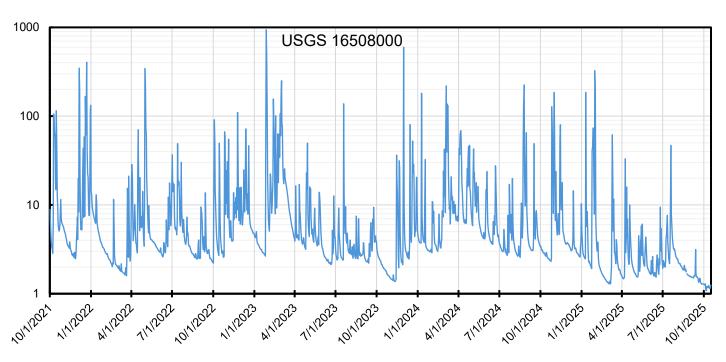


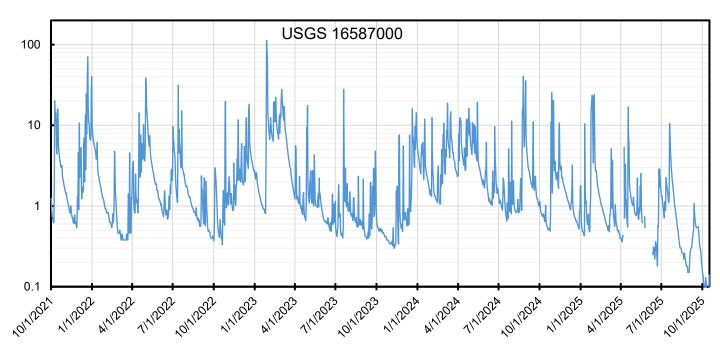
Nailiiliihaele Stream at USGS 16570000



	Q50	Q75	Q90	Q95
1984-2013 Climate Period	14 (9.1)	8.0 (5.2)	4.6 (3.0)	3.6 (2.3)
WY 2022-2025	8.9 (5.8)	5.0 (3.2)	2.9 (1.9)	1.9 (1.2)

^{*}values in cfs (mgd)

Hanawi Stream at USGS 16508000



	Q50	Q75	Q90	Q95
1984-2013 Climate Period	6.2 (4.0)	3.6 (2.3)	2.6 (1.7)	2.2 (1.4)
WY 2022-2025	3.8 (2.5)	2.6 (1.7)	1.8 (1.2)	1.5 (0.97)

^{*}values in cfs (mgd)

Honopou Stream at USGS 16587000

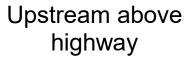
	Q50	Q75	Q90	Q95
1984-2013 Climate Period	2.0 (1.3)	1.8 (1.2)	1.6 (1.03)	1.3 (0.84)
WY 2022-2025	1.21 (0.78)	0.66 (0.43)	0.42 (0.27)	0.30 (0.19)

^{*}values in cfs (mgd)

Upper Kula System Streams

August 25, 2025

Haipuaena Stream above Waikamoi Flume



Nāhiku Streams

Pa'akea Stream

Makapipi Stream

Upstream above Koʻolau Ditch



Downstream below Koʻolau Ditch

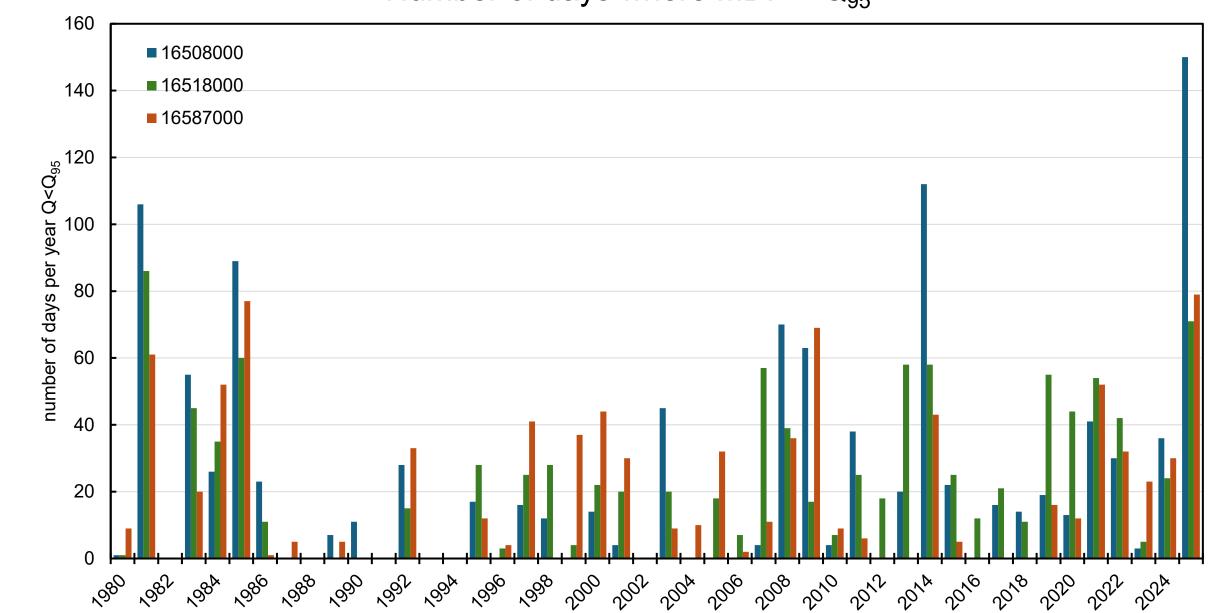
downstream above highway

Ha'ikū Streams

Halehaku Stream above Wailoa Ditch

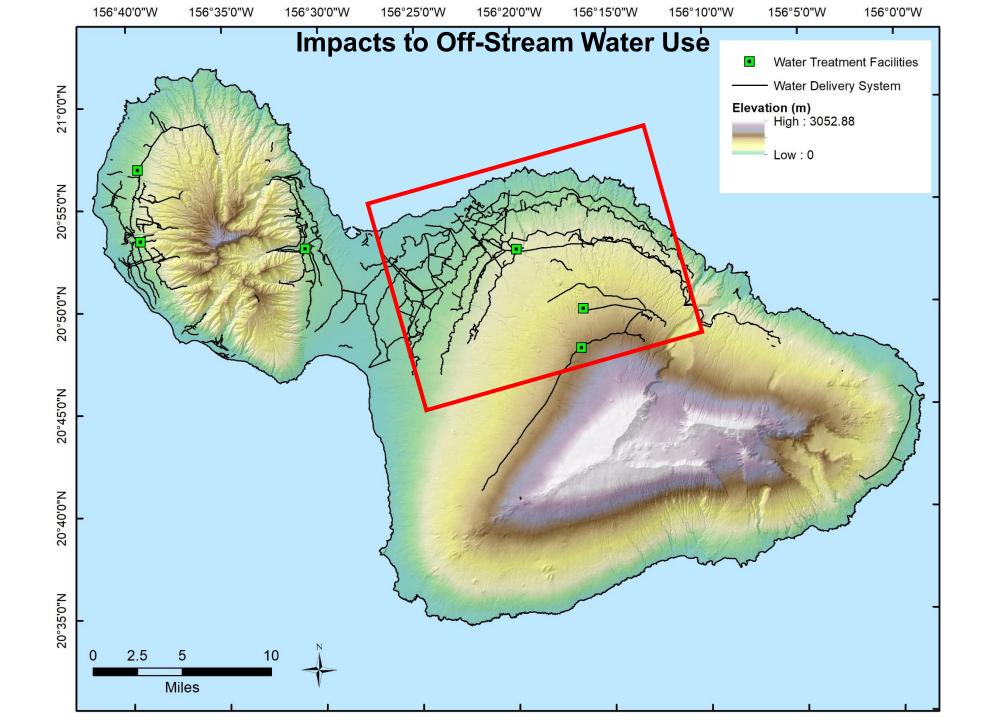
Wailoa Ditch Intake

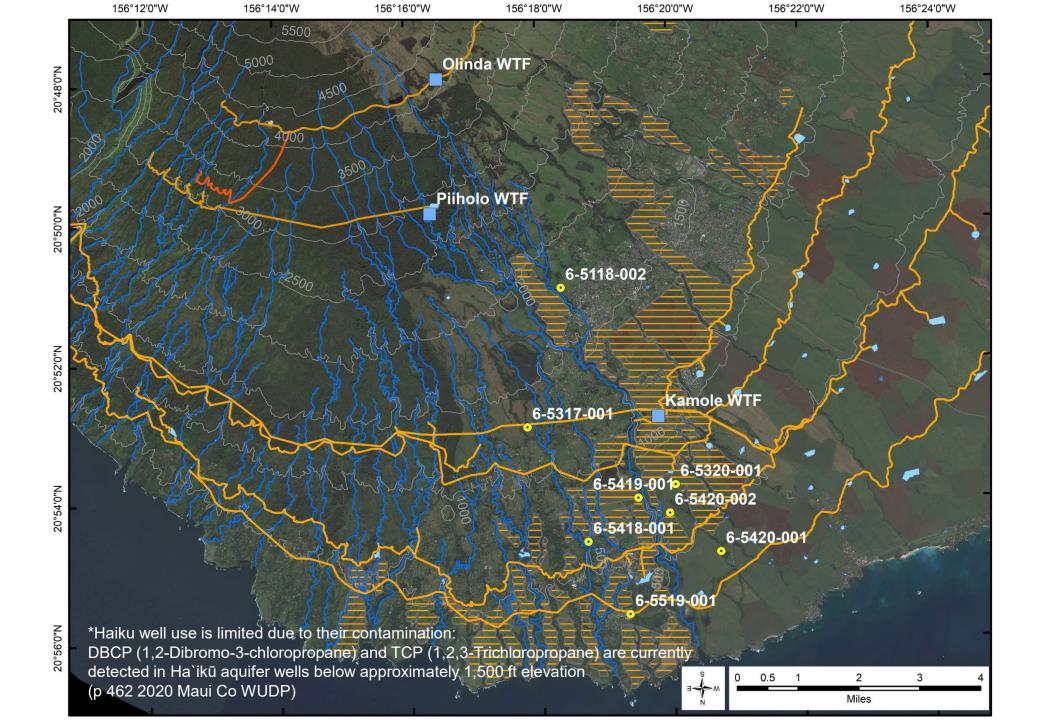
New Hāmākua Ditch Intake



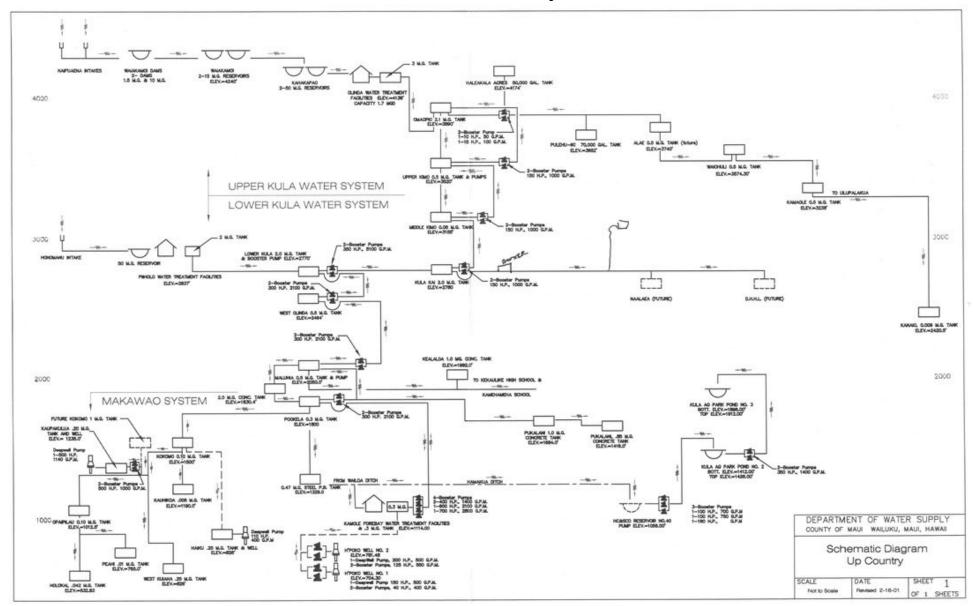
Opana Stream abv Wailoa Ditch

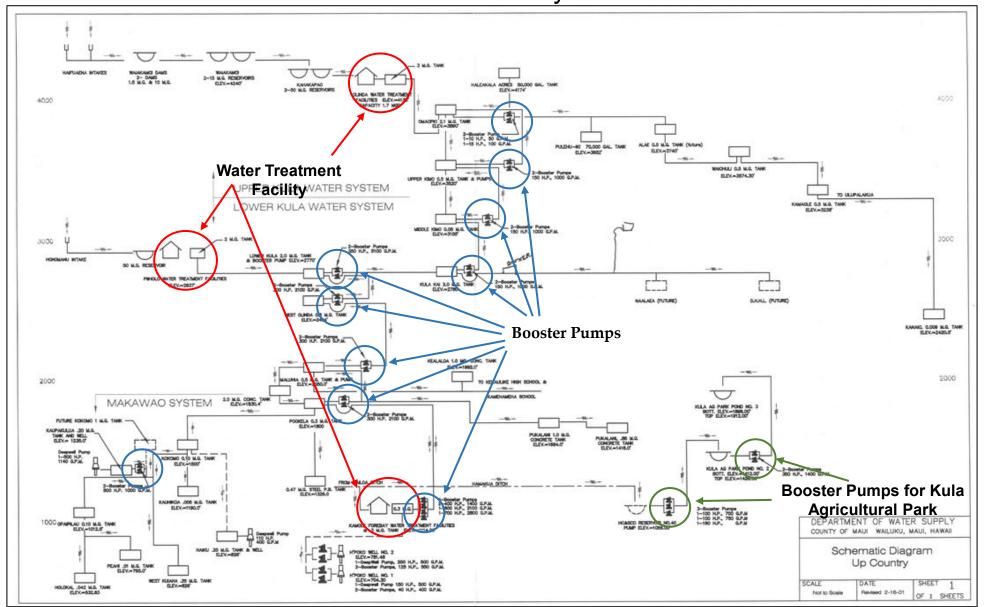
How "Historic" Is this Year? Number of days where MDF < Q₉₅




Impacts to Instream Water Use

- Reduced recreation and aesthetic value
 →still have waterfalls and plunge pools
- Reduced downstream flows for kalo production
 → Streams with recognized kalo production fully restored
- 3. Reduced habitat and recruitment for amphidromous species
 →amphidromous species are adapted to survive drought





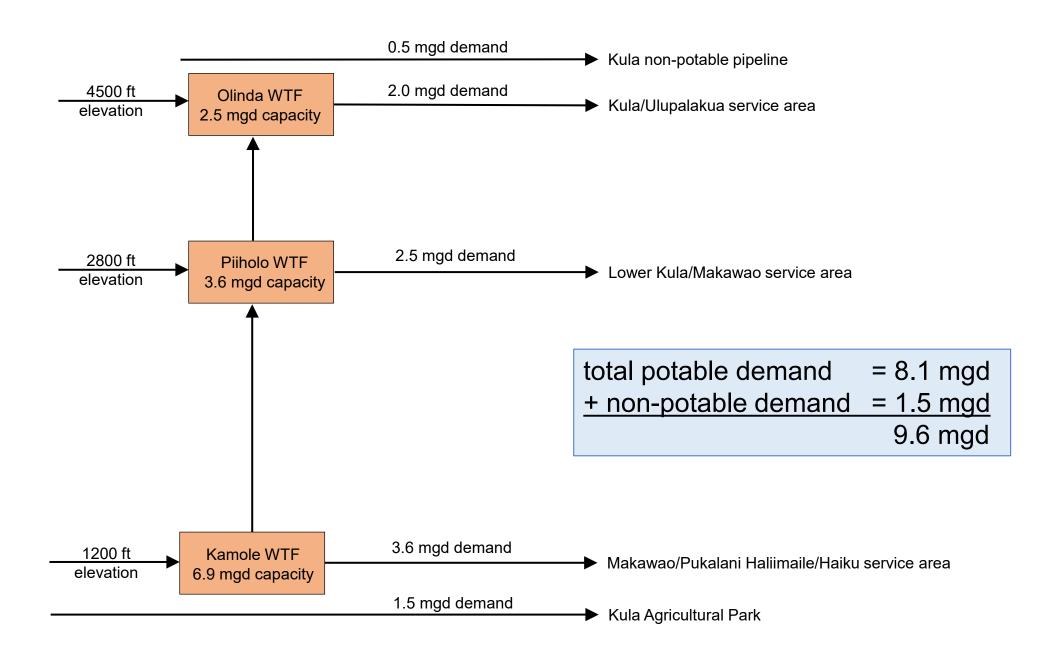
Maui County DWS Upcountry System Potable Water System

Maui County DWS Upcountry System Potable Water System

Maui DWS Upcountry Raw Water System

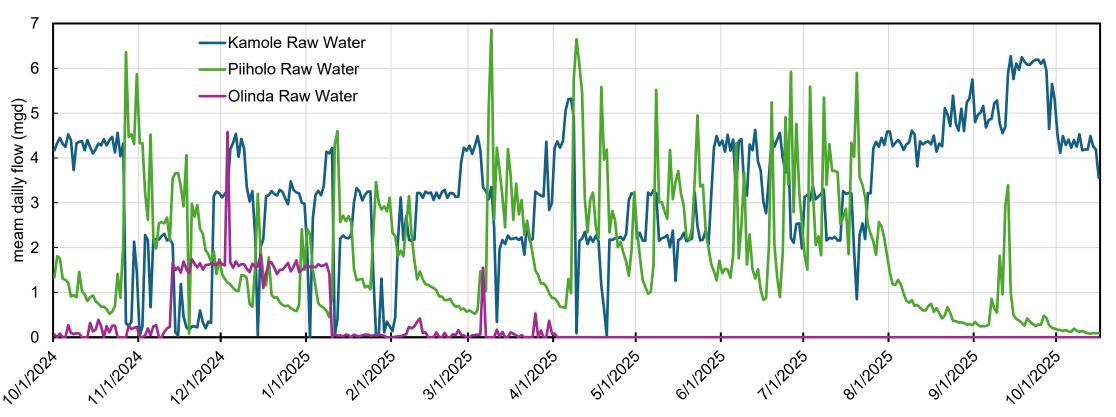
Olinda WTF (~2.0 mgd)
captures infrequent runoff events across 3 main streams
130 MG raw water storage reservoir

Piiholo WTF (~2.5 mgd)
captures large volumes of baseflow across 7 streams
50 MG raw water storage reservoir



Kamole WTF (2.0-6.0 mgd)
Utilizes flow from Wailoa Ditch from entire East Maui System
No raw water storage

Kula Agricultural Park (~1.5 mgd)



Water Year 2025 Maui DWS Upcountry Raw Water Inflow

Total Mean = 5.38 mgd

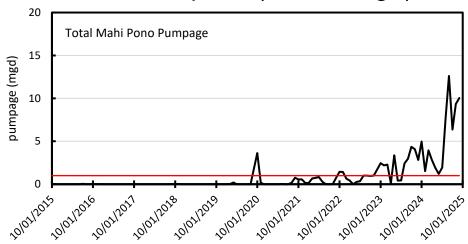
Total Median = 5.24 mgd

→ Demand = 8.1 mgd

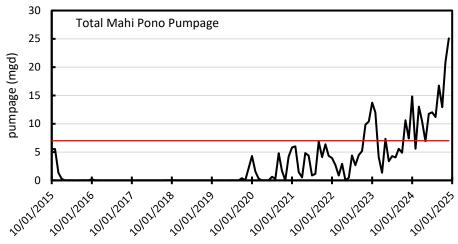
Kula Agricultural Park ~1.5 mgd

- Under the MOU between EMI and MDWS, MDWS can receive 12 mgd with an option for an additional 4 mgd, for a total of 16 mgd.
- During low-flow periods when ditch flows are greater than 16.4 mgd, both will receive a
 minimum allotment of 8.2 mgd. If these minimum amounts cannot be delivered, both will
 receive prorated shares of the water that is available.
- In recent periods of low Wailoa Ditch flow, EMI has not restricted the allotment of water to MDWS according to the terms of the agreement, and MDWS withdrawals have been limited only by the amounts of water available in the ditch and the physical limitations of the existing Kamole-Weir WTP intake structures.
- During drought conditions, MDWS may withdraw 6 mgd, and what remains is used by for irrigation.

Water Year 2025 Maui DWS Upcountry Raw Water Inflow


Mahi Pono stopped using surface water <u>August 28</u>

→ Using groundwater where possible



Mahi Pono Groundwater Usage

July 2025 = 6.375 mgd Aug 2025 = 9.342 mgd Sept 2025 = 10.040 mgd Paia Aquifer (SY = 7 mgd)

July 2025 = 12.935 mgd Aug 2025 = 20.887 mgd Sept 2025 = 25.086 mgd

Low-Flow Characteristics and Surface Water Availability in East Maui, Hawai'i June 2022 PR-2022-01

State of Hawaii
Department of Land and Natural Resources
Commission on Water Resource Management

Table 27. Summary of all low-flow duration discharge under current (1984-2013) climate conditions for natural or regulated streams at the Koʻolau/Spreckels/Wailoa Ditches and total water available following the implementation of the 2018 CWRM Decision & Order.

					Discharge, i		elected perce d discharge			50 percent)	Di .	
Stream	scenario	notes	Q50	Q55	Q ₆₀	Q ₆₅	Q ₇₀	Q75	Q ₈₀	Q ₈₅	Q90	Q95
Makapipi	1984-2013 flow	Natural flow										
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hanawi	1984-2013 flow	Natural flow	6.2	5.4	4.8	4.3	3.9	3.6	3.2	2.9	2.6	2.2
	2018 interim IFS	Available after implementation	5.3	4.5	3.9	3.4	3.0	2.7	2.3	2.0	1.7	1.3
Kapaula	1984-2013 flow	Natural flow	4.3	3.6	3.1	2.7	2.3	2.3	1.7	1.5	1.3	0.98
	2018 interim IFS	Available after implementation	3.7	3.0	2.5	2.1	1.7	1.7	1.1	0.94	0.74	0.42
Paakea	1984-2013 flow	Natural flow	1.5	1.4	1.3	1.2	1.0	0.90	0.78	0.68	0.54	0.40
	2018 interim IFS	Available after implementation	1.5	1.4	1.3	1.2	1.0	0.90	0.78	0.68	0.54	0.40
Waiohue	1984-2013 flow	Natural flow	5.2	4.7	4.4	4.2	3.9	3.7	3.4	3.2	2.9	2.5
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pua'aka'a	1984-2013 flow	Natural flow	0.97	0.83	0.73	0.64	0.57	0.52	0.48	0.45	0.42	0.40
	2018 interim IFS	Available after implementation	0.77	0.63	0.53	0.44	0.37	0.32	0.28	0.25	0.22	0.20
Kopiliula	1984-2013 flow	Natural flow	6.6	5.5	5.0	4.2	3.8	3.4	3.0	2.7	2.4	2.1
	2018 interim IFS	Available after implementation	3.4	2.3	1.8	1.0	0.60	0.20	0.0	0.0	0.0	0.0
East Wailuaiki	1984-2013 flow	Natural flow	7.7	6.9	5.9	5.3	4.6	4.2	3.6	3.2	2.8	2.1
	2018 interim IFS	Available after implementation	4.0	3.2	2.2	1.6	0.90	0.50	0.0	0.0	0.0	0.0
West Wailuaiki	1984-2013 flow	Natural flow	8.9	7.8	6.9	6.0	5.2	4.5	3.9	3.4	2.8	2.2
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
East Wailuanui	1984-2013 flow	Natural flow	3.1	2.7	2.4	2.0	1.7	1.5	1.3	1.1	0.91	0.65
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
West Wailuanui	1984-2013 flow	Natural flow	3.8	3.3	3.0	2.5	2.2	1.9	1.6	1.4	1.1	0.75
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waiokomilo	1984-2013 flow	Natural flow	6.1	5.3	4.6	3.9	3.3	2.8	2.3	2.0	1.5	1.1
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kano	1984-2013 flow	Natural flow	3.9	3.4	2.9	2.5	2.1	1.8	1.6	1.4	1.1	0.88
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hauʻoliwahine	1984-2013 flow	Natural flow	1.5	1.4	1.3	1.2	1.2	1.1	1.0	1.0	0.90	0.81
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 27. [continued]

				n ft³/s, for se the indicated					t)			
Stream	scenario	notes	Q ₅₀	Q55	Q ₆₀	Q ₆₅	Q ₇₀	Q 75	Q_{80}	Q ₈₅	Q ₉₀	Q ₉₅
Pi'ina'au	1984-2013 flow	Natural flow	0.38	0.32	0.28	0.23	0.19	0.16	0.13	0.11	0.09	0.06
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nuaailua	1984-2013 flow	Natural flow	0.46	0.38	0.33	0.28	0.25	0.22	0.21	0.20	0.19	0.19
	2018 interim IFS	Available after implementation	0.46	0.38	0.33	0.28	0.25	0.22	0.21	0.20	0.19	0.19
Honomanū: Banana Intake	1984-2013 flow	Natural flow	2.3	2.0	1.8	1.6	1.4	1.4	1.3	1.3	1.2	1.2
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Honomanū: Center Intake	1984-2013 flow	Natural flow	1.1	1.0	0.89	0.77	0.68	0.59	0.52	0.47	0.40	0.33
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Honomanū	1984-2013 flow	regulated flow	3.8	2.9	2.6	2.4	2.1	1.6	1.2	1	0.74	0.47
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Honomanū: High Falls Intake	1984-2013 flow	Natural flow	1.4	1.2	1.1	0.94	0.83	0.74	0.66	0.60	0.52	0.45
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kōlea/Punalau	1984-2013 flow	Natural flow	6.0	5.4	5.0	4.5	4.1	3.7	3.3	3.0	2.6	2.2
	2018 interim IFS	Available after implementation	3.8	3.2	2.8	2.3	1.9	1.5	1.1	0.8	0.4	0.0
Haipuaena	1984-2013 flow	regulated flow	4.8	4	3.3	2.9	2.8	2.3	1.7	1.6	1	0.62
	2018 interim IFS	Available after implementation	4.8	4	3.3	2.9	2.8	2.3	1.7	1.6	1	0.62
Puohokamoa	1984-2013 flow	regulated flow	8.7	7.1	6	5.7	5.3	3.7	2.5	2.3	1.7	0.96
	2018 interim IFS	Available after implementation	8.7	7.1	6	5.7	5.3	3.7	2.5	2.3	1.7	0.96
Alo	1984-2013 flow	Natural flow	2.5	2.1	1.7	1.5	1.3	1.2	0.96	0.82	0.69	0.53
Waikamoi	1984-2013 flow	regulated flow	6.6	3.3	2.5	2.1	1.7	1.3	0.91	0.55	0.41	0.22
	2018 interim IFS	Available after implementation	5.3	1.6	0.40	0.0	0.0	0.0	0.0	0.0	0.0	0.0
East Kōlea	1984-2013 flow	Natural flow	0.30	0.26	0.23	0.19	0.16	0.14	0.12	0.10	80.0	0.06
West Kōlea	1984-2013 flow	Natural flow	0.65	0.56	0.48	0.41	0.35	0.29	0.25	0.21	0.17	0.13
Kaʻaiea	1984-2013 flow	Natural flow	3.8	3.2	2.7	2.2	1.8	1.5	1.2	1.0	0.79	0.57
Makanali	1984-2013 flow	Natural flow	0.28	0.26	0.23	0.20	0.18	0.15	0.13	0.11	80.0	0.05
'O'opuola	1984-2013 flow	Natural flow	1.0	0.92	0.82	0.72	0.63	0.55	0.48	0.42	0.35	0.28
'O'opuola Tributary	1984-2013 flow	Natural flow	0.24	0.21	0.19	0.16	0.14	0.12	0.11	0.09	0.08	0.06
West 'O'opuola	1984-2013 flow	Natural flow	0.36	0.32	0.29	0.26	0.23	0.21	0.19	0.17	0.14	0.12

Table 27. [continued]

				D					me (from 5 l or exceede		nt)	
Stream	scenario	notes	Q ₅₀	Q55	Q_{60}	Q ₆₅	Q ₇₀	Q 75	Q_{80}	Q ₈₅	Q_{90}	Q ₉₅
Nailiilihaele	1984-2013 flow	Natural flow	13	11	9.9	8.5	7.3	6.2	5.3	4.5	3.7	2.8
Kailua	1984-2013 flow	Natural flow	7.8	6.8	5.9	4.9	4.2	3.8	3.2	2.5	2.0	1.4
Oanui	1984-2013 flow	Natural flow	1.7	1.5	1.3	1.1	0.89	0.72	0.58	0.46	0.32	0.18
East Hoalua	1984-2013 flow	Natural flow	1.1	0.98	0.87	0.76	0.67	0.58	0.51	0.44	0.37	0.29
Hoalua	1984-2013 flow	Natural flow	1.3	1.1	1.0	0.94	0.85	0.76	0.68	0.61	0.53	0.44
Hanehoi	1984-2013 flow	Natural flow	2.0	1.9	1.7	1.4	1.4	1.2	1.1	0.95	0.84	0.73
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waipio	1984-2013 flow	Natural flow	0.73	0.52	0.39	0.30	0.23	0.19	0.14	0.11	0.09	0.06
Hoolawaliilii	1984-2013 flow	Natural flow	3.3	3.1	2.8	2.5	2.3	2.1	1.9	1.7	1.5	1.2
Hoʻolawanui	1984-2013 flow	Natural flow	3.0	2.7	2.4	2.0	1.8	1.5	1.3	1.1	0.91	0.71
West Hoʻolawanui	1984-2013 flow	Natural flow	0.26	0.23	0.21	0.17	0.16	0.13	0.12	0.10	0.08	0.07
Honopou	1984-2013 flow	Natural flow	2.0	1.8	1.6	1.3	1.2	1.0	0.86	0.72	0.60	0.47
	2018 interim IFS	Available after implementation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maui Coun	ity Systems											
Upper Kula System*	1984-2013 flow	Natural flow	0.86	0.64	0.52	0.42	0.32	0.25	0.19	0.15	0.11	0.07
Lower Kula System	1984-2013 flow	Regulated flow	13.7	10.8	9.3	7.9	7.1	5.5	4.3	3.7	2.7	1.8
Koʻolau/Sprecko	els/Wailoa Ditch											
Total flow	1984-2013 flow	Natural flow	150	127	112	98	87	76	65	57	48	37
Total flow	1984-2013 flow	Available after implementation	94	76	65	55	48	41	33	29	23	17
Groundwater gair Manuel Luis/Cen												
Total flow	1984-2013 flow	regulated flow	9.5	8.5	7.7	6.2	5.7	4.8	4.2	3.5	3.0	2.4
		Available after implementation	7.1	6.3	5.7	4.6	4.2	3.5	3.0	2.6	2.2	1.7
Total flow	1984-2013 flow	Honopou to Māliko	6.4	5.4	4.7	4.0	4.0	3.6	2.8	1.5	1.4	0.95
EMI System b	pelow 2,000 ft											
Total flow	1984-2013 flow	Available before implementation	168	143	126	110	98	85	73	63	53	41
Total flow	1984-2013 flow	Available after implementation	107	88	75	64	56	48	39	33	27	20

^{*}only includes contributions from the three main stream intakes on Haipuaena, Middle Branch Puohokamoa, and Waikamoi

Off Stream Water Availability via the East Maui Irrigation System

1984-2013 Climate Period	Q50	Q75	Q90	Q95	Q99
Natural flow at Koʻolau/Wailoa Ditch	152 (98.2)	77 (49.8)	49 (31.7)	38 (24.6)	???
after 2018 IIFS implementation	94 (60.8)	41 (26.5)	23 (14.9)	17 (11.0)	???
after 2022 IIFS implementation	73 (46.9)	30 (19.4)	16.8 (10.9)	11.9 (7.7)	???

^{*}all values in cfs (mgd)

"The Commission also recognized that there are streams for which restoration of flow would not result in significant biological or ecological gains and that the water may be better used for noninstream uses. For those streams, a connectivity flow to allow for movement of instream biota, would be sufficient." COL 129 p. 259

"The Commission also recognized that there is significant value in the noninstream uses which include municipal use, which includes domestic use, and agricultural use. The value of the noninstream uses goes beyond mere economic value to the users, it supports uses that range from households, schools and hospitals to small truck farms and large agricultural concerns. It also ensures the continued presence of agriculture in central Maui, a value which has been incorporated by the community through its inclusion in the Maui Island Plan/General Plan 2030, the Countywide Policy Plan, and the various Community Plans." COL 130 p. 259.

"MTF supports the use of East Maui stream water for 'true agriculture." COL 107 p. 255 "Nā Moku agrees that the former sugar lands should be kept in agriculture." COL 108 p. 255 "Accordingly, the parties to this contested case do not dispute that keeping HC&S's former sugar lands in agriculture is in the public's best interest. COL 109 p. 255

"Our best estimate is that we have provided for about 90% of the irrigation needs for 23,000 acres of IAL (*important agricultural lands*)." Executive Summary p. *vi*

Problem:

→There is insufficient water to meet the stated objectives of the 2018 Decision and Order regarding water use from East Maui

→ Maui DWS needs "reliable supply" to meet potable water demand

Why isn't groundwater a solution?

Problem:

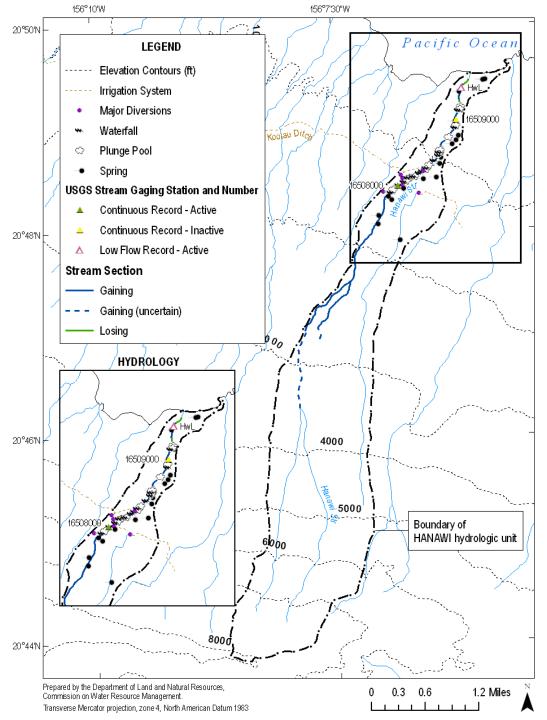
- →There is insufficient water to meet the stated objectives of the 2018 Decision and Order regarding water use from East Maui
- → Maui DWS needs "reliable supply" to meet potable water demand

Mahi Pono uses brackish groundwater for lower elevation fields

Why isn't groundwater a solution for DWS?

Water is heavy, so moving it to higher elevations such as where much of the Upcountry System is located, at 1000 to 4000 feet, from basal aquifers at sea level is projected to cost \$1.64 per thousand gallons for distribution from the Kamole-Weir WTP, \$4.07 per thousand gallons at the Piiholo WTP, and \$593 per thousand gallons at the Olinda WTP. MDWS's current charges for water only average about \$4 per thousand gallons

Problem:

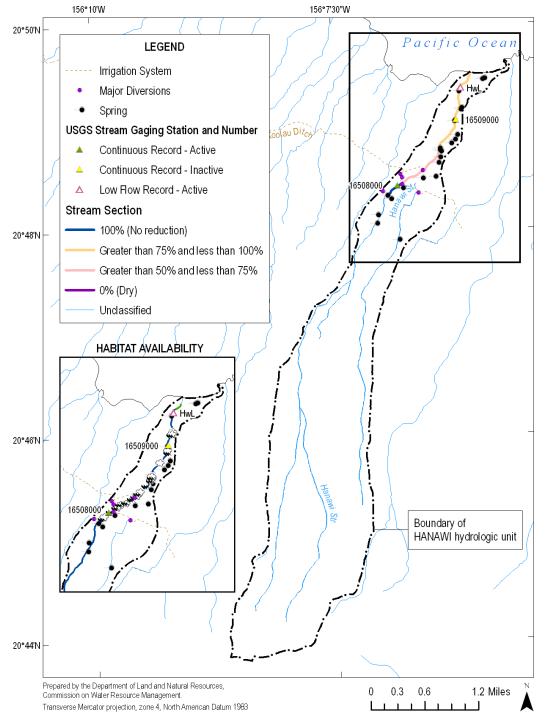

- →There is insufficient water to meet the stated objectives of the 2018 Decision and Order regarding water use from East Maui
- → Maui DWS needs "reliable supply" to meet potable water demand

Mahi Pono uses brackish groundwater for lower elevation fields

Why isn't groundwater a solution for DWS?

Solutions:

- 1. Modify diversions to capture more high flows for storage (and recommend BLNR support this)
- 2. Modify IIFS under low-flow conditions to ensure reliable supply
- → What streams would we look at? Streams with substantial groundwater gains below the diversion


Hanawi Stream

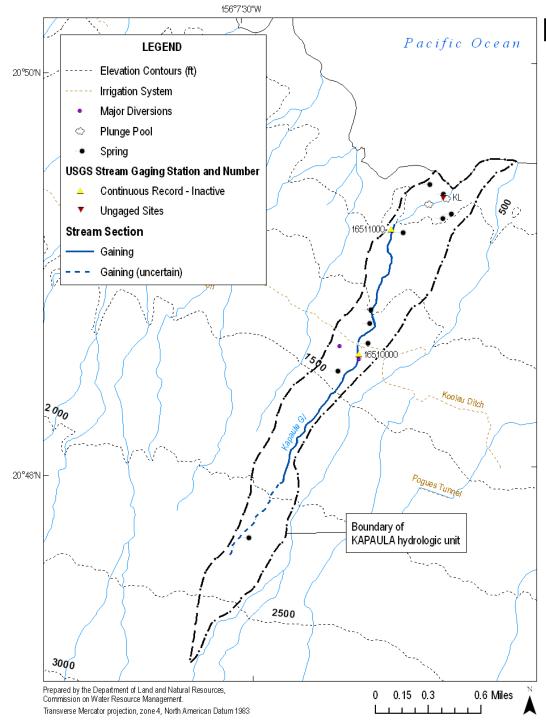
Estimates of natural (undiverted) streamflow statistics for gaged and ungaged stations in the hydrologic unit of Hanawi (Source: Gingerich, 2005).

Stream location	TFQ ₅₀	BFQ ₅₀	TFQ ₉₅	BFQ ₉₅	Source of estimate
lower (HwL)	32	26	22	19	Middle site estimate plus equation adj.; TFQ95: Middle site estimate plus
					low-flow measurements
middle (5090)	28	24	19	19	Continuous record gaging station plus upper site estimate
upper (5080)	7.1	4.6	2.4	2.2	Continuous record gaging station

Estimates of diverted stream flow statistics and percent flow reduction for gaged and ungaged stations in the hydrologic unit of Hanawi (Source: Gingerich, 2005)

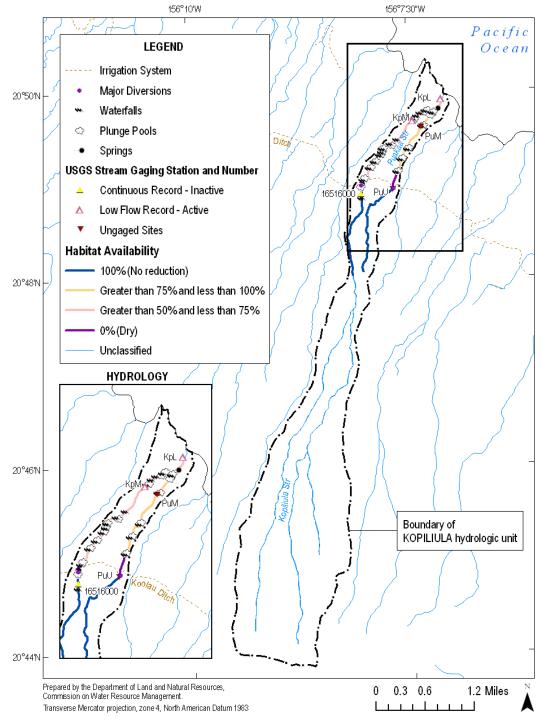
	TF	Q ₅₀	BF	\mathbf{Q}_{50}	TF	Q ₉₅	BF	Q ₉₅	
Stream location	Estimate	Percent reductio n	Estimate	Percent reductio n	Estimate	Percent reductio n	Estimate	Percent reduction	Comments
lower (HwL)	25	22	21	24	20	9	17	11	Diverted at Koolau Ditch
middle (5090)	19	33	19	21	16	16	16	16	Diverted at Koolau Ditch
upper (5080)	7.1	0	4.6	0	2.4	0	2.2	0	Not diverted

Hanawi Stream


Summary of relative base flow and available habitat in Hanawi Stream (Source: Gingerich and Wolff, 2005). [ft³/s is cubic foot per second]

Stream site	•• • • • • • • • • • • • • • • • • • • •		Median base flow diver flow flow remaining in stream (ft³/s) rel		Habitat available at diverted median base flow conditions relative to habitat available at natural	habitat relat available at n base-flow	d to produce ive to habitat atural median conditions ³ /s)	Amount of habitat relative to habitat available at natural median base-flow conditions with flow at percentage of natural base flow		
	Diverted	Natural	median base flow condition (% of natural habitat)	50% of natural habitat	90% of natural habitat	50% of natural base flow	90% of natural base flow			
lower	21	26	99 – 101	NA	NA	NA	99 – 101			
middle	11	16	99 – 101	NA	NA	NA	100 - 101			

"This is a gaining stream mostly as a result of ground water gains from spring input below the diversion. Hanawī provides excellent instream habitats and a diversity of native stream animals exist in the stream. Little benefit would be achieved from the release of more water past the diversion." COL146.a. p.265


Kapaula Stream

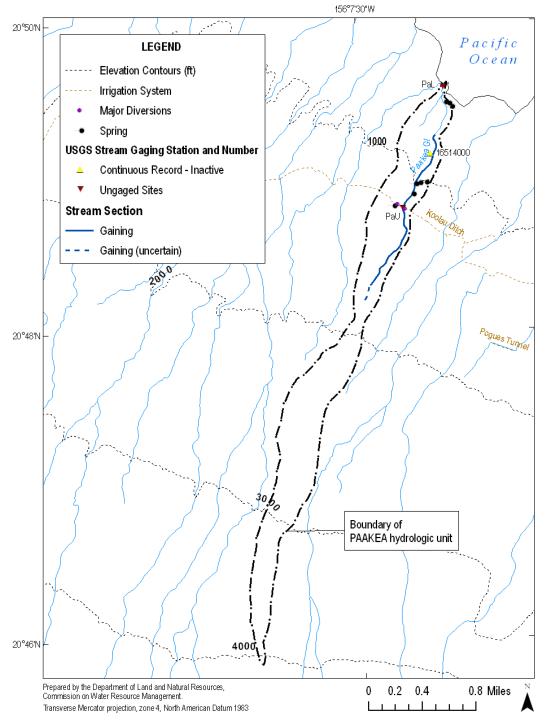
Estimates of natural (undiverted) streamflow statistics for gaged and ungaged stations in the hydrologic unit of Kapaula (Source: Gingerich, 2005). [ft³/s is cubic foot per second]

Stream location	TFQ ₅₀	BFQ ₅₀	TFQ ₉₅	BFQ ₉₅	Source of estimate
lower (KL)	8.3	5.7	3.5	3.2	Middle site estimate plus regression equation adj.
middle (5110)	7.5	5.1	3.3	3	Continuous record gaging station plus upper site estimate
upper (5100)	4.9	2.8	1.2	1.1	Continuous record gaging station

Estimates of diverted stream flow statistics and percent flow reduction for gaged and ungaged stations in the hydrologic unit of Kapaula (Source: Gingerich, 2005). [ft³/s is cubic foot per second]

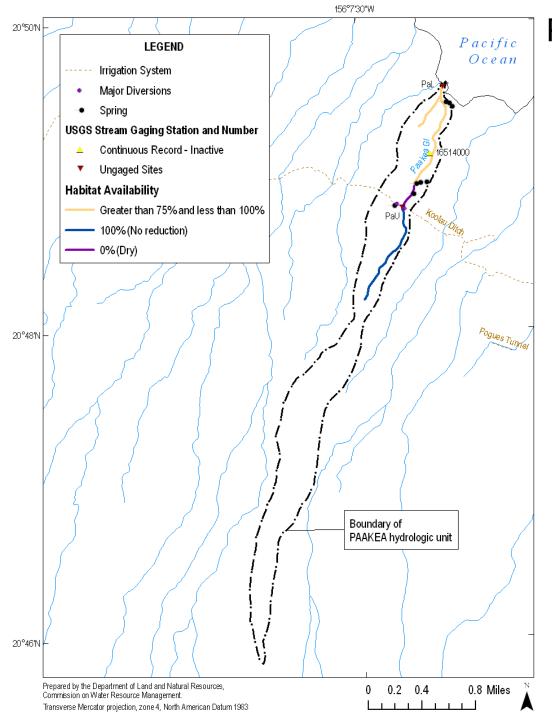
	TF	TFQ ₅₀		Q ₅₀	TF	Q ₉₅	BF	Q ₉₅		
Stream location	Estimate	Percent reductio n	Estimate	Percent reductio n	Estimate	Percent reductio n	Estimate	Percent reductio n	Comments	
lower (KL)	3.2	61	2.6	54	2.2	37	2.1	34	Diverted at Koolau Ditch	
middle (5110)	2.4	68	2.1	59	1.9	42	1.9	37	Diverted at Koolau Ditch	
upper (5100)	4.9	0	2.8	0	1.2	0	1.1	0	Not diverted	

Kapaula Stream


Summary of relative base flow and available habitat in Kapaula Stream (Source: Gingerich and Wolff, 2005). [ft³/s is cubic foot per second]

Stream site	Median base flow remaining in stream (ft ³ /s)		Median base flow at diverted conditions relative to median base	Habitat available at diverted conditions (excluding opae) relative to habitat available at	Habitat available for opae at diverted conditions relative to habitat available at natural
	Diverted	Natural	flow at natural conditions (% of natural conditions)	natural conditions (% of natural conditions)	conditions (% of natural conditions)
lower (KL)	2.6	5.7	46	83 - 73	86 – 82
middle (KM)	2.1	5.1	41	80 - 69	84 - 80

"There is a poor diversity of native stream animals, likely in part due to the terminal waterfall at the end of the stream. The biological rating is low. <u>Increasing streamflow is not anticipated to enhance overall productivity of the stream</u>." COL 146.a. p.263


Paakea Stream

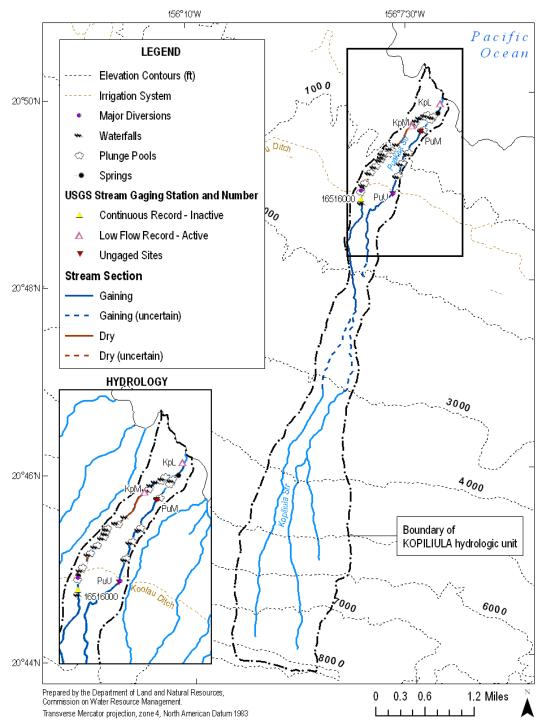
Estimates of natural (undiverted) streamflow statistics for gaged and ungaged stations in the hydrologic unit of Paakea (Source: Gingerich, 2005). [ft³/s is cubic foot per second]

Stream location	TFQ ₅₀	BFQ ₅₀	TFQ ₉₅	BFQ ₉₅	Source of estimate
lower (PaL)	6.5	5.5	4.1	4	Middle site estimate plus regression equation adj.
5140	5.5	4.7	3.5	3.4	Continuous record gaging station plus upper site estimate
upper (PaU)	1.5	0.9	0.5	0.4	Regression equation

Estimates of diverted stream flow statistics and percent flow reduction for gaged and ungaged stations in the hydrologic unit of Paakea (Source: Gingerich, 2005). [ft³/s is cubic foot per second]

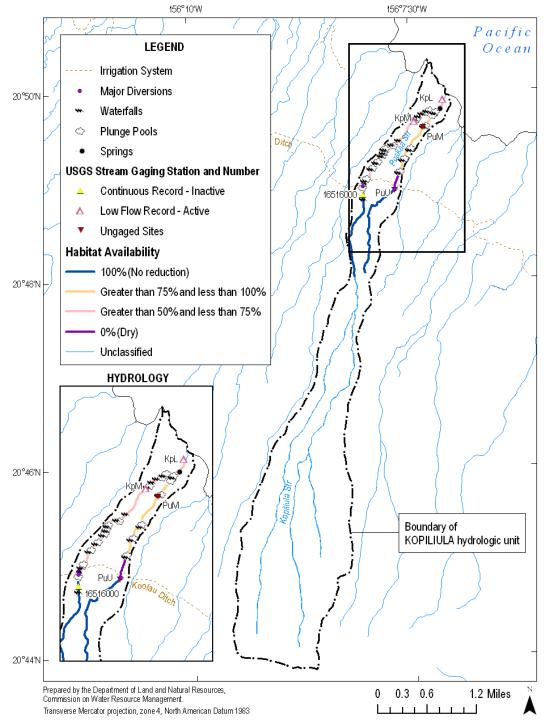
Stream location	TF	TFQ ₅₀		BFQ ₅₀		TFQ ₉₅		Q ₉₅	
	Estimate	Percent reduction	Comments						
lower (PaL)	5	23	4.6	16	3.6	12	3.6	10	Diverted at Koolau Ditch
5140	4	27	3.8	19	3	14	3	12	Diverted at Koolau Ditch
upper (PaU)	1.5	0	0.9	0	0.5	0	0.4	0	Not diverted

Paakea Stream


Summary of relative base flow and available habitat in Paakea Stream (Source: Gingerich and Wolff). [ft³/s is cubic foot per second]

Stream site	remai	base flow ning in n (ft³/s)	Median base flow at diverted conditions relative to median base	Habitat available at diverted conditions (excluding opae) relative	Habitat available for opae at diverted conditions relative to
	Diverte d	Natural	flow at natural conditions (% of natural conditions)	to habitat available at natural conditions (% of natural conditions)	habitat available at natural conditions (% of natural conditions)
lower (PaL)	4.6	5.5	84	101 – 94	99 – 97
middle (PaM)	3.8	4.7	81	100 - 93	99 - 96

"The lower reach of the stream has good streamflow, most likely from spring input. Most of the native stream animals were observed in the first plunge pool and lower reach leading to the ocean. While flow restoration may increase flow connectivity, it is not likely to enhance overall productivity of the stream or any substantial increase to estuarine habitat." COL 146.b. p. 264

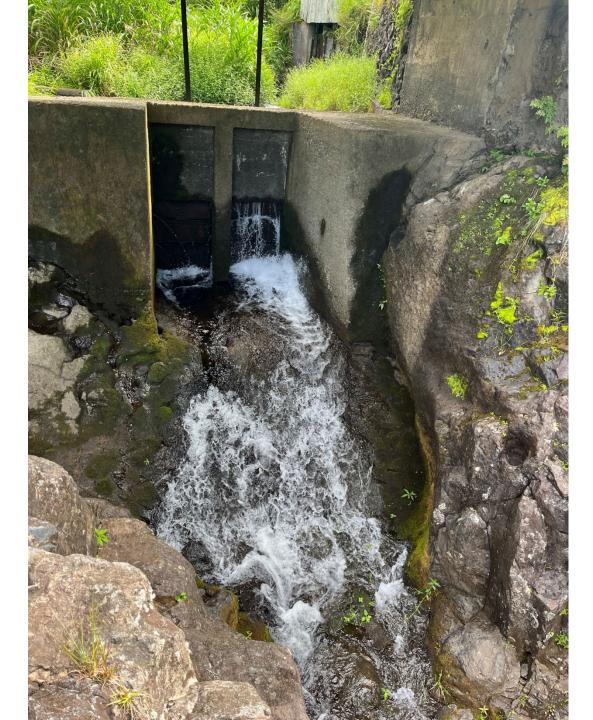

Kopiliula/Pua'aka'a Stream

Estimates of natural (undiverted) streamflow statistics for gaged and ungaged stations in the hydrologic unit of Kopiliula (Source: Gingerich, 2005). [ft³/s is cubic foot per second]

Stream location	TFQ ₅₀	BFQ ₅₀	TFQ ₉₅	BFQ ₉₅	Source of estimate
Kopiliula Stream					
lower (KpL)	15	9.5	5.5	3.8	Middle sites estimates plus equation adj.; TFQ95: Middle sites estimates plus low-flow measurements
middle (KpM)	10	6.5	3.4	2.3	Upper site estimate plus equation adj.; TFQ95: Upper site estimate plus low-flow measurements
upper (5160)	8	5	2.4	2	Continuous record gaging station
Puakaa Stream					
middle (PuM)	3.6	2.2	1.1	0.9	Regression equation; TFQ95: Upper site estimate plus low-flow measurement
upper (PuU)	1.9	1.1	0.6	0.5	Regression equation

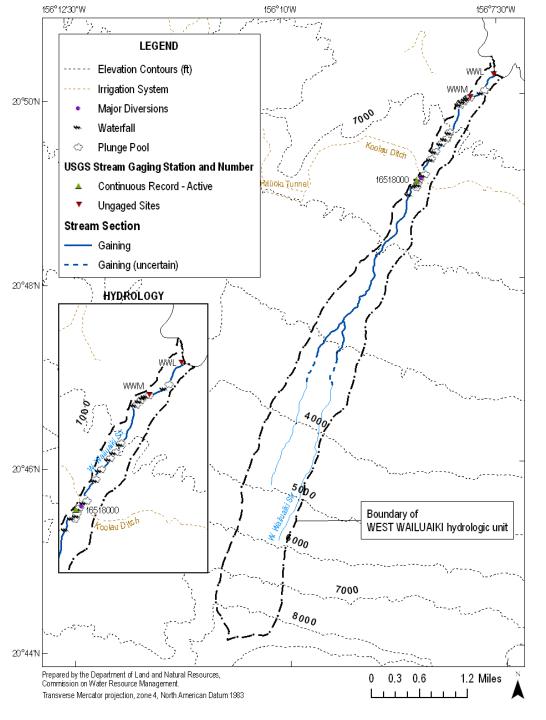
Estimates of diverted stream flow statistics and percent flow reduction for gaged and ungaged stations in the hydrologic unit of Kopiliula (Source: Gingerich, 2005). [ft³/s is cubic foot per second]

Stream	TF	Q ₅₀	BF	Q ₅₀	TF	Q ₉₅	BF	Q ₉₅	
location	Estimate	Percent reduction	Estimate	Percent reduction	Estimate	Percent reduction	Estimate	Percent reduction	Comments
Kopiliula Strea	<u>am</u>								
lower (KpL)	4.7	69	2.8	71	1.7	69	1.3	66	Diverted at Koolau Ditch
middle (KpM)	2	80	1.2	82	0.5	85	0.5	78	Diverted at Koolau Ditch
upper (5160) Puakaa Stream	8	0	5	0	2.4	0	2	0	Not diverted
middle (PuM)	1.7	53	1.1	50	0.6	45	0.34	62	Diverted at Koolau Ditch
upper (PuU)	1.9	0	1.1	0	0.6	0	0.5	0	Not diverted

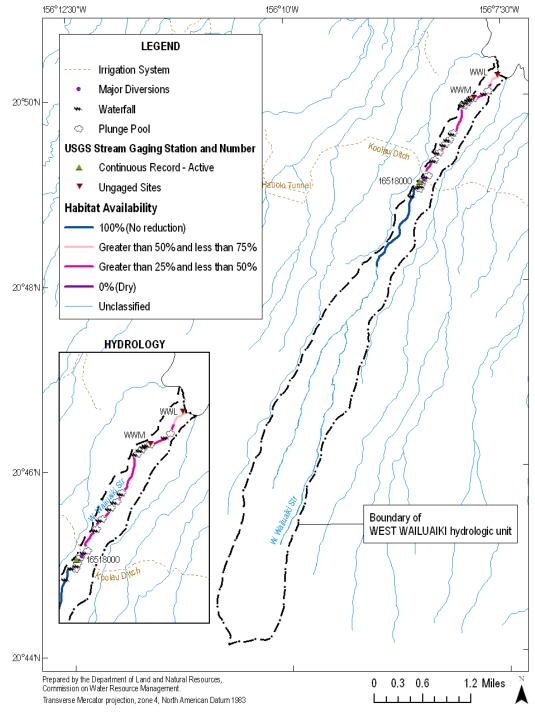


Kopiliula/Pua'aka'a Stream

Summary of relative base flow and available habitat in Kopiliula Stream (Source: Gingerich and Wolff, 2005). [ft³/s is cubic foot per second]


Stream site	remainin	base flow g in stream t ³ /s)	Habitat available at diverted median base flow conditions relative to habitat available at natural	habitat relat available at n base-flow	d to produce ive to habitat atural median conditions ³ /s)	Amount of habitat relative to habitat available at natural median base-flow conditions with flow at percentage of natural base flow	
	Diverted	Natural	median base flow condition (% of natural habitat)	50% of natural habitat	90% of natural habitat	50% of natural base flow	90% of natural base flow
lower	2.8	9.5	51 – 53	2.6 – 2.7	7.6 – 7.7	70 – 71	94 – 95
middle	1.2	6.5	51 – 52	1.1 – 1.2	4.8	77 – 78	96 - 97

The stream habitat availability model predicts that the stream already maintains over 50 percent of the natural habitat under diverted conditions.

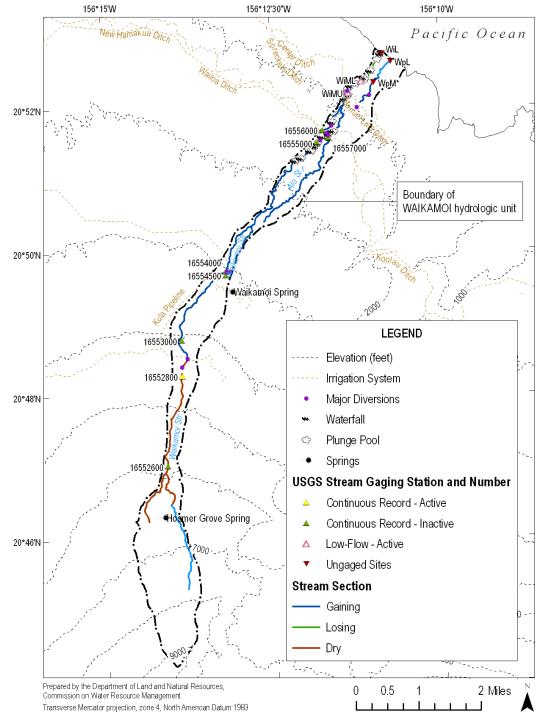

West Wailuaiki Stream

Estimates of natural (undiverted) streamflow statistics for gaged and ungaged stations in the hydrologic unit of West Wailuaiki (Source: Gingerich, 2005). [ft³/s is cubic foot per second]

Stream location	TFQ ₅₀	BFQ ₅₀	TFQ ₉₅	BFQ ₉₅	Source of estimate
lower (WWL)	12	7.2	3.5	2.4	Middle site estimate plus equation adj.; TFQ95: Middle site estimate
					plus low-flow measurement
middle (WWM)	11	6.8	3.3	2.3	Upper site estimate plus equation adj.; TFQ95: Upper site estimate
					plus low-flow measurement
upper (5180)	10	6	2.5	2.1	Continuous record gaging station

Estimates of diverted stream flow statistics and percent flow reduction for gaged and ungaged stations in the hydrologic unit of West Wailuaiki (Source: Gingerich, 2005). [ft³/s is cubic foot per second]

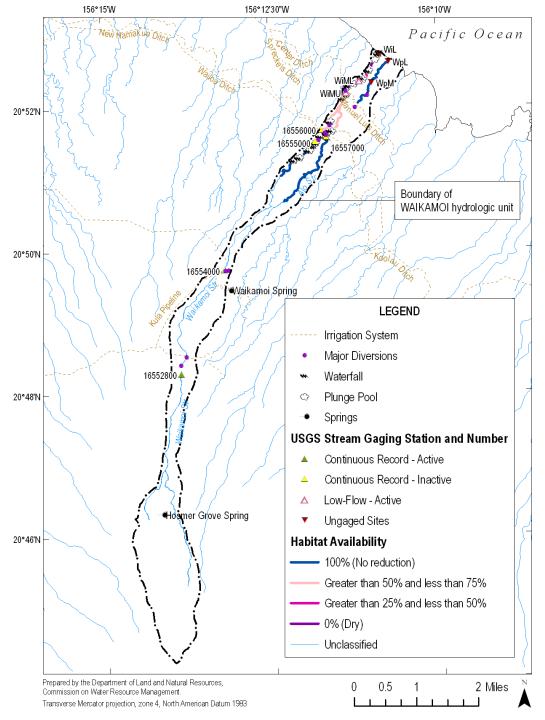
Ctroom	TFQ ₅₀		BFQ_{50}		TFQ_{95}		BFQ_{95}		
Stream location	Estimate	Percent reduction	Estimate	Percent reduction	Estimate	Percent reduction	Estimate	Percent reduction	Comments
lower (WWL)	1.9	84	1.2	83	0.3	91	0.3	87	Diverted at Koolau Ditch
middle (WWM)	1.2	89	0.8	88	0.2	94	0.2	91	Diverted at Koolau Ditch
upper (5180)	10	0	6	0	2.5	0	2.1	0	Not diverted



West Wailuaiki Stream

Summary of relative base flow and available habitat in Kapaula Stream (Source: Gingerich and Wolff, 2005). [ft³/s is cubic foot per second]

Stream site	Median b remaining (ft³/	in stream	Median base flow at diverted conditions relative to median base	Habitat available at diverted conditions (excluding opae) relative to habitat available at	Habitat available for opae at diverted conditions relative to habitat available at natural	
	Diverted	Natural	flow at natural conditions (% of natural conditions)	natural conditions (% of natural conditions)	conditions (% of natural conditions)	
lower (WWL)	1.2	7.2	17	55 – 45	67 – 63	
middle (WWM)	.80	6.8	12	49 – 39	63 - 59	

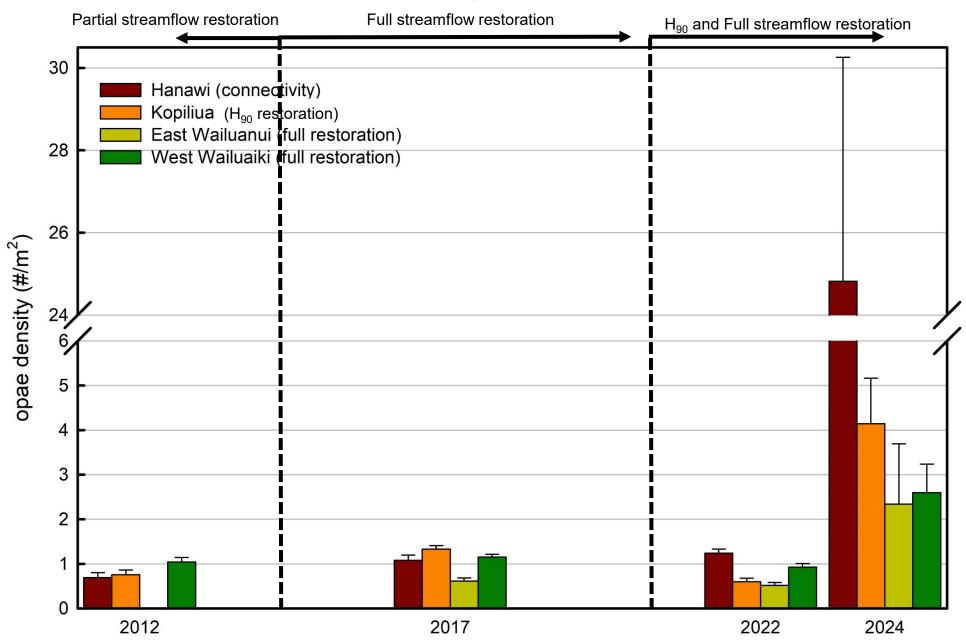

Waikamoi Stream

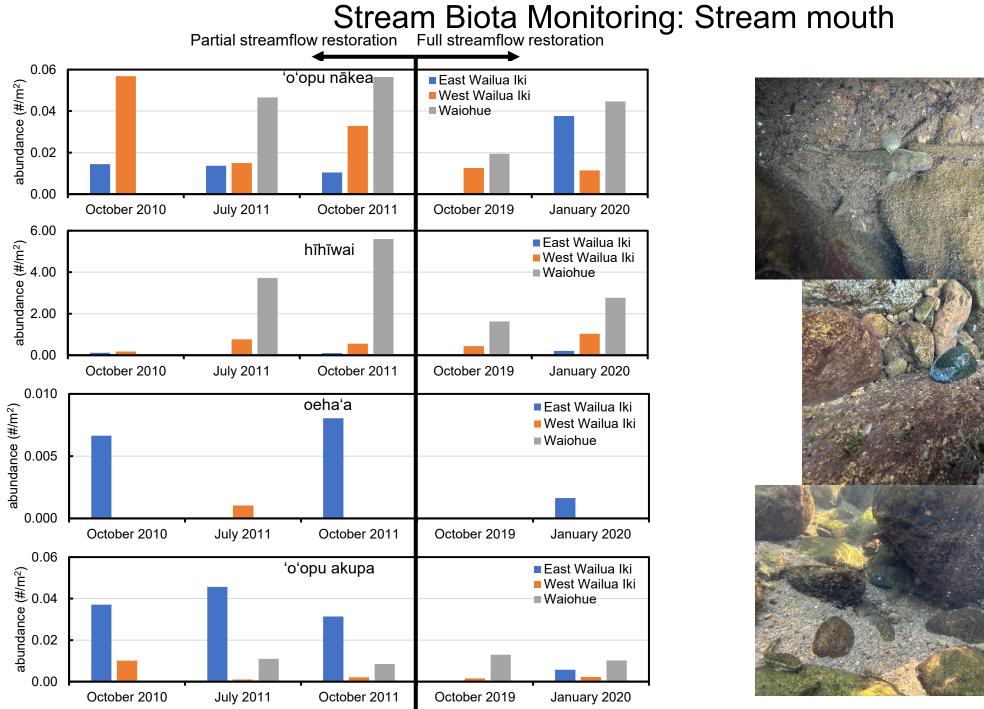
Estimates of natural (undiverted) streamflow statistics for gaged and ungaged stations in the hydrologic unit of Waikamoi (Source: Gingerich, 2005). [ft³/s is cubic foot per second]

Stream location	TFQ ₅₀	BFQ ₅₀	TFQ ₉₅	BFQ ₉₅	Source of estimate
Waikamoi Stream					
lower (WiL)	13	7	2.8	2	Middle-lower site estimate plus equation adj.; TFQ95, BFQ95: Middle-lower site estimate plus low-flow measurements
middle lower (WiML)	13	6.7	2.8	1.9	Middle-upper site estimate plus equation adj.; TFQ95: Middle-upper site estimate plus low-flow measurements
middle upper (WiMU)	12	6.6	2.6	1.9	Upper sites estimates plus low-flow measurements
upper (5550)	7	3.5	1.1	0.8	Continuous record gaging station
upper (5570)	2.7	1.5	0.7	0.6	Continuous record gaging station

Estimates of diverted stream flow statistics and percent flow reduction for gaged and ungaged stations in the hydrologic unit of Waikamoi (Source: Gingerich, 2005). [ft³/s is cubic foot per second]

Stream	TFQ_{50}		BF	Q ₅₀	TF	Q ₉₅	BF	Q ₉₅	
location	Estimate	Percent reduction	Estimate	Percent reduction	Estimate	Percent reduction	Estimate	Percent reduction	Comments
Waikamoi Strea	ı <u>m</u>								
lower (WiL)	0.8	94	0.5	93	0.2	93	0	100	Diverted at Manuel Luis Ditch
middle lower (WiML)	0.4	97	0.2	97	0.2	93	0	100	Diverted at Manuel Luis Ditch
middle upper (WiMU)	2.3	81	1.6	77	0.8	69	0.5	74	Diverted at Wailoa Ditch
upper (5550)	7	0	3.5	0	1.1	0	0.8	0	Minor upstream diversion
upper (5570)	2.7	0	1.5	0	0.7	0	0.6	0	Not diverted




Waikamoi Stream

Summary of relative base flow and available habitat in Kapaula Stream (Source: Gingerich and Wolff, 2005). [ft³/s is cubic foot per second]

Stream site		low remaining in m (ft³/s)	Habitat available at diverted median base flow conditions relative to habitat available at natural median base flow	relative to hab natural medi cond	produce habitat itat available at ian base-flow itions ³ /s)	Amount of habitat relative to habitat available at natural median base-flow conditions with flow at percentage of natural base flow		
	Diverted	Natural	condition (% of natural habitat)	50% of natural habitat	90% of natural habitat	50% of natural base flow	90% of natural base flow	
middle- lower	.20	6.7	27 – 46	.13 – 1.1	4.9 – 5.1	78 – 82	96	
middle- upper	1.6	6.6	56 – 57	1.2	3.8 - 4.1	81 - 84	99	

Stream Biota Monitoring: above Koolau Ditch

