

Goal: Improve how well Environmental Impact Statements (EISs) and Environmental Assessments (EAs) address stormwater impacts in Hawaii

Principles

- Clarifying how stormwater impact assessment relates to the environmental review process
- Acknowledging how stormwater characteristics in Hawaii's varied environments may differ from mainland conditions
- Incorporating Best Management Practices and creative offsite practices that can be translated to permit conditions

Primary & Secondary Impact Assumptions

Primary (Direct)

- Occur at same time & place as cause
- Effects on project site
- Pertinent factors:
 - bare soil - impervious surface
- foreseeable • Offsite and down

Secondary

gradient from project • Examples:

• Occur later in time or

removed in distance but reasonably

- nutrient load - peak flow
- growth-inducing effects – ↑ sediment in down stream water body

Cumulative Impacts • Results from incremental impact of the

action when added to past, present, and reasonably foreseeable future actions

• Occurs within boundaries of a watershed

Relationship to State Planning Policies

- Hawaii State Plan Goal (HRS § 226-4 (2))
- Hawaii State Plan Priority Guideline (HRS §226-108)
- Federal Coastal Zone Management Act (HRS §205A-2)
- Significance Criteria (HAR §11-200-12)

Five-Step Framework

- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts
- 5. Summarize impacts & mitigation

Five-Step Framework

- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts

5. Summarize impacts & mitigation

Step 1: Gather pertinent data

<u>Objective:</u> Collect & document pertinent data about existing site & watershed conditions

Methodology: Use best available data and early consultation to document site and watershed hydrology, stressors and sensitivity. Document anticipated stormwater permit requirements as well as management programs that pertain to site and watershed resources.

	TIOW !
Site	Watershed
Site size	Watershed or sub-watershed name, boundary and area
Existing land use and land cover, including impervious surfaces and vegetation types	Land uses and existing land cover, including impervious surfaces and vegetation
soil(s) type(s); hydrological soils group(s); presence of soils categorized by NRCS as highly eradible	Soil (s) type(s); hydrological soils group(s); presence of soils categorized by NRCS as highly eradible
Drainogeways, perennial, intermittent and ephemeral stream channels within site	Perennial, intermittent and ephemeral stream channels that receive drainage from site either directly or indirectly
Wetlands, embayments, ponds	Wetlands, embayments, ponds
Coastal waterbodies that directly receive waters from site	Watershed's coastal receiving waters
site State land use designation(s) General Plan	State land use designation(s) General Plan
Designations (s) and zoning designations	Designations (s) and zoning designations
Slope and topography	Slope and Topography
Depth to water table	Direction of subsurface flows
Underground injection control line	Aquifer Name and sustainable yield. Sole Source aquifer?
Existing stormwater infrastructure	
Floodplain and FEMA flood hazard zones	Floodplain and FEMA flood hazard zone
Average annual rainfall and seasonal distribution	Existing data on peak flows; Existing data on stream flows
Evapotranspiration & interception transpiration	Evapotranspiration & interception transpiration

<section-header> Subscription Subscription 1 Image: Subscription of Subscripti

Pertinent Data: County Requirements

- City and County of Honolulu Overview
 - Grading Permits
 - Erosion and Sediment Control BMPs
 - Storm Drainage Standards
 - Flood Control (Quantity)
 - Stormwater Quality

- Exclusions to permit
- Erosion & sediment control BMPs
 - Height
 - Cut slopes
- Work daysDust control

- Debris prohibited

(1

- Fill slopesDistance from
 - om Water quality stds ne – Special reg's
- property line – Area opened
- Fills
- Vegetation
- Drainage provisions

Standards for Flood Control

Rules Relating to Storm Water Drainage, §1-4.2

Design Criteria

- Runoff must be limited to pre-development conditions unless...
 - Safely conveyed through existing structures
 - Increased volume would not have adverse downstream impacts
 - Open coastal receiving waters
- Design computations for flood control measures

Storm Drainage Standards Dept. of Planning & Permitting Rules (Sec 14-12.31 ROH)

Standards for Storm Water Quality (§1-5)

- Criteria
 - Applicability
- Design Standards
 - Volume based facilities
 - Flow based facilities
 - Area based facilities
 - Demand based facilities
 - Infeasibility criteria

Standards for Stormwater Quality Water Quality Criteria – Requirements

Rules Relating to Storm Water Drainage, §1-5.1

- \geq 1 ac. must address stormwater quality to MEP using:
- LID site design & post-construction treatment control BMPs
 - Site design strategies
 - Source control BMPs
- Regulated Projects
 - Priority A
 - Priority B

Standards for Stormwater Quality

Water Quality Criteria – Requirements Rules Relating to Storm Water Drainage, §1-5.1

- Management practices Priority A1
 - Incorporate appropriate LID Site Design Strategies to the MEP.
 - Incorporate appropriate Source Control BMPs to the MEP.
 - Unless determined to be infeasible, retain on-site with appropriate LID Retention Post-Construction Treatment Control BMPs.
 - Unless determined to be infeasible, biofilter with appropriate LID Biofiltration Post-Construction Treatment Control BMPs.

Standards for Stormwater Quality Water Quality Criteria – Requirements Rules Relating to Storm Water Drainage, §1-5.1						
Management practices – Priority B Consider appropriate LID Site Design Strategies.						
BMPs to the MEP.						
	Priority	Document	Submittal Re			
			Building Permit Apps	Const. Plan Approvals		
	Al	SWQR		1		
	A2	SWQC		1		
	В	SWQC	1			

Standards for Stormwater Quality	
Water Quality Criteria – Design Criteria	

Rules Relating to Storm Water Drainage, §1-5.2

- Volume based facilities
 - Infiltration Basins - Permeable Pavement
 - Infiltration
- Trenches - Subsurface Infiltration
- Green Roofs - Vegetated Bio-
- - **Filters** - Enhanced
- Systems - Dry Wells
- Swales
- Bioretention
- Detention Basins
- Basins
- Sand Filters

Standards for Stormwater Quality Water Quality Criteria – Design Criteria

Rules Relating to Storm Water Drainage, §1-5.2

- Flow based facilities - Vegetated swales
 - Vegetated filter strips
 - Manufactured treatment devices
- Area based facilities - Downspout disconnection
- Demand-based facilities - Harvesting/reuse

Standards for Stormwater Quality

Water Quality Criteria – Design Criteria Rules Relating to Storm Water Drainage, §1-5.2

- Landscaped areas
- Auto irrigation systems
- Storm drain inlets
- Vehicle/equipment fueling
- Outdoor material storage
 Outdoor work are

storage

- Vehicle/equipment
 Outdoor
- repair
- Vehicle/equipment washing/cleaning
- Outdoor work areas
 Outdoor process equipment operations

Loading docks

Outdoor trash

Parking areas

Step 1 – Hydrology

How much & where does the water flow? Flooding hazard:

Annual rainfall and seasonal distribution:

Step 1 – Hydrology

How much & where does the water flow? State LUD: Urban General Plan: Secondary

Urban Center Zoning: AG-1 & -2 Aquifer: Ewa Kunia Aquifer, caprock forces water down and mixes with seawater 100s ft below surface. Sole source.

Existing infrastructure: 17 culverts under Farrington Hwy drain to facilities at Honokai Hale, Campbell Industrial Park, Ko Olina

Step 1 – Stressors What are the potential sources of water pollutants?

303(d) water pollutants?
303(d) waterbodies? Yes, most western gulch*.
Waterbody classification:
Inland waters - Class 2

• Marine waters – Class A

*NOTE: fictionalized for training purposes

and hits

Step 1 – Sensitivity

How resilient are down gradient resources to pollutants?

Potentially impacted resources:

Five-Step Framework

- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts

all the

(2

5. Summarize impacts & mitigation

Step 2: Determine appropriate level of analysis

Objective: Determine what level of analysis is sufficient to give stormwater concerns appropriate consideration in the planning phase.

<u>Methodology:</u> Stormwater volume generated on site. Does the stressors + sensitivity + intensity = need for an estimate of volume of pollutants?

Step 2 – Watershed Impairment/Stressors

Has a TMDL been established for any stream segment in the sub-watershed or for the receiving waterbody?

Is there an impaired stream or waterbody in the sub-watershed that is classified as category 5 under §303(d) of the Clean Water Act?

Step 2 – Watershed Impairment/Stressors

Is there an impaired stream or waterbody in the sub-watershed that is classified as category 4a, 4b, 4c, or 3 under §303(d) of the Clean Water Act?

Step 2 – Watershed Sensitivity

Is the receiving waterbody:

- Designated Class 1 or Class AA?
- Subject to Hawaii's Local Action Strategy to Address Land Based Pollution Threats to Coral Reefs?
- Identified as sensitive on Hawaii
 Watershed Priority Project?

Step 2 – Watershed Sensitivity

Do site conditions or combination of site conditions lend themselves to excessive runoff?

Is the site subject to the City and County of Honolulu Stormwater standards (effective June 1, 2013)?

Step 2 - Development Intensity

Is the site located in a <u>small urban</u> watershed or <u>sub-watershed</u> (measuring no more than 1 square mile in area and anywhere between 25% and 100% impervious surfaces)?

Step 2 – Development Intensity

Is the action subject to an NPDES permit?

Is LEED® certification desired?

Is the action subject to a County Grading, Grubbing, Tree removal or Erosion and Sediment Control Permit?

Step 2 – Summary

- Analyze pre- and post-development volumes of pollutants of concern (impaired stream)
- Analyze pre- and post-development runoff, pre- and post-development pollutant volume (excessive runoff)
- Sufficient to prepare for applicable NPDES, grading, and LEED req's

Five-Step Framework

- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts
- 5. Summarize impacts & mitigation

Step 3: Analyze background information in light of the proposed action

(3

- 3a. Analyze primary (direct) impacts at the project scale
- 3b. Secondary impacts (offsite, down gradient)
- 3c. Cumulative impacts

Step 3a: Primary impacts

Objective: Discuss impacts & proposed mitigation during construction.

Discuss anticipated direct impacts from the proposed action

Step 3a: Primary impacts

 Construction impacts

- NPDES permit?
- Grading permit?
- Pre- vs. Postdevelopment Long-term impacts

Step 3b: Secondary impacts

Objective: The analysis of secondary impacts should assess:

- Potential for down gradient flooding
- Impacts to down gradient sensitive resources

Step 3c: Cumulative impacts

Objective: The analysis of cumulative impacts should assess the impacts on sensitive resources from all parts of the watershed relative to existing conditions and potential buildout.

Step 3c: Cumulative impacts

<u>Methodology:</u> Minimum planning-level assessment

- Assess existing status of sensitive resources
 - Discuss past actions
 - Discuss present actions
 - Discuss reasonably foreseeable future impacts

Step 3c: Cumulative impacts

Methodology: Small, urban watershed assessment

- Assess existing buildout relative to potential buildout
- Existing impervious area
- State LUD "Urban" as indicator of future imperviousness

(3

(3)

Step 3c: Cumulative impacts

<u>Methodology:</u> Watershed modeling for unique circumstances

- Necessity determined in Step 2
- Review for appropriate calculations and summarized results

Five-Step Framework

- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts
- 5. Summarize impacts & mitigation

Step 4: Identify mitigation goals & propose mitigation strategies

all A man

Objective: Integrate the primary, secondary, and cumulative impacts to determine the desired extent of mitigation, while considering site and watershed conditions to formulate mitigation strategies.

Identify mitigation goals

- Robust enough to support a FONSI
- Anticipate required permits
- Acknowledge role of engineering in design development

Clear in concept, but not overly prescriptive!

(4

(4

Identify mitigation goals

Mitigation performance criteria

- Maximum extent practicable
- Best available technology
- Range of outcomes

Five-Step Framework

- 1. Gather pertinent data
- 2. Determine appropriate level of analysis
- 3. Analyze background information in light of proposed project
- 4. Identify mitigation goals & propose mitigation concepts
- 5. Summarize impacts & mitigation

Step 5: Summarize impacts & mitigation applicable to project

(5

Objective: Documentation of impacts, mitigation measures and their projected results.

Methodology: The Draft EA or EIS should summarize all anticipated impacts as described in HAR §200-11(I.) as well as proposed mitigation strategy as described in HAR §200-11(M.)

28

Reviewer's Checklist Exercise

• Using the Reviewer's Checklist in Appendix C, analyze the provided example for completeness.

- ALINE

