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e Groundwater stable
isotope data can be
related to elevations
of recharge

e Understanding source,
flow, connectivity of
waters

e Can see areas of

potentially isolated
flow vs. mixing



Inland and coastal groundwaters
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Inland and coastal groundwaters
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Submarine groundwater discharge 8'°O signatures
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METHODS

Located and sampled coastal ... 0. --hoo  —roachoomals  —oerkesshos
springs 0

* Salinity corrected 8180 for
mixing with ocean

Kawaihae

* |dentified theoretical 0 : - - =
0 1000 2000 3000 4000
groundwater flow path evaton (™ okuhata, 2021

trajectories

* Quantified recharge along
flow paths

* Assigned 620 to
corresponding recharge
elevations based on

Elevation (m)

previously determined 680 o[ o

lapse rate T e %
* Integrated recharge until S

6180 of groundwater was 5180 _ Zine=1(81°0)n(R)n

matched SampLe int=1(R)N

‘Engott etal 2011
Scholl, 2002



%
O)
=

tal spr

IN COAas

a Anaehoomalu
+ Kiholo
o Keauhou

o Waimea

ial pattern of 'O

Spat




Spring flow is a mixture of recharge from different sources
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CONCLUSIONS
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dwater Dependent Ecosystems




Groundwater dependent ecosystems (GDEs)

Anchialine pools Loko i'a 7 Estuarlne nearshore ecosystems

PC: D. Malczom

PC: L. Bremer

*Gibson et al. (2022) Ecology and Society



GDEs are valued biocultural systems

“If you have anchialine pools in your ahupua‘a, especially in a place like North Kona, Kekaha Wai ‘Ole, you're
considered very wealthy, because you have access to water, you have access to a refrigerator, and you have the
source for your ‘Opelu fishing. ‘Opelu, the source for the people in this region.”

~Kanaka ‘Oiwi resource manager

Fig. 4. ‘Opae ‘ula (Halocaridina rubra), the anchialine pool shrimp, and associated values that span
all four social-ecological service categories.

‘Ike (knowledge from diverse sources):
learning about ecology and
cultural practices associated with ‘Opae ‘ula

pPilina kanaka (social connections):
community work days to
restore anchialine pools,
‘Opae ‘ula, and cultural practices
bring communities together

Mana (spirituality):
ancestral connections to
‘Opae ‘ula and associated

practices and spaces

Ola mau (well-being):
restoring anchialine pools and ‘opae ‘ula contribute
to physical and mental health and ecosystem health

Biocultural values of groundwater dependent ecosystems in Kona, Hawai'i

; 12 ; ) 23 ; , 2 / 4567 ' ")
Veronica L. Gibson o Leal L. Bremer o Kimberly M. Burnett , Nicole Keaka Lui and Celia M. Smith

1> Ecology and Society 2022



Limu as a nearshore GDE-dependent species

- Food, ceremony, medicine
— "It was a rare Hawaiian household that did not have some kind of limu at all times.”

-~ Dr. Isabella Aiona Abbott, La‘au Hawai‘i: Traditional Hawaiian Uses of Plants
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3. Linking climate, land and water management, and GDEs through

land-sea modeling




Land-sea modeling research team
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Study Area:
Keauhou Basal Aquifer
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Research Objectives

1. Understand the relative influence of a dry future climate (RCP 8.5
mid-century), groundwater pumping, and native forest protection on
nearshore water quality.

2. Assess how changes in nearshore water quality could impact the
distribution and abundance of limu palahalaha (Ulva lactuca), and an
invasive seaweed (Hypnea musciformis).

rieeeee gcientific reports

Water Resources Research’ ) —
RESEARCH ARTICLE  Effects of Multiple Drivers of Environmental Change on OPEN . )
10102972023 WRO34593 Native and Invasive Macroalgae in Nearshore Groundwater D |ve_rgen15 responses of native
e Dependent Ecosystems and invasive macroal gae
e ] Dot 5, A1, ELRadi, K. Stmout, K. M. Buraetf,C. A, Wada,and L. 1. Bremer O to submarine groundwater
| ' ' ‘ o discharge

21 Angela Richards Dona'™, Celia M. Smith' & Leah L. Bremer??
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Land-sea modeling framework: Parallel workflows
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23 Okuhata et al. (2023)



Ulva thrives in SGD conditions, Hypnea does not
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Land-sea modeling framework: Parallel workflows
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Climate change, groundwater pumping, and conversion of native

forest all reduce SGD and increase salinity
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S2: Urban Development

(relative to climate change)

Climate change, groundwater pumping, and conversion of native

forest all reduce SGD and increase salinity
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Scenario Comparisons:

Decrease SGD - Increase salinity - Increase nitrogen

Change in groundwater parameter

Scenario SGD quantity Average salinity Nitrogen

(m3/mo) (ppt) (kg/mo)
(Y Climate change -255,000 +2.5 +120
‘s’ (relative to baseline) (-7%N) (+15%A) (+3%A)




Scenario Comparisons:

Decrease SGD - Increase salinity - Increase nitrogen

Change in groundwater parameter
Scenario SGD quantity Average salinity Nitrogen
(m3/mo) (ppt) (kg/mo)
it IO e o
No forest protection + urban -255,000 +2.6 +5,700
(relgi?:tilgﬁagfhr::ge) pop- (-8%A) (+13%A4) (+122 %A)
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Increased salinity reduces habitat suitability for Ulva
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Increased salinity reduces habitat suitability for Ulva
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Increased salinity increases habitat suitability for Hypnea
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Summary land-sea modeling

e Climate change, pumping and invasion of native forest all reduce SGD quantity and increase
salinity. This decreases habitat for Ulva and increases it for Hypnea

e Implementation of sustainable groundwater management and forest protection are likely to

be effective ways to maintain low SGD salinity that favors Ulva and probably other native
coastal species.
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Conclusions

Isotope (8'%0) results suggest inter-aquifer groundwater flow, isolated mauka to

makai flows, and variation of water sources within aquifers

Isotope results suggest strong connection between basal and high-level aquifers,

and even with groundwater outside of the Keauhou aquifer

Groundwater dependent ecosystems are critical public trust resources with high
biocultural value that are influenced by changing SGD flows.

A native limu species (limu palahalaha) shows reduction in habitat with less SGD,
whereas an invasive macroalgae (Hypnea musciformis) thrives in low SGD
conditions.

GDE health can be measured, monitored, and modeled and can support adaptive
management

34
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