Soil Carbon Inventory and Working Lands Baseline

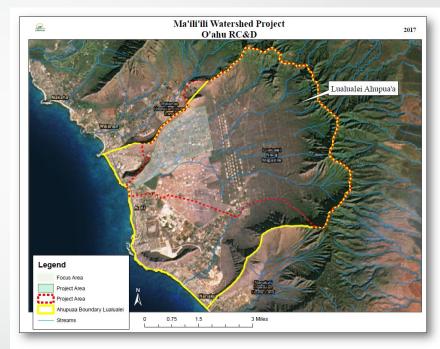
Joshua Silva Dr. Susan Crow
University of Hawaii College of Tropical Agriculture and Human Resources

Purpose

Development of data resources required to generate a baseline and short/long term benchmarks for increasing GHG sequestration, soil health, and yields in natural and working lands (e.g., pasture, agriculture, agroforests) in Hawaii's AFOLU sector

Scope of Work

- 1. Collect soil health, yield, and GHG sequestration data from a network of productive lands, farms, and ongoing trials as required for initialization of soil carbon-related planning tools
- 2. Compilation of available geospatially explicit datasets for soil carbon inventory and other attributes across natural and working lands (e.g., pasture, agriculture, agroforests


Project Approach: Phase I

- 1. Partner with ongoing projects to build baseline data network
 - Implementing soil-carbon-building practice
 - Over time
 - Diverse natural and working land types

- 2. Assist in measuring soil health parameters
 - Physical, chemical, biological

Networking Project Sites

- Ma`ili`ili-Kaiaka
 Watershed farms
 - Agricultural lands (Conventional, Organic)
 - Minimize soil erosion, nutrient loading

Networking Project Sites

2. Kako'o 'Oiwi

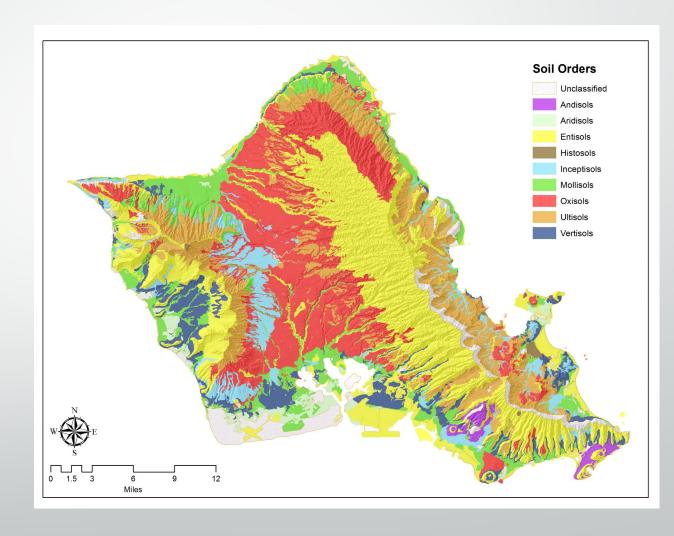
 Traditional agriculture, Agroecology restoration (400 acres)

Implemented Soil C Promoting Practices

Compost, Organic Soil Amendments

Cover Cropping

Agroecology Restoration



Samples Collected in Network

- Number collected= 194
- Islands= Oahu

Soil Types= Vertisols,
 Mollisols, Ultisols, Oxisols,
 Inceptisols

Analyses (currently)

	Recommended Indicator	Soil Function(s) Relation
Physical	Water holding capacity	Water infiltration and supply, medium for plant growth, soil life
	% Water-stable mega-aggregates	Carbon storage and cycling, medium for plant growth, water infiltration and supply, soil life
Chemical	% Total organic C	Carbon storage, soil life
	C:N	Soil life, nutrient cycling
Biological	24 hr CO ₂ burst	Soil life, nutrient cycling, carbon storage and cycling
	Hot water extractable organic C	Soil life, carbon storage and cycling
	Potentially mineralizable N	Soil life, nutrient cycling
	Beta-glucosiminidase	Soil life, nutrient cycling
	Beta-glucosidase	Soil life, nutrient cycling, carbon cycling

Next Steps

 Work with researchers to compile available datasets (i.e. National Cooperative Soil Survey, Rapid Carbon Assessment)

- Identify gaps in data

 Collect and analyze for soil health parameters
- Spring: Graduate student will develop GIS data layer for AFOLU sector with collaborating agencies and partners
 - Facilitate data decision support, policy tool development specifically for GHG sequestration in Hawaii soils, climate

Mahalo!

Joshua Silva
UH Cooperative Extension

jhsilva@hawaii.edu

Dr. Susan Crow

UH CTAHR

crows@hawaii.edu