Given these factors, the CGC GALVESTON ISLAND is not eligible for listing on the NRHP. The Hawaii State Historic Preservation Division (SHPD) has concurred that the cutter is not eligible for the NRHP (Appendix E).
3.5 HAZARDOUS MATERIALS AND WASTES

3.5.1 Definition of Resource

Hazardous wastes are defined as any solid, liquid, contained gaseous, or semisolid waste, or any combination of wastes which pose a substantial present or potential hazard to human health or the environment. Hazardous wastes are typically characterized as having strong physical properties of ignitability, corrosivity, reactivity, or toxicity which may cause an increase in mortality, a serious irreversible illness, incapacitating reversible illness, or pose a substantial threat to human health or the environment.

Issues associated with hazardous materials and wastes typically center around underground storage tanks (USTs); aboveground storage tanks (ASTs); and the storage, transport, and use of pesticides; bulk fuel; and petroleum, oil, and lubricants (POL). When such resources are improperly used, they can threaten the health and well-being of wildlife species, botanical habitats, soil systems, water resources, and people.

With regard to shipbreaking, some specific hazards may include metals, such as lead in paints or as tetraethyl lead in fuel additives, mercury in gauges or fluorescent light bulbs, chromates in paints and varnishes, cadmium in electrical equipment, and arsenic in paints; CO from hot work and welding; oxygen deficiency caused by rusting in tanks that have been sealed for long periods of time; Freon, found in many refrigeration systems, that if released could evaporate quickly to create an extremely toxic atmosphere; hydrogen sulfide resulting from decomposing microscopic marine life killed by Aqueous Film Forming Foam mixed with sea water; Polychlorinated biphenyls (PCBs) in rubber products, certain paint products, and plastic foam insulation; and asbestos, from removing asbestos-containing thermal insulation, circuit breakers, cables, and other materials (OSHA 2010).
3.5.2 Existing Conditions

3.5.2.1 Hazardous Materials and Wastes in the Vicinity of Honolulu Harbor

The hazardous waste areas identified by the USEPA that are located nearest to Base Honolulu and Sector Honolulu are provided in Table 3-3.

Table 3-3. Local Hazardous Waste Sites: Sand Island

<table>
<thead>
<tr>
<th>Source/Site</th>
<th>Resource Conservation And Recovery Act (RCRA), Handler ID #</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>R S I Roofing And Waterproofing Supply</td>
<td>HIR000124743</td>
<td>1081 Makepono St</td>
</tr>
<tr>
<td>Transoceanic Cable Ship Co</td>
<td>HIR000000711</td>
<td>1001 Sand Island Pkwy</td>
</tr>
<tr>
<td>Island Wide Air Conditioning Service, LLC</td>
<td>HIR000139220</td>
<td>1029 Ulupono St</td>
</tr>
<tr>
<td>Hawaiian Electric-Honolulu Generating Station</td>
<td>HID000150680</td>
<td>170 Ala Moana Blvd</td>
</tr>
<tr>
<td>Honolulu Disposal (Aloha Petroleum)</td>
<td>HIP000141291</td>
<td>1169 Mikole St</td>
</tr>
<tr>
<td>Martin Warehousing And Distribution</td>
<td>HIP000107086</td>
<td>1122 Mikole St</td>
</tr>
<tr>
<td>National Chemsearch Division of NCH Corp</td>
<td>HID000151241</td>
<td>318 Central Way Sand Island</td>
</tr>
<tr>
<td>Mitsunaga Construction Inc.</td>
<td>HIP000097006</td>
<td>1035 Mikole St</td>
</tr>
<tr>
<td>Sand Island Business Associate</td>
<td>HIP000037200</td>
<td>1071 Mikole St</td>
</tr>
<tr>
<td>Sand Island Business Association</td>
<td>HIR000139709</td>
<td>1006 Mikole</td>
</tr>
<tr>
<td>Dags Csd Liliuokalani Bldg</td>
<td>HIR000104257</td>
<td>1026 Puuwiwa Pl</td>
</tr>
<tr>
<td>Tajiri Lumber Co</td>
<td>HID984466748</td>
<td>1002 Puuwiwa Street</td>
</tr>
</tbody>
</table>

The management of hazardous materials and wastes at Base Honolulu and Sector Honolulu Pier 4 is managed in accordance with CIM16478.1B, which outlines requirements for the management of hazardous waste at USCG facilities, including record keeping, sampling and analysis practices, training, and specific procedures for preparing for and responding to inadvertent releases of hazardous materials.
3.5.2.2 Hazardous Materials and Wastes at Base Honolulu

Base Honolulu is a Small Quantity Generator (SQG) of hazardous waste and has obtained USEPA generator number HI8690390036. During the course of normal Base operations, the Base, tenants, and Sector units generate various amounts of used lubricating oils, machine oils, hydraulic oils, solvents, paints, sandblast grit, fluorescent light tubes, and spent lead acid batteries (USCG 2017) Storage at the Hazardous Waste Storage Facility (HWSF) is permanent; however, where possible, materials are transferred at the point of accumulation directly by a contractor.

In addition, hazardous materials and wastes at Base Honolulu are managed under the Coast Guard Hazardous Waste Management Manual (COMDTINST M16478.1B), which was prepared in accordance with the Resource Conservation and Recovery Act (RCRA) and outlines requirements for the management of hazardous waste at USCG facilities, including record keeping, sampling and analysis practices, training, and specific procedures for preparing for and responding to inadvertent releases of hazardous materials.

3.5.2.3 Hazardous Materials and Wastes associated with Shipbreaking

As with all vehicles and vessels, hazardous materials are used and hazardous wastes are generated from USCG cutters. Typical hazardous materials may include fuels, oils, ACM, PCBs, and Pb. Hazardous wastes include a wide range of liquids, including bilge and ballast water. During the vessel scrapping process, water may accumulate within the hull due to rain, firefighting activity, or use of cooling water; these waters may be considered hazardous (OSHA 2010).

During the shipbreaking process, hazardous materials sampling is conducted using a systematic approach, usually starting in the compartment that will be cut first. In many cases, it is presumed that certain items contain hazardous materials (which are addressed as such) instead of performing extensive sampling. In these cases, proper engineering controls and work practices are implemented to ensure that workers involved with and in the vicinity of the removal are properly protected from exposure through the use of wetting agents and vacuums with HEPA filters. Both ACMs and PCBs are usually removed in two stages. Prior to
cutting away a section of the vessel, ACM is removed from areas that are to be cut and PCBs are removed from areas that are readily accessible. Engine rooms usually contain the most asbestos and, therefore, take the longest for ACM removal to be conducted (OSHA 2010).

Following the removal of combustible materials, ACMs, and PCBs, paint or preservative coatings must be stripped from surfaces to be cut (29 CFR §1915.53; Welding, Cutting, and Heating in way of Preservative Coatings). Hard-to-remove materials on surfaces may require specific cut-line preparation, such as grit blasting or flame removal of paint, which can expose workers to toxic metals and volatile components of paint. Appropriate precautions are taken (e.g., the use of respirators) to effectively protect personnel performing removal and others in the immediate area (OSHA 2010).

The USCG requires booms to be placed around vessels to help contain any spills (see OSHA Publication 3172 [2001], Training Marine Oil Spill Response Workers Under OSHA’s Hazardous Waste Operations and Emergency Response Standard). Following removal activities, a marine chemist certifies that a vessel is safe for entry and work.
SECTION 4
ENVIRONMENTAL CONSEQUENCES

Environmental impacts that would result from implementation of the Proposed Action and its alternatives at Base Honolulu are evaluated in this section. Analyses are presented by resource area, as presented in Section 3, Affected Environment. Analysis of potential impacts to resources typically includes: 1) identification and description of resources that could potentially be affected; 2) examination of the Proposed Action and the potential effects the action may have on the resource; 3) assessment of the significance of potential impacts; and 4) development of mitigation, special procedures, or adaptive management measures in the event that potentially significant impacts are identified.

For this analysis, potential impacts are defined as:

- **Negligible** – if the action would result in no noticeable effects, beneficial or adverse, over existing conditions.
- **Minor** – if the action would result in a limited adverse effect over existing conditions.
- **Substantial** – if the action would result in a noticeable or measurable adverse impact to existing environmental conditions.

Impacts were evaluated in terms of context (local or regional), type (adverse or beneficial), duration (short- or long-term), and intensity.

As discussed Section 2.1, in addition to the No Action Alternative, three action alternatives are carried forward for analysis that meet the purpose and need of the Proposed Action:

- Alternative 1: Preparing the CGC GALVESTON ISLAND for Scrapping at Base Honolulu
- Alternative 2: Preparing the CGC GALVESTON ISLAND for Scrapping at Sector Honolulu Pier 4
- Alternative 3: Complete Scrapping at a Shipbreaking Facility

Implementation of Alternative 1, Preparing the CGC GALVESTON ISLAND for Scrapping at Base Honolulu, would include: 1) draining the component tanks of
fuel, oil, wastewater, and black water of the CGC GALVESTON ISLAND to low suction levels while moored at Base Honolulu and disposal of the fluids in a permitted procedure; 2) removal of major equipment from the vessel; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the cutter (which includes the cleaning component tanks of the cutter and disposing of fluids in a permitted procedure, having the cutter stripped of remaining equipment, paneling, insulation, and wiring; and disposal of the scrap property in a permitted procedure).

Implementation of Alternative 2, Preparing the CGC GALVESTON ISLAND for Scrapping at Sector Honolulu Pier 4, would be identical to Alternative 1 except that the draining the component tanks of fuel, oil, wastewater, and black water of the CGC GALVESTON ISLAND to low suction levels and removal of equipment would take place while moored at Pier 4 at Sector Honolulu.

Under Alternative 3, Complete Scrapping at a Shipbreaking Facility, the USCG would remove any major equipment from the CGC GALVESTON ISLAND at its currently location. However, the USCG would not drain the component tanks of fuel, oil, wastewater, and black water; instead, the vessel would be towed to a regionally located, licensed and permitted facility fully loaded to be drained, cleaned, stripped, and demolished in a permitted procedure.

4.1 **Air Quality and Climate Change**

4.1.1 **Approach to Analysis**

The 1990 Amendments to the CAA require that federal agency activities conform to the SIP with respect to achieving and maintaining attainment of NAAQS and addressing air quality impacts. The US Environmental Protection Agency (USEPA) General Conformity Rule requires that a conformity analysis be performed which demonstrates that a Proposed Action does not: 1) cause or contribute to any new violation of any NAAQS in the area; 2) interfere with provisions in the SIP for maintenance or attainment of any NAAQS; 3) increase the frequency or severity of any existing violation of any NAAQS; or 4) delay timely attainment of any NAAQS, any interim emission reduction goals, or other milestones included in the SIP. Provisions in the General Conformity Rule allow for
exemptions from performing a conformity determination for action that are: 1) covered by transportation conformity; 2) clearly at or below de minimis levels; 3) listed as exempt in the rule; or 4) covered by a Presumed-to-Conform approved list (USEPA 2017b). The Proposed Action, including the one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the hull and dispose of the scrap property in a permitted procedure, would be well below the de minimis levels shown in Table 3-2.

Operations at Base Honolulu result in pollutant emissions associated with use of vessels, periodic maintenance dredging operations, and the commute of Base Honolulu personnel. Such emissions are considered minor on a regional scale and the Base is not required to provide air quality reporting or operate under a permit; therefore, Base Honolulu does not operate under any air permits.

4.1.2 Impacts resulting from the Proposed Action Alternatives

4.1.2.1 Alternative 1: Preparing the CGC ASSATEAGUE for Scrapping at Base Honolulu

Short-term Emissions

Short-term emissions associated with implementation of Alternative 1 would be generated during draining of the component tanks, equipment removal and the tow of the CGC GALVESTON ISLAND from Base Honolulu to a regionally located, permitted shipbreaking facility within Honolulu Harbor of its current mooring position. These emissions would be limited to those potentially emitted during the transfer of fuel from the vessel to a shoreside containment system and from the vessel towing the cutter hull from its current location to the regionally located, permitted shipbreaking facility.

Volatile Organic Compounds (VOCs) are found in gasoline. With sunlight acting as a catalyst, VOCs readily combine with oxides of nitrogen to form O₃. O₃ is a regulated pollutant in Hawai‘i. Hazardous Air Pollutants in gasoline vapor include, but are not limited to, benzene, methyl tert butyl ether (MTBE), hexane, toluene, 2,2,4-trimethyl pentane, and xylene. These substances have been known to cause headaches, dizziness, difficulty breathing, and an increased risk of
cancer and birth defects. Highly concentrated vapor can be emitted when fuel is transferred from one tank to another; however, with implementation of BMPs as outlined below in Section 4.1.4, Special Procedures, the risk of vapor emissions during this process would be low.

Fuel and oil transfers within the Honolulu Harbor are daily and routine activities. Further, the proposed towing would occur only once and not represent a long-term or substantive change in local or regional vessel activity in the region. With implementation of BMPs and following standard procedures for fuel and oil transfers, short-term impacts to air quality are anticipated to be negligible under implementation of Alternative 1.

Long-term Operational Emissions

Upon final scrapping, activities associated with this Alternative would be complete. No long-term impacts would be generated from implementation of Alternative 1.

General Conformity

Implementation of Alternative 1 would consist of potential short-term temporary emissions that would be well below the de minimis levels shown in Table 3-2. As such, Alternative 1 would not require a conformity determination. Implementation of Alternative 1 would result in negligible impacts to air quality as defined in Title 40 CFR §51.

Climate Change

The waters around Oahu are vulnerable to climate change factors such as sea level rise, warming waters, increasing ocean acidity, and storm surge. While the contribution of any single project to climate change is too small to quantify, the combined greenhouse gas emissions from all human activity have a severe adverse impact on global climate. Emissions associated with fuel are expected to occur during the draining of component tanks and/or during vessel towing; however, these emissions are expected to be short-term and negligible. Activities as proposed under Alternative 1 occur daily within Honolulu Harbor.
Implementation of Alternative 1 would not have a significant impact on climate change vulnerability.

4.1.3 Alternative 2: Preparing the CGC GALVESTON ISLAND for Scrapping at Sector Honolulu Pier 4

Impacts associated with implementation of Alternative 2 would be identical to those described under Alternative 1 except that activities as proposed would take place at Pier 4 at Sector Harbor vs while berthed at Base Honolulu.

Short-term air quality impacts, long term operation impacts, general conformity impacts, and climate change impacts as a result of the implementation of Alternative 2 are anticipated to be negligible.

4.1.3.1 Alternative 3: Complete Scrapping at a Shipbreaking Facility

Under Alternative 3, the USCG would remove major equipment from the CGC GALVESTON ISLAND; however, component tanks would not be drained at its current location. Rather the vessel would be towed fully loaded with fluids to a regionally located, permitted and licensed shipbreaking facility where it would be drained, cleaned, stripped, and demolished in a permitted procedure. As such, short-term emissions associated with implementation of Alternative 3 would be generated from the one-time tow. Once towed to an approved shipbreaking facility, draining, cleaning, and scrapping of the hull would be performed by a certified shipbreaking contractor who would comply with all regulations and associated permits related to air quality. Similar to Alternatives 1 and 2, short-term impacts to air quality are anticipated to be negligible under implementation of Alternative 3. Long-term operational impacts and impacts related to General Conformity and climate change would be identical to those described for Alternatives 1 and 2.

4.1.4 Impacts from No-Action Alternative

Under the No-Action Alternative, the USCG would not take action to shipbreak the CGC GALVESTON ISLAND. No short-term direct or indirect impacts to air quality or climate change would occur as a result of implementation of the No-
Action Alternative and conditions would remain as described in Section 3.1, Air Quality / Climate Change.

4.1.5 Special Procedures

Impacts are anticipated to be negligible with the implementation of standard Best Management Practices (BMPs), such as the use of equipment maintained per design specifications and implementation of procedures outlined in the DOI form to be used during all fuel and/or oil overwater transfers to reduce the potential for emissions to be released during the transfer. An example DOI is included as Appendix G.
4.2 WATER RESOURCES

4.2.1 Approach to Analysis

Significance of potential impacts to water resources is based on water availability, quality, and use; existence of floodplains and wetlands; and associated regulations. An impact to water resources would be significant if it would: 1) reduce water availability or interfere with the water supply of existing users; 2) create or contribute to overdraft of groundwater basins or exceed safe annual yield of water supply sources; 3) adversely affect water quality or endanger public health by creating or worsening adverse health hazard conditions; 4) threaten or damage unique hydrologic characteristics; or 5) violate laws or regulations that have been established to protect or manage water resources of an area. Impacts of flood hazards would be significant if any alternative is proposed in areas with high probabilities of flooding.

4.2.2 Impacts from Proposed Action Alternatives

4.2.2.1 Alternative 1: Preparing the CGC GALEVSTON ISLAND for Scrapping at Base Honolulu

As described above, the following activities are proposed under Alternative 1: 1) draining the component tanks of fuel, oil, wastewater, and black water of the CGC GALVESTON ISLAND to low suction levels while moored Base Honolulu and disposal of the fluids in a permitted procedure; 2) the removal of major equipment from the vessel; and 3) a one-time tow of the cutter to a licensed and permitted facility to shipbreak the cutter.

Surface Water

Discharges of fluids from marine vessels have the potential to negatively impact the aquatic environment if not handled in compliance with BMPs for overwater transfers and federal, local, and state permitting procedures regulating such activities. These discharges can cause thermal pollution and can contain aquatic nuisance species (ANS), nutrients, bacteria and pathogens (e.g., E. coli and fecal coliforms), oil and grease, metals, and pollutants (e.g., organic matter,
bicarbonate, and suspended solids. It is unlikely that these discharges would cause an acute or chronic exceedance of the USEPA recommended water quality criteria across a large water body, however, these discharges have the potential to cause adverse environmental impacts on a more localized scale due to the end-of-pipe nature of the discharges (USEPA 2017).

Short-term Impacts

Proposed activities under Alternative 1 include pumping and draining of fluids within component tanks of the CGC GALVESTON ISLAND to drums staged on the dock, the removal of equipment using hand tools, and the towing of the vessel. The draining of the component tanks, removal of equipment, and towing may temporarily increase the risk of fuel or oil spills from vehicles and equipment used during the process. However, these risks do not represent introduced risks (i.e. risks considerably different or greater than daily fuel and oil spill risks that currently exist at Base Honolulu or other facilities within Honolulu Harbor.

Since no upland or in-water construction actions are proposed, shipbreaking activities would have no impacts related to increased turbidity, increased erosion, or increased storm water runoff typically associated with upland, shoreside, or in-water disturbance.

Activities conducted in support of the draining of component tanks, vessel equipment removal, and vessel hull transport and scrapping would comply with federal and state regulations and USCG instructions as well as BMPs and special procedures identified in Section 4.2.4, Special Procedures. With implementation of the special procedures as described, there would be no significant short-term adverse impacts to water quality from Alternative 1 actions.

Long-term Impacts

Upon final scrapping, activity associated with Alternative 1 would be complete. No long-term impacts would be generated from implementation of Alternative 1.
Groundwater

Implementation of the Alternative 1 would not involve any construction activities and would not alter the permeability of surfaces or surface area available for groundwater recharge. Further, no groundwater withdrawal would result from implementation of this alternative. Therefore, implementation of the Proposed Action would have no short-term or long-term impacts to groundwater resources.

Wetlands

Alternative 1 would not require or involve any construction; further, no activities associated with Alternative 1 would take place within or in proximity to any wetlands at Base Honolulu. Therefore, there would be no impacts to wetlands as a result of implementation of Alternative 1.

Floodplains

Alternative 1 actions would not require or involve any construction; further, no activities associated with Alternative 1 would take place within or in proximity to any floodplains and therefore would not impact any of the 100- or 500-year floodplains at Base Honolulu. No short-term or long-term impacts to floodplains would occur with implementation of Alternative 1.

4.2.2.2 Alternative 2: Preparing the CGC GALEVSTON ISLAND for Scrapping at Sector Honolulu Pier 4

Alternative 2 actions are identical to Alternative 1 actions; however, draining of the vessel and removal of equipment would take place at Pier 4 of Sector Honolulu instead of at Base Honolulu. Both locations are within Honolulu Harbor and have similar existing conditions.

Implementation of Alternative 2 would result in identical impacts as those identified under Alternative 1. Implementation of Alternative 2 would result in negligible short-term impacts to surface water and would result in no impacts to groundwater, wetlands, or floodplains.
4.2.2.3 Alternative 3: Complete Scrapping at a Shipbreaking Facility

Surface Water

Short-term Impacts

Alternative 3 actions would include removing any major equipment from the CGC GALVESTON ISLAND and towing the vessel to a licensed and permitted facility fully loaded to be drained, cleaned, stripped, and demolished. Under Alternative 3, no fluid transfer would take place at its current berthing location and activities as proposed would have no impacts related to increased turbidity, increased erosion, or increased storm water runoff typically associated with upland, shoreside, or in-water disturbance. Shipbreaking actions – including draining fluids, cleaning component tanks, disposal of fluids, and disposal of the scrap property – would be conducted at a licensed facility and in compliance with regulations established for the process. There would be no short-term adverse impacts to water quality from Alternative 3 actions.

Long-term Impacts

Upon final scrapping, activity associated with Alternative 3 would be complete. No long-term impacts would result from implementation of Alternative 3.

Groundwater, Wetland, and Floodplains

Implementation of Alternative 3 would not require upland, shoreside, or in-water construction or ground / seafloor disturbance. There, no impacts to groundwater, wetlands, or floodplains would result from implementation of Alternative 3.

4.2.3 Impacts from No-Action Alternative

Under the No-Action Alternative, Alternative 1 would not be implemented, and the USCG would not take action to shipbreak the CGC GALVESTON ISLAND. No direct or indirect impacts to water quality, floodplain, wetlands, or groundwater resources would occur as a result of implementation of the No-
Action Alternative and conditions would remain as described in Section 3.2, Water Resources.

4.2.4 Special Procedures

The USCG would comply with federal, state, and local water resource protection, erosion reduction measures, storm water pollution prevention plan requirements, applicable water discharge permit regulations, and other water quality regulations (including Uniform National Discharge Standards (UNDS) for Vessels of the Armed Forces [including Coast Guard]) as well as with guidance provided by COMDTINST M16455.1A, Vessel Environmental Manual. Conditions of these plans and permits include BMPs such as the following to minimize release of contaminants and the subsequent adverse effects on water quality, wetlands, and waters of the US:

- Any equipment proposed for use would be kept in good repair without leaks of fluids. If such leaks or drips occur, they would be cleaned up immediately. Equipment maintenance and/or repair would be confined to an upland location. Runoff from this area would be controlled to prevent contamination of water. Fueling of land-based vehicles and equipment would take place at least 50 feet away from the water (and away from drains), preferably over an impervious surface. Fueling of vessels would be done at approved fueling facilities;
- A designated vessel Person-in-Charge (PIC) and Facility/Shoreside PIC would observe all over-water transfers. Each PIC would be required to fill out and sign a DOI prior to the commencement of transfer.
- All conditions specified on the DOI would be adhered to during the transfer process, including the inspection of transfer hoses and valve connections. A copy of an example DOI is included as Appendix G.
- Adhere to the USCG Base Honolulu’s Spill Prevention Response Plan and Spill Prevention, Control, and Countermeasures (SPCC) Plan in the event of any contaminant release;
- To the maximum extent possible, any project-related debris would not be allowed to enter the water; any project-related debris that inadvertently enters the water would be removed;
- All construction contractors would be required to comply with OSHA regulations regarding safety measures and precautions as they relate to shipbreaking activities (OSHA 2010);
• Contractors would be required to comply with policies and procedures addressing hazardous materials management, hazardous waste management, including accidental spills, and worker safety and training requirements;

• Shipbreaking activities would adhere to established procedures to prevent and respond to accidental release of hazardous substances; and

• Operational activities would adhere to the USCG Base Honolulu’s Emergency Response Plan and procedures in place for management of hazardous materials and wastes.
4.3 **BIOLOGICAL RESOURCES**

4.3.1 **Approach to Analysis**

Determination of the significance of potential impacts to biological resources is based on: 1) the importance (i.e., legal, commercial, recreational, ecological, or scientific) of the resource; 2) the proportion of the resource that would be affected relative to its occurrence in the region; 3) the sensitivity of the resource to proposed activities; and 4) the duration of adverse ecological effects. Impacts to biological resources would be considered significant if federally listed species, federally designated critical habitats of concern, EFH, or other NOAA trust resources would be adversely affected or if species or habitats would be affected over relatively large areas or disturbances cause reductions in population size or distribution.

4.3.2 **Impacts from Proposed Action Alternatives**

Indirect and direct impacts to biological resources could occur as the result of implementation of any of the three proposed alternatives. As discussed in the below in greater detail, implementation of Alternatives 1 or 2 could result in impacts to biological resources during the removal of fluids from and equipment and during the vessel tow through inadvertent spills and/or vessel strikes. Implementation of Alternative 3 could result in impacts to biological resources during the vessel tow through vessel strikes. Prior to presenting impact assessment by specific biological resource category as identified in Section 3.3, Biological Resources (i.e., Federally Listed Species, Critical Habitat, etc.), presented below is an overarching impact summary addressing potential effects from that apply to more than one of these biological resource subcategories.

Further, once the hull has been towed and scrapped, no long-term activities would occur at Base Honolulu, Sector Honolulu Pier 4, or the shipbreaking facility.

Inadvertent Spills. Discharges of fluids from marine vessels have the potential to negatively impact the aquatic environment including habitat, EFH, and listed species through the degradation of water quality. The fueling of vessels and
overwater transfers of fluids are normal operations within the vicinity of Base Honolulu, Sector Honolulu Pier 4, and Honolulu Harbor. Further, established federal procedures are in place to reduce the potential for a spill to occur as outlined in Section 4.3.4, Special Procedures.

Vessel Strikes. Potential direct impacts to marine mammals, sea turtles, and/or other protected species (e.g., ESA listed endangered and threatened species) could occur from vessel strikes arising during the tow of the CGC GALVESTON ISLAND from either Base Honolulu or Sector Honolulu to the regionally located, licensed and permitted shipbreaking facility. However, vessel operations within the vicinity of Honolulu Harbor are daily and routine activities. Although the proposed towing would occur only once and would not represent a long-term or substantive change in local or regional vessel activity in the region, the potential for vessel strike would exist. The USCG and NMFS have identified standard measures that reduce the risk associated with vessel strikes or disturbance of protected species to discountable levels. These measures are presented in Section 4.2.4, Special Procedures.

4.3.2.1 Alternative 1: Preparing the CGC GALVESTON ISLAND for Scrapping at Base Honolulu

Under Alternative 1 the following activities are proposed: 1) draining the component tanks of fuel, oil, wastewater, and black water of the CGC GALVESTON ISLAND to low suction levels while moored at Base Honolulu and disposal of the fluids in a permitted procedure; 2) removal of major equipment from the vessel; and 3) a one-time tow of the cutter to a licensed and permitted facility to shipbreak the cutter

4.3.2.2 Federally Listed Threatened or Endangered Species

The ESA, as amended, protects species that are endangered, threatened, or proposed for listing. As described in Section 3.3, Biological Resources, there following listed species are found in the greater vicinity of Base Honolulu:

- Hawaiian monk seal
- False killer whale
- Green sea turtle
No terrestrial federally listed species is known to occur at Base Honolulu and no critical habitat has been designated. Therefore, no impact to federally listed terrestrial species or their designated habitat would result from implementation of Alternative 1.

According to USFWS and as described in Section 3.3.2.1, only the green sea turtle, Hawksbill sea turtle, and Hawaiian monk seal have the potential to occur within Honolulu Harbor. Inadvertent spills and/or vessel strikes have the potential to impact federally listed species. Recognizing that overwater fuel and oil transfer and vessel activity is a common daily occurrence at and in the vicinity of Base Honolulu and Honolulu Harbor, implementation of the procedures outlined in the introduction to Section 4.3.2, Impacts resulting from Proposed Alternatives and Section 4.3.4, Special Procedures would minimize the potential for spills or strikes to impact federally listed species. Therefore, it is anticipated that Alternative 1 would have negligible effect to federally listed species.

4.3.2.3 Critical Habitat

Critical habitat is defined as specific areas within the geographical area occupied by the species at the time of listing, if they contain physical or biological features essential to conservation, and those features may require special management considerations or protection; and outside the geographical area occupied by the species if the agency determines that the area itself is essential for conservation (NMFS 2017b).

Critical habitat designation for the Hawaiian monk seal exists at Base Honolulu and within Honolulu Harbor. The shoreline at USCG Base Honolulu comprises developed berths - all of which are characterized as hardened shorelines with vertical bulkheads and no sloping or open access. The use of the base as a haulout for monk seals is not supported. With implementation of BMPs to avoid and/or reduce the potential for inadvertent spills, Alternative 1 would result in negligible impacts to critical habitat.
4.3.2.4 Migratory Birds

The Honolulu Harbor area supports a large number of migratory including Hawaiian seabirds. Some common migratory birds found in Hawai‘i include curlews, plovers, sanderline, Ruddy turnstone, wandering tattler, and wedge-tailed shearwater.

The industrial nature of Base Honolulu and Port facilities waterfront areas within Honolulu Harbor provides limited habitat suitable for roosting and nesting of birds; however, birds may rest and/or forage in the vicinity.

Implementation of Alternative 1 would not impact migratory birds, as no potential nesting locations or foraging habitat would be disturbed. Due to the developed nature of Base Honolulu as well as surrounding development associated with Honolulu Harbor, activity associated with proposed shipbreaking would be compatible and consistent with existing activities; resultant noise levels would also be expected to remain consistent with current conditions. As such, implementation of Alternative 1 is unlikely to adversely affect migratory birds.

4.3.2.5 Essential Fish Habitat

EFH is an area containing habitat essential to the long-term survival and health of our nation’s fisheries, including the water and seafloor. When considering an action in EFH, federal agencies are required to consult with NMFS about actions that could damage EFH (NMFS 2017a). If a proposed action would not adversely affect EFH, then consultation with NMFS is not required.

As described in Section 3.3 Biological Resources, the following EFH has been mapped for Hawai‘i Bottomfish and Main Hawaiian Island Coral Reef Ecosystems. Inadvertent spills have the potential to occur during the draining / transfer of fluids (e.g. oil, fuel, ballast water, etc.) from the vessel as described for Alternatives 1. Inadvertent spills have the potential to affect EFH and the water column for both the bottomfish and coral reef ecosystem group. With implementation of BMPs as outlined under 4.3.4, Special Procedures impacts to EFH groups and the associated water column would be minor. No impacts
would be expected to EFH during towing of the vessel. Further, no additional inwater or overwater activity (e.g., infrastructure development / construction, seafloor modification, overwater shading, etc.) would occur. Once the cutter has been towed and scrapped, no additional long-term activities associated would occur at either the Base Honolulu or the shipbreaking facility. As indicated previously, vessel operations including overwater fueling within the vicinity of Base Honolulu and within Honolulu Harbor are daily and routine activities.

4.3.2.6 Marine Mammals

As described in Section 3.3 Biological Resources, a variety of marine mammals could occur in the pelagic (i.e., open water) marine habitats within the waters around Oahu including whales, dolphins, and seals. These are primarily pelagic and off-shore species, and are unlikely to occur within Honolulu Harbor. ESA-listed marine mammals are discussed above in Section 4.3.2.1.

Inadvertent spills and/or vessel strikes have the potential to impact marine mammals protected under the MMPA. Recognizing that overwater fuel and oil transfer and vessel activity is a common daily occurrence in the vicinity of Base Honolulu and Honolulu Harbor, implementation of the procedures outlined in the introduction to Section 4.3.2, Impacts resulting from Proposed Alternatives and Section 4.3.4, Special Procedures would minimize the potential for spills or strikes to impact individuals. Therefore, it is anticipated that Alternative 1 would have negligible effect to marine mammals.

4.3.2.7 Invasive Species

Executive Order 13112, Invasive Species, defines an "invasive species" as a species: 1) that is nonnative to the ecosystem under consideration, and 2) whose introduction causes or is likely to cause economic or environmental harm or harm to human health. Executive Order 13751, Safeguarding the Nation from the Impacts of Invasive Species, amended Executive Order 13112 and directs actions to continue coordinated Federal prevention and control efforts related to invasive species.
Commercial shipping, the exchange of ballast water, and hull fouling of ships are the largest invasion pathway mechanisms for marine invasive species. In order to avoid the inadvertent spread of invasive species, the hull of the CGC GALVESTON ISLAND should be inspected for fouling by living marine organisms before being towed to another location. Further, ballast water should be purged, seawater piping and anchor chains should be inspected and cleaned. If any invasive species are discovered, removal should be completed in accordance with Section 4.3.4 Special Procedures below. Implementation of such inspections, cleaning, and removal for any invasive species identified would reduce any potential adverse effects from Alternative 1 to negligible.

4.3.2.8 Alternative 2: Preparing the CGC GALVESTON ISLAND for Scrapping at Sector Honolulu Pier 4

Alternative 2 actions are identical to Alternative 1 actions; however, draining of the vessel and removal of equipment would take place at Pier 4 of Sector Honolulu instead of at Base Honolulu. Both locations are within Honolulu Harbor and have similar existing conditions.

Implementation of Alternative 2 would result in minor short-term impacts to EFH and would result in negligible impacts to federally listed species, critical habitat, marine mammals, sea turtles, migratory birds, and invasive species.

4.3.2.9 Alternative 3: Complete Scrapping at a Shipbreaking Facility

Under Alternative 3, the USCG would remove any major equipment from the CGC GALVESTON ISLAND, however, component tanks would not be drained at its current location. Rather the vessel would be towed fully loaded to a licensed and permitted facility within close regional proximity where it would be drained, cleaned, stripped, and demolished in a permitted procedure.

Direct impacts to marine mammals, sea turtles, and/or other protected species (e.g. ESA listed endangered and threatened species) could occur from vessel strikes arising during the tow of the CGC GALVESTON ISLAND from its current location to the regionally located, licensed and permitted shipbreaking facility.
Although the proposed towing would occur only once and would not represent a long-term or substantive change in local or regional vessel activity in the region, the potential for vessel strike would exist. The USCG and NMFS have identified standard measures that reduce the risk associated with vessel strikes or disturbance of protected species to discountable levels. These measures are presented in section 4.2.4, Special Procedures.

Federally Listed Species

As described in Section 3.3.2.1, only the green sea turtle, Hawksbill sea turtle, and Hawaiian monk seal have the potential to occur within Honolulu Harbor. Under Alternative 3, vessel strikes have the potential to impact federally listed species. Recognizing that vessel activity is a common daily occurrence at and in the vicinity of Base Honolulu and Honolulu Harbor, implementation of the procedures outlined in the introduction to Section 4.3.2, Impacts resulting from Proposed Alternatives and Section 4.3.4, Special Procedures would minimize the potential strikes to impact federally listed species. Therefore, it is anticipated that Alternative 3 would have negligible effect to federally listed species.

Critical Habitat

As described for Alternative 1, Critical habitat designation for the Hawaiian monk seal exists at Base Honolulu and within Honolulu Harbor. The shoreline at Base Honolulu and Sector Honolulu comprises developed berths—all of which are characterized as hardened shorelines with vertical bulkheads and no sloping or open access. Therefore, the use of the area as a haul-out for monk seals is not supported. With implementation of BMPs to avoid and/or reduce the potential for inadvertent spills, Alternative 3 would result in negligible impacts to critical habitat.

Migratory Birds

Implementation of Alternative 3 would not impact migratory birds, as no potential nesting locations or foraging habitat would be disturbed. Due to the developed nature of Honolulu Harbor as well as surrounding development associated with Base Honolulu and Sector Honolulu, activity associated with the
one-time towing of the vessel would be compatible and consistent with existing activities; resultant noise levels would also be expected to remain consistent with current conditions. As such, implementation of Alternative 3 would be short-term and have a negligible affect migratory birds.

Essential Fish Habitat

As described above under Alternative 1 and in Section 3.3.2.2, Essential Fish Habitat, EFH has been identified as occurring within the vicinity of Honolulu Harbor. No in-water or overwater activity (e.g., infrastructure development / construction, seafloor modification, overwater shading, etc.) would occur. Once the hull has been towed and scrapped, no additional long-term activities associated would occur at Base Honolulu, Sector Honolulu, or the shipbreaking facility. As indicated previously, vessel operations within the vicinity of Honolulu Harbor are daily and routine activities. Implementation of Alternative 3 would result in no impacts to EFH.

Marine Mammals

As described above under Alternative 1 and in Section 3.3.2, a variety of marine mammals could occur in the pelagic (i.e., open water) marine habitats within the waters around Oahu. These are primarily pelagic and off-shore species, and are unlikely to occur within Honolulu Harbor; however, the humpback whale is been sighted on rare occurrences and could be present during the vessel tow.

Similar to Alternative 1, vessel strikes have the potential to impact marine mammals protected under the MMPA. Recognizing that vessel activity is a common daily occurrence in the vicinity of Honolulu Harbor, and implementation of the procedures outlined in Section 4.3.4, Special Procedures would minimize the potential for strikes to impact individuals. It is anticipated that Alternative 3 would have negligible effect to marine mammals.

Invasive Species

Impacts to invasive species would be identical to those described under Alternative 1.
4.3.3 Impacts from No-Action Alternative

Under the No-Action Alternative, the Proposed Action would not be implemented. The USCG would not take action to tow and shipbreak the CGC GALVESTON ISLAND. No direct or indirect impacts to existing marine biological resources would occur as a result of the No-Action Alternative and conditions would remain as described in Section 3.3, Biological Resources.

4.3.4 Special Procedures

In coordination with USFWS and NMFS and following USCG guidance (e.g., COMDTINST M16455.1A, Vessel Environmental Manual, UNDS), the USCG would implement the following actions under implementation of the Proposed Action:

- The hull of the CGC GALVESTON ISLAND should be inspected for fouling by living marine organisms before being towed to another location to prevent any inadvertent spread of species.
- Per UNDS all anchor chains must be carefully and thoroughly washed (i.e., more than a cursory rinse) as they are being hauled out of the water to remove sediment and organisms.
- Fouling organisms must be removed from seawater piping and the hull. The discharge of fouling organisms are prohibited from being discharged per UNDS. Further, removal practices should be consistent with the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) (7 USC 136 et seq.) registration requirements for chemicals used to control biofouling of seawater piping; the act also prohibits the discharge of pesticides or chemicals banned for use in the US.
- A ballast water control plan should be implemented to minimize the potential for spread of non-native species. All ballast water should be released prior to changing harbors to reduce the potential of transporting alien and invasive marine species between ports.
- Vessel crews should: 1) use a reference guide that helps identify protected species that might be encountered and/ or 2) be trained by a qualified biologist to recognize species. Additional training should be provided regarding information and resources available regarding federal laws and regulations for protected species, ship strike information, critical habitat, migratory routes and seasonal abundance, and recent sightings of protected species.
In order to avoid causing injury or death to marine mammals, sea turtles and other protected species, the following measures should be taken when consistent with safe navigation:

- Vessel operators and crews shall maintain a vigilant watch for marine mammals and sea turtles to avoid striking sighted protected species.
- When whales are sighted, maintain a distance of 100 yards or greater between the whale and the vessel.
- When sea turtles or small cetaceans are sighted, attempt to maintain a distance of 50 yards or greater between the animal and the vessel whenever possible.
- When small cetaceans are sighted while a vessel is underway (e.g., bow-riding), attempt to remain parallel to the animal’s course. Avoid excessive speed or abrupt changes in direction until the cetacean has left the area.
- Reduce vessel speed to 10 knots or less when mother/calf pairs, groups, or large assemblages of cetaceans are observed near an underway vessel, when safety permits. A single cetacean at the surface may indicate the presence of submerged animals in the vicinity; therefore, prudent precautionary measures should always be exercised. The vessel shall attempt to route around the animals, maintaining a minimum distance of 100 yards whenever possible.
4.4 CULTURAL RESOURCES

4.4.1 Approach to Analysis

Significance evaluation is the process by which cultural resources are assessed relative to significance criteria for scientific or historic research, for the general public, and for traditional cultural groups. Only cultural resources determined to be significant (e.g., eligible for the NRHP) are protected under the NHPA and are included in the evaluation process. As described in Section 3.4, Cultural Resources, the CGC GALVESTON ISLAND is recommended as not eligible for individual NRHP listing or as a contributing resource to the U.S. Coast Guard Base Honolulu due to a lack of historic significance and integrity based on the four NRHP criteria and themes identified during research. The Historic Resources Evaluation is provided as Appendix E.

Analysis of potential impacts to cultural resources considers both direct and indirect impacts. Direct impacts can be assessed by determining the exact locations of cultural resources that could be affected by implementation of an action. Direct impacts may occur by 1) physically altering, damaging, or destroying all or part of a resource; 2) altering the characteristics of the surrounding environment that contribute to resource significance; 3) introducing visual, audible, or atmospheric elements that are out of character with the property or alter its setting; or 4) neglecting the resource to the extent that it is deteriorated or destroyed. Indirect impacts primarily result from the effects of project-induced population increases and the resultant need to develop new housing areas, utilities services, and other support functions necessary to accommodate population growth. The subsequent growth from these activities and facilities can disturb or destroy cultural resources.
4.4.2 Impacts from Proposed Action Alternatives

4.4.2.1 Alternative 1: Preparing the CGC GALVESTON ISLAND for Scrapping at Base Honolulu

Implementation of Alternative 1 would require: 1) draining the component tanks of fuel, oil, wastewater, and black water of the CGC GALVESTON ISLAND to low suction levels while moored at Base Honolulu and disposal of the fluids in a permitted procedure; 2) removal of major equipment from the vessel; and 3) a one-time tow of the cutter to a licensed and permitted facility to shipbreak the cutter.

No upland or in-water activity (e.g., infrastructure development / construction, seafloor modification, etc.) beyond the draining actions and one-time vessel towing would occur. Once the vessel has been towed and scrapped, no additional long-term activities associated with this alternative would occur at either the station or the shipbreaking facility. Since no disturbance to structures, ground-disturbing activities, or seafloor-disturbing activities would occur, there would no effects related to uncovering or disturbing either known or unknown archaeological, historical, or traditional, or otherwise cultural resources at the Base Honolulu, or surrounding waters during proposed towing activities; therefore, implementation of Alternative 1 would have no impact to cultural resources at Base Honolulu or the surrounding areas.

CGC GALVESTON ISLAND

As presented in Section 3.4, Cultural Resources, and according to the Historic Resources Evaluation (see Appendix E) prepared for this action, the CGC GALVESTON ISLAND is not recommended as eligible for individual NRHP listing or as a contributing resource to a USCG or local historic district due to a lack of historic significance and integrity based on four NRHP criteria and themes identified during research.

Since the vessel is not considered eligible for listing on the NRHP and has been deemed not to have exceptional significance, proposed shipbreaking of the vessel would result in no impacts to historic resources. The Hawaii SHPD has
concurred with the US Coast Guard’s determination that the cutter is not eligible for listing on the National Register of Historic Places (Appendix E).

4.4.2.2 Alternative 2: Preparing the CGC GALVESTON ISLAND for Scrapping at Sector Honolulu Pier 4

Potential impacts under Alternative 2 would be identical to those described for Alternatives 1. Implementation of Alternative 3 would have no impact to cultural resources at Base Honolulu or the surrounding areas.

4.4.2.3 Alternative 3: Complete Scrapping at a Shipbreaking Facility

Potential impacts under Alternative 3 would be identical to those described for Alternatives 1. Implementation of Alternative 3 would have no impact to cultural resources at Base Honolulu or the surrounding areas.

4.4.3 Impacts from No-Action Alternative

Under the No-Action Alternative, the alternatives identified to meet the purpose and need of Proposed Action would not be implemented. The USCG would not take action to tow and shipbreak the CGC GALVESTON ISLAND. No direct or indirect impacts to existing cultural resources would occur as a result of the No-Action Alternative and conditions would remain as described in Section 3.4, Cultural Resources.

4.4.4 Special Procedures

No special procedures are required. Impacts are anticipated to be negligible with the implementation of standard BMPs.
4.5 **HAZARDOUS MATERIALS AND WASTES**

4.5.1 **Approach to Analysis**

Numerous federal, state, and local laws regulate the storage, handling, disposal, and transportation of hazardous materials and wastes; the primary purpose of these laws is to protect public health and the environment. The significance of potential impacts associated with hazardous substances is based on their toxicity, ignitability, and corrosivity. Impacts associated with hazardous materials and wastes would be significant if the storage, use, transportation, or disposal of hazardous substances substantially increases the human health risk or environmental exposure.

4.5.2 **Impacts from Proposed Action Alternatives**

4.5.2.1 Alternative 1: Preparing the CGC GALVESTON ISLAND for Scrapping at Base Honolulu

Draining the CGC GALVESTON ISLAND

Under Alternative 1, the CGC GALVESTON ISLAND would be drained of fluids while berthed at Base Honolulu. Because the vessel is still operational, the internal vessel fuel, oil, and product transfer systems would be used to reduce fluid levels to low suction. Fluids would likely be consolidated into one to two tanks during the on-board and over-water transfer. All fluids would be transferred directly into 55-gallon drums and stored on approved pallets on the pier. Drums would be moved within 24 hours to an approved hazardous materials storage location at the Base. A designated Person-in-Charge (PIC) would be assigned to oversee the transfer for both the vessel side and shoreside ends of the overwater transfer of fuels and oils. Each PIC would be required to complete and sign a DOI prior to proceeding with the transfer.

The draining of the CGC GALVESTON ISLAND may increase the amount of hazardous materials generated at the Base; however, the increase would be in compliance with their approval as a SQG of hazardous waste under USEPA generator number HI8690390036. Implementation of Alternative 1 would have
negligible impacts to the use, storage, and management of hazardous materials or the generation of hazardous wastes at Base Honolulu.

Following these, OSHA, and USCG guidelines and actions outlined below in Section 4.5.4, Special Procedures, implementation of draining component tanks and equipment removal of the CGC GALVESTON ISLAND would not result in adverse impacts to hazardous materials or hazardous wastes.

Towing the CGC GALVESTON ISLAND

The proposed towing of the CGC GALVESTON ISLAND would neither demand the use of hazardous materials nor generate hazardous wastes at Base Honolulu. The proposed towing activity to a regionally located, licensed and permitted shipbreaking facility, therefore, would have negligible impact on the use, storage, and management of hazardous materials or the generation of hazardous wastes at Base Honolulu.

Scraping the CGC GALVESTON ISLAND

Typical hazardous materials encountered on USCG cutters may include fuels, oils, asbestos-containing material (ACMs), PCBs, and lead (Pb). Hazardous wastes include a wide range of liquids, including bilge and ballast water. During the vessel scrapping process, water may accumulate within the hull due to rain, firefighting activity, or use of cooling water; these waters may be considered hazardous (OSHA 2010).

The cutter would be towed to a regionally located, licensed and permitted, shipbreaking facility for final scrapping. The vessel hull would be evaluated to determine salvageable elements. Prior to scrapping (as required), any remaining fluids (e.g., petroleum-based oil used for preservation) would be drained. Surfaces would be prepared for cutting: paint or preservative coatings would be stripped from surfaces to be cut (29 CFR §1915.53, Welding, Cutting, and Heating in way of Preservative Coatings). Hard-to-remove materials on surfaces may require specific cut-line preparation, such as grit blasting or flame removal of paint. Appropriate precautions would be taken (e.g., the use of respirators) to
effectively protect personnel performing removal and others in the immediate area (OSHA 2010).

The metals of the hull would then be cut. Recyclable materials would be made available for reuse; all metal would be disposed via a USEPA-certified recycling facility by a certified recycler / scrapper; a certificate for disposal of the metal would serve as documentation.

Following these OSHA and USCG guidelines and those outlined below in Section 4.5.4, Special Procedures, implementation of the proposed shipbreaking of the CGC GALVESTON ISLAND would not result in adverse impacts to hazardous materials or hazardous wastes.

4.5.2.2 Alternative 2: Preparing the CGC GALVESTON ISLAND for Scrapping at Sector Honolulu Pier 4

Under Alternative 2, the draining and equipment removal would take place at Pier 4 of Sector Honolulu. Because Pier 4 and Sector Honolulu Pier 4 has limited pier and facility space, no hazardous materials would be stored at the facility. Rather, any fluids drained or hazardous materials removed from the vessel would be handled by a permitted contractor who would remove all hazardous materials / wastes immediately from the pier. Implementation of Alternative 2 would have no impacts to the use, storage, and management of hazardous materials or the generation of hazardous wastes at Sector Honolulu Pier 4.

Impacts related to the shipbreaking facility would be identical to those described under Alternative 1 above.

4.5.2.3 Alternative 3: Complete Scrapping at a Shipbreaking Facility

Under Alternative 3, the USCG would remove any major equipment from the CGC GALVESTON ISLAND, however, the component tanks would not be drained at its current location. Rather, the vessel would be towed fully loaded to a regionally located, licensed and permitted, shipbreaking facility where it would be drained, cleaned, stripped and demolished in a permitted procedure. As such, short-term impacts related to hazardous materials and wastes associated with
the implementation of Alternative 3 would be limited to those associated with equipment removal at and towing the fully loaded CGC GALVESTON ISLAND to a shipbreaking facility within close regional proximity.

4.5.3 Impacts from No-Action Alternative

Under the No-Action Alternative, the USCG would not take action to drain, remove equipment or tow and dispose of the CGC GALVESTON ISLAND. No direct or indirect impacts to hazardous materials or hazardous wastes would occur as a result of the No-Action Alternative and conditions would remain as described in Section 3.5, Hazardous Materials and Wastes.

4.5.4 Special Procedures

The following BMPs and compliance with federal, state, USCG, and local laws and regulations pertaining to hazards and hazardous materials and wastes would be adhered to as follows:

- A designated vessel PIC and Facility / Shoreside PIC would observe all overwater transfers. Each PIC would be required to fill out and sign the DOI prior to the commencement of transfer.
- All conditions specified on the DOI would be adhered to during the transfer process. A copy of an example DOI is included as Appendix G.
- All construction contractors would be required to comply with OSHA regulations regarding safety measures and precautions as they relate to shipbreaking activities (OSHA 2010);
- Contractors would be required to comply with policies and procedures addressing hazardous materials management, hazardous waste management, including accidental spills, and worker safety and training requirements;
- Shipbreaking activities would adhere to established procedures to prevent and respond to accidental release of hazardous substances; and
- Operational activities would adhere to the USCG Base Honolulu SPCC Plan (2017) and procedures in place for management of hazardous materials and wastes.
This page intentionally left blank.
SECTION 5
CUMULATIVE IMPACTS

Cumulative impacts on environmental resources result from incremental impacts of the Proposed Action which, when combined with other past, present, and reasonably foreseeable future projects in an affected area, may collectively cause more substantial impacts. Cumulative impacts can result from minor but collectively substantial actions undertaken over a period of time by various agencies (Federal, State, or local) or persons. In accordance with the NEPA, a discussion of cumulative impacts resulting from projects which are proposed, under construction, recently completed, or anticipated to be implemented in the near future is required.

5.1 PROJECTS CONSIDERED

Analysis of cumulative projects in this EA has been limited to proposed or recently approved (i.e., within the last 5 years) projects at Base Honolulu and other surrounding port facilities within Honolulu Harbor, or in the vicinity of the City of Honolulu. Based on a review of public documents, 13 proposed and/or recently approved projects in the vicinity of Base Honolulu were identified. A summary of each is provided in Table-5-1.

5.2 EVALUATION OF CUMULATIVE EFFECTS

The exact timing of the development for the projects described in Table 5-1 is not yet known; however, a number of these projects may be implemented concurrently with the Proposed Action. Nevertheless, given brief duration of the proposed towing and the negligible level of impacts anticipated under implementation of the Proposed Action across all environmental resources, the cumulative environmental impacts to air quality, water resources, biological resources, cultural resources, and hazardous materials and wastes would also be negligible.
Table 5-1. Cumulative Projects and Plans

<table>
<thead>
<tr>
<th>Location Affecteed</th>
<th>Project</th>
<th>Important Project Dates</th>
<th>Implementation Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honolulu Harbor</td>
<td>Kapalama Container Terminal and Tenant Relocations</td>
<td>Final EIS (23 August 2014)</td>
<td>In-Progress</td>
<td>Department of Transportation, Harbors Division (DOT-H), in partnership with the Hawai`i Harbors User Group, has developed a system-wide harbor modernization plan. The plan will implement harbor infrastructure improvements to address projected increases in ocean transportation of cargo and passengers through the 2030s. Plans for Honolulu Harbor call for the development of a new approximately 90-acre container yard and construction of a deep draft wharf with berthing capacity to accommodate two container ships.</td>
</tr>
<tr>
<td>Kalaekoa Community Development District</td>
<td>Aloha Solar Energy Utility Installation</td>
<td>Public Review and Comment Period (Due 7 August 2017)</td>
<td>Under Review</td>
<td>Aloha Solar Energy Fund II LLC proposes to lease and develop a 5-megawatt solar power utility installation. Power generated by this facility would be transferred along an electrical distribution line that would be routed along the eastern side of Coral Sea Road, eventually connecting to the Hawaiian Electric Company grid within its existing right of way. The purpose of this project is to contribute to renewable energy generation to the O'ahu power grid, in turn helping the state achieve its renewable portfolio standards goals.</td>
</tr>
<tr>
<td>‘Aiea District</td>
<td>‘Aiea High School Girls Athletic Locker Room</td>
<td>Public Review and Comment Period (Due 24 July 2017) Proposed Start Date (Early-Mid 2018)</td>
<td>Under Review</td>
<td>The Department of Education (DOE) proposes to construct a three-level locker room building to address Title IX requirements, correct space issues with existing P.E. building, and comply with the Americans with Disabilities Act requirements. The new building will provide a dedicated girls P.E. locker room, while the old building will be renovated. Utility rooms will be located on the bottom floor, girls P.E. facilities on the second floor, and a judo/ wrestling room and weight training facility of the third floor. The cost is estimated to be $14.4 million, and will be funded by the state of Hawai`i.</td>
</tr>
<tr>
<td>Ewa District</td>
<td>James Campbell High School Classroom</td>
<td>On-going</td>
<td>FONSI Determination</td>
<td>The State Department of Education is proposing a new classroom building complex at James Campbell High School. The new complex will provide a new 3-story 57,051 square foot classroom building complex at the existing campus site. The complex, consisting of five</td>
</tr>
</tbody>
</table>
Table 5-1. Cumulative Projects and Plans (Continued)

<table>
<thead>
<tr>
<th>Location Affected</th>
<th>Project</th>
<th>Important Project Dates</th>
<th>Implementation Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Building Complex</td>
<td></td>
<td></td>
<td>buildings connected by walkways, will support the students and staff with additional classrooms, new vocational classrooms, faculty centers, and support spaces. The project will also expand and repave the existing vehicle turnaround area to provide additional parking and a bus loading area.</td>
</tr>
<tr>
<td>East Kapolei</td>
<td>East Kapolei Middle School</td>
<td>Public Review and</td>
<td>Administrative Finding of No Significant</td>
<td>The Department of Education (DOE) is proposing to build a new middle school in East Kapolei. The proposed action involves the construction of six buildings organized around a central commons area with provisions for future classroom buildings. The school will include recreation areas for students. The school will be designed for an enrollment of 1,050 students with plans for expansions to accommodate an additional 350 students.</td>
</tr>
<tr>
<td></td>
<td>Draft EA</td>
<td>Comment Period (Due 24</td>
<td>Impact (AFNSI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>July 2017)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalaeloa Barbers Point</td>
<td>KBPH Fuel Pier & Harbor</td>
<td>On-going</td>
<td>Final EIS submitted and pending</td>
<td>KBPH, Hawai‘i’s second busiest commercial harbor, serves as the primary ‘bulk’ harbor for liquid-bulk (i.e. petroleum, biofuels, and asphalt) and dry-bulk (i.e. coal, cement, and sand) cargos. The Proposed Action would add berthing, yard space, and other infrastructure to optimize operational efficiencies at KBPH. The Proposed Action will create a dedicated Fuel Pier at Piers 3 and 4, adding 1,325 linear feet of berth space with modernized infrastructure. Fuel Pier development will displace an existing tenant from Pier 3, and will require demolition of a Finger pier used for harbor support vessels. These tenants will be relocated to Piers 8 and 9. Additional improvements include construction of the Pier 7 Extension and the Pier 10 Layberth, as well as to provide supporting infrastructure on fastlands for tenant use.</td>
</tr>
<tr>
<td>Harbor (KBPH)</td>
<td>Improvements</td>
<td></td>
<td>acceptance. Comments are not taken on this</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>action</td>
<td></td>
</tr>
<tr>
<td>Waikiki</td>
<td>Ala Wai 46kV Underground Cable</td>
<td>On-going</td>
<td>FONSI determination</td>
<td>Hawaiian Electric (HECO) is proposing to relocate underground subtransmission line cables that connect HECO’s Waikiki Substation. The Proposed Action would shift the alignment of the cable to the west of the existing route that passes beneath the Ala Wai Elementary School grounds, the Community Gardens and within the Ala Wai Canal. The project will install the new cables using horizontal directional drilling to</td>
</tr>
</tbody>
</table>
Table 5-1. Cumulative Projects and Plans (Continued)

<table>
<thead>
<tr>
<th>Location Affected</th>
<th>Project Description</th>
<th>Important Project Dates</th>
<th>Implementation Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honolulu</td>
<td>Awa Street Wastewater Pump Station (WWPS) Force Main and Sewer System Improvements - Waiakamilo Road Trunk Sewer Draft EA</td>
<td>Public comment period closes 10 July 2017</td>
<td>AFNSI determination</td>
<td>The City and County of Honolulu Department of Design and Construction proposes to construct a new gravity flow trunk sewer line within Waiakamilo Road and Houghtailing Street from Nimitz Highway to School Street. The proposed “Waiakamilo Road Trunk Sewer” project will construct approximately 6,000 linear feet of new trunk sewer line including new sewer manholes, temporary sewer bypasses, and connections to existing sewer lines. The Awa Street WWPS has been identified as at-risk for potential sewage spills or overflows due to volume of sewer flows received. Therefore, to reduce the volume of sewer flows into the Awa Street WWPS and to mitigate the potential for sewage spills, the new trunk sewer will divert about 40 percent of the existing sewer flows away from the WWPS into the Hart Street WWPS, which has sufficient capacity to accept additional flows.</td>
</tr>
<tr>
<td>Sand Island; Honolulu Harbor</td>
<td>Sand Island Wastewater Treatment Plant (WWTP) Outfall Shoreline Revetment Project</td>
<td>Public Comment Period closed</td>
<td>AFNSI determination</td>
<td>The City and County of Honolulu Department of Design and Construction Wastewater Division proposes to construct a new revetment structure at the location of the Sand Island WWTP Outfall structure along the shoreline on the southwest point of Sand Island. The proposed revetment would be approximately 450 feet long and would armor the shoreline to prevent further erosion. The revetment is proposed to extend from the approximate location where the outfall extends into the ocean northward along the shoreline to the dredged channel. It would be constructed with un-cemented rock rubble that would be built with boulder size rocks. The Sand Island WWTP outfall is the only wastewater outfall servicing the Honolulu area. Failure of or damage to the outfall could have catastrophic health, environmental, and economic consequences. The progressive shoreline erosion is a</td>
</tr>
</tbody>
</table>
Table 5-1. Cumulative Projects and Plans (Continued)

<table>
<thead>
<tr>
<th>Location Affected</th>
<th>Project</th>
<th>Important Project Dates</th>
<th>Implementation Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honolulu Harbor</td>
<td>Honolulu Harbor Piers Subdivision Final EA</td>
<td>On-going</td>
<td>FONSI determination</td>
<td>The Hawai’i DOT-H proposes to subdivide the 28.026-acre land area located at Honolulu Harbor, immediately off Nimitz Highway, between Piers 24 and 29. The project includes the consolidation and re-subdivision of State of Hawai’i, Land Court Lots 13-A and 13-B of Land Court Consolidation 82, Section B (1967), into Lots 1 to 17 with areas ranging from approximately 7,500 square feet to 290,573 square feet; and the designation of Easements A to F. The subdivided lots will support the maritime industry in Hawai’i, particularly shipping, stevedore operations, dry-dock facilities, ship building, specialty trade operations, maritime vessels, cargo/containers and other maritime activities.</td>
</tr>
<tr>
<td>Honolulu</td>
<td>Kapālama Canal Catalytic Project EIS Preparation Notice (EISPN)</td>
<td>Public comment period closed 23 May 2017</td>
<td>EISPN</td>
<td>The Kapālama Canal Catalytic Project is the outcome of various community plans supported by the City & County of Honolulu Department of Planning and Permitting. The Catalytic Project works towards implementing the community’s visions, addressing green infrastructure and water quality improvements, erosion control, bank stabilization, channel bottom/invert alternation, and dredging. The proposed project improvements are intended to address needs underscored by concerns raised by the public in regards to regional conditions pertaining to economic development, public health and safety, and multi-modal connectivity. The purpose of the proposed improvements is to create recreational and gathering spaces, improve multi-modal access, and catalyze broader neighborhood improvements and new mixed use development in the area around the future Kapālama rail transit station.</td>
</tr>
<tr>
<td>Ewa</td>
<td>Honolulu WWTP Secondary</td>
<td>On-going</td>
<td>Final EIS accepted</td>
<td>This project proposes to upgrade and expand the existing Honouliuli WWTP to provide secondary treatment and accommodate projected wastewater flows. Regardless of which treatment alternative is selected,</td>
</tr>
<tr>
<td>Location Affected</td>
<td>Project</td>
<td>Important Dates</td>
<td>Implementation Status</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------</td>
<td>-----------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Honolulu</td>
<td>Treatment and Support Facilities</td>
<td></td>
<td></td>
<td>additional improvements at the Honolulu WWTP are proposed for the following: Central Laboratory, Ocean Team Facilities, Administration Building, Operations Building, Leeward Region Maintenance, Central Shops, Warehouse, truck wash, central supervisory control and data acquisition operations, sewage receiving station, odor control, grounds keeping, janitorial service and security, and Honolulu Water Recycling Facility. This Final EIS also addresses the potential siting of new facilities at the Honolulu WWTP to help consolidate island-wide wastewater system administrative services. Improvements to the Honolulu major sewer conveyance system will be the subject of separate, subsequent environmental review documents.</td>
</tr>
<tr>
<td>Honolulu</td>
<td>King Kalākaua Plaza Renovation Draft EA</td>
<td>On-going</td>
<td>AFNSI determination</td>
<td>Kalaimoku-Kuhio Development Corp. intends to renovate the existing building for use as a hotel and hotel-related retail uses on the ground floor. As part of the renovation up to three new floors may be added, for a total of up to seven floors. The renovations represent an investment in the long-term well-being of the surrounding community, and ensure that the building is a sustainable improvement to Waikīkī. By renovating and adaptively reusing an existing building, King Kalākaua Plaza provides a substantially reduced environmental impact compared to demolition and new construction. The building footprint will not be enlarged, with the additional floor area coming from the possible addition of up to three new floors. As much of the existing grounds will be retained as feasible and per code, and renovations will include landscape improvements for all planting areas surrounding the building.</td>
</tr>
</tbody>
</table>
SECTION 6
SUMMARY OF FINDINGS

A summary of environmental impacts anticipated to result from the implementation of Proposed Action alternatives is provided in this section. Negligible impacts would result to the following resource areas as a result of the proposed shipbreaking of the CGC GALVESTON ISLAND.

Air Quality and Climate Change. Implementation of Alternative 1, Alternative 2, or Alternative 3 would have negligible, temporary effects on air quality in the vicinity of Base Honolulu and Honolulu Harbor. Short-term emissions could be generated during the transfer of fuels and during the tow of the CGC GALVESTON ISLAND from Base Honolulu or Sector Honolulu to a regionally located, licensed and permitted, shipbreaking facility within Honolulu Harbor. These emissions would be similar in nature to other emissions generated from fuel transfers and vessel operations within the vicinity of Base Honolulu and Honolulu Harbor. Further, Proposed Action Alternatives would not represent a long-term or substantive change in local or regional vessel activity in the region. Therefore, impacts to air quality are anticipated to be negligible under implementation of Alternative 1, Alternative 2, or Alternative 3. Upon final scrapping, activity associated with the Proposed Action Alternatives would be complete. No long-term impacts would be generated from Proposed Action Alternative implementation.

Water Resources. Implementation of the Proposed Action Alternatives has the potential to affect water resources through inadvertent spills; however, over-water transfers would be completed in accordance with federal regulations and permits that significantly reduce the potential for inadvertent spills to occur. No construction activity is included as part of the Proposed Action Alternatives, therefore there would be no anticipated impacts related to increased turbidity, increased erosion, or increased storm water runoff typically associated with upland, shoreside, or in-water disturbance. Final vessel hull preparation and towing may temporarily increase the risk of fuel or oil spills from vehicles and equipment used during transport, however these risks are not considerably different or greater than daily fuel and oil spill risks that exist elsewhere at the Base Honolulu or in Honolulu Harbor. With implementation of BMPs, impacts to
surface waters would be negligible. Upon final scrapping, activity associated with the Proposed Action Alternatives would be complete. No long-term impacts to surface water or water quality would be generated from Alternative 1, Alternative 2, or Alternative 3 implementation.

The Proposed Action Alternatives would not require construction or any other ground-disturbing activities; further, no elements of the Action would take place within or in proximity to wetlands or floodplains, and would not substantially alter the permeability of surfaces or surface area available for groundwater recharge. Therefore, the Proposed Action Alternatives would result in no impacts to these water resources.

Biological Resources. Potential impacts to biological resources could occur during implementation of Alternative 1, Alternative 2, or Alternative 3 during removal of fluids and equipment from the CGC GALVESTON ISLAND and/or during the vessel tow. Specifically, discharges of fluids has the potential to negatively impact habitat, critical habitat, essential fish habitat, and species through the degradation of water quality. Additionally, impacts to listed species, sea turtles, and marine mammals could occur as vessel strikes arising during the tow of the cutter hull. Vessel operations, including fueling and towing within the vicinity of Base Honolulu and within Honolulu Harbor are daily and routine activities. Although the proposed over-water transfer of fluids and towing would occur only once and would not represent a long-term or substantive change in local or regional vessel activity in the region, the potential for spills and/or vessel strike would exist. Federal procedures have been established to guide the transfer of overwater fuels and oils and measures have been identified to reduce the risk of spills and potential impact to the environment from this process. Additionally, US Coast Guard (USCG) and NMFS have identified standard measures (including protected species identification training and vessel strike avoidance) that reduce the risk associated with vessel strikes or disturbance of protected species to discountable levels. With implementation of this guidance and related BMPs, impacts to biological resources from potential spills and/or vessel strikes would be negligible.

Cultural Resources. No upland or in-water activity (e.g., infrastructure development / construction, seafloor modification, etc.) beyond normal vessel
activity (e.g. over-water fueling transfers and towing) is proposed under either Proposed Action Alternative. Once the hull has been towed and scrapped, no long-term activities associated with the Proposed Action Alternatives would occur at Base Honolulu, Sector Honolulu Pier 4, or the shipbreaking facility. Since no disturbance to structures, ground-disturbing activities, or seafloor-disturbing activities would occur, there would be no effects related to uncovering or disturbing either known or unknown historic, archaeological, or traditional, or otherwise cultural resources at the Base Honolulu during the proposed activities. Further, it has been determined that the CGC GALVESTON ISLAND is not considered historically significant or eligible for listing; therefore, implementation of Alternative 1, Alternative 2, or Alternative 3 would have no impact to cultural resources at Base Honolulu, Sector Honolulu Pier 4, or the surrounding areas.

Hazardous Materials and Wastes. The CGC GALVESTON ISLAND has not yet been drained or stripped of major equipment, paneling, insulation, and wiring that would contain hazardous materials per USCG and OSHA guidance. Component tanks may be drained while at moored at its current location as described under Proposed Action Alternatives 1 or 2 or may be towed to the shipbreaking facility fully loaded, as described under Proposed Action Alternative 3, where it will be drained, stripped and cleaned of fuel, oil, wastewater, and black water; all of which would be considered hazardous wastes. If drained while moored at Base Honolulu, fluids would be stored in 55-gallon drums. If drained while moored at Sector Honolulu Pier 4, a contractor or tanker truck would be used to facilitate draining and fluids would be immediately removed off-site to an approved disposal location. Further, the proposed draining of fuels and oils would be conducted in compliance with OSHA and USCG guidelines, as highlighted in Section 7, Special Procedures, below and therefore implementation of the draining of component tanks would not result in adverse impacts to hazardous materials or hazardous wastes.

The proposed towing action would neither demand the use of hazardous materials nor generate hazardous wastes at Base Honolulu or Sector Honolulu Pier 4. The proposed towing activity to a regionally located shipbreaking facility therefore would have negligible impacts on the use, storage, and management of hazardous materials or the generation of hazardous wastes at Base Honolulu or
Sector Honolulu Pier 4. Following OSHA and USCG guidelines for the proper transport and scrapping of vessels - highlighted below in Section 7, Special Procedures - implementation of the proposed shipbreaking of the CGC GALVESTON ISLAND would not result in adverse impacts to hazardous materials or hazardous wastes.

Table 6-1 presents the anticipated effects of implementation of the preferred alternatives.

Table 6-1. Summary of Potential Impacts to Affected Environmental Resources

<table>
<thead>
<tr>
<th>Environmental Resource (with Subcategory as Identified)</th>
<th>Potential Impacts (Classification and Duration)</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>No effect</td>
</tr>
<tr>
<td>Water Resources</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>No effect</td>
</tr>
<tr>
<td>Biological Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federally Listed Species</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>No effect</td>
</tr>
<tr>
<td>Essential Fish Habitat</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>No effect</td>
</tr>
<tr>
<td>Marine Mammals</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>No effect</td>
</tr>
<tr>
<td>Critical Habitat</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>No effect</td>
</tr>
<tr>
<td>Migratory Birds</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>No effect</td>
</tr>
<tr>
<td>Invasive Species</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>No effect</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>Hazardous Materials and Wastes</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>Negligible; Short-term</td>
<td>No effect</td>
</tr>
</tbody>
</table>

Key
Negligible: The action would result in no noticeable effects, beneficial or adverse, over existing conditions.
SECTION 7
SPECIAL PROCEDURES

Impact evaluations conducted during preparation of this EA have determined that no significant or otherwise substantial environmental impacts would result from implementation of action alternatives that meet the purpose and need of the Proposed Action. This determination is based on a thorough review and analysis of existing resource information and coordination with knowledgeable, responsible personnel from the US Coast Guard (USCG) and relevant local, State, and Federal agencies (e.g., USFWS, NOAA Fisheries Protected Resources Division, USACE, etc.).

The Proposed Action will be designed to minimize potential environmental impacts by incorporating and implementing the following conservation measures and BMPs:

- The USCG would coordinate with the Pilot Office and publish and broadcast Notices to Mariners for the event if any conflicts with commercial traffic were identified.

- The hull of the CGC GALVESTON ISLAND should be inspected for fouling by living marine organisms before being towed to another location to prevent any inadvertent spread of species.

- Per UNDS all anchor chains must be carefully and thoroughly washed down (i.e., more than a cursory rinse) as they are being hauled out of the water to remove sediment and organisms.

- Fouling organisms must be removed from seawater piping and the hull. The discharge of fouling organisms are prohibited from being discharged per UNDS. Further removal practices should be consistent with the FIFRA (7 USC 136 et seq.) registration requirements for chemicals used to control biofouling of seawater piping, and prohibits the discharge of pesticides or chemicals banned for use in the US.

- A ballast water control plan will be implemented to minimize the potential for spread of non-native species. All ballast water will be released prior to changing harbors to reduce the potential of transporting alien and invasive marine species between ports.

- Vessel crews should either use a reference guide that helps identify protected species that might be encountered and/or be trained by a qualified biologist to recognize species. Additional training should be
provided regarding information and resources available regarding federal laws and regulations for protected species, ship strike information, critical habitat, migratory routes and seasonal abundance, and recent sightings of protected species.

- In order to avoid causing injury or death to marine mammals, sea turtles and other protected species, the following measures should be taken when consistent with safe navigation:
 - Vessel operators and crews shall maintain a vigilant watch for marine mammals and sea turtles to avoid striking sighted protected species.
 - When whales are sighted, maintain a distance of 100 yards or greater between the whale and the vessel.
 - When sea turtles or small cetaceans are sighted, attempt to maintain a distance of 50 yards or greater between the animal and the vessel whenever possible.
 - When small cetaceans are sighted while a vessel is underway (e.g., bow-riding), attempt to remain parallel to the animal’s course. Avoid excessive speed or abrupt changes in direction until the cetacean has left the area.
 - Reduce vessel speed to 10 knots or less when mother/calf pairs, groups, or large assemblages of cetaceans are observed near an underway vessel, when safety permits. A single cetacean at the surface may indicate the presence of submerged animals in the vicinity; therefore, prudent precautionary measures should always be exercised. The vessel shall attempt to route around the animals, maintaining a minimum distance of 100 yards whenever possible.
 - Whales may surface in unpredictable locations or approach slowly moving vessels. When an animal is sighted in a vessel’s path or in close proximity to a moving vessel and when safety permits, reduce speed and shift the engine to neutral. Do not engage the engines until the animals are clear of the area.

- A designated vessel PIC and Facility / Shoreside PIC would observe all overwater transfers. Each PIC would be required to fill out and sign the DOI prior to the commencement of transfer.

- All conditions specified on the DOI would be adhered to during the transfer process. A copy of an example DOI is included as Appendix G.

- Shipbreaking activities would adhere to established procedures to prevent and respond to accidental release of hazardous substances; and

- Operational activities would adhere to the USCG Base Honolulu SPCC Plan (2017) and procedures in place for management of hazardous materials and wastes.
• Any equipment proposed for use would be kept in good repair without leaks of fluids. If such leaks or drips occur, they would be cleaned up immediately. Equipment maintenance and/or repair would be confined to an upland location. Runoff from this area would be controlled to prevent contamination of water. Fueling of land-based vehicles and equipment would take place at least 50 feet away from the water (and away from drains), preferably over an impervious surface. Fueling of vessels would be done at approved fueling facilities;

• To the maximum extent possible, any project-related debris would not be allowed to enter the water; any project-related debris that inadvertently enters the water would be removed;

• All construction contractors would be required to comply with OSHA regulations regarding safety measures and precautions as they relate to shipbreaking activities (OSHA 2010);

• Contractors would be required to comply with policies and procedures addressing hazardous materials management, hazardous waste management, including accidental spills, and worker safety and training requirements;

• Shipbreaking activities would adhere to established procedures to prevent and respond to accidental release of hazardous substances; and

• Operational activities would adhere to the USCG Base Honolulu’s Emergency Response Plan and procedures in place for management of hazardous materials and wastes.
This page intentionally left blank.
SECTION 8
REFERENCES

——. 2011. This is your City and County of Honolulu Government. Available at: https://www1.honolulu.gov/cchnl.htm [Accessed 6 January 2015].

———. 2011. Final Environmental Assessment Kawailoa Wind Power Facility Habitat Conservation Plan. DLNR Division of Forestry and Wildlife, Honolulu, Hawai`i.

00153/ uniform-national-discharge-standards-for-vessels-of-the-armed-forces-phase-ii-batch-one

SECTION 9
LIST OF PREPARERS

This report was prepared for, and under the direction of, Mr. Michael Ciaglo, USCG Deputy Cutter Transition Chief by Amec Foster Wheeler Environment & Infrastructure, Inc. Members of the professional staff are listed below:

Project Manager

Aaron Goldschmidt
M.A., Geography

Deputy Project Manager

Erin Hale
B.S., Hydrology and Environmental Science

Quality Assurance/Quality Control

Doug McFarling
B.A., Environmental Studies

Technical Analysts

Corey Guerrant
B.S., Environmental Science

Dr. Henry McKelway, PhD, RPA
PhD, Anthropology
M.A., Anthropology
B.S., Anthropology
Register of Professional Archaeologists

Matthew Prybylski, MHP
Masters of Historic Preservation
B.A., Anthropology

Wes Cunningham, MA
M.A., History
B.A., History
Production

Janice Depew
 Production

Deirdre Stites
 Graphic Artist
Appendix A

List of Agencies Contacted
This page intentionally left blank.
APPENDIX A
BASE HONOLULU
AGENCY CONTACT LIST

Mr. Michael Tosatto
Regional Administrator
National Oceanographic and Atmospheric Administration,
National Marine Fisheries Service
Pacific Islands Regional Office
1845 Wasp Blvd, Building 176
Honolulu, HI 96818
michael.tosatto@noaa.gov

Mr. Randy McIntosh
Endangered Species Biologist
NMFS/PIRO/Protected Resources Division
1845 Wasp Blvd., Building 176
Honolulu, HI 96818
(808) 725-5154
randy.mcintosh@noaa.gov

Ian Lundgren - NOAA Affiliate
Essential Fish Habitat Specialist
NOAA PIRO Habitat Conservation Division
1845 Wasp Blvd., Building 176
Honolulu, HI 96818
(808) 725-5088
ian.undgren@noaa.gov

Mr. Neil Takekawa
Department of Transportation, Oahu District Commercial Harbors
700 Fort Street- Pier 11 Gallery
Honolulu, HI 96813
neil.m.takekawa@hawaii.gov

Mr. Dean Higuchi
Environmental Protection Agency, Region IX, Pacific Islands Contact
P.O. Box 50003
Honolulu, HI 96850
higuchi.dean@epa.gov

Mr. Allan Ota
Environmental Protection Agency
Region IX, San Francisco Contact
75 Hawthorne Street
San Francisco, CA 94105
ota.allan@epa.gov

Mr. Aaron Nadig
Island Team Manager
United States Fish and Wildlife Service
Pacific Islands Field Office
300 Ala Moana Blvd. Room 3-122
Box 50088
Honolulu, HI 96850
(808) 794-9400
aaron.nadig@fws.gov

Nanea Valeros
Fish and Wildlife Biologist
United States Fish and Wildlife Service
Pacific Islands Field Office
300 Ala Moana Blvd. Room 3-122
Box 50088
Honolulu, HI 96850
(808) 794-9400
nanea.valeros@fws.gov

Ms. Susan Gayagas
Project Manager
U.S. Army Corps of Engineers
Honolulu District
Fort Shafter, HI 96858
(808) 835-4599
Susan.A.Gayagas@usace.army.mil
Mr. John Nakagawa
Department of Business, Economic Development and Tourism – Office of Planning
Hawaii Coastal Zone Management Program
P.O. Box 2359
Honolulu, HI 96804
(808) 587-2878
mlkobaya@dbedt.hawaii.gov

Ms. Laura Leialoha Phillips McIntyre
Program Manager
Department of Health, Environmental Planning Office
919 Ala Moana Blvd, Room 312
Honolulu, HI 96814
or
PO Box 3378
Honolulu, HI 96801-3378
laura.mcintyre@doh.hawaii.gov

Mr. Alec Wong
Department of Health, Environmental Management Division, Clean Water Branch
P.O. Box 3378
Honolulu, HI 96801
cleanwaterbranch@doh.hawaii.gov

Virginia Pressler, Director
Department of Health, Office of Environmental Quality Control
235 S Beretania St. Suite 702
Honolulu, HI 96813
virginia.pressler@doh.hawaii.gov
Also:
linda.hijirida@doh.hawaii.gov
thomas.eisen@doh.hawaii.gov

Alan S. Downer, PhD
Administrator / Deputy State Historic Preservation Officer
Department of Land and Natural Resources, State Historic Preservation Division
Kakuhihewa Building
601 Kamokila Boulevard
Suite 555
Kapolei, HI 96806
dlnr@hawaii.gov
Also:
Dr. Susan Lebo at (808) 692-8019 / Susan.A.Lebo@hawaii.gov

Ms. Jo-Anne Kushima
Aquatic Biologist, Marine Section
Department of Land and Natural Resources, Division of Aquatic Resources
1151 Punchbowl Street, Room 330
Honolulu, HI 96813
(808) 587-0095
jo-anne.n.kushima@hawaii.gov

Ms. Kimberly Mills
Department of Land and Natural Resources, Office of Conservation and Coastal Lands
1151 Punchbowl Street, Room 118
Honolulu HI 96813
808-587-0382
kimberly.mills@hawaii.gov

Darrel Young, Deputy Director
Department of Transportation and Harbors
79 S. Nimitz Highway
Honolulu, HI 96813
darrell.t.young@hawaii.gov

Ms. Lori M.K. Kahikina, P.E., Director
City and County of Honolulu, Department of Environmental Services
1000 Uluohia Street, Suite 308
Kapolei, HI 96707
lkahinkina@honolulu.gov
Appendix B

Scoping Letter and Responses
This page intentionally left blank.
Dear Interested Party:

The U.S. Coast Guard is proposing disposal of the Coast Guard Cutter (CGC) GALVESTON ISLAND (WPB 1349). The CGC GALVESTON ISLAND is a 110-foot Island Class Cutter currently operating from Coast Guard Base Honolulu; the cutter is not economically feasible to repair to provide 7 to 10 years of additional operations and, therefore, has been determined to be excess property. The Coast Guard proposes to have: 1) the cutter stripped of major equipment, paneling, insulation, and wiring; 2) component tanks drained and cleaned of fuel, oil, wastewater, and black water; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the hull and dispose of the scrap property in a permitted procedure.

Pursuant to the National Environmental Policy Act (NEPA), the Coast Guard intends to prepare an Environmental Assessment (EA) that evaluates the potential effects on the environment from towing the cutter hull from its current location to a shipbreaking facility. The EA will include the purpose and need for the project; a detailed description of alternatives under consideration; the affected environment; environmental consequences of implementation of the alternatives; and cumulative effects of the project. The Coast Guard intends to release a Draft EA for public review in August 2017.

The Coast Guard respectfully requests any input on the scope of the EA and relevant environmental concerns, or any information that your agency or organization may have relevant to the action being considered. Please provide any comments by 5:00 pm on July 7, 2017 to Ms. Erin Hale by email at erin.hale@amecfw.com, by fax at (805) 966-1706, or by mail to Erin Hale, Amec Foster Wheeler, 7376 SW Durham Road, Portland, OR 97224.

Thank you for your consideration in this matter.

Sincerely,

Michael J. Ciaglo
USCG APO
Deputy, Cutter Transition Division
By Direction
SUBJECT: Request for Comments for Shipbreaking of Ex-ESCG Island Cutter, Honolulu, HI DA File No. POH-2017-00130

Erin Hale
Amec Foster Wheeler
7376 SW Durham Road
Portland, OR 97224

Dear Ms. Hale:

The U.S. Army Corps of Engineers, Honolulu District (Corps), is in receipt of your letter dated 19 June 2017 for the Request for Comments for Shipbreaking of Ex-ESCG Island Cutter located near Honolulu, HI. Your project has been assigned Department of the Army (DA) file number POH-2017-00130. Please reference this number in all future correspondence concerning this determination.

We have completed review of your submittal pursuant to Section 404 of the Clean Water Act (Section 404) and Section 10 of the Rivers and Harbors Act of 1899 (Section 10). Section 404 requires authorization prior to the discharge and/or placement of dredged or fill material into waters of the U.S., including adjacent wetlands. Section 10 requires authorization prior to installing structures or conducting work in, over, under, and affecting navigable waters.

Based on our review of your submittal, we have preliminarily determined that the Pacific Ocean is a navigable water of the U.S. under the regulatory jurisdiction of the Corps. In accordance with Section 404, a Department of the Army (DA) permit will be required for any activity resulting in the discharge and/or placement of dredged or fill material into the Pacific Ocean and in accordance with Section 10, a Department of the Army (DA) permit will be required for any structures or activities occurring in, over, under, and affecting the Pacific Ocean.

Thank you for your cooperation with the Honolulu District Regulatory Program. Should you have any questions related to this determination, please contact the Honolulu Regulatory Branch at 808-835-4303 or via e-mail at CEPOH-RO@usace.army.mil. You are encouraged to provide comments on your experience...

Sincerely,

Becca Frager
Biologist
Regulatory Office
SENT VIA EMAIL

Ms. Erin E. Hale
erin.hale@amecfw.com

Dear Ms. Hale:

SUBJECT: Pre-Assessment Consultation
Draft Environmental Assessment (EA)
Coast Guard Cutter Galveston Island
1039 Sand Island Parkway
Tax Map Key 1-5-041: 003 and 042

This responds to your request for comments on the forthcoming Draft EA, which is to be prepared for the above Project.

The above site is zoned P-1 Restricted Preservation, F-1 Military and Federal Preservation, and I-3 Waterfront Industrial Districts, and is within the Special Management Area (SMA). Please note that the portion of the site zoned P-1 Restricted Preservation and F-1 Military and Federal Preservation Districts are not subject to City and County of Honolulu zoning regulations (Land Use Ordinance) and Chapter 25, Revised Ordinances of Honolulu (ROH) relating to SMA, which are administered by the Department of Planning and Permitting.

If the proposed demolition and removal of the cutter is within the I-3 Waterfront Industrial District, then it will require a SMA Use Permit, pursuant to Chapter 25, ROH. The Draft EA should note that the property is within the SMA and it should explain how the Project complies with the SMA regulations. We will provide further comment, if necessary, when the draft document is submitted.

Should you have any questions, please contact Malynne Simeon of our staff at 768-8023 or malynne.simeon@gmail.com

Very truly yours,

[Signature]
Kathy K. Sokugawa
Acting Director
Ms. Erin Hale
Amece Foster Wheeler
7376 SW Durham Road
Portland, Oregon 97224
Email: erin.hale@amecfw.com

Dear Ms. Hale:

SUBJECT: Early Consultation for Draft Environmental Assessment (EC DEA) for Shipbreaking of an Ex-USCG Island Class Cutter, Coast Guard Cutter Galveston Island Base, Honolulu, Oahu

The Department of Health (DOH), Environmental Planning Office (EPO), acknowledges receipt of your EC DEA to our office via email on June 19, 2017.

Hawaii's environmental review laws require Environmental Assessments (EAs) and Environmental Impact Statements (EISs) to consider health in the discussion and the mitigation measures to reduce negative impacts. In its definition of "impacts," §11-200-2, Hawaii Administrative Rules (HAR) includes health effects, whether primary (direct), secondary (indirect), or cumulative. Further, §11-200-12(b)(5), HAR, lists public health as one of the criteria for determining whether an action may have a significant impact on the environment.

In the development and implementation of all projects, EPO strongly recommends regular review of State and Federal environmental health land use guidance. State standard comments and available strategies to support sustainable healthy design are provided at: http://health.hawaii.gov/epo/landuse. Projects are required to adhere to all applicable standard comments. EPO has an updated environmental Geographic Information System (GIS) website page http://health.hawaii.gov/epo/egis. It compiles various maps and viewers from our environmental health programs.

EPO also encourages you to examine and utilize the Hawaii Environmental Health Portal at: https://eha-cloud.doh.hawaii.gov. This site provides links to our e-Permitting Portal, Environmental Health Warehouse, Groundwater Contamination Viewer, Hawaii Emergency Response Exchange, Hawaii State and Local Emission Inventory System, Water Pollution Control Viewer, Water Quality Data, Warnings, Advisories and Postings.

We suggest you review the requirements of the Clean Water Branch (Hawaii Administrative Rules (HAR), Chapter 11-54-1-1, -3, 4-8) and/or the National Pollutant Discharge Elimination System (NPDES) permit (HAR, Chapter 11-55) at: http://health.hawaii.gov/cwb. If you have any questions, please contact the Clean Water Branch (CWB), Engineering Section at (808) 586-4309 or cleanwaterbranch@doh.hawaii.gov. If your project involves waters of the U.S., it is highly recommended that you contact the Army Corps of Engineers, Regulatory Branch at: (808) 835-4303.

Any waste generated by the project (that is not a hazardous waste as defined in state hazardous waste laws and regulations), needs to be disposed of at a solid waste management facility that complies with the applicable provisions (HAR, Chapter 11-58.1 "Solid Waste Management Control"). The open burning of any of these wastes, on or off site, is strictly prohibited. Additional information is accessible at: http://health.hawaii.gov/shwb. For specific questions call (808) 586-4226.
If noise created by the project may exceed the maximum allowable levels (HAR, Chapter 11-46, “Community Noise Control”) then a noise permit may be required and needs to be obtained before the commencement of work. Relevant information is online at: http://health.hawaii.gov/irhb/noise. EPO recommends you contact the Indoor and Radiological Health Branch (IRHB) at (808) 586-4700 with any specific questions.

You may also wish to review the draft Office of Environmental Quality Control (OEQC) viewer at: http://eha-web.doh.hawaii.gov/oeqc-viewer. This viewer geographically shows where some previous Hawaii Environmental Policy Act (HEPA) (Hawaii Revised Statutes, Chapter 343) documents have been prepared.

To better protect public health and the environment, the U.S. Environmental Protection Agency (EPA) has developed a new environmental justice (EJ) mapping and screening tool called EJSCREEN. It is based on nationally consistent data and combines environmental and demographic indicators in maps and reports. EPO encourages you to explore, launch and utilize this powerful tool in planning your project. The EPA EJSCREEN tool is available at: http://www.epa.gov/ejscreen.

Thank you for the opportunity to comment.

Mahalo nui loa,

Laura Leialoha Phillips McIntyre, AICP
Program Manager, Environmental Planning Office

LM:nn

Attachment 1: Clean Water Branch: Water Quality Standards Map
Attachment 2: U.S. EPA EJSCREEN Report for Project Area

c: DOH, CWB, SHWB, IRHB, HEER (via email only)
Hawaii Department of Health

Water Quality Standards Map
of the
ISLAND OF O’AHU

June 2014

This map is a geographic representation of Hawaii State Water Quality Standards as set forth in Hawaii Administrative Rules Chapter 11-54, but is intended for reference only, not to substitute for the governing language in the Water Quality Standards.

DRAFT

Quality Standards Classifications

Inland Classifications
- Class A
- Class AA

Marine Classifications
- Bounded by 100-fathom contour

3 Mile Boundary Line: Areas situated within this line but outside of the 100-fathom contour are subject to Hawaii State Oceanic Water Quality Standards.

Arrangement: Clean Water Branch: Water Quality Standards Map
Selected Variables

<table>
<thead>
<tr>
<th>EJ Indexes</th>
<th>State Percentile</th>
<th>EPA Region Percentile</th>
<th>USA Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJ Index for PM2.5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>EJ Index for Ozone</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>EJ Index for NATA Diesel PM</td>
<td>98</td>
<td>73</td>
<td>85</td>
</tr>
<tr>
<td>EJ Index for NATA Air Toxics Cancer Risk</td>
<td>93</td>
<td>78</td>
<td>90</td>
</tr>
<tr>
<td>EJ Index for NATA Respiratory Hazard Index</td>
<td>95</td>
<td>74</td>
<td>87</td>
</tr>
<tr>
<td>EJ Index for Traffic Proximity and Volume</td>
<td>96</td>
<td>95</td>
<td>98</td>
</tr>
<tr>
<td>EJ Index for Lead Paint Indicator</td>
<td>74</td>
<td>70</td>
<td>82</td>
</tr>
<tr>
<td>EJ Index for Superfund Proximity</td>
<td>70</td>
<td>68</td>
<td>83</td>
</tr>
<tr>
<td>EJ Index for RMP Proximity</td>
<td>80</td>
<td>83</td>
<td>80</td>
</tr>
<tr>
<td>EJ Index for Hazardous Waste Proximity*</td>
<td>75</td>
<td>74</td>
<td>86</td>
</tr>
<tr>
<td>EJ Index for Water Discharger Proximity</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
</tbody>
</table>

This report shows the values for environmental and demographic indicators and EJSCREEN indexes. It shows environmental and demographic raw data (e.g., the estimated concentration of ozone in the air), and also shows what percentile each raw data value represents. These percentiles provide perspective on how the selected block group or buffer area compares to the entire state, EPA region, or nation. For example, if a given location is at the 95th percentile nationwide, this means that only 5 percent of the US population has a higher block group value than the average person in the location being analyzed. The years for which the data are available, and the methods used, vary across these indicators. Important caveats and uncertainties apply to this screening-level information, so it is essential to understand the limitations on appropriate interpretations and applications of these indicators. Please see EJSCREEN documentation for discussion of these issues before using reports.

June 29, 2017
EJSCREEN Report (Version 2016)

1 mile Ring Centered at 21.308908,-157.874231, HAWAII, EPA Region 9

Approximate Population: 12,682
Input Area (sq. miles): 3.14

June 29, 2017

+ Digitized Point

<table>
<thead>
<tr>
<th>Sites reporting to EPA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfund NPL</td>
<td>0</td>
</tr>
<tr>
<td>Hazardous Waste Treatment, Storage, and Disposal Facilities (TSDF)</td>
<td>0</td>
</tr>
<tr>
<td>National Pollutant Discharge Elimination System (NPDES)</td>
<td>2</td>
</tr>
</tbody>
</table>
Environmental Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
<th>State Avg.</th>
<th>%ile in State</th>
<th>EPA Region Avg.</th>
<th>%ile in EPA Region</th>
<th>USA Avg.</th>
<th>%ile in USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate Matter (PM 2.5 in μg/m³)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>9.37</td>
<td>N/A</td>
<td>9.32</td>
<td>N/A</td>
</tr>
<tr>
<td>Ozone (ppb)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>51</td>
<td>N/A</td>
<td>47.4</td>
<td>N/A</td>
</tr>
<tr>
<td>NATA Diesel PM (μg/m³)</td>
<td>1.13</td>
<td>0.149</td>
<td>99</td>
<td>0.978</td>
<td>60-70th</td>
<td>0.937</td>
<td>70-80th</td>
</tr>
<tr>
<td>NATA Cancer Risk (lifetime risk per million)</td>
<td>59</td>
<td>34</td>
<td>98</td>
<td>43</td>
<td>90-95th</td>
<td>40</td>
<td>95-100th</td>
</tr>
<tr>
<td>NATA Respiratory Hazard Index</td>
<td>2.3</td>
<td>1</td>
<td>98</td>
<td>2</td>
<td>60-70th</td>
<td>1.8</td>
<td>70-80th</td>
</tr>
<tr>
<td>Traffic Proximity and Volume (daily traffic count/distance to road)</td>
<td>5100</td>
<td>990</td>
<td>94</td>
<td>1100</td>
<td>94</td>
<td>590</td>
<td>97</td>
</tr>
<tr>
<td>Lead Paint Indicator (% Pre-1960 Housing)</td>
<td>0.13</td>
<td>0.16</td>
<td>56</td>
<td>0.24</td>
<td>49</td>
<td>0.3</td>
<td>41</td>
</tr>
<tr>
<td>Superfund Proximity (site count/km distance)</td>
<td>0.067</td>
<td>0.098</td>
<td>69</td>
<td>0.15</td>
<td>49</td>
<td>0.13</td>
<td>53</td>
</tr>
<tr>
<td>RMP Proximity (facility count/km distance)</td>
<td>0.18</td>
<td>0.19</td>
<td>76</td>
<td>0.57</td>
<td>43</td>
<td>0.43</td>
<td>52</td>
</tr>
<tr>
<td>Hazardous Waste Proximity* (facility count/km distance)</td>
<td>0.11</td>
<td>0.14</td>
<td>64</td>
<td>0.14</td>
<td>84</td>
<td>0.11</td>
<td>71</td>
</tr>
<tr>
<td>Water Discharger Proximity (facility count/km distance)</td>
<td>1.6</td>
<td>0.34</td>
<td>98</td>
<td>0.2</td>
<td>99</td>
<td>0.31</td>
<td>97</td>
</tr>
</tbody>
</table>

Demographic Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic Index</td>
<td>67%</td>
</tr>
<tr>
<td>Minority Population</td>
<td>85%</td>
</tr>
<tr>
<td>Low Income Population</td>
<td>50%</td>
</tr>
<tr>
<td>Linguistically Isolated Population</td>
<td>36%</td>
</tr>
<tr>
<td>Population With Less Than High School Education</td>
<td>26%</td>
</tr>
<tr>
<td>Population Under 5 years of age</td>
<td>3%</td>
</tr>
<tr>
<td>Population over 65 years of age</td>
<td>18%</td>
</tr>
</tbody>
</table>

* The National-Scale Air Toxics Assessment (NATA) is EPA’s ongoing, comprehensive evaluation of air toxics in the United States. EPA developed the NATA to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that NATA provides broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. More information on the NATA analysis can be found at: https://www.epa.gov/national-air-toxics-assessment.

* The hazardous waste environmental indicator and the corresponding EJ index will appear as N/A if there are no hazardous waste facilities within 50 km of a selected location.

For additional information, see: www.epa.gov/environmentaljustice

EISCREEN is a screening tool for pre-decisional use only. It can help identify areas that may warrant additional consideration, analysis, or outreach. It does not provide a basis for decision-making, but it may help identify potential areas of EJ concern. Users should keep in mind that screening tools are subject to substantial uncertainty in their demographic and environmental data, particularly when looking at small geographic areas. Important caveats and uncertainties apply to this screening-level information, so it is essential to understand the limitations on appropriate interpretations and applications of these indicators. Please see EISCREEN documentation for discussion of these issues before using reports. This screening tool does not provide data on every environmental impact and demographic factor that may be relevant to a particular location. EISCREEN outputs should be supplemented with additional information and local knowledge before taking any action to address potential EJ concerns.

June 29, 2017
Mr. Erin Hale,

Your project has been assigned Department of the Army File No. POH-2007-00130 and is currently assigned to Ms. Susan Gayagas (PROJECT MANAGER). You may contact her at (808) 835-4599 or via email at Susan.A.Gayagas@usace.army.mil.

If you have not received a response from the above project manager within 30 days, please contact our main office (808) 835-4303 or email at CEPOH-RO@usace.army.mil.

ALTON L. TATUM
Administrative Assistant, Regulatory Office USACE-Honolulu District Bldg 252 Fort Shafter, HI 96858-5440
Phone: (808)-835-4303
Fax: (808)-835-4126

-----Original Message-----
From: Hale, Erin E [mailto:Erin.Hale@amecfw.com]
Sent: Monday, June 19, 2017 10:54 AM
Subject: [Non-DoD Source] Agency Scoping Request: Environmental Assessment for Proposed Shipbreaking of Ex-USCG Island Class Cutter, Base Honolulu, Hawaii

Greetings:

The U.S. Coast Guard is proposing disposal of the Coast Guard Cutter (CGC) GALVESTON ISLAND (WPB 1349). The CGC GALVESTON ISLAND is a 110-foot Island Class Cutter currently operating from Coast Guard Base Honolulu; the cutter is not economically feasible to repair to provide 7 to 10 years of additional operations and, therefore, has been determined to be excess property. The Coast Guard proposes to have: 1) the cutter stripped of major equipment, paneling, insulation, and wiring; 2) component tanks drained and cleaned of fuel, oil, wastewater, and black water; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the hull and dispose of the scrap property in a permitted procedure.

Pursuant to the National Environmental Policy Act (NEPA), the Coast Guard intends to prepare an Environmental Assessment (EA) that evaluates the potential effects on the environment from towing the cutter hull from its current location to a shipbreaking facility. The EA will include the purpose and need for the project; a detailed description of alternatives under consideration; the affected environment; environmental consequences of implementation of the alternatives; and cumulative effects of the project. The Coast Guard intends to release a Draft EA for public review in August 2017.
The Coast Guard respectfully requests any input on the scope of the EA and relevant environmental concerns, or any information that your agency or organization may have relevant to the action being considered. Please provide any comments by 5:00 pm on July 7, 2017 to Ms. Erin Hale by email at erin.hale@amecfw.com, by fax at (805) 966-1706, or by mail to Erin Hale, Amec Foster Wheeler, 7376 SW Durham Road, Portland, OR 97224.

Thank you for your input in this important process.

Erin E. Hale, PWS
Senior Permit Specialist
7376 SW Durham St
Portland OR 97224
Amec Foster Wheeler Environment & Infrastructure, Inc.
(T) 503.639.3400 x 4016
(F) 503.620.7892
mailto:erin.hale@amecfw.com

Please consider the environment before printing

This message is the property of Amec Foster Wheeler plc and/or its subsidiaries and/or affiliates and is intended only for the named recipient(s). Its contents (including any attachments) may be confidential, legally privileged or otherwise protected from disclosure by law. Unauthorised use, copying, distribution or disclosure of any of it may be unlawful and is strictly prohibited. We assume no responsibility to persons other than the intended named recipient(s) and do not accept liability for any errors or omissions which are a result of email transmission. If you have received this message in error, please notify us immediately by reply email to the sender and confirm that the original message and any attachments and copies have been destroyed and deleted from your system. If you do not wish to receive future unsolicited commercial electronic messages from us, please forward this email to: unsubscribe@amecfw.com and include "Unsubscribe" in the subject line. If applicable, you will continue to receive invoices, project communications and similar factual, non-commercial electronic communications.

Please click Blockedhttp://amecfw.com/email-disclaimer for notices and company information in relation to emails originating in the UK, Italy or France.
Appendix C

Notice of Availability
NOTICE OF AVAILABILITY
DRAFT ENVIRONMENTAL ASSESSMENT FOR
PROPOSED SHIPBREAKING OF COAST GUARD ISLAND CLASS CUTTER AT
US COAST GUARD STATION BASE HONOLULU, HAWAII

The US Coast Guard (USCG) has completed a draft Environmental Assessment (EA) for a proposal to decommission and dispose of the Coast Guard Cutter (CGC) GALVESTON ISLAND (WPB 1349) – a 110-foot Island Class Cutter – currently positioned at Coast Guard Base Honolulu, Hawaii, per the requirements of the National Environmental Policy Act (NEPA); Council on Environmental Quality Regulations (40 CFR Parts 1500-1508); Department of Homeland Security Management Directive 023-01; and Coast Guard Commandant Instruction (COMDTINST) M16475.1D, National Environmental Policy Act Implementing Procedures and Policy for Considering Environmental Impacts. The USCG proposes to have: 1) the cutter stripped of major equipment, paneling, insulation, and wiring; 2) component tanks drained and cleaned of fuel, oil, wastewater, and black water; and 3) a one-time tow of the cutter to a regionally located, licensed and permitted facility, to demolish (or shipbreak) the hull and dispose of the scrap property in a permitted procedure.

This Draft EA serves as a concise public document that provides evidence and analysis for determining whether a FONSI is appropriate or an Environmental Impact Statement should be prepared. The EA presents the purpose and need for the action, the proposed action and alternatives, a description of the affected environment, and an analysis of environmental consequences. The EA also documents cumulative impacts from projects which are proposed, under construction, recently completed, or anticipated to be implemented in the near future.

This notice announces the availability of the Draft EA for public review at the Hawaii State Library located at 478 S King St, Honolulu, Hawaii. Individuals may request a copy of the Draft EA from, or may provide comments to, Erin Hale via regular mail at Amec Foster Wheeler, 7376 SW Durham Rd, Portland, Oregon 97223 or via electronic mail at erin.hale@amecfw.com. Comments must be received no later than September 7, 2017.
This page intentionally left blank.
Appendix D

Comment Summary, Request for Comment Letter and

Agency Responses
This page intentionally left blank.
Dear Interested Party:

The US Coast Guard (USCG) Asset Project Office (APO) has initiated an Environmental Assessment (EA) compliant with the National Environmental Policy Act (NEPA) to analyze the effects of decommissioning and disposal of the Coast Guard Cutter (CGC) GALVESTON ISLAND (WPB 1349) – a 110-foot Island Class Cutter – currently positioned at USCG Base Honolulu, Hawaii. The USCG proposes to have: 1) the cutter stripped of major equipment, paneling, insulation, and wiring; 2) component tanks drained and cleaned of fuel, oil, wastewater, and black water; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the hull and dispose of the scrap property in a permitted procedure.

Purpose and Need for Action

The purpose of the Proposed Action is to decommission and dispose of the CGC GALVESTON ISLAND, which is currently positioned at USCG Base Honolulu located in Honolulu Harbor; the cutter has been determined to be excess property that cannot be repurposed for other uses.

The overarching need for the Proposed Action is to dispose of excess property that is approaching or beyond the end of its economic service life, at a time when the demand for USCG services and infrastructure is increasing. At USCG Base Honolulu, the need is further exacerbated in that the CGC GALVESTON ISLAND is currently occupying berthing space that could be used more effectively to support the needs of USCG Sector Honolulu and the overarching USCG mission.

Proposed Action

The Proposed Action includes dismantling and disposing of the CGC GALVESTON ISLAND currently moored at USCG Base Honolulu in Honolulu Harbor. It is unknown at this time whether or not the vessel would be drained and stripped while berthed at USCG Base Honolulu, at Pier 4 of USCG Sector Honolulu, or towed to a regionally located shipbreaking facility fully loaded with fluids to be drained and stripped. Therefore, the Proposed Action includes three potential alternatives described below:

Alternative 1 – Alternative 1 would include: 1) draining the component tanks of the CGC GALVESTON ISLAND of fuel, oil, wastewater, and black water to low suction levels while moored at Base Honolulu and disposal of the fluids in a permitted procedure; 2) the removal of major equipment from the vessel; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the cutter (which includes the cleaning component tanks of the cutter and disposing of fluids in a permitted procedure, having the cutter stripped of remaining equipment, paneling, insulation, and wiring; and disposal of the scrap property in a permitted procedure).
Alternative 2 – Alternative 2 would include: 1) draining the component tanks of the CGC GALVESTON ISLAND of fuel, oil, wastewater, and black water to low suction levels while moored at the USCG facility at Pier 4 in Honolulu Harbor and disposal of the fluids in a permitted procedure; 2) the removal of major equipment from the vessel; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the cutter (which includes the cleaning component tanks of the cutter and disposing of fluids in a permitted procedure, having the cutter stripped of remaining equipment, paneling, insulation, and wiring; and disposal of the scrap property in a permitted procedure).

Alternative 3 – Alternative 3 would include removing major equipment from the CGC GALVESTON ISLAND and towing the fully loaded vessel to a licensed and permitted facility to be drained, cleaned, stripped, and demolished.

Public Involvement

The USCG has initiated a public comment period during which public input on the Draft EA will be gathered. Copies of the Draft EA are being distributed for public comment to applicable government agencies and interested parties. If you wish to comment on the Draft EA, please send your comments via mail or email to the contact provided below. Your comments are requested to be received within 15 days of this notification in order to be incorporated into the Final EA.

Erin Hale
Amec Foster Wheeler Environment & Infrastructure, Inc.
7376 SW Durham Road
Portland, Oregon 97224
erin.hale@amecfw.com

Document Viewing

A hard copy of the Draft EA can be viewed at the following public library:

Hawaii State Library
478 S King Street
Honolulu, Hawaii 96813

To obtain a hard copy of the Draft EA, please contact Erin Hale using the contact information provided above. The environmental review process will conclude with the publication of a Finding of No Significant Impact (FONSI) or a Notice of Intent to complete an Environmental Impact Statement. Thank you for participating in the public review process. We look forward to receiving comments.

Sincerely,

Michael J. Ciaglo
USCG APO
Deputy, Cutter Transition Division
SUBJ: COMMENT REQUEST LETTER - PROPOSED SHIPBREAKING OF ISLAND CLASS CUTTER, US COAST GUARD BASE HONOLULU, HAWAII

By Direction

Encl: (1) Draft Environmental Assessment for Proposed Shipbreaking of a Coast Guard Island Class Cutter at USCG Base Honolulu, Hawaii
Hi, Erin:

I have no substantive comments on the recent Environmental Assessment for Proposed Shipbreaking of USCG Island Class Cutter at Base Honolulu, Hawaii. Please let me know if there is anything else I can do regarding this proposed action. Thanks!

Randy

Randy McIntosh
Endangered Species Biologist
Pacific Islands Regional Office
NOAA Fisheries
randy.mcintosh@noaa.gov
808-725-5154

Eisirid toun air uisge balbh
A wave will rise on quiet water

He wā'a he moku, he moku he wā'a
The canoe is our island, and the island is our canoe

On Wed, Aug 23, 2017 at 5:59 AM, Hale, Erin E <Erin.Hale@amecfw.com> wrote:

Greetings:
The US Coast Guard Asset Project Office (APO) has initiated an Environmental Assessment (EA) compliant with the National Environmental Policy Act (NEPA) to analyze the effects of decommissioning and disposal of the Coast Guard Cutter (CGC) GALVESTON ISLAND (WPB 1349) – a 110-foot Island Class Cutter – currently positioned at US Coast Guard Base Honolulu, Hawaii. The Coast Guard proposes to have: 1) the cutter stripped of major equipment, paneling, insulation, and wiring; 2) component tanks drained and cleaned of fuel, oil, wastewater, and black water; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the hull and dispose of the scrap property in a permitted procedure.

Pursuant to the NEPA, the Coast Guard has prepared a Draft EA that evaluates the potential effects on the environment from the action described above. The Draft EA (attached) includes the purpose and need for the project; a detailed description of alternatives under consideration; the affected environment; environmental consequences of implementation of the alternatives; and cumulative effects of the project.

The Coast Guard has initiated a public comment period, during which public input on the Draft EA will be gathered. Copies of the Draft EA are being distributed for public comment to applicable government agencies and interested parties (please see attached Request for Comment letter). Notices of Availability of the Draft EA have been published in the Honolulu Star-Advertiser to further identify the availability of the document at the Hawaii State Library in Honolulu, HI.

On behalf of the Coast Guard, if you wish to comment on the Draft EA, please provide any comments to me by email at erin.hale@amecfw.com, by fax at (503) 620-7892, or by mail at Erin Hale, Amec Foster Wheeler, 7376 SW Durham Dr., Portland, OR 97224. Your comments are requested to be received within 15 days of this notification in order to be incorporated into the Final EA.

Thank you for your input in this important process.

Erin Hale
Senior Project Manager
Amec Foster Wheeler
7376 SW Durham Rd
Portland, Oregon 97224

503-639-3400
erin.hale@amecfw.com
This message is the property of Amec Foster Wheeler plc and/or its subsidiaries and/or affiliates and is intended only for the named recipient(s). Its contents (including any attachments) may be confidential, legally privileged or otherwise protected from disclosure by law. Unauthorised use, copying, distribution or disclosure of any of it may be unlawful and is strictly prohibited. We assume no responsibility to persons other than the intended named recipient(s) and do not accept liability for any errors or omissions which are a result of email transmission. If you have received this message in error, please notify us immediately by reply email to the sender and confirm that the original message and any attachments and copies have been destroyed and deleted from your system. If you do not wish to receive future unsolicited commercial electronic messages from us, please forward this email to: unsubscribe@amecfw.com and include “Unsubscribe” in the subject line. If applicable, you will continue to receive invoices, project communications and similar factual, non-commercial electronic communications.

Please click http://amecfw.com/email-disclaimer for notices and company information in relation to emails originating in the UK, Italy or France.
Ms. Erin Hale
Ameec Foster Wheeler
7376 SW Durham Road
Portland, Oregon 97223
Email: erin.hale@ameecw.com

Dear Ms. Hale:

SUBJECT: National Environmental Policy Act, Draft Environmental Assessment (NEPA DEA) for Shipbreaking of a Coast Guard Island Class Cutter at U.S. Coast Guard Base, Honolulu, Oahu

TMK: (1) 5-0-041:003, (1) 5-0-041:042

The Department of Health (DOH), Environmental Planning Office (EPO), acknowledges receipt of your NEPA DEA to our office via the OEQC link: http://oeqc2.doh.hawaii.gov/Other_TEN_Publications/2017-08-23-OA-NEPA-DEA-Shipbreaking-of-Coast-Guard-Island-Class-Cutter.pdf

We understand from the OEQC publication form project summary that The Proposed Action includes dismantling and disposing of the CGC GALVESTON ISLAND currently moored at USCG Base Honolulu in Honolulu Harbor. It is unknown at this time whether or not the vessel would be drained and stripped while berthed at USCG Base Honolulu, at Pier 4 of USCG Sector Honolulu, or towed to a regionally located shipbreaking facility fully loaded with fluids to be drained and stripped. Therefore, the Proposed Action includes three potential action alternatives.*

Hawaii’s environmental review laws require Environmental Assessments (EAs) and Environmental Impact Statements (EISs) to consider health in the discussion and the mitigation measures to reduce negative impacts. In its definition of ‘impacts,’ §11-200-2, Hawaii Administrative Rules (HAR) includes health effects, whether primary (direct), secondary (indirect), or cumulative. Further, §11-200-12(b)(5), HAR, lists public health as one of the criteria for determining whether an action may have a significant impact on the environment.

In the development and implementation of all projects, EPO strongly recommends regular review of State and Federal environmental health land use guidance. State standard comments to support sustainable healthy design are provided at: http://health.hawaii.gov/epo/landuse. Projects are required to adhere to all applicable standard comments. EPO has an updated environmental Geographic Information System (GIS) website page http://health.hawaii.gov/epo/egis. It compiles various maps and viewers from our environmental health programs.
We suggest you review the requirements of the Clean Water Branch (Hawaii Administrative Rules {HAR}, Chapter 11-54-1.1, -3, 4-8) and/or the National Pollutant Discharge Elimination System (NPDES) permit (HAR Chapter 11-55) at: http://health.hawaii.gov/cwb. If you have any questions, please contact the Clean Water Branch (CWB), Engineering Section at (808) 586-4309 or cleanwaterbranch@doh.hawaii.gov. If your project involves waters of the U.S., it is highly recommended that you contact the Army Corps of Engineers, Regulatory Branch at: (808) 835-4303.

Please note that all wastewater plans must conform to applicable provisions (HAR, Chapter 11-62, "Wastewater Systems"). We reserve the right to review the detailed wastewater plans for conformance to applicable rules. Should you have any questions, please review online guidance at: http://health.hawaii.gov/wastewater and contact the Planning and Design Section of the Wastewater Branch (WWB) at (808) 586-4294.

If temporary fugitive dust emissions could be emitted when the project site is prepared for construction and/or when construction activities occur, we recommend you review the need and/or requirements for a Clean Air Branch (CAB) permit (HAR, Chapter 11-60.1 "Air Pollution Control"). Effective air pollution control measures need to be provided to prevent or minimize any fugitive dust emissions caused by construction work from affecting the surrounding areas. This includes the off-site roadways used to enter/exit the project. The control measures could include, but are not limited to, the use of water wagons, sprinkler systems, and dust fences. For questions contact the Clean Air Branch via e-mail at: Cab.General@doh.hawaii.gov or call (808) 586-4200.

Any waste generated by the project (that is not a hazardous waste as defined in state hazardous waste laws and regulations), needs to be disposed of at a solid waste management facility that complies with the applicable provisions (HAR, Chapter 11-58.1 "Solid Waste Management Control"). The open burning of any of these wastes, on or off site, is strictly prohibited. You may wish you review the Minimizing Construction & Demolition Waste Management Guide at: http://health.hawaii.gov/shwb/files/2016/05/constdem16.pdf Additional information is accessible at: http://health.hawaii.gov/shwb. For specific questions call (808) 586-4226.

If noise created during the construction phase of the project may exceed the maximum allowable levels (HAR, Chapter 11-46, "Community Noise Control") then a noise permit may be required and needs to be obtained before the commencement of work. Relevant information is online at: http://health.hawaii.gov/irhb/noise EPO recommends you contact the Indoor and Radiological Health Branch (IRHB) at (808) 586-4700 with any specific questions.

For information on site assessment and cleanup programs review: http://eha-web.doh.hawaii.gov/eha-cma/Leaders/HEER/site-assessment-and-cleanup-programs. Any specific questions should be directed to the HEER office at (808) 586-4249.

EPO also encourages you to examine and utilize the Hawaii Environmental Health Portal at: https://eha-cloud.doh.hawaii.gov. This site provides links to our e-Permitting Portal, Environmental Health Warehouse, Groundwater Contamination Viewer, Hawaii Emergency Response Exchange, Hawaii State and Local Emission Inventory System, Water Pollution Control Viewer, Water Quality Data, Warnings, Advisories and Postings. Hawaii’s climate is changing. Sea level rise and the associated coastal impacts have the potential to harm an array
of natural and built environments in Hawaii. For additional information on projected sea level rise in Hawaii, EPO recommends that you visit the following informative links:

- University of Hawaii, Manoa, School of Ocean and Earth Sciences and Technology, Coastal Geology Group: http://www.soest.hawaii.edu/coasts/index.html

To better protect public health and the environment, the U.S. Environmental Protection Agency (EPA) has developed a new environmental justice (EJ) mapping and screening tool called EJSCREEN. It is based on nationally consistent data and combines environmental and demographic indicators in maps and reports. EPA encourages you to explore, launch and utilize this powerful tool in planning your project. The EPA EJSCREEN tool is available at: http://www.epa.gov/ejscreen.

We hope this information is helpful. If you have any questions please contact us at DOH.epo@doh.hawaii.gov or call us at (808) 586-4337. Thank you for the opportunity to comment.

Mahalo nui loa,

Laura Leialoha Phillips McIntyre, AICP
Program Manager, Environmental Planning Office

LM:nn

c: Michael Ciaglo, U.S. Coast Guard, Asset Project Office (via email: Michael.J.Ciaglo@uscg.mil)
DOH: DDEH, EMD, CWB, WWB, CAB, SHWB, IRHB, HEER {via email only}

Attachment: U.S. EPA EJSCREEN Report for Project Area

Please be advised:
The Environmental Planning Office (EPO), along with the Clean Air, Clean Water, and Wastewater Branches will be moving in December 2017. The new address, for EPO, as of January 1, 2018, will be:

Environmental Planning Office, DOH, Hale Ola, 2827 Waimano Home Road #109, Pearl City, Hawaii 96782

Please feel free to come and visit our new offices anytime. Please note that there is a security guard at the bottom of the hill (before entering DOH property). Our office phone numbers, email and website will all remain the same.
EJSCREEN Report (Version 2017)

1 mile Ring Centered at 21.308866, -157.874214, HAWAII, EPA Region 9
Approximate Population: 12,803
Input Area (sq. miles): 3.14

<table>
<thead>
<tr>
<th>Selected Variables</th>
<th>State Percentile</th>
<th>EPA Region Percentile</th>
<th>USA Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJ Index for PM2.5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>EJ Index for Ozone</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>EJ Index for NATA Diesel PM</td>
<td>98</td>
<td>73</td>
<td>85</td>
</tr>
<tr>
<td>EJ Index for NATA Air Toxics Cancer Risk</td>
<td>92</td>
<td>78</td>
<td>90</td>
</tr>
<tr>
<td>EJ Index for NATA Respiratory Hazard Index</td>
<td>94</td>
<td>74</td>
<td>87</td>
</tr>
<tr>
<td>EJ Index for Traffic Proximity and Volume</td>
<td>96</td>
<td>95</td>
<td>98</td>
</tr>
<tr>
<td>EJ Index for Lead Paint Indicator</td>
<td>74</td>
<td>70</td>
<td>82</td>
</tr>
<tr>
<td>EJ Index for Superfund Proximity</td>
<td>69</td>
<td>68</td>
<td>83</td>
</tr>
<tr>
<td>EJ Index for RMP Proximity</td>
<td>80</td>
<td>64</td>
<td>80</td>
</tr>
<tr>
<td>EJ Index for Hazardous Waste Proximity</td>
<td>82</td>
<td>78</td>
<td>89</td>
</tr>
<tr>
<td>EJ Index for Wastewater Discharge Indicator</td>
<td>N/A</td>
<td>73</td>
<td>76</td>
</tr>
</tbody>
</table>

EJ Index for the Selected Area Compared to All People’s Blockgroups in the State/Region/US

This report shows the values for environmental and demographic indicators and EJSCREEN indexes. It shows environmental and demographic raw data (e.g., the estimated concentration of ozone in the air), and also shows what percentile each raw data value represents. These percentiles provide perspective on how the selected block group or buffer area compares to the entire state, EPA region, or nation. For example, if a given location is at the 95th percentile nationwide, this means that only 5 percent of the US population has a higher block group value than the average person in the location being analyzed. The years for which the data are available, and the methods used, vary across these indicators. Important caveats and uncertainties apply to this screening-level information, so it is essential to understand the limitations on appropriate interpretations and applications of these indicators. Please see EJSCREEN documentation for discussion of these issues before using reports.

August 28, 2017
Sites reporting to EPA

<table>
<thead>
<tr>
<th>Sites</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Superfund NPL</td>
<td>0</td>
</tr>
<tr>
<td>Hazardous Waste Treatment, Storage, and Disposal Facilities (TSDF)</td>
<td>0</td>
</tr>
</tbody>
</table>

August 28, 2017
Environmental Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
<th>State Avg</th>
<th>%ile in State</th>
<th>EPA Region Avg.</th>
<th>%ile in EPA Region</th>
<th>USA Avg.</th>
<th>%ile in USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate Matter (PM 2.5 in μg/m³)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>9.5</td>
<td>4.8</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Ozone (ppb)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>41.8</td>
<td>N/A</td>
<td>38.4</td>
<td>N/A</td>
</tr>
<tr>
<td>NATA* Diesel PM (μg/m³)</td>
<td>1.11</td>
<td>0.149</td>
<td>99</td>
<td>0.978</td>
<td>60-70th</td>
<td>0.938</td>
<td>70-80th</td>
</tr>
<tr>
<td>NATA* Cancer Risk (lifetime risk per million)</td>
<td>59</td>
<td>34</td>
<td>98</td>
<td>43</td>
<td>90-95th</td>
<td>40</td>
<td>95-100th</td>
</tr>
<tr>
<td>NATA* Respiratory Hazard Index</td>
<td>2.3</td>
<td>1</td>
<td>98</td>
<td>2</td>
<td>60-70th</td>
<td>1.8</td>
<td>70-80th</td>
</tr>
<tr>
<td>Traffic Proximity and Volume (daily traffic count/distance to road)</td>
<td>5100</td>
<td>1000</td>
<td>94</td>
<td>1100</td>
<td>94</td>
<td>590</td>
<td>97</td>
</tr>
<tr>
<td>Lead Paint Indicator (% Pre-1960 Housing)</td>
<td>0.13</td>
<td>0.16</td>
<td>56</td>
<td>0.24</td>
<td>50</td>
<td>0.29</td>
<td>42</td>
</tr>
<tr>
<td>Superfund Proximity (site count/km distance)</td>
<td>0.067</td>
<td>0.1</td>
<td>59</td>
<td>0.15</td>
<td>48</td>
<td>0.13</td>
<td>53</td>
</tr>
<tr>
<td>RMP Proximity (facility count/km distance)</td>
<td>0.37</td>
<td>0.39</td>
<td>71</td>
<td>0.98</td>
<td>44</td>
<td>0.73</td>
<td>54</td>
</tr>
<tr>
<td>Hazardous Waste Proximity (facility count/km distance)</td>
<td>0.11</td>
<td>0.1</td>
<td>75</td>
<td>0.12</td>
<td>69</td>
<td>0.063</td>
<td>77</td>
</tr>
<tr>
<td>Wastewater Discharge Indicator (toxicity-weighted concentration/m distance)</td>
<td>0</td>
<td>0.04</td>
<td>N/A</td>
<td>13</td>
<td>59</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Demographic Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
<th>State Avg</th>
<th>%ile in State</th>
<th>EPA Region Avg.</th>
<th>%ile in EPA Region</th>
<th>USA Avg.</th>
<th>%ile in USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic Index</td>
<td>67%</td>
<td>51%</td>
<td>90</td>
<td>47%</td>
<td>77</td>
<td>36%</td>
<td>86</td>
</tr>
<tr>
<td>Minority Population</td>
<td>85%</td>
<td>77%</td>
<td>55</td>
<td>59%</td>
<td>75</td>
<td>38%</td>
<td>87</td>
</tr>
<tr>
<td>Low Income Population</td>
<td>50%</td>
<td>26%</td>
<td>91</td>
<td>36%</td>
<td>72</td>
<td>34%</td>
<td>76</td>
</tr>
<tr>
<td>Linguistically Isolated Population</td>
<td>37%</td>
<td>6%</td>
<td>96</td>
<td>9%</td>
<td>97</td>
<td>5%</td>
<td>98</td>
</tr>
<tr>
<td>Population With Less Than High School Education</td>
<td>28%</td>
<td>9%</td>
<td>97</td>
<td>17%</td>
<td>75</td>
<td>13%</td>
<td>87</td>
</tr>
<tr>
<td>Population Under 5 years of age</td>
<td>3%</td>
<td>8%</td>
<td>16</td>
<td>7%</td>
<td>18</td>
<td>6%</td>
<td>20</td>
</tr>
<tr>
<td>Population over 64 years of age</td>
<td>17%</td>
<td>18%</td>
<td>61</td>
<td>13%</td>
<td>77</td>
<td>14%</td>
<td>72</td>
</tr>
</tbody>
</table>

* The National-Scale Air Toxics Assessment (NATA) is EPA's ongoing, comprehensive evaluation of air toxics in the United States. EPA developed the NATA to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that NATA provides broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. More information on the NATA analysis can be found at: https://www.epa.gov/national-air-toxics-assessment.

For additional information, see: www.epa.gov/environmentaljustice
Comment Summary
Proposed Shipbreaking of a CGC Island Class Cutter at Coast Guard Base Honolulu

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Project Phase</th>
<th>Agency or Commenter</th>
<th>Contact Info</th>
<th>Comment Summary</th>
<th>Response or Update Required</th>
</tr>
</thead>
</table>
| 1 | 6/29/2017| Scoping | City and County of Honolulu, Department of Planning and Permitting | Kathy K. Sokugawa, Acting Director, Honolulu, Hawaii | 1. The Department confirmed the zoning designations of Base Honolulu and that the P-1 Restricted Preservation and F-1 Military and Federal Preservation Districts are not subject to City and County of Honolulu zoning regulations.
2. The Department also indicated that if any demolition were to occur in the I-3 Waterfront Industrial District, it would require a Special Management Area Use Permit, pursuant to Chapter 25, Revised Ordinances of Honolulu. | 1. Comment noted.
2. The proposed action includes no demolition activity by the Coast Guard in the I-3 Waterfront Industrial District. |
| 3 | 7/11/2017| Scoping | US Army Corps of Engineers, Honolulu District, Ft Shafter, Hawaii | Rebecca Frager, Biologist, Regulatory Office | 1. The US Army Corps of Engineers commented that any activity resulting in the discharge and/or placement of dredged or fill material into the Pacific Ocean would require a Department of Army permit in compliance with Section 404 of the Clean Water Act and that a Department of Army permit in compliance with Section 10 of the Rivers and Harbors Act would be required for any structures or activities occurring in, over, under, and affecting the Pacific Ocean. | 1. The proposed action would result in neither the discharge and/or placement of dredged or fill material into the Pacific Ocean nor the placement of any structures or related activities in, over, under, or affecting the Pacific Ocean. |
| 4 | 8/24/2017| Public Comment| Pacific Islands Regional Office, NOAA Fisheries, Honolulu, Hawaii | Randy McIntosh, Endangered Species Biologist | 1. The Department has no substantive comments on the EA. | 1. Comment noted. |
| 5 | 8/31/2017| Public Comment| State of Hawaii, Department of Health | Laura Leialoha Phillips McIntyre, AICP Program Manager, Environmental Planning Office | 1. The Department identified environmental laws and regulations related to consideration of environmental health and land use guidance and cited mitigation measures to reduce negative impacts. | 1. Requirements for compliance with federal, state, and local environmental health requirements and identification of best management practices and special procedures have been included in the EA (see Sections 1.8, 1.9) |
Appendix E

Historic Resources Evaluation of the CGC GALVESTON

ISLAND
This page intentionally left blank.
November 30, 2017

Michael Ciaglo
711 East Ordnance Road, Suite 711
Baltimore, MD 21226
Email: Michael.J.Ciaglo@uscg.mil

Dear Michael Ciaglo:

SUBJECT: Chapter 343 Historic Preservation Review – Draft Environmental Assessment for Shipbreaking of a Coast Guard Island Class Cutter at US Coast Guard Base Honolulu, Island of O‘ahu
TMK: (1) 1-5-041:003, 042

Thank you for the opportunity to review the draft environmental assessment (EA) titled, Draft Environmental Assessment for Shipbreaking of a Coast Guard Island Class Cutter at US Coast Guard Base Honolulu, Hawaii. The State Historic Preservation Division (SHPD) received this submittal on August 23, 2017. Additionally, an email correspondence from Aaron P. Goldschmidt (Amec Foster Wheeler Environment and Infrastructure, Inc.) to Michael J. Ciaglo (US Coast Guard) regarding this undertaking as well as an architectural Intensive Level Survey (ILS) was submitted to the SHPD on August 9, 2017 (Log No. 2017.01825).

The information provided in the ILS indicates that the subject US Coast Guard cutter is less than 50 years old and therefore does not meet the definition of a historic property as defined by HRS Chapter 6E-2. Additionally, the information provided indicates the cutter is not eligible for listing on the National Register of Historic Places. The State Historic Preservation Officer (SHPO) concurs with the US Coast Guard’s determination that the cutter is not eligible for listing on the National Register of Historic Places.

The United States Coast Guard is the office of record for this undertaking. Please maintain a copy of this letter with your environmental review record for this undertaking.

Please contact Stephanie Hacker, Oahu Archaeologist, at (808) 692-8046 or at Stephanie.Hacker@hawaii.gov for matters regarding this letter.

Aloha,

Alan S. Downer, PhD
Deputy State Historic Preservation Officer
Administrator, State Historic Preservation Division

cc: Erin Hale, Amec Foster Wheeler Environment and Infrastructure, Inc. (Erin.Hale@amecfw.com)
I. GENERAL INFORMATION

Common / Present Name: CGC GALVESTON ISLAND WPB 1349
Historic Name: CGC GALVESTON ISLAND WPB 1349
Property Owner: The United States Coast Guard
Address: 400 Sand Island Parkway
City/ Town/ Location: Honolulu
County: Honolulu
TMK [X-X-X-XXX:XXX]: 15041003 and 15041042
Subdivision/Neighborhood: United States Coast Guard Base Honolulu
Latitude: 21.306707
Longitude: -157.872058
Parcel Number: NA
Historic District: NA
Original Use: Coast Guard Patrol Boat
Current Use: Coast Guard Patrol Boat
Architect/ Builder (if known): Bollinger Machine Shop
Date of Construction (if known): 1992

II. Photograph of Resource

![Image of CGC GALVESTON ISLAND WPB 1349](image)

III. CONDITION ASSESSMENT

Prepared By: Wes Cunningham Consulting Firm: Amec Foster Wheeler
Address: 11003 Bluegrass Parkway, Suite 690, Louisville, KY 40299
Telephone Number: 502-471-2335 Email: wes.cunningham2@amecfw.com
Date: 7/20/2017
Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), under contract with the United States Coast Guard (USCG), conducted a cultural resources survey to determine the eligibility for listing on the National Register of Historic Places (NRHP) of one of its vessels. The USCG is proposing the disposal of the 110’ Island Class Cutter – the Coast Guard Cutter (CGC) GALVESTON ISLAND (WPB 1349) – that is currently positioned at USCG Base Honolulu, in Honolulu, Hawaii. The cutter has been determined to be excess property that cannot be repurposed for another use. As such, the USCG seeks to demolish (or shipbreak) the cutter. The action of shipbreaking or dismantling of vessels is usually conducted at a pier, drydock, or dismantling slip and may
include a full range of activities, from removing all gear and equipment to cutting and recycling a vessel’s structural components.

This cultural resource evaluation has been conducted in order to meet the requirements of Section 106 of the National Historic Preservation Act (NHPA) of 1966 (36 CFR 400.4, as amended), National Environmental Policy Act (NEPA) (42 US Code [USC]); Council on Environmental Quality (CEQ) Regulations for Implementing NEPA (40 Code of Federal Regulations [CFR] §§1500-1508) and associated CEQ guidelines; Department of Homeland Security Management Directive 023-01; and Coast Guard Commandant Instruction (COMDTINST) M16475.1D, and/or other Federal and State regulations. The cultural resource survey of the CGC GALVESTON ISLAND is part of a larger study that includes the preparation of an Environmental Assessment (EA) for proposed shipbreaking activities.

This report serves as the Evaluation for Eligibility Report and provides historic contexts written after thorough background research, a detailed description of the vessel, and photographs, both historic and current, of the CGC GALVESTON ISLAND. As part of the background research, the following information was provided by the USCG:

- USCG Real Property maintenance records for the individual cutters
- Historic and current photographs
- Service records and missions with which this specific cutter has been associated
- Contact information for USCG personnel that could provide information on maintenance, individual missions, and service

Additionally, project parameters and methodologies used for assessment will also be presented. This study only evaluated the cutter itself and not any surrounding objects. It should be noted that due to security reasons and safety concerns, access to the CGC GALVESTON ISLAND was not allowed; as such current and historic photographs were supplied by the USCG and supplemented by archival research.

The survey was conducted to assess the potential impact on the historic architectural resource by the proposed Final Shipbreaking of the CGC GALVESTON ISLAND and to assess the cutter’s eligibility for listing in the NRHP. The Area of Potential Effect for the cultural resources survey consists of the 110’ Island Class Patrol Boat. No other properties will be effected by the shipbreaking.
Materials (please check those materials that are visible):

<table>
<thead>
<tr>
<th>Height</th>
<th>Stories: Click here to enter text.</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below Ground</td>
<td></td>
<td>Other: Click here to enter text.</td>
</tr>
</tbody>
</table>

Exterior Walls (siding):

- □ Aluminum Siding
- ☒ Metal
- □ Plywood
- □ Asbestos
- □ Shingles-Asphalt
- □ OSB
- □ Brick
- □ Shingles-Wood
- □ Fiberboard
- □ Ceramic
- □ Stone
- □ Fiber Cement
- □ Concrete
- □ Stucco
- □ Vinyl Siding
- □ Horizontal Wood Siding
- □ Vertical Wood Siding
- □ Other:
- □ Log
- □ Engineered Siding
- Click here to enter text.

Roof:

- □ Asphalt, shingle
- □ Slate
- □ Wood Shingle
- □ Asphalt, roll
- □ Built Up
- □ None
- ☒ Metal
- □ Ceramic Tile
- □ Other: Click here to enter text.

Foundation:

- □ Brick
- □ Concrete Block
- □ Concrete Slab
- □ Stone
- □ Poured Concrete
- □ Raised/Pile
- □ Other: Click here to enter text.

Structural Support:

- □ Baled Hay
- □ Frame-wood
- □ Puddled Clay
- □ Concrete Block
- □ Frame-metal/steel
- □ Rammed Earth
- □ Concrete Framed
- □ Brick-load bearing
- □ Sod
- □ Concrete Poured
- □ Stone-load bearing
- □ Sod
- □ Other: Click here to enter text.

Windows:

- □ Double Hung Sash
- □ Jalousie
- □ Stained Glass
- □ Single Hung Sash
- □ Glass Block
- □ Replacement
- □ Casement
- □ None/Unknown
- □ Aluminum
- □ Fixed
- □ Ribbon
- □ Vinyl
- □ Other: Click here to enter text.

Lanai(s):

- □ Arcade
- □ Recessed
- □ Wrap-around
- □ Balcony
- □ Stoop
- □ Verandah
- □ Porte-Cochere
- □ Portico
- □ None
- □ Other: Click here to enter text.

Chimney:

- □ Brick
- □ Stuccoed Masonry
- □ Stove Pipe
- □ Concrete
- □ Stone
- □ Siding
- □ None
- □ Other: Click here to enter text.
VI. Narrative Description

Historic Context

The modern day USCG is a multi-mission maritime agency that reflects the diverse and unique missions of other organizations from which it was formed. The Revenue Cutter Service, or the Revenue Marine, as this fleet of vessels was called, was originally proposed by the first Secretary of the Treasury, Alexander Hamilton. The Revenue Cutter Service was established in 1790 when George Washington signed the Tariff Act (United States Coast Guard 2016a). The Revenue Cutter Service was originally tasked with collecting customs and tonnage duties, but the Service soon found itself involved with “suppression of the slave trade; enforcement of quarantine, immigration, and neutrality laws; protection of natural resources; and assistance to vessels in distress” (Ross 1886; United States General Accounting Office 1990).

In 1878, the United States Life-Saving Service was founded to help save the lives of men and women who were shipwrecked. Small-scale life-saving stations had been established in Massachusetts and New Jersey and run mostly by volunteer groups, but following a series of devastating hurricanes and the recognition that life-saving stations were not adequately or consistently maintained, the United States Life-Saving Service was established.

In 1915, the Revenue Cutter Service and the United States Life-Saving Service were combined to form a single maritime service dedicated to saving life at sea and enforcing the nation’s maritime laws: The United States Coast Guard (USCG 2016a). In 1939, the Lighthouse Service was transferred from the Treasury Department to the USCG, adding the mission to maintain the nation’s lighthouses and all maritime aids to navigation.

The USCG has the unique responsibility to be a permanent branch of the armed forces in addition to carrying out “civilian functions in the maritime arena” during peacetime (United States General Accounting Office 1990). In addition to being “the enforcer of all federal laws in waters under U.S. jurisdiction,” the USCG also plays an essential role during peacetime with ports, waterways, and coastal security, drug interdiction, aids to navigation, search and rescue, living marine resource protection, defense readiness, immigrant interdiction, marine environmental protection, and ice breaking operations (United States General Accounting Office 1990; USCG 2016b).

The USCG’s 11 fundamental missions are ports, waterways, and coastal security; illegal drug interdiction; aids to navigation; search and rescue; living marine resources; marine safety; defense readiness; migrant interdiction; marine environmental protection; ice operations; and other law enforcement. Examples of these fundamental missions are:

- Protect all US ports, inland waterways, harbors, navigable waters, the Great Lakes, territorial seas, contiguous waters, customs waters, coastal seas, littoral areas, the US Exclusive Economic Zone, oceanic regions of the US national interest, sea lanes to the US, US maritime approaches, and high seas surrounding the nation;
- Protect the US Marine Transportation System, which is comprised of the intermodal connections, vessels, vehicles, and system users, as well as all federal maritime navigation systems;
• Maintain maritime border security against illegal drugs, illegal aliens, firearms, and weapons of mass destruction;
• Ensure that US military assets can be rapidly supplied and deployed by keeping USCG units at a high state of readiness, and by keeping marine transportation open for the transit of assets and personnel from other branches of the armed forces;
• Coordinate efforts and intelligence with federal, state, and local agencies;
• Respond to calls of distress, whether from commercial or recreational boats or downed aircraft; Support programs to ensure that boats are safe for public use and that boats contain appropriate safety equipment;
• Prevent and respond to oil and hazardous material spills – both accidental and intentional.

In the early 1980s, the USCG began identifying alternatives to some of their aging patrol boats, specifically the 82’ Point Class and the 95’ Cape Class (Military.com 2017). In August 1984, the USCG awarded a contract to Bollinger Shipyards in Lockport, Louisiana, to design and build replacement cutters called Island Class Patrol Boats, or WPBs. The Island Class WPB was modeled after a British patrol boat that was manufactured by Vosper Thornycroft, a company that was created from two different shipbuilding companies: Vosper Ltd. and JI Thornycroft in 1966 (Piper 2003). The parent craft was a 33-meter (~108’) patrol boat that had success worldwide (Bollinger Shipyards 2017). The Island Class WPB exhibits the same hull form and dimensions, underwater appendages and propulsion configuration as the Vosper Thornycroft model and has added fin stabilization for better sea keeping (Bollinger Shipyards 2017). The main deck and deck house are made of aluminum, the hull is steel, and the interior and deck arrangements differ from the original design so as to meet the USCG’s requirements (USCG nd). The WPB is 110’ long, has a beam width of 21’, a draft of 7’, a displacement of 154 tons, can reach a maximum speed of 29.5 knots, has a range of 3,300 miles, and an endurance of 5 days (USCG 2003). These cutters are manned by 14 enlisted men and 2 officers, and they have advanced navigational equipment as well as one 25 mm and two M-2 .50 caliber machine guns and other varying armaments (USCG 2003).

Each of this class of WPBs was named after a US island, hence Island Class patrol boats, the first of which was FARALLON (WPB 1301) in February 1986 (Military.com 2017). In 1986, the Navy bought 16 more Island Class Cutters for the USCG and five more were bought with the 1986 Anti-Drug Abuse Act funds (Military.com 2017). Ultimately, there were 49 total WPBs operating within the USCG at one point and they came in three classes, A Class (WPB 1301-1316), B Class (WPB 1317-1337), and C Class (WPB 1338-1349), that differed slightly in engine size, hull stability, armaments, and other minimal areas (Global Security 2017). Although their primary duties were maritime law enforcement, such as drug and illegal immigration activities, they were also responsible for port security, search and rescue and defense readiness operations (USCG 2003). As part of the Deepwater Program, the WPBs were set to undergo extensions to 123’ and other upgrades, but in 2007, the first eight of the WPBs selected for the enhancement were decommissioned following the failed modification program (USCG 2016). The eight decommissioned WPBs were: MANITOU (WPB 1302), MATAGORDA (WPB 1303), MONHEGAN (WPB 1305), NUNIVAK (WPB 1306), VASHON (WPB 1308), ATTU (WPB 1317), METOMPKIN
From 2006 to 2012, 17 of the remaining Island Class cutters underwent a Mission Effectiveness Project that updated antiquated equipment and replaced old systems (USCG 2016). Overall, costing approximately $7 million each, the Island Class Cutters have served the USCG successfully throughout US, its territories, and on select missions in support of Desert Shield, Desert Storm, and Operation Iraqi Freedom (Global Security 2017).

CGC GALVESTON ISLAND was the last of the Island Class Cutters to be built. The construction of the vessel began in July 1988 by Bollinger Machine Shop at their shipyard in Lockport, Louisiana. Completed in early 1992, it was officially launched for sea trials on June 5, 1992 (Bollinger Shipyards 2017). The vessel, which was part of the “C” category of the Island Class, was originally stationed in Sector Guam, at Station Apra Harbor, Santa Rita, Guam, and was named after a barrier island on the Texas Gulf Coast. The C Class vessels were similar to the A and B Classes except they had improved engines and armaments as well as heavier bow plating than with which the A Class was equipped. During her tenure, CGC GALVESTON ISLAND was positioned in various ports, including most recently and prominently at Base Honolulu in the Fourteenth District (D14), which has the USCG’s “largest area of responsibility” that covers “more than 12.2 million square miles of land and sea, with units on Oahu, Maui, Kauai, the Big Island, and in American Samoa, Saipan, Guam, Singapore and Guam” (Global Security 2017; USCG 2017). During her tenure, the CGC GALVESTON ISLAND performed activities required from patrol boats including maritime law enforcement and search and rescue missions. Although some of the actions gained minor notoriety, such as in 2016 and 2017 when she participated in Operation Kohala Guardian, which takes place during the annual wintering of humpback whales in Hawaii waters and is in place to educate and assist the public, while protecting the endangered species, none were very significant on a national level (MauiNow 2016; USCG District 14 Hawaii Pacific 2017). Although a study written in 2001 stated that the projected end of service for CGC GALVESTON ISLAND was 2012, it is not until 2017 that imminent decommissioning is a reality (Tetra Tech 2001). The USCG is now replacing the failing Island Class Cutters with the newer Sentinel Class that are better suited for the new homeland security mandate.

A. Describe exterior features:

CGC GALVESTON ISLAND is a steel-hulled cutter with a propulsion plant of two Caterpillar 3516 engines, per C Class regulations, as opposed to the Paxman-Valenta engines that were in the earlier classes. CGC GALVESTON ISLAND is 110’ long with a beam width of 21’, a draft of 7’ with a displacement of 154 tons. CGC GALVESTON ISLAND can reach a maximum speed of 29.5 knots, has a range of 3,300 miles, and an endurance of 5 days. The CGC GALVESTON ISLAND is manned by a crew of 16: 2 officers and 14 enlisted. The deck and superstructure are made out of aluminum and, as with all of the B and C Class Island Patrol Boats, the CGC GALVESTON ISLAND was equipped with the heavier bow plating that the earliest class didn’t have. Electricity is supplied to the vessel by two 99 KW Caterpillar 3302T diesel generators and CGC GALVESTON ISLAND, like all other C Class vessels, is armed with two 50 caliber machine guns in addition to standard weapons (Global Security 2017).

As is common with most patrol cutters, the main deck of CGC GALVESTON ISLAND is primarily open with the exception of where one of the armaments in the fore of the vessel is located, various items along the stern railing, and the Rigid Hull Inflatable (RHI) Boat Davit which is used to put the RHI in the water and bring it out. Roughly centered on the main deck is the three-tiered command portion of the vessel that consists of: an open,
raised platform toward the aft of the vessel where the RHI would be stored, a second raised area where the main deck house is located along with two guns, one port side and one on the starboard side, and the third tier is the pilot house. There are ladders and walkways leading from tier to tier as well as from the main deck. The communication tower is located just behind the pilot house on a raised platform approximately equal with the pilot house roof in height. The pilot house has fixed windows on all of the sides with the exception of the aft.

B. Describe distinguishing interior features:

The interior of the pilot house is relatively simplistic in design with the main command center in the fore of the room, stairs leading to the main deck house just to the portside, and three small upward stairways in the aft of the room. The main deck house is reserved for the two officers on board the vessel. The commanding officer’s room is in the deck house immediately forward of the executive officer’s quarters. Aft of the quarters is a hallway that spans the width of the deckhouse, leading to both the port side and the starboard side doorways, and has multiple storage rooms branching off as well as a downward stairway. Neither the Commanding Officer’s nor the executive officer’s quarters span the width of the deck house and there is a hallway to the portside that runs to the front of the deck house. The entire fore of the deck house is reserved for the electronics room and an upward staircase.

The lower level of the vessel is separated primarily into four sections. Toward the aft of the vessel, there are sleeping quarters for eight crew members which consists of bunks, lockers, and a bathroom. Next to this area is the large engine room. Further towards the fore of the vessel is where the main living area is located. This consists of the galley on the starboard side, the mess area on the portside, as well as storage rooms and another bathroom. All the way to the fore of the vessel there are more quarters for the six remaining crew members as well as a small room on the starboard side that is designated as the Chief Petty Officer Stateroom.

C. Describe the landscape and setting (include adjacent sites/resources):

The CGC GALVESTON ISLAND is currently positioned at USCG Base Honolulu. The base is located on the northeastern edge of Sand Island which is located just off of the southeast coast in the entrance to Honolulu Harbor. The station is situated directly across Honolulu Harbor from downtown Honolulu. The cutter is docked at Berth G on the waterfront pier. Due to the nature of the CGC GALVESTON ISLAND as a sea vessel, additional objects, structures, and buildings located on the mainland were not evaluated as part of this study. The Area of Potential Effect (APE) is based upon the project’s potential direct and visual effects upon a single historic resource owned by the USCG that consists of the 110’ CGC GALVESTON ISLAND. The cutter is currently berthed at the base among several other vessels, and the proposed shipbreaking will only apply to CGC GALVESTON ISLAND.

CGC GALVESTON ISLAND has undergone changes during her tenure with the majority of those being routine maintenance and upkeep. In addition, updates to the ships advanced tracking and computer systems have been made over her time in service. She is in relatively good condition however, due to new homeland security
mandates and technologies continuing to improve, the Island Class Patrol Boats are being removed from service and replaced with the newer, more advanced, Sentinel Class vessels.
CGC GALVESTON ISLAND is recommended as not eligible for individual NRHP listing or as a contributing resource to a historic district due to a lack of historic significance and integrity based on the four NRHP criteria and themes identified during research. Since the vessel was built in 1992 and therefore is under 50-years of age, it was also evaluated under Criteria Consideration G. Under Criterion A, based on background research, CGC GALVESTON ISLAND is not associated with any historic event significant to history, neither nationally nor locally. Patrol boats, such as CGC GALVESTON ISLAND, were designed primarily for maritime law enforcement, such as drug and illegal immigration activities, and rarely combat missions. Research suggest that CGC GALVESTON ISLAND was not involved in any activities that were historically momentous. Under Criterion B, no evidence was located during research in that indicated person or persons of historical significance were associated with CGC GALVESTON ISLAND. There were no individuals identified that served in significant missions or had nationally significant maritime careers. Moreover, as is typical within the USCG, crews are frequently being transferred which drastically reduces the association between an individual and a specific vessel. Under Criterion C, the vessel does not embody distinctive characteristics nor was it outfitted with historically significant equipment or special engineering. Built in a utilitarian form, the vessel does not have artistic value as this class of cutters are minimally modified from a widely popular British design that is seen throughout the world. CGC GALVESTON ISLAND is one of 49 Island Class cutters that was built between 1986 and 1992 using common design plans, and is not a unique nor an exemplary model. Given the age and mobility of the vessels, Criterion D, which is typically reserved for archaeological studies, does not apply. Further, while objects under 50 years of age can be eligible under Criteria Consideration G, they must have an exceedingly exceptional national importance such as an advancement of vessel design, technologies, materials, or practice that changed the way the US military conducted their maritime missions. Since CGC GALVESTON ISLAND is one of many vessels constructed based on common Cutter designs and systems that were used by a variety shipyards world-wide, it is recommended not eligible under Criteria Consideration G. Given these factors, it is Amec Foster Wheeler’s opinion that CGC GALVESTON ISLAND is not eligible for listing on the NRHP. No further work is recommended.
VIII. Survey Analysis

Due to security reasons and safety concerns, access to the CGC GALVESTON ISLAND was not allowed, as such current and historic photographs were supplied by members of the USCG and supplemented by archival research. Further, this cultural resources survey of the CGC GALVESTON ISLAND is part of a larger study that includes the preparation of an EA for proposed shipbreaking of the CGC GALVESTON ISLAND. One of the unique aspects of this survey was the application of Criterion Consideration G. Criterion Consideration G applies to resources that have achieved significance within the past 50 years. The factors which are taken into consideration on resources that are under 50 years are detailed in National Register Bulletin #22, Guidelines for Evaluating and Nominating Properties that Have Achieved Significance Within the Past Fifty Years under Criterion Consideration G, which include:

- Objects just at 50 years of age must be of exceptional importance.
- A property must be understood within its historic context, which is based on the knowledge of the time, the historical theme, and the geographical area.
- Scholarly evaluations are important for comparative properties and for the proper researching and compilation of a historic context.
- An object must be under immediate threat to its integrity.
- Objects can be associated with events or themes, such as the development of the USCG, the Cold War, or the maritime industry in Hawaii.
- The argument for nomination and listing on the NRHP must be clearly and precisely justified.

Further, whereas most of the Island Class Patrol Boats fall within the federally designated Cold War timeline, CGC GALVESTON ISLAND does not. Under the National Defense Authorization Act of 1998, within the Cold War Recognition Certificate, the Department of Defense (DoD) officially defines the Cold War era as dating from September 2, 1945 to December 26, 1991 (DoD 1998). After evaluating the vessel using these criteria, CGC GALVESTON ISLAND was considered not eligible based on a lack of historic significance on a national level.
<table>
<thead>
<tr>
<th>IX. References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bollinger Shipyards</td>
</tr>
<tr>
<td>Department of Defense (DoD)</td>
</tr>
<tr>
<td>Global Security</td>
</tr>
<tr>
<td>MauiNow</td>
</tr>
<tr>
<td>Military.com</td>
</tr>
<tr>
<td>Piper, Trevor</td>
</tr>
<tr>
<td>Ross, Lieutenant Worth G.</td>
</tr>
<tr>
<td>Tetra Tech</td>
</tr>
</tbody>
</table>
United States Coast Guard (USCG)

United States Coast Guard District 14 Hawaii Pacific

United States General Accounting Office

1990 “Coast Guard: Reorganization Unlikely to Increase Resources or Overall Effectiveness.” Report to Congressional Requesters. Washington, D.C.
Aerial view of the location of CGC GALVESTON ISLAND
Location of CGC GALVESTON ISLAND (USGS Topographic Quad Honolulu 1998)
Close-up of the location of CGC GALVESTON ISLAND (USGS Topographic Quad Honolulu 1998)
View of CGC GALVESTON ISLAND docked at Base Honolulu in 2015

View of the port side of CGC GALVESTON ISLAND
View of starboard side of CGC GALVESTON ISLAND

View of the starboard side and stern of CGC GALVESTON ISLAND
View of the main deck and the starboard side of CGC GALVESTON ISLAND

The plan of the starboard side of the Island Class Cutter C Class vessel (WPB 1338 – WPB 1349)
Plan view of weather deck of the Island Class Cutter C Class vessel (WPB 1338 – WPB 1349)

Interior plan view of the Island Class Cutter C Class vessel (WPB 1338 – WPB 1349)
Plan view of the bridge deck and pilot house of the Island Class Cutter C Class vessel (WPB 1338 – WPB 1349)
Plan view of the main deck house of the Island Class Cutter C Class vessel (WPB 1338 – WPB 1349)

Plan view of the open bridge deck of the Island Class Cutter C Class vessel (WPB 1338 – WPB 1349)
Plan view of forward/bow of the Island Class Cutter C Class vessel (WPB 1338 – WPB 1349)
Appendix F

USFWS and NOAA Correspondence
This page intentionally left blank.
June 26, 2017

Mr. Randy McIntosh and Mr. Ian Lundgren
National Oceanographic and Atmospheric Administration,
National Marine Fisheries Service
Pacific Islands Regional Office
1845 Wasp Blvd, Building 176
Honolulu, HI 96818

Subject: Official Endangered Species Act List Request
Base Honolulu, Hawaii

Greetings Mr. McIntosh and Mr. Lundgren,

The U.S. Coast Guard is proposing disposal of the Coast Guard Cutter (CGC) GALVESTON ISLAND (WPB 1349). The CGC GALVESTON ISLAND is a 110-foot Island Class Cutter currently operating from Coast Guard Base Honolulu. Pursuant to the National Environmental Policy Act (NEPA) and the Council on Environmental Quality (CEQ) regulations implementing NEPA (40 Code of Federal Regulations [CFR] Parts 1500-1508), the Coast Guard intends to prepare an Environmental Assessment (EA) that evaluates the potential effects on the environment from towing the cutter hull from its current location to a shipbreaking facility.

In accordance with Section 7 of the Endangered Species Act, as amended, I would like to request a list of endangered, threatened, candidate, and proposed species and any critical habitats found at or near Base Honolulu. In additional, I would like to request a list of Essential Fish Habitat (EFH) and National Oceanographic and Atmospheric Administration (NOAA) Trust Resources that exist near Base Honolulu. Two tax map keys, 15041003 and 15041042, are associated with Base Honolulu. A site location map is provided as Figure 1 below. Note that we have made a similar request to US Fish and Wildlife Service for species within their jurisdiction. Two tax map keys, 15041003 and 15041042, are associated with this site.

Please contact me at erin.hale@amecfw.com or 503-941-4016 if you have any questions.

Sincerely,

Erin E. Hale, PWS

Attachments: Figure 1 Site Location Map
No warranty is made by the USCG as to the accuracy, reliability, or completeness of these data for individual use or aggregate use with other data. This map is a “living document,” in that it is intended to change as new data become available and are incorporated into the GIS database.
Hi, Erin:

This e-mail responds to your e-mails of June 26 & 27 regarding ESA-listed species in the action area of Honolulu Harbor for your proposed shipbreaking of the USCG Cutters Assateague and Galveston Island. ESA-listed marine species which may be present in your proposed action area are the hawksbill and green sea turtles and the Hawaiian monk seal. Depending upon the level of underwater noise expected to be generated by project activities, it is possible that the Hawaiian insular false killer whale could be affected. There is currently no designated critical habitat within Honolulu Harbor. Please see http://www.fpir.noaa.gov/PRD/prd_esa_section_7.html for a complete species list and other ESA Section 7 information. And please call me if you have questions. Thanks!

Randy

Randy McIntosh
Acting Branch Chief, Interagency Coordination and Cooperation
Pacific Islands Regional Office
NOAA Fisheries
randy.mcintosh@noaa.gov
808-725-5154

Eiridh tonn air nígh balbh
A wave will rise on quiet water

He wa’u ke moku, ke moku ke wa’u
The canoe is our island, and the island is our canoe

On Tue, Jun 27, 2017 at 3:17 AM, Hale, Erin E <Erin.Hale@amecfw.com> wrote:
Hi, Erin:

Will the cutter be in a dry-dock or otherwise enclosed while 1) and 2) in your e-mail are occurring? If not, it seems like there will be opportunities for leaks and spills and potentially for large items to be dropped into the water. Will bottom paint be removed? Will there be observers during operations to ensure ESA-listed species are not near enough to be affected by falling debris? Thanks!

Randy

Randy McIntosh
Endangered Species Biologist
Pacific Islands Regional Office
NOAA Fisheries
randy.mcintosh@noaa.gov
808-725-5154

Eirídh tóin air níse balbh
A wave will rise on quiet water

He wa’a be moku, he moku be wa’a
The canoe is our island, and the island is our canoe

On Mon, Jun 19, 2017 at 10:53 AM, Hale, Erin E <Erin.Hale@amecfw.com> wrote:

Greetings:
The U.S. Coast Guard is proposing disposal of the Coast Guard Cutter (CGC) GALVESTON ISLAND (WPB 1349). The CGC GALVESTON ISLAND is a 110-foot Island Class Cutter currently operating from Coast Guard Base Honolulu; the cutter is not economically feasible to repair to provide 7 to 10 years of additional operations and, therefore, has been determined to be excess property. The Coast Guard proposes to have: 1) the cutter stripped of major equipment, paneling, insulation, and wiring; 2) component tanks drained and cleaned of fuel, oil, wastewater, and black water; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the hull and dispose of the scrap property in a permitted procedure.

Pursuant to the National Environmental Policy Act (NEPA), the Coast Guard intends to prepare an Environmental Assessment (EA) that evaluates the potential effects on the environment from towing the cutter hull from its current location to a shipbreaking facility. The EA will include the purpose and need for the project; a detailed description of alternatives under consideration; the affected environment; environmental consequences of implementation of the alternatives; and cumulative effects of the project. The Coast Guard intends to release a Draft EA for public review in August 2017.

The Coast Guard respectfully requests any input on the scope of the EA and relevant environmental concerns, or any information that your agency or organization may have relevant to the action being considered. Please provide any comments by 5:00 pm on July 7, 2017 to Ms. Erin Hale by email at erin.hale@amecfw.com, by fax at (805) 966-1706, or by mail to Erin Hale, Amec Foster Wheeler, 7376 SW Durham Road, Portland, OR 97224.

Thank you for your input in this important process.

Erin E. Hale, PWS
Senior Permit Specialist

7376 SW Durham St
Portland OR 97224

Amec Foster Wheeler Environment & Infrastructure, Inc.

(T) 503.639.3400 x 4016
(F) 503.620.7892
mailto:erin.hale@amecfw.com

Please consider the environment before printing
In Reply Refer To:
01EPIF00-2017-SL-0318

Ms. Erin E. Hale, PWS
Senior Permit Scientist
Amec Foster Wheeler Environment & Infrastructure, Inc.
7376 SW Durham Street
Portland, Oregon 97224

Subject: Species List Request for Proposed Shipbreaking of Ex-USCG Cutter Galveston Island, USCG Base Honolulu, Oahu

Dear Ms. Hale:

The U.S. Fish and Wildlife Service (Service) received your email on June 27, 2017, requesting a species list of federally listed and proposed endangered or threatened species and critical habitat occurring on and within the following subject property located in Honolulu, Oahu [TMKs: (1) 1-5-041:003 and (1) 1-5-041:042]. We understand the Coast Guard intends to prepare an Environmental Assessment (EA) for the proposed disposal of the ex-Coast Guard Cutter (CGC) Galveston Island, per the requirement of the National Environmental Policy Act (NEPA) and Council on Environmental Quality (CEQ) regulations implementing NEPA (40 Code of Federal Regulations [CFR] Parts 1500-1508). The Coast Guard proposes to have: 1) the cutter stripped of major equipment, paneling, insulation, and wiring; 2) component tanks drained and cleaned of fuel, oil, wastewater, and black water; and 3) a one-time tow of the cutter to a licensed and permitted facility to demolish (or shipbreak) the hull and dispose of the scrap property in a permitted procedure. The project area is not in close proximity to sandy beach habitat, nor is night time work/lighting proposed at this time. Our letter is in accordance with the Endangered Species Act of 1973 [16 U.S.C. 1531-1544], as amended.

We have reviewed the information you provided and pertinent information in our files, including data compiled by the Hawaii Biodiversity and Mapping Program. Our databases indicate the following listed species may occur within the proposed project area; threatened (Central North Pacific Distinct Population Segment) Green sea turtles (*Chelonia mydas*) and endangered Hawksbill sea turtle (*Eretmochelys imbricata*) (collectively referred to as sea turtles). As the project is described actions that may affect sea turtles in which the Service had jurisdiction over are not likely since the actions will be carried out on a pier. The Service consults on sea turtles and their use of terrestrial habitats (beaches where nesting and/or basking is known to occur), whereas the National Marine Fisheries Service (NMFS) consults on sea turtles and their use of off-shore and open ocean habitats. We recommend that you consult with NMFS regarding the
potential impacts from the proposed project to sea turtles in off-shore and open ocean habitats. There is no federally designated or proposed critical habitat within the vicinity of the proposed project site.

We appreciate your efforts to conserve endangered species. If you have any questions, please contact Nanea Valeros, Fish and Wildlife Biologist (phone: 808-792-9400, email: nanea_valeros@fws.gov). When referring to this project, please include this reference number: 01EPIF00-2017-SL-0318.

Sincerely,

[Signature]

Aaron Nadig
Island Team Manager
Oahu, Kauai, Northwestern Hawaiian Islands and American Samoa
This page intentionally left blank.
Appendix G

Declaration of Inspection Form
This page intentionally left blank.
An oil transfer operation may not commence to or from a vessel unless the following requirements are met and agreed upon by the respective transferring and receiving persons in charge.

Persons in charge indicate by a check (\(\checkmark\)), in the appropriate spaces, that the specific requirement has been met.

VESSEL

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. The mooring lines are adequate for all anticipated conditions.</td>
<td></td>
</tr>
<tr>
<td>B. Cargo hoses and/or loading arms are long enough for intended use.</td>
<td></td>
</tr>
<tr>
<td>C. Cargo hoses are adequately supported to prevent undue strain on the couplings.</td>
<td></td>
</tr>
<tr>
<td>D. The transfer system is properly lined up for discharging or receiving oil. (Additional checks shall be performed each time a valve is repositioned.)</td>
<td></td>
</tr>
<tr>
<td>E. Each flange connection on the cargo system not being used during the transfer operation is blanked or shut off.</td>
<td></td>
</tr>
<tr>
<td>F. The cargo hoses and/or loading arms are connected to the manifolds using gaskets and a bolt in every other hole, (minimum of 4 bolts). Exception: Tanks without fixed loading systems per waiver from the Captain of the Port.</td>
<td></td>
</tr>
<tr>
<td>G. The overboard or sea suction valves are sealed or lashed in the closed position.</td>
<td></td>
</tr>
<tr>
<td>H. Adequate spill containments have been provided for couplings.</td>
<td></td>
</tr>
<tr>
<td>I. All scuppers or other overboard drains are closed or plugged.</td>
<td></td>
</tr>
<tr>
<td>J. A communications system is provided between the facility and the vessel.</td>
<td></td>
</tr>
<tr>
<td>K. Emergency shutdown system is available and operable.</td>
<td></td>
</tr>
<tr>
<td>L. Communication procedures are established and understood between persons in charge.</td>
<td></td>
</tr>
<tr>
<td>M. Qualified and designated personnel are in charge and on duty at the terminal and vessel control stations.</td>
<td></td>
</tr>
<tr>
<td>N. One person at the vessel control station is present who fluently speaks the language of the terminal control station.</td>
<td></td>
</tr>
<tr>
<td>O. The owner of the cargo hoses will insure test requirements have been met and that the hose has no loose covers, kinks, bulges, soft spots or gouges, cuts and slashes which penetrate the hose reinforcement and that hoses are marked for identification and test data is maintained in a test log.</td>
<td></td>
</tr>
<tr>
<td>P. Adequate lighting of the vessel and terminal work areas and manifold areas is provided.</td>
<td></td>
</tr>
<tr>
<td>Q. Persons in charge have held a conference to assure the mutual understanding of the following transfer operations:</td>
<td></td>
</tr>
<tr>
<td>.1. Product identity to be transferred.</td>
<td></td>
</tr>
<tr>
<td>.2. Sequence of transfer operation.</td>
<td></td>
</tr>
<tr>
<td>.3. Transfer rate of flow.</td>
<td></td>
</tr>
<tr>
<td>.4. Name or title and location of each person participating in the transfer operation</td>
<td></td>
</tr>
<tr>
<td>.5. Particulars of the transferring and receiving systems</td>
<td></td>
</tr>
<tr>
<td>.6. Starting, stripping, topping and shutdown have been discussed and understood</td>
<td></td>
</tr>
<tr>
<td>.7. Emergency procedures including notification, containment and cleanup of spills</td>
<td></td>
</tr>
<tr>
<td>.8. Watch and shift arrangements</td>
<td></td>
</tr>
<tr>
<td>.9. Notification before leaving stations</td>
<td></td>
</tr>
</tbody>
</table>

The following items are to be filled out by Vessel personnel only.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1. Warning signs and read warning signals (35.35-30).</td>
<td></td>
</tr>
<tr>
<td>.2. Repair work authorization (35.35-30).</td>
<td></td>
</tr>
<tr>
<td>.3. Boiler and galley fires safety (35.35-30).</td>
<td></td>
</tr>
<tr>
<td>.4. Fires or open flames (35.35-30).</td>
<td></td>
</tr>
<tr>
<td>.5. Safe smoking space (35.35-30).</td>
<td></td>
</tr>
</tbody>
</table>

I certify that I have read, understand and agree with the foregoing as marked and agree to begin/continue the transfer operation.

<table>
<thead>
<tr>
<th>PERSON IN CHARGE OF VESSEL</th>
<th>Signature</th>
<th>TIME</th>
<th>DATE</th>
<th>PERSON IN CHARGE OF FACILITY</th>
<th>Signature</th>
<th>TIME</th>
<th>DATE</th>
</tr>
</thead>
</table>

The operator of each facility and the operator of each vessel shall retain a signed copy for at least a month.