Board of Land
and Natural Resources
Honolulu, Hawaii

Request for Authorization and Approval to Issue a Papahānaumokuākea Marine National Monument Research Permit to Dr. Christopher Bird, Texas A&M University – Corpus Christi, and Dr. Robert Toonen, Hawai‘i Institute of Marine Biology, University of Hawai‘i, for Access to State Waters to Conduct Intertidal Biodiversity Survey Activities

The Division of Aquatic Resources (DAR) hereby submits a request for your authorization and approval for issuance of a Papahānaumokuākea Marine National Monument research permit to applicants Dr. Christopher Bird, Assistant Professor, Texas A&M University – Corpus Christi, and Dr. Robert Toonen, Research Professor, Hawai‘i Institute of Marine Biology, University of Hawai‘i, pursuant to § 187A-6, Hawaii Revised Statutes (HRS), chapter 13-60.5, Hawaii Administrative Rules (HAR), and all other applicable laws and regulations.

The research permit, as described below, would allow entry and management activities to occur in Papahānaumokuākea Marine National Monument (Monument), including the NWHI State Marine Refuge and the waters (0-3 nautical miles) surrounding the following site:

- Nihoa Island
- Necker Island (Mokumanamana)
- French Frigate Shoals
- Gardner Pinnacles

The activities covered under this permit would occur between June 1, 2014 and May 31, 2015.

The proposed activities are largely a continuation of work previously permitted and conducted in the Monument. Newly proposed activities include the collection of three (3) new invertebrates for new laboratory analyses.

INTENDED ACTIVITIES

The applicants proposed research aims to accomplish the following objectives:

1. Collect complementary data on the intertidal ecosystem with a suite of research scientists, cultural practitioners, and resource managers;
2. Establish a baseline survey of intertidal ecosystems, specifically focused on ‘ōpihi species associations, relative abundance, and reproductive characteristics to better understand the implications and consequences of human impacts and natural processes;
3. Characterize the biodiversity of the Hawaiian intertidal zone and their connectivity to one another across the archipelago;
4. To determine ‘opiihi size at reproductive maturity and reproductive characteristics such as gonad index, and molecular composition of sperm-egg recognition proteins in the absence of human predation; and
5. Using ‘opiihi as a model system, to elucidate the mechanisms by which divergent selection can lead to adaptive radiation of marine species.

To fulfill these objectives, the applicants propose to survey a maximum of thirty (30) intertidal transects at each island and collect sixteen (16) target invertebrate species and one (1) macroalgal (limu) species. Table 1 outlines the specimen collections where three (3) species would be non-lethally sampled and the remaining specimens would be lethally sampled. The applicants are also proposing to collect voucher specimens of species they cannot visually identify or may represent a new geographic record or new species, in accordance with the Monument Voucher Specimen Guidelines. Additionally, the team would snorkel within 0 to 20 m of the shoreline in teams of four to perform observational fish survey transects; no collections would be performed with these surveys.

The following new activities are proposed:
1. Collection of forty-eight (48) per island of each invertebrate in Table 1, with the exception of twenty-five (25) individual Cellana extarata from French Frigate Shoals. Tissue from all invertebrates collected would be preserved for laboratory genetic analysis; and
2. Collected ‘opiihi gonad tissue would be tested in the laboratory for gamete recognition proteins and these data would be correlated to human population densities nearby to test for human impacts.

Table 1: Proposed organisms collection list.

<table>
<thead>
<tr>
<th>Common name</th>
<th>Hawaiian name</th>
<th>Scientific name</th>
<th>Sampling</th>
<th>Island</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nihoa</td>
<td>Mokumanamana</td>
</tr>
<tr>
<td>Black purse shell</td>
<td>nahawele</td>
<td>Isognomon californicum</td>
<td>Lethal</td>
<td>48</td>
</tr>
<tr>
<td>Calyx bubble</td>
<td></td>
<td>Smaragdinella calyculata</td>
<td>Lethal</td>
<td>48</td>
</tr>
<tr>
<td>Thin shell rock crab</td>
<td>‘a‘ama</td>
<td>Grapsus temicrustatus</td>
<td>Non-lethal</td>
<td>48</td>
</tr>
<tr>
<td>Rock octopus</td>
<td>he‘e pali</td>
<td>Octopus oliveri</td>
<td>Non-lethal</td>
<td>48</td>
</tr>
<tr>
<td>Day octopus</td>
<td>he‘e mauli</td>
<td>Octopus cyanea</td>
<td>Non-lethal</td>
<td>48</td>
</tr>
<tr>
<td>Spotted drupe</td>
<td>makaloa</td>
<td>Drupa ricina</td>
<td>Lethal</td>
<td>48</td>
</tr>
<tr>
<td>Hawaiian periwinkle</td>
<td></td>
<td>Echinolittorina hawaiensis</td>
<td>Lethal</td>
<td>48</td>
</tr>
<tr>
<td>Common name</td>
<td>Hawaiian name</td>
<td>Scientific name</td>
<td>Sampling</td>
<td>Nihoa</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Spotted periwinkle</td>
<td>pipipi kōlea</td>
<td>Littoraria pintado</td>
<td>Lethal</td>
<td>48</td>
</tr>
<tr>
<td>Black nerite</td>
<td>pipipi</td>
<td>Nerita picea</td>
<td>Lethal</td>
<td>48</td>
</tr>
<tr>
<td>False opithi</td>
<td>tʻopihitʻalinalina</td>
<td>Siphonaria normalis</td>
<td>Lethal</td>
<td>48</td>
</tr>
<tr>
<td>Yellowfoot ʻopihitʻopihitʻalinalina</td>
<td>Cellana exarata</td>
<td></td>
<td>Lethal</td>
<td>144</td>
</tr>
<tr>
<td>Blackfoot ʻopihitʻopihimakaauli</td>
<td>Cellana sandwicensis</td>
<td></td>
<td>Lethal</td>
<td>144</td>
</tr>
<tr>
<td>Shingle urchin</td>
<td>hāʻukeʻuk e kaupali</td>
<td>Colobocentrotus atratus</td>
<td>Lethal</td>
<td>48</td>
</tr>
<tr>
<td>Oblong urchin</td>
<td>ʻina uli</td>
<td>Echinometra oblonga</td>
<td>Lethal</td>
<td>48</td>
</tr>
<tr>
<td>Rock-boring urchin</td>
<td>ʻina kea</td>
<td>Echinometra mathaei</td>
<td>Lethal</td>
<td>48</td>
</tr>
<tr>
<td>Crown-of-thorns seastar</td>
<td>Acanthaster planci</td>
<td></td>
<td>Lethal</td>
<td>48</td>
</tr>
<tr>
<td>Miscellaneous algae</td>
<td>limu</td>
<td></td>
<td>Non-lethal</td>
<td>1,000</td>
</tr>
</tbody>
</table>

The time period request, twelve (12) days, would coincide with proposed permit for Shauna Kēhaunani Springer (PMNM-2014-020) and Pelika Bertelmann (PMNM-2013-023). This project would be a collaboration of efforts from Na Mamo o Muoleʻa, The Nature Conservancy, Hawaiʻi Institute of Marine Biology, Na Maka o Papahanaumokuakea, Conservation International-Hawaii Fish Trust, Texas A&M and the NOAA Papahanaumokuakea Marine National Monument. This activity would benefit the management of the Monument as it facilitates cultural access, use, and understanding of the place.

The activities proposed by the applicants directly support the Monument Management Plan’s priority management need 3.1 – Understanding and Interpreting the NWHI, 3.1.1 – Marine Science Action Plan, Activity MCS-1.5: Measure connectivity and genetic diversity of key species to enhance management decisions. This Activity emphasizes the importance of understanding connectivity and genetic diversity to effectively manage for changes in the environment.

The activities described above may require the following regulated activities to occur in State waters:
- Removing, moving, taking, harvesting, possessing, injuring, disturbing, or damaging any living or nonliving Monument resource
Drilling into, dredging, or otherwise altering the submerged lands other than by anchoring a vessel; or constructing, placing, or abandoning any structure, material, or other matter on submerged lands
Discharging or depositing any material or matter into the Monument
Swimming, snorkeling, or closed or open circuit SCUBA diving within any Special Preservation Area or Midway Atoll Special Management Area

REVIEW PROCESS

The permit application was sent out for review and comment to the following scientific and cultural entities: Hawaii Division of Aquatic Resources, Hawaii Division of Forestry and Wildlife, Papahānaumokuākea Marine National Monument (NOAA/NOS), NOAA Pacific Islands Regional Office (NOAA-PIRO), United States Fish and Wildlife Service Hawaiian and Pacific Islands National Wildlife Refuge Complex Office, and the Office of Hawaiian Affairs (OHA). In addition, the permit application has been posted on the Monument Web site since March 17, 2014, giving the public an opportunity to comment. The application was posted within 40 days of its receipt, in accordance with the Monument’s Public Notification Policy.

Comments received from the scientific community are summarized as follows:

Scientific reviews support the acceptance of this application.

The following questions were raised:

1. How/do the applicants monitor their collections to ensure that no one site is overharvested? Are sites monitored over time (for example, through comparison of photographs) to determine whether areas experiencing collection are re-populated?

The applicants state that this is an excellent set of questions. Collections are spread over 40-100 meters of coastline, ensuring that no one location is left bare. As stated in the proposal, the applicants’ collections do not exceed 1% of the total population and in the majority of cases, the collections represent a small fraction of a percent of the population. The applicants’ transect surveys are often conducted in the same areas as the collections and we have detected no effect of the collections on population density.

2. With the permit application being a continuation of work already permitted in the Monument, please provide a reference as to how many total sampling expeditions are expected to establish an adequate baseline.

The applicants state that again, this is an excellent question. 10 years. The applicants take one trip per year and get a maximum of 2.5 days on each island we visit each year. Puhahonu has only been surveyed once for 4 hours in 2009. Because ‘opihi spawn on the new moon, the applicants’ surveys have occurred during a different month each year. 10 years will enable that the applicants survey PMNM two times in each of the 5 months (May-September) where intertidal surveys are prudent. Replication of the timing of observations will allow them to
associate patterns in opihī population and intertidal community variation with the time of the year.

3. The application references "laboratory examination of the samples" taken under near shore fish surveys (Procedures/Methods, Paragraph 4, last sentence) but no mention of sample collection is made in the fish survey description and possession of fishing gear is not checked under section 5b, no specialized gear is listed that would allow for sample collection of fish, and no fish are listed under section 9a. Will fish samples be taken during fish surveys? If so, what are the collection methods, gear, and species? If not, that reference should be deleted so this section reflects planned activities.

The applicants thank reviewers for catching this error. The applicants are not sampling or taking any fish. The permit has been amended as recommended on Page 15. The applicants used track changes so that the deleted statement can be confirmed.

Comments received from the Native Hawaiian community are summarized as follows:

Cultural reviews support the acceptance of this application. No concerns were raised.

Comments received from the public are summarized as follows:

No comments were received from the public on this application.

Additional reviews and permit history:

Are there other relevant/necessary permits or environmental reviews that have or will be issued with regard to this project? (e.g., MMPA, ESA, EA) Yes [x] No []

If so, please list or explain:

- The proposed activities are in compliance with the National Environmental Policy Act.
- The proposed activities are in compliance with the National Historic Preservation Act.
- An ESA section 7 consultation was completed July 8, 2011 and remains valid through 2015. On July 3, 2012, consultation was re-initiated to account for the presence of hawksbill turtles, update BMPs, and highlight new aspects of the joint Toonen/Bird permit application and S. Kēhaunani Springer’s permit application. A NMFS letter of concurrence was issued on August 27, 2012, to remain valid through 2015.
- The Department has made an exemption determination for this permit in accordance chapter 343, HRS, and Chapter 11-200, HAR. See Attachment ("DECLARATION OF EXEMPTION FROM THE PREPARATION OF AN ENVIRONMENTAL ASSESSMENT UNDER THE AUTHORITY OF CHAPTER 343, HRS AND CHAPTER 11-200 HAR, FOR PAPAHĀNAUKOA MARINE NATIONAL MONUMENT RESEARCH PERMIT TO DR. CHRISTOPHER BIRD, TEXAS A&M UNIVERSITY – CORPUS CHRISTI, AND DR. ROBERT TOONEN, HAWAI‘I INSTITUTE OF MARINE BIOLOGY, UNIVERSITY OF HAWAI‘I, FOR ACCESS
TO STATE WATERS TO CONDUCT INTERTIDAL BIODIVERSITY SURVEY ACTIVITIES UNDER PERMIT PMNM-2014-026.”

Has Applicant been granted a permit from the State in the past? Yes ☒ No ☐
If so, please summarize past permits:

- The applicant was granted permit PMNM-2011-041 and PMNM-2012-049 in 2011 and 2012, respectively, for similar work.

Have there been any a) violations: Yes ☐ No ☒
b) Late/incomplete post-activity reports: Yes ☐ No ☒

Are there any other relevant concerns from previous permits? Yes ☐ No ☒

STAFF OPINION

DAR staff is of the opinion that the applicants have properly demonstrated valid justification for their application and should be allowed to enter the NWHI State waters and conduct the activities therein as specified in the application with certain special instructions and conditions, which are in addition to the Papahānaumokuākea Marine National Monument Research Permit General Conditions. All suggested special conditions have been vetted through the legal counsel of the Co-Trustee agencies (see Recommendation section).

MONUMENT MANAGEMENT BOARD OPINION

The MMB is of the opinion that the applicants have met the findings of Presidential Proclamation 8031 and this activity may be conducted subject to completion of all compliance requirements. The MMB concurs with the special conditions recommended by DAR staff.

RECOMMENDATION:

That the Board authorize and approve a Research Permit to Dr. Christopher Bird, Texas A&M University-Corpus Christi, and Dr. Robert Toonen, Hawai‘i Institute of Marine Biology, University of Hawai‘i, with the following special conditions:

1. This permit is not to be used for nor does it authorize the sale of collected organisms. Under this permit, the authorized activities must be for noncommercial purposes not involving the use or sale of any organism, by-products, or materials collected within the Monument for obtaining patent or intellectual property rights.

2. The permittee may not convey, transfer, or distribute, in any fashion (including, but not limited to, selling, trading, giving, or loaning) any coral, live rock, or organism collected under this permit without the express written permission of the Co-Trustees.
3. To prevent introduction of disease or the unintended transport of live organisms, the permittee must comply with the disease and transport protocols attached to this permit.

4. Tenders and small vessels must be equipped with engines that meet EPA emissions requirements.

5. Refueling of tenders and all small vessels must be done at the support ships and outside the confines of lagoons or near-shore waters in the State NWHI Marine Refuge.

Respectfully submitted,

[Signature]

Frazer McGilvray
Administrator

APPROVED FOR SUBMITTAL

[Signature]

WILLIAM J. AILA JR.
Chairperson
Papahānaumokuākea Marine National Monument
RESEARCH Permit Application

NOTE: This Permit Application (and associated Instructions) are to propose activities to be conducted in the Papahānaumokuākea Marine National Monument. The Co-Trustees are required to determine that issuing the requested permit is compatible with the findings of Presidential Proclamation 8031. Within this Application, provide all information that you believe will assist the Co-Trustees in determining how your proposed activities are compatible with the conservation and management of the natural, historic, and cultural resources of the Papahānaumokuākea Marine National Monument (Monument).

ADDITIONAL IMPORTANT INFORMATION:

- Any or all of the information within this application may be posted to the Monument website informing the public on projects proposed to occur in the Monument.

- In addition to the permit application, the Applicant must either download the Monument Compliance Information Sheet from the Monument website OR request a hard copy from the Monument Permit Coordinator (contact information below). The Monument Compliance Information Sheet must be submitted to the Monument Permit Coordinator after initial application consultation.

- Issuance of a Monument permit is dependent upon the completion and review of the application and Compliance Information Sheet.

INCOMPLETE APPLICATIONS WILL NOT BE CONSIDERED
Send Permit Applications to:
Papahānaumokuākea Marine National Monument Permit Coordinator
6600 Kalaniana'ole Hwy. # 300
Honolulu, HI 96825
nwhipermitt@noaa.gov
PHONE: (808) 397-2660 FAX: (808) 397-2662

SUBMITTAL VIA ELECTRONIC MAIL IS PREFERRED BUT NOT REQUIRED. FOR ADDITIONAL SUBMITTAL INSTRUCTIONS, SEE THE LAST PAGE.
Papahānaumokuākea Marine National Monument
 Permit Application Cover Sheet

This Permit Application Cover Sheet is intended to provide summary information and status to the public or permit applications for activities proposed to be conducted in the Papahānaumokuākea Marine National Monument. While a permit application has been received, it has not been fully reviewed nor approved by the Monument Management Board to date. The Monument permit process also ensures that all environmental reviews are conducted prior to the issuance of a Monument permit.

Summary Information
Applicant Name: Christopher E. Bird & Robert J. Toonen
Affiliation:
1Department of Life Sciences, Texas A&M University – Corpus Christi
2Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa

Permit Category: Research
Proposed Activity Dates: June-July 2014, targeting June 19-July 2
Proposed Method of Entry (Vessel/Plane): Vessel
Proposed Locations: Intertidal and shallow water habitats around basaltic islands on which ‘ōpīhi occur. Specifically, Nihoa Island, Mokumanamana Island, Mokupapapa (French Frigate Shoals, La Perouse Pinnacles,), and Puhahonu (Gardner Pinnacles)

Estimated number of individuals (including Applicant) to be covered under this permit:
Eleven total people will be covered under this permit, co-listed under the Native Hawaiian Practices application submitted by Shauna Kehaunani Springer.

Estimated number of days in the Monument: approximately 12 days

Description of proposed activities: (complete these sentences):
 a.) The proposed activity would... aim to examine the biodiversity of the Hawaiian intertidal and shallow subtidal ecosystem, and study the basic ecology of ‘ōpīhi populations within the NWHI. We propose to continue conducting the first comprehensive biodiversity mapping survey of the intertidal zone in the NWHI and quantify species presence/absence and relative abundances within and among sites across the basaltic emergent islands. We also seek to examine population connectivity of intertidal species in comparison to the broad survey of coral reef organisms sampled to date. We find different patterns of larval exchange among the ‘ōpīhi which suggests that intertidal species may differ from the average seen in subtidal taxa, and that has important management implications that need to be confirmed. We propose to examine the reproductive status ‘ōpīhi populations across the NWHI to better understand natural population dynamics and potential mechanisms of speciation in these economically, ecologically and culturally important limpets.

RESEARCH
This work will be tightly linked with the Native Hawaiian cultural practice application and is a joint collaborative study among Na Mamo o Muole'a, the Nature Conservancy, the Hawai‘i Institute of Marine Biology, Nā Maka o Papahānaumokuākea, and the NOAA Papahānaumokuākea Marine National Monument. We will perform the standardized ‘opīhi monitoring protocol developed through this collaboration, which is inclusive of Hawaiian methods of monitoring, has was specifically developed (and is continuously being refined) to monitor intertidal populations associated with ‘opīhi across the Main and Northwestern Hawaiian Islands. To date, communities on every island, save Ni‘ihau, have been involved and through these efforts the NWHI have been surveyed for intertidal species composition, population size and age structure of organisms associated with ‘opīhi. Here we request a permit to conduct the sixth year of surveys and monitoring within the NWHI, with a primary focus on mapping opīhi population sizes.

b.) To accomplish this activity we would

conduct standardized transect and rapid mapping surveys developed collaboratively among the partners listed above to integrate quantitative scientific data collection with Native Hawaiian observational data. Specifically, we will lay a minimum of 15 belt transects per island to assess size distribution, population density, community structure, species range, distribution, and rugosity for all identifiable organisms within the intertidal zone. Rapid mapping surveys will be conducted where the number of opīhi (separate counts for Cellana exarata and Cellana sandwicensis) and presence/absence for other invert species are recorded in two meter wide belt transects at 10s-100s of georeferenced points around each island. Using this method, we were able to census all ‘opīhi residing on Mokupapapa in 2013.

We will collect ‘opīhi and a handful of very common intertidal species to examine reproductive state and patterns of population connectivity in the intertidal zone and compare that directly to the patterns found in subtidal species. The size and state of ‘opīhi gonads will be determined in the laboratory after the cruise. Genomic DNA isolated from invertebrate muscle tissues will be sequenced in order to assess connectivity and stock structure. Messenger RNA, the products of gene expression, will be isolated from gonad tissue in order to identify and compare the ‘opīhi sperm-egg recognition proteins (methods described below), and in the accompanying Native Hawaiian Practices Permit Application filed by Kehau Springer. When the ship leaves the island, no supplies will be left behind. The samples we request to be collected for this work are summarized in Appendix 1. All data will be stored and analyzed at Texas A&M University Corpus Christi and the Hawaii Institute of Marine Biology by Chris Bird and Rob Toonen, respectively. Tissue samples, DNA and RNA sampled from animals will need to be additionally process at specialized laboratories at Texas A&M University – College Station, ARQ Genomics in Austin, TX, and Simon Frasier University in Vancouver, BC. These data will be useful to both the Monument, as well as to local and governmental resource managers in the Main Hawaiian Islands to make effective decisions on managing the resources.

c.) This activity would help the Monument by ...

RESEARCH
providing baseline knowledge of one of the least studied ecosystems which is potentially most threatened by climate change. Sea level rise is underway, and the first community to feel the effects of climate change will be the one that lives at the interface of land and sea and experiences the greatest extremes of both environments: the intertidal. Limited knowledge of this ecosystem restricts our understanding of climate change impacts and suitable responses. Further, knowing which species occur and where they live is fundamental to the management of natural resources in any ecosystem, and the Hawaiian intertidal zone is poorly characterized in general. We will also confirm whether or not the intertidal species show a distinct pattern of population connectivity across the archipelago than do the subtidal ones surveyed to date. These data will provide quantitative data on the species present in these ecosystems, their biodiversity, population dynamics and connectivity and also contribute to the ongoing debate about how new species arise in the sea. The tight collaboration of the team comprised of cultural practitioners, research scientists, and resource managers will ensure that the findings are of relevance to a broad group of stakeholders and of direct relevance to the people of Hawai‘i.

Other information or background: Littoral habitats, those lying between the low-tide line and the upper limit of aquatic species on the shore, are among the most studied and well-known aquatic habitats on the planet. A primary exception to that generalization is that this zone is one of the least studied in Hawai‘i despite six consecutive years of surveying in the Hawaiian Islands by members of the ‘Opihi Partnership. The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as ‘intertidal’, whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However in Hawai‘i, mean significant wave height exceeds tidal range most of the time, and may be a primary structuring force for littoral communities as outlined in Bird (2006) and Bird et al (2013). The patterns of distribution and abundance of organisms on rocky shores, in particular the upper and lower limits of species, along vertical gradients of exposure have been studied extensively in other regions of the globe. Hypotheses addressing the causes of biotic zonation and community structure have evolved from strictly physical to an inseparable combination of physical and biological factors, including physiological tolerance (Connell 1961a b), species interactions (Bruno & Bertness 2001, Menge & Branch 2001), and all other forms of biotic factors.

A fundamental advance in the understanding of biotic zonation on rocky shores was the demonstration that species interactions also affect zonation patterns, where biotic factors generally affect the lower limit of distribution and physical factors affect the upper limit of distribution (Connell 1961a b, Paine 1967). A number of exceptions to this generalization have been demonstrated, many of which highlight the more general effect of biological interactions on the realized distribution of a species. Ultimately, the inseparable interaction between physical and biological factors define the realized limits of species (Denny & Wethey 2001), and intertidal communities are unique in that organisms must cope with some of the most severe extremes of both marine and terrestrial environments. This has led to debate about whether these species are so hardy that they are resistant to change, or whether they live in such extreme environments that climate change will impact them more (e.g., Stillman 2003). Available data from long-term surveys of the intertidal community in California suggest the latter: intertidal communities are one of the first to show ecosystem impacts of climate change that can already
be documented and are expected to accelerate given future climate change scenarios (e.g., Barry et al 1995; Sagarin et al. 1999).
Section A - Applicant Information

1. Applicant

Name (last, first, middle initial):

Bird, Christopher E.
Assistant Professor, Texas A&M University - Corpus Christi

Tooren, Robert J.
Research Professor, HIMB, University of Hawaiʻi at Mānoa

1a. Intended field Principal Investigator (See instructions for more information):
Chris Bird

2. Mailing address (street/P.O. box, city, state, country, zip):

Chris Bird

Rob Tooren

3. Affiliation (institution/agency/organization directly related to the proposed project):
Life Sciences, Texas A&M University - Corpus Christi
HIMB, University of Hawaiʻi at Mānoa

4. Additional persons to be covered by permit. List all personnel roles and names (if known at time of application) here (e.g. John Doe, Research Diver; Jane Doe, Field Technician):
We expect that the final list of cruise personnel will be available soon, but has not yet been finalized. We seek a crew of 11 people drawn from across the partners listed above and these are...
the same participants as those on the Native Hawaiian Practices Permit Application filed by Kehau Springer.

We expect that the scientific crew will likely consist of 3 to 4 members, likely drawn from the following list or their equivalent expertise:

Amended List for June 2014 Cruise Dates

Chris Bird (Ph.D., Asst Professor, TAMUCC),
Rob Toonen (Ph.D., Research Professor, HIMB),
Eric Tong (Ph.D. Candidate, HIMB)
Hoku Johnson (PMNM, Resource manager)
Matt Ramsey (former DAR Resource manager, NOAA Fisheries manager)
Makani Gregg
Bert Hispanola (Cultural Practitioner)
James Hispanola (Cultural Practitioner)
Russell Amimoto (Nature Conservancy)
Nakoa Goo (NOAA)
TBD Kaua’i Cultural Practitioner

Additional crew members will be selected from Native Hawaiian communities as outlined in the Springer permit application and be included here as co-listed permittees for a maximum of 12 people in total.
Section B: Project Information

5a. Project location(s):

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Ocean Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nihoa Island</td>
<td>Land-based</td>
<td>Shallow water</td>
</tr>
<tr>
<td>Necker Island (Mokumanamana)</td>
<td>Land-based</td>
<td>Shallow water</td>
</tr>
<tr>
<td>French Frigate Shoals</td>
<td>Land-based</td>
<td>Shallow water</td>
</tr>
<tr>
<td>Gardner Pinnacles</td>
<td>Land-based</td>
<td>Shallow water</td>
</tr>
<tr>
<td>Maro Reef</td>
<td>Land-based</td>
<td>Shallow water</td>
</tr>
<tr>
<td>Laysan Island</td>
<td>Land-based</td>
<td>Shallow water</td>
</tr>
<tr>
<td>Lisianski Island, Neva Shoal</td>
<td>Land-based</td>
<td>Shallow water</td>
</tr>
<tr>
<td>Pearl and Hermes Atoll</td>
<td>Land-based</td>
<td>Shallow water</td>
</tr>
<tr>
<td>Midway Atoll</td>
<td>Land-based</td>
<td>Shallow water</td>
</tr>
<tr>
<td>Kure Atoll</td>
<td>Land-based</td>
<td>Shallow water</td>
</tr>
<tr>
<td>Other</td>
<td>Land-based</td>
<td>Shallow water</td>
</tr>
</tbody>
</table>

NOTE: There is a fee schedule for people visiting Midway Atoll National Wildlife Refuge via vessel and aircraft.

Location Description:
As outlined above, our survey and collection efforts will be concentrated in the intertidal zone, surrounding each emergent basaltic land mass on which 'ōpīhi occur. Although we include this within the land-based category above, the monitoring team would not access any sites beyond the splash zone on any island.

5b. Check all applicable regulated activities proposed to be conducted in the Monument:
- Removing, moving, taking, harvesting, possessing, injuring, disturbing, or damaging any living or nonliving Monument resource
- Drilling into, dredging, or otherwise altering the submerged lands other than by anchoring a vessel; or constructing, placing, or abandoning any structure, material, or other matter on the submerged lands
- Anchoring a vessel
- Deserting a vessel aground, at anchor, or adrift
- Discharging or depositing any material or matter into the Monument
- Touching coral, living or dead
- Possessing fishing gear except when stowed and not available for immediate use during passage without interruption through the Monument
- Attracting any living Monument resource
- Sustenance fishing (Federal waters only, outside of Special Preservation Areas, Ecological Reserves and Special Management Areas)
- Subsistence fishing (State waters only)
- Swimming, snorkeling, or closed or open circuit SCUBA diving within any Special Preservation Area or Midway Atoll Special Management Area
6 Purpose/Need/Scope State purpose of proposed activities:
We wish to characterize yearly variation in ophi and other intertidal and shallow subtidal populations in PMNM. Further, new genetic techniques that allow us to more fully sequence the genomes of individuals require more stringent sample preservation protocols than were used in the past collections of specimens from PMNM. Using these newer population genomic techniques, we can ascertain a more highly resolved image of connectivity and self recruitment on the islands of PMNM, that include the assessment of unique selective pressures driving local adaptation on the inhabitants of each island.

The primary objectives of this research expedition are to: (1) collect complementary data on the intertidal ecosystem with a suite of research scientists, cultural practitioners, and resource managers; (2) establish a baseline survey of intertidal ecosystems, specifically focused on ‘ophi species associations, relative abundance, reproductive cycles, and identity to better understand the implications and consequences of human activities on these communities; (3) determine the species present to characterize the biodiversity of the Hawaiian intertidal zone and their connectivity to one another across the archipelago; (4) to determine ‘ophi size at reproductive maturity and reproductive characteristics such as gonad index, and molecular composition of sperm-egg recognition proteins in the absence of human predation, (5) begin to explore the genomic signatures of adaptation to human activities and natural processes using ‘ophi as a model system to elucidate the mechanisms by which divergent selection can lead to adaptive radiation of marine species.

Along these same lines we request permission to collect up to 3 voucher specimens of an individual organism that cannot be identified as a known species and/or may represent new geographic records or new species from the taxonomic groups under study as laid forth in the voucher specimen guidelines of the Monument. Voucher specimen(s) would be used for taxonomic study to determine the species identity and would be accessioned in an approved repository such as the Bishop and/or Smithsonian museum permanent collections as recommended.

7. Answer the Findings below by providing information that you believe will assist the Co-Trustees in determining how your proposed activities are compatible with the conservation and management of the natural, historic, and cultural resources of the Monument:

The Findings are as follows:

a. How can the activity be conducted with adequate safeguards for the cultural, natural and historic resources and ecological integrity of the Monument?
Most activities in this permit application were previously permitted and have demonstrated no impact on the Monument’s cultural, natural and historic resources. The one minor addition, this year, is that in addition to muscle tissues, we are proposing to preserve gonad tissues for molecular analysis. Our research team consists of conservation biologists who are both teaching and studying the science of how best to manage and conserve biological diversity in the sea. As such, minimizing our impact to the ecosystem we are trying to conserve is naturally and inherently a top priority for any research we conduct, especially within the boundaries of the
Monument. We believe that we have implemented every reasonable safeguard for the natural resources and ecological integrity of the Monument in our research, and we do not conduct research that could have a detectable impact on the ecosystem. We have an established track record of management-relevant research in this area and have not been able to detect any cumulative impacts of scientific collections to date (Selkoe et al. 2009). As outlined in greater detail below, our sample size, choice of species, and methodologies have all been selected to provide robust and scientifically rigorous information to managers with the least possible impact to the natural resources of the Monument. We will adhere to all rules, regulations and best practices established by the co-trustees for the Monument, including all quarantine requirements, wildlife viewing guidelines, and entry/exit notification procedures where applicable.

Additionally, our team has always tried and will continue to ensure that we have minimal impact on the cultural resources of Papahānaumokuākea. We rely on our colleagues who are cultural practitioners to take the lead on proper protocols for our voyage, and these are outlined in detail in the accompanying permit application by Springer. Each member of our team is aware of the unique ecological and cultural status of the Monument, and our on-going collaboration with the cultural practitioners continues to expand our understanding of Hawaiian protocol in conducting research within Papahānaumokuākea Marine National Monument.

In addition to following the lead of our cultural practitioner team-mates, we ask that each researcher take responsibility to prepare an appropriate offering in advance to ensure that they reflect on why they are on this trip, what is the purpose of the trip, and enter the Monument with the proper intent. It is respectful to provide an offering and to not go forth to take from the place with empty hands. However, given concerns regarding transport of materials into the Monument, it is also difficult to present a proper offering in the form of a gift. In previous years, we have used pure rainwater collected by hand to ensure a personal connection with the offering, and we believe that this is the best option for research scientists unfamiliar with the proper cultural protocols. This fresh-caught rainwater can be poured out as a personal offering in return for the privilege of collecting samples in the Monument by each member of our team. In addition we will follow the lead and participate to the best of our ability in protocols undertaken by our cultural colleagues in whatever preparation is appropriate for the voyage.

b. How will the activity be conducted in a manner compatible with the management direction of this proclamation, considering the extent to which the conduct of the activity may diminish or enhance Monument cultural, natural and historic resources, qualities, and ecological integrity, any indirect, secondary, or cumulative effects of the activity, and the duration of such effects?

All activities proposed herein have been permitted previously and furthermore was conducted without detectable impact in the past. Our expansion of the scope of the initial surveys to include biodiversity surveys and connectivity work in the intertidal is similar to the work that we have done previously for subtidal reef-associated organisms, and has been done without detectable cumulative impact to date. Our proposed survey of the reproductive status, spawning timing, and larval behavior of 'opilhi is likewise expected to have no detectable impact, but will provide valuable scientific and management information for the entire Hawaiian Archipelago. This type of research is directly mandated by the Proclamation, and is necessary to both maintain
ecosystem integrity and provide for adaptive ecosystem management in the face of natural or anthropogenic disasters and global climate change. As outlined above and below, our activities have no detectable effect to diminish Monument resources, nor have any known indirect, secondary or cumulative effects on the ecosystem or resources therein. Because we are conservation biologists who are concerned about exactly these sort of impacts, we have voluntarily conducted a threat assessment of the activities in the Monument (Selkoe et al. 2008) and compiled a cumulative impact threat map of the Monument (Selkoe et al. 2009) which has been provided to the co-trustees for use in future management decisions.

c. Is there a practicable alternative to conducting the activity within the Monument? If not, explain why your activities must be conducted in the Monument.

We expect it is self-evident that there is no practical alternative to sampling within the Monument when the goal of the research is to understand the baseline ecosystem state of the intertidal populations within the Monument. Likewise, surveys of biodiversity within understudied habitats of the Monument which seek to determine the species present, their abundance and distribution are only possible within the bounds of the region of interest. Finally, these studies will be of both direct benefit to the resource management within the Monument itself, and to the remainder of the Hawaiian Archipelago for ecologically, economically and culturally important species such as ‘opihis.

The exceptions that may not seem quite so self-evident is the examination of gonad index and gamete recognition proteins. The reproductive work is needed to examine the baseline state of the populations in the absence of human harvest and will provide important information about spawning capacity, timing, ability of larvae to return to their source island, and adaptation of the gamete recognition system to the high natural densities of ‘opihis in PMNM. We humans use our senses to select our mate, but ‘opihis release their gametes into the water column and proteins coating the sperm and eggs mediate mate choice. If eggs can be permissive or selective to fertilization by sperm. If eggs are too permissive, the are fertilized by multiple sperm and the embryo perishes. If the eggs are too restrictive, then the eggs remain unfertilized. In our most recent surveys, we observe upwards of 100 fold higher ‘opihis densities in PMNM relative to Oahu, and we expect that harvesting pressure will leave a distinct signature in the gamete recognition proteins. Females on Oahu are either mostly permissive or else they do not produce offspring. Gamete recognition proteins are also under strong positive selection and the previously discovered levels of gene flow predict that each island might have particular strains of males and females that are more compatible with each other than individuals from other locations. In 2011 -13 we found differences in the reproductive state of ‘opihis between islands and species that could have important implications for the connectivity of populations among islands. Our surveys of genomic and gamete recognition protein diversity can be used to assess the ability of ‘opihis to adapt to human activities.

d. How does the end value of the activity outweigh its adverse impacts on Monument cultural, natural and historic resources, qualities, and ecological integrity?
Given that we can detect no adverse effects of our activities on the resources of the Monument, we believe that the end value of this research clearly outweighs whatever imperceptible impact exists. We have an established track record of communicating our findings to the resource managers and making sure that all research conducted within the Monument meets the bar of management relevance. The proposed research will provide the first quantitative baseline survey of intertidal ecosystems across the Hawaiian Archipelago and address questions of vulnerability to climate change. Additionally, the reproductive work proposed herein will benefit both population studies and resource management of 'opihī stocks in Hawai‘i, but also contribute to our understanding of how new species can arise in the sea. Finally, the intertidal zone is a greatly understudied ecosystem that is likely to be one of the most directly and immediately impacted by climate change because it experiences the extremes of both terrestrial and marine environments daily. An understanding of the intertidal communities across this region will identify potentially vulnerable locations and species, and (as outlined above) greatly increase the decision-making capacity of the co-trustees in dealing with the reality of future climate change within the Monument and the Hawaiian Archipelago in general.

e. Explain how the duration of the activity is no longer than necessary to achieve its stated purpose.

The expedition length is determined by limited funding, which makes it shorter than ideal, and is certainly no longer than is necessary to accomplish the research goals outlined in this permit application.

f. Provide information demonstrating that you are qualified to conduct and complete the activity and mitigate any potential impacts resulting from its conduct.

Chris Bird has a PhD in Ecology, Evolution, and Conservation Biology through the Botany Department at the University of Hawai‘i, was a Post Doctoral Fellow at the Hawaii Institute of Marine Biology from 2007-2012 working on the exact type of work entailed in this application, is an Assistant Professor at Texas A&M and has published ~20 research papers in peer-reviewed journals dealing specifically with the subject of conservation and management of Hawaiian natural resources, rocky shores in particular. Rob Toonen has a PhD in Population Biology, is a Research Professor at HIMB, and has published ~200 research papers in peer-reviewed journals dealing specifically with the subject of conservation and management of Hawaiian natural resources. With Rob Toonen and Celia Smith, Chris has been studying ‘opihī and Hawaiian intertidal communities since 1999, before to the establishment of the Monument. This research has been of considerable interest to both the science and management community of Hawai‘i and has begun to receive international recognition for the insights we are gaining to understand divergent selection leading to speciation in the sea. This on-going project should be well known to the Monument co-trustees, and our research accomplishments are presented in regular meetings with the management community and semi-annual meetings. Our accomplishments and qualifications to perform this research are further documented in the included CVs. We will be responsible for the conduct of the scientific team and work closely with the cultural practitioner team to ensure a successful mission.
g. Provide information demonstrating that you have adequate financial resources available to conduct and complete the activity and mitigate any potential impacts resulting from its conduct.

This mission requires no specific funding beyond the cost of mounting the expedition to complete the research goals. The proposed field activities are funded in full by NOAA for the Papahānaumokuākea Marine National Monument. The data analysis and storage will be supported by the Monument as necessary, the Hawai‘i Institute of Marine Biology, and Texas A&M University. As a new faculty at Texas A&M, Chris Bird’s startup package includes funds for three graduate students, as well as ~$500,000 in equipment and supplies required to conduct research. The success of the unfunded ‘ōpīhi partnership demonstrates our collective commitment to this effort and our ability to complete this sort of work voluntarily even in the absence of funding. We are able to leverage the existence of samples to obtain federal funding from a variety of sources, and have an established track record of doing exactly that. We also have a clearly established track record of completing and publishing the research conducted in the Papahānaumokuākea Marine National Monument on a reasonable time frame, and have every intention to continue that tradition. Finally, we provide regular individual research updates to the management community and will also continue that effort in the future.

h. Explain how your methods and procedures are appropriate to achieve the proposed activity’s goals in relation to their impacts to Monument cultural, natural and historic resources, qualities, and ecological integrity.

Our choice of sites are guided by personal safety and natural resource concerns within the Monument, but are constrained by the fact that intertidal communities that support ‘ōpīhi populations are limited to basaltic emergent islands. Minimizing our impact on the natural resources of the Monument is critical to us because they are the focus of the study for purposes of conservation, and we absolutely do not want to detract from that system we are seeking to conserve. The methods and procedures we propose to use are widely accepted and are among the few that directly incorporate Native Hawaiian marine practitioners, resource managers and research scientists in collaborative study that is co-designed and jointly implemented. Our success in obtaining extramural funding, our rate of publication in high quality scientific journals, and the frequency with which those studies are cited all show that the work being performed is accepted, valued and endorsed by the global scientific community. Belt transects do not require any specialized equipment and are simple enough to be employed by community members without scientific training across the inhabited Main eight Hawaiian islands. All our work takes full account the unique value and seeks to minimize any potential for impact to the Monument resources.

i. Has your vessel has been outfitted with a mobile transceiver unit approved by OLE and complies with the requirements of Presidential Proclamation 8031?

We will be chartering the Searcher and the partner NOAA PMNM staff will ensure it meets the VMS type-approval requirement as stated in Monument regulations.
j. Demonstrate that there are no other factors that would make the issuance of a permit for the activity inappropriate.

There are no other factors that would make the issuance of the permit inappropriate. The activity is non-commercial. The end-value of the activity is informational and is intended solely to provide local and governmental managers with information critical to the conservation of natural resources.

8. Procedures/Methods:
The primary objectives of this research expedition are to: (1) collect complementary data on the intertidal ecosystem with a suite of research scientists, cultural practitioners, and resource managers; (2) establish a baseline survey of intertidal and shallow subtidal ecosystems, specifically focused on ‘opihi species associations, relative abundance, and reproductive characteristics to better understand the implications and consequences of human impacts and natural processes on these communities; (3) characterize the biodiversity of the Hawaiian intertidal zone and their connectivity to one another across the archipelago; (4) to determine ‘opihi size at reproductive maturity and reproductive characteristics such as gonad index, and molecular composition of sperm-egg recognition proteins in the absence of human predation, (5) begin to explore the genomic signatures of adaptation to human activities and natural processes using ‘opihi as a model system to elucidate the mechanisms by which divergent selection can lead to adaptive radiation of marine species.

Objectives 1 & 2: To accomplish these goals, we conduct 15-30 belt transects per island located randomly at sites selected based on access, safety and weather conditions. We also map ‘opihi density and species presence/absence at 10’s to 100’s of georeferenced locations on each island. The transect methodology and data collection sheets come from a series of joint retreats between the resource management agency, NGO, research scientist and cultural practitioner partners to develop the collaborative protocol we implement. The data sheet and collaborative protocol, are described in more detail in Kehau Springer’s permit application. In brief, we survey a series of belt transects per island, in which teams mark the start of the transect by recording the GPS waypoints. We then lay a transect sash chain perpendicular to the shoreline (mauka to makai), from the highest marine animal on the shore to 15 ft deep. We attach colored cable ties to the sash chain to divide the transect into zones, and count all ‘opihi by size class within each zone. We count all other visually identifiable intertidal organisms associated with the ‘opihi and record the species present and the abundance of each along the transect lines. Next we estimate the percent cover of each algae species and collect a voucher specimen from each type of algae to confirm algal id later in the laboratory under a microscope. If algal turfs are present, we collect a 1cm² voucher sample of each visually distinct turf type because turfs are typically composed of 10’s of species and are not identifiable in the field. We then measure the x, y,z spatial coordinates of each zone boundary along the transect before measuring the “rugose” length of the transect laid to contour the exact surface distance of each zone. Each data sheet is double-checked and photographed in the field, and matched with a photograph of the entire transect and the conditions are recorded along with anything else noteworthy along the transect line. An additional photograph is taken every 25 cm along the transect chain o capture each zone.
boundary. For the mapping, six individuals survey while 2 individuals watch waves, and 2 individuals collect data. All 'opīhi are identified by species and counted, presence/absence data for invertebrates and edible limu are recorded, and a GPS coordinate is recorded and associated with the survey number in 2 m wide transects of shoreline (mauka to makai). Consecutive two meter transects are surveyed, unit by unit, until the entire accessible portion of the island is surveyed. At Mokupapapa, all 'opīhi are counted. At Mokumanamana and Nihoa, if all sides of the island are mappable, then we survey all accessible shoreline at a boat access before moving to a new area. In 2013, we mapped all areas that the waves permitted us to survey.

We have begun conducting the first very near shore fish surveys conducted in PMNM. In order to survey shallow very near shore fish populations, we employ a system involving 4 snorkelers that swim parallel to the shore within 0-20 m of the shore line that was surveyed with transects. Each snorkeler has a different task. Snorkeler 1 surveys benthic fish. Snorkeler 2 surveys silver fish. Snorkeler 3 surveys colorful fish. Each surveying snorkeler records the number of fish of each species that they see on the swimming transect and is equipped with a camera to photograph unknown species. In 2011-12 we developed lists of the most common fish observed in the very near shore habitat that we have used to develop data sheets for data recording. Snorkeler 4 video tapes the fish along the transect to serve as visual documentation of the different species present. The snorkelers are paired and swim side by side with a boat escort for safety. The length of the swimming transect is recorded from the boat using a gpr and a stopwatch to give an idea of catch per unit effort, but our primary goal at this point is to record the species present. This approach covers both objective (1) and (2), and subsequent laboratory examination of the samples will fulfill objective (3).

In order to track 'opīhi reproductive cycles, we will continue to determine the gonad index of all 'opīhi collected in collaboration with Kehau Springer. The 2014 cruise will begin shortly after the full moon and end shortly after the new moon, when opīhi spawn. We plan to collect 24 individuals per 1 cm size class (<1, 1-2, 2-3, 3-4, 4-5, >5cm) per species on Nihoa and Mokumanamana, and transport them to the boat for immediate processing. On Mokupapapa, after confirming the census population size to be 2900 (see methods two paragraphs above), as we determined in 2013, only 5 individuals per size class will be collected (25 total) thereby ensuring that we collect fewer than 1% of the limpets present. On Puhahonu, if visited, we will use the mapping protocol to census the 'opīhi population, which is inhabited solely by Cellana exarata, according to previous DNA analysis. The result of the census will determine whether our 'opīhi sampling is conducted as outlined for Mokumanamana and Nihoa (>12,000 'opīhi on island, <=1% of population sampled), or Mokupapapa (<3000 'opīhi on island, <=1% of population sampled). RNA later, a RNA and DNA tissue preservative, will be stored in plastic unbreakable tubes inside of plastic containment containers (5gal buckets). On the ship, we will dissect the 'opīhi to separate the gonad, the non-gonadal tissue, and the shell for subsequent weighing at HIMB on O'ahu. The wet weight of the gonad and somatic tissue will be weighed and compared to assess reproductive state for males and females allowing us to estimate reproductive state. Tissues will be preserved by freezing in liquid nitrogen and storage in RNA later reagent (a solution designed for and proven to be the best method of preventing the degradation of DNA and RNA in marine invertebrate samples).

The combination of size class sampling and genomic DNA sequencing will allow us to conduct a survey of connectivity and self recruitment on an unprecedentedly fine scale in PMNM. We are still processing genetic samples from 2012 and 2013 that were collected and
processed in this vein, and we are finding genetic patterns on the scale of centimeters. One
technician, four graduate students and six undergraduate students are working on processing the
samples and survey data in Chris Bird’s laboratory at Texas A&M.

Non-lethal sampling of crabs (Grapsus tenuicrustatus) and octopi (Octopus oliveri and O.
cyanea) will be conducted by removing a leg, or an 1 inch section of arm tip, respectively.
In 2012, we detected a difference in the onset of reproductive maturity on Mokupapapa.
Often when fishery species are managed with a size limit, the size at reproductive maturity
decreases due to selective pressure for younger maturation. We are going to test this hypothesis
by comparing the size at reproductive maturity for ‘opihí inside and outside of PMNM. To do
this, the ‘opihí listed above will be preserved and analyzed for gonad index in the laboratory with
the other ‘opihí.

When possible, we will extract the DNA from live invertebrate tissues on the ship at the
conclusion of each day in order to avoid sample degradation that interferes with genome-wide
 genetic surveys. All waste will be retained on the ship, and kept in primary and secondary
 containment vessels. Waste will be disposed of at the University of Hawai‘i on O‘ahu. DNA
 extraction involves chaotropic salts, guanidine, SDS, sodium azides, and ethanol.

Objective 3, connectivity:
As stated above, the previously employed technique of preserving tissue samples in ethanol for
DNA analysis has resulted in samples that cannot be genomically analyzed. In 2012, we
employed a new sample preservation method with ‘opihí, preservation in liquid nitrogen, that was
much more successful. Since then, we have found that either preservation in RNAlater reagent
or extracting and stabilizing DNA from live tissue is the best method to preserve the high quality
DNA required for genomic analysis, and we successfully used a field DNA extraction kit to do
so. With this proven strategy, we plan to resample the other animal species that we originally
 collected, in 2011 and 2012 (along with the addition of Octopus oliveri, Octopus cyanea,
Actinopyga mauritiana, Heterocentrotus mammilatus, Echinothrix diadema, and Tripneustes
gratilla) for the first multispecies population genomic study in the Hawaiian Islands, and most
likely the world. Pls Chris Bird and Rob Toonen have optimized genomic survey protocols.
Kelly Pennoyer, Luz Angela Lopez de Mesa, and Lauren Gurski, PhD students in Chris Bird’s
lab, are working on this project in the main Hawaiian Islands for their dissertation and would
also process the PMNM samples. 48 specimens per species per island would be collected in
2014.

The target species we have identified for genetic assessment are ones which are abundant
and common on every island surveyed to date, and for which the estimated population sizes are
so large that collection of 48 individuals per island will have no detectable impact. Our cut off is
that we will not sample more than 1% of the population at any island, and preliminary abundance
surveys from previous years indicate that populations are well in excess of 4800 individuals per
island for each of the species that we have included on this permit application (with the
exception of Cellana exarata on Mokupapapa, of which we will only collect 25 individuals). We
will examine connectivity of the intertidal species to compare with the subtidal organisms scored
to date and determined whether coral reef species are a good predictor of intertidal species
connectivity. DNA samples will be analyzed using standard techniques well—established in the
field and in use daily in our lab (see attached CV).
Objectives 4&5, ‘ōpīhi reproductive characteristics and human impacts and adaptation of ‘ōpīhi

The sampling scheme outlined above will allow us to calculate the gonad index for different size classes of ‘ōpīhi by determining the mass of gonads and somatic tissues. This data will allow us to determine the size at reproductive maturity and the reproductive state of ‘ōpīhi on different islands.

It is not very surprising that we are starting to see a strong relationship between human population size and ‘ōpīhi population size, given the ‘ōpīhi are actively harvested by humans. We will continue to develop a model that best describes the impact of human harvesting on ‘ōpīhi and we will relate these results with the genetic data that we’ve been processing.

In our surveys of genomic variation, we can test for genetic loci that are related to human population and land use statistics. Patricia Cockett, a master’s student in Chris Bird’s lab is explicitly sampling ‘ōpīhi with respect to sources of pollution and the PMNM ‘ōpīhi samples stand as a fantastic control group, where there is little pollution from humans.

The expressed gamete recognition protein genes will be discovered through whole transcriptome RNA sequencing of gonad tissue will be conducted on three males and three females per ‘ōpīhi species from Mokupapapa, Mokumanamana, and Nihoa (30 ‘ōpīhi sampled from the above detailed collections). DNA oligonucleotide primers will be developed to amplify these genes from the ‘ōpīhi DNA collections developed over the past 10 years from the entire archipelago. We will test for a correlation between allele frequency and ‘ōpīhi population density from mapping and transect surveys conducted in both PMNM and the MHI in order to identify alleles that likely confer an advantage at high or low population densities. We will also test for population structure in gamete recognition proteins among samples. A test for human impacts will be conducted by correlating gamete-recognition genes with the ratio human population size to linear coastline distance of ‘ōpīhi habitat.

NOTE: If land or marine archeological activities are involved, contact the Monument Permit Coordinator at the address on the general application form before proceeding, as a customized application will be needed. For more information, contact the Monument office on the first page of this application.

9a. Collection of specimens - collecting activities (would apply to any activity): organisms or objects (List of species, if applicable, attach additional sheets if necessary):

Common name:

Yellowfoot ‘ōpīhi (‘ōpīhi ‘alinalina)
Blackfoot ‘ōpīhi (‘ōpīhi makaauli)
Shingle urchin (hā’uke‘uke kaupali)
Black nerite (pipipi)
Spotted periwinkle (pipipi kōlea)
Spotted drupe (makaloa)
Black purse shell (nahawele)
Thin shell rock crab (‘a’ama)
Rock-boring urchin (‘ina kea)
Oblong urchin (‘ina uli)
Turf algae (limu)
Octopus
Crown-of-thorns seastar
(see Appendix 1 for detailed list of samples.
Scientific name:
Cellana exarata
Cellana sandwicensis
Isognomon californicum
Smarragdellina calyculata
Grapsus tenuicrustatus
Drupa ricina
Echinolittorina hawaiensis
Littoraria pintado
Nerita picea
Siphonaria normalis
Colobocentrotus atratus
Echinometra oblonga
Echinometra mathaei
Octopus oliveri
Octopus cyanea
Acanthaster planci

& size of specimens:
Following above, see Appendix 1 for detailed list of maximum sample sizes

Collection location:
Following above, see Appendix 1 for detailed list of collection sites

☒ Whole Organism ☒ Partial Organism

9b. What will be done with the specimens after the project has ended?

Preserved samples remain the property of the Monument, and will maintained with population preserved connectivity biopsy tissue samples collected to date at HIMB, Texas A&M, and Scripps until they are used up by the study or such time as the Monument co-trustees request that they be returned to them. Taxonomic voucher specimens will be submitted for permanent inclusion in museum collections as per the voucher specimen guidelines. Specimens will be centrally housed at Texas A&M where Chris Bird can ensure their safe storage, preservation and
care. Algae samples will be shipped to Scripps for identification and then will be housed at Texas A&M. Specimens may also be shipped to HIMB for processing. DNA and RNA samples will be processed at HIMB, Texas A&M, ARQ Genomics (Austin, TX), and Simon Frasier University. Voucher specimens will be subsampled for genetic analysis and stored frozen or in preservative prior to study.

9c. Will the organisms be kept alive after collection? ☒ No

- General site/location for collections:
 0-20m at Puhahonu, Mokupapapa, Mokumanamana, and Nihoa

- Will organisms be released?
 No.

10. If applicable, how will the collected samples or specimens be transported out of the Monument?

Preserved samples (frozen in RINAlater saturated salt buffer) will be transported back to Oahu aboard the vessel. Specimens will be centrally housed at Texas A&M where Chris Bird can ensure their safe storage, preservation and care. Algae samples will be shipped to Scripps for identification and then will be housed at Texas A&M. Specimens may also be shipped to HIMB for processing. DNA and RNA samples will be processed at HIMB, Texas A&M, ARQ Genomics (Austin, TX), and Simon Frasier University. Voucher specimens will be subsampled for genetic analysis and stored frozen or in preservative prior to study.

11. Describe collaborative activities to share samples, reduce duplicative sampling, or duplicative research:

All researchers working on this project have coordinated to share samples and avoid duplicate sampling. Specifically, the samples listed here and those in the accompanying permit application by Kehau Springer are explicitly the same samples and not duplicative or in addition to one another.

12a. List all specialized gear and materials to be used in this activity:

We will collect samples by hand using no specialized gear or materials beyond snorkeling gear, transect lines, data sheets, and butter knives.

12b. List all Hazardous Materials you propose to take to and use within the Monument:

Tissue preservative solution for DNA and RNA analyses is RINAlater, MSDS attached. DNA extraction involves chaotropic salts, guanidine, SDS, sodium azides, and ethanol. RINAlater will
be double contained (plastic bottles inside of sealed buckets), we be used within Rubbermaid containment basins, and all waste will be double contained and disposed of at the University of Hawaii.

13. Describe any fixed installations and instrumentation proposed to be set in the Monument:

None

14. Provide a time line for sample analysis, data analysis, write-up and publication of information:

Surveys will be completed in the field during the expedition. Data analysis and write-up will depend on the availability of specific support for researchers post-cruise. With current levels of partial support and volunteer activities, we expect it will take roughly 1.5 years to complete the post-cruise analysis of survey data. Time to publication can be considerably longer since the turn-around time for some journals now exceeds 800 days, but results will be reported as soon as possible among the partners and to the resource management community.

Regardless of the time to publication, the results from these studies are made available to Monument managers as quickly as possible through the brown-bag luncheons, semi-annual reports, and semi-annual mini symposium during which all researchers involved in this project present the most current findings from their ongoing research to the broader management community. Findings are always provided to the Monument co-trustees almost as quickly as they become available, and made available to the greater management community within no more than 6 months of the data being collected. Finally, given the specific partnership of Hawaiian cultural practitioners, NGO community, State and Federal resource managers, and research scientists, we are confident that research results will be communicated widely.

Additionally this permit application is a partner to the Native Hawaiian Practices permit application of Kehau Springer. All samples and methodologies discussed in this permit application are directly related to both permit applications and are the same samples, not in addition to one another. This project and its group of dedicated participants will continue to bridge the gap between cultural and western research in Papahānaumokuākea Marine National Monument, and community participants will communicate our collective findings to their respective communities (Hana, Kalapana, etc.) as outlined in Kahau Springer’s permit application.

Tentative Cruise Itinerary

<table>
<thead>
<tr>
<th>DATE</th>
<th>PORT / Island</th>
<th>Departure Time</th>
<th>Distance</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/19/2014</td>
<td>Depart Kewalo for French Frigate Shoals (MPP)</td>
<td>0900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Activity</td>
<td>Details</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>06/20/2014</td>
<td>Transit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/21/2014</td>
<td>Transit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/22/2014</td>
<td>Arrive MPP</td>
<td>Full day operations at MPP</td>
<td>Map,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Collect</td>
<td></td>
</tr>
<tr>
<td>06/23/2014</td>
<td>MPP</td>
<td>Full day operations at MPP</td>
<td>Transect,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Collect</td>
<td></td>
</tr>
<tr>
<td>06/24/2014</td>
<td>MPP/Transit</td>
<td>½ day operations MPP, depart for MMM</td>
<td>155nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>@ 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>knots =</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 hrs</td>
<td></td>
</tr>
<tr>
<td>06/25/2014</td>
<td>Transit/MMM</td>
<td>Arrive MMM, ½ day operations @ MMM</td>
<td>Map</td>
<td></td>
</tr>
<tr>
<td>06/26/2014</td>
<td>MMM</td>
<td>Full day operations @ MMM</td>
<td>Transect,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Collect</td>
<td></td>
</tr>
<tr>
<td>06/27/2014</td>
<td>MMM/Transit</td>
<td>boat Full day operations @ MMM, depart for NIH around 1600</td>
<td>122nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>@ 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>knots =</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16 hrs</td>
<td></td>
</tr>
<tr>
<td>06/28/2014</td>
<td>NIH</td>
<td>SEARCHER anchor in pm – scout coastline via small boat</td>
<td>Collect:</td>
<td></td>
</tr>
<tr>
<td>06/29/2014</td>
<td>NIH</td>
<td>Full day operations @ NIH</td>
<td>Map,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Collect:</td>
<td></td>
</tr>
<tr>
<td>06/30/2014</td>
<td>NIH-Transit</td>
<td>Full day operations @ NIH, depart at 1600 to HNL</td>
<td>245nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>@ 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>knots =</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31 hrs</td>
<td></td>
</tr>
<tr>
<td>07/01/2014</td>
<td>Transit</td>
<td>Transit – arrive 11pm-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/02/2014</td>
<td>Transit-offload</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. List all Applicants’ publications directly related to the proposed project:

21 Simion, P, CE Bird, and RJ Toonen (in prep) Comparative phylogeography of *Octopus cyanea* and *O. oliveri* in the Hawaiian Archipelago.

19 Bird, CE, M Iacchei, and RJ Toonen (in prep) Isolation, disruptive selection, and divergence within a population of broadcast-spawning limpets.

18 Bird, CE and RJ Toonen (in prep) Patterns of recent divergence and gene flow between budding lineages and species boundaries in the sibling Hawaiian limpets (*Cellana* spp.)
17 Bird, CE, MA Timmers, PE Smouse and RJ Toonen (in review) Inferring dispersal patterns with F_{ST} and F_{IS} when is genetic distance too much information? Integrative and Comparative Biology. *Invited*

16 Bird, CE, E Franklin, RJ Toonen, & CM Smith (in review) Between wave and tide marks: a unified model of water level and vertical zonation on littoral shores.

With knowledge of the penalties for false or incomplete statements, as provided by 18 U.S.C. 1001, and for perjury, as provided by 18 U.S.C. 1621, I hereby certify to the best of my abilities under penalty of perjury of that the information I have provided on this application form is true and correct. I agree that the Co-Trustees may post this application in its entirety on the Internet. I understand that the Co-Trustees will consider deleting all information that I have identified as "confidential" prior to posting the application.

Signature

Date

SEND ONE SIGNED APPLICATION VIA MAIL TO THE MONUMENT OFFICE BELOW:

Papahānaumokuākea Marine National Monument Permit Coordinator
6600 Kalaniana'ole Hwy. # 300
Honolulu, HI 96825
FAX: (808) 397-2662

DID YOU INCLUDE THESE?
☒ Applicant CV/Resume/Biography
☒ Intended field Principal Investigator CV/Resume/Biography
☒ Electronic and Hard Copy of Application with Signature
☒ Statement of information you wish to be kept confidential
☒ Material Safety Data Sheets for Hazardous Materials
Appendix 1. Maximum total collection numbers.

<table>
<thead>
<tr>
<th>Species</th>
<th>Type</th>
<th>Distribution</th>
<th>Sampling</th>
<th>Nihoa</th>
<th>Mokumiana</th>
<th>Mokupāpapa (French Frigate Shoals)</th>
<th>Pāhāhonu (Gardner Pinnacles)</th>
<th>Preserve Tissue For Genetic Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isognomon californicum</td>
<td>Bivalve</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Smaragdinella calyculata</td>
<td>Bubble</td>
<td>Shell</td>
<td>Indo-Pac</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Grapsus teniocrustatus</td>
<td>Crab</td>
<td>Indo-Pac</td>
<td>Non-lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Octopus oliveri</td>
<td>Octopus</td>
<td>Indo-Pac</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Octopus cyanea</td>
<td>Octopus</td>
<td>Indo Pac</td>
<td>Non-lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Drupa ricina</td>
<td>Snail</td>
<td>Indo-Pac</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Echinolutorina hawaiensis</td>
<td>Snail</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Littoraria pintado</td>
<td>Snail</td>
<td>Indo-Pac</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Nerita picea</td>
<td>Snail</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Siphonaria normalis</td>
<td>Limpet</td>
<td>Indo-Pac</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Cellana exarata</td>
<td>Limpet</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td><1% of pop, up to 25</td>
<td>Y</td>
</tr>
<tr>
<td>Cellana sandwicensis</td>
<td>Limpet</td>
<td>Hawaii</td>
<td>Lethal</td>
<td>144</td>
<td>144</td>
<td>0</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>Colobocentrotus atratus</td>
<td>Urchin</td>
<td>Indo-Pac</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Echinometra oblonga</td>
<td>Urchin</td>
<td>Indo-Pac</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Echinometra mathaei</td>
<td>Urchin</td>
<td>Indo-Pac</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Acantaster planci</td>
<td>Sea star</td>
<td>Indo-Pac</td>
<td>Lethal</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>Y</td>
</tr>
<tr>
<td>Misc Algae</td>
<td>algae</td>
<td>various</td>
<td>Non-lethal</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>Y</td>
</tr>
</tbody>
</table>
Papahānaumokuākea Marine National Monument
Compliance Information Sheet

1. Updated list of personnel to be covered by permit. List all personnel names and their roles here (e.g. John Doe, Diver; Jane Doe, Field Technician, Jerry Doe, Medical Assistant):
 1) Hoku Johnson (Chief Scientist)
 2) Shauna Keaunani Springer (PI for NH Cultural Permit)
 3) Christopher Bird (PI for Research Permit)
 4) Patrick Springer (Field PI for NH Cultural Permit)
 5) Pelika Bertelmann (PI for NH Cultural Permit #PMNM 2013-023)
 6) Limu Expert (Researcher)
 7) Na Maka o Papahanaumokuakea Rep (Researcher)
 8) Hana Rep (Researcher)
 9) Kalapana Rep (Researcher)
 10) Kipahulu Rep (Researcher)

2. Specific Site Location(s): (Attach copies of specific collection locations):
 Nihoa Island, Necker Island (Mokumanamana), French Frigate Shoals (Mokupapapa), Gardner Pinnacles (Punahou)

3. Other permits (list and attach documentation of all other related Federal or State permits):
 This permit will be conducted alongside Research Permit Number PMNM-2014-XXX (Springer) and PMNM-2013-023 (Bertelmann: Na Mo‘olelo o Papahanaumokuakea)

3a. For each of the permits listed, identify any permit violations or any permit that was suspended, amended, modified or revoked for cause. Explain the circumstances surrounding the violation or permit suspension, amendment, modification or revocation.
 None

4. Funding sources (Attach copies of your budget, specific to proposed activities under this permit and include funding sources. See instructions for more information):
 This trip is fully supported by NOAA / NOS / Office of National Marine Sanctuaries, Papahanaumokuakea Marine National Monument and the Hawaii Institute of Marine Biology.
5. Time frame:
Activity start: June 2014
Activity completion: Ongoing

Dates actively inside the Monument:
From: 16 June 2014
To: 02 July 2014

Describe any limiting factors in declaring specific dates of the proposed activity at the
time of application: Need to confirm Vessel availability

Personnel schedule in the Monument:
A complete itinerary is forthcoming. The project is aiming to spend 1-3 days at each of
the aforementioned sites (Nioha, Mokumanamana, Mokupapa, and Puhahonu) depending
on weather conditions.

6. Indicate (with attached documentation) what insurance policies, bonding
coverage, and/or financial resources are in place to pay for or reimburse the
Monument trustees for the necessary search and rescue, evacuation, and/or removal
of any or all persons covered by the permit from the Monument:
This project is fully supported by the Monument. The Federal Government is self-
insured. In addition the cruise participants will carry emergency evacuation insurance
(e.g. DAN insurance or something comparable).

7. Check the appropriate box to indicate how personnel will enter the Monument:

☐ Vessel
☐ Aircraft

Provide Vessel and Aircraft information:
Searcher

8. The certifications/inspections (below) must be completed prior to departure for
vessels (and associated tenders) entering the Monument. Fill in scheduled date
(attach documentation):

☐ Rodent free, Date:
Papahānaumokuākea Marine National Monument
Compliance Information Sheet
OMB Control # 0648-0548
Page 3 of 5

☐ Tender vessel, Date:
☐ Ballast water, Date:
☐ Gear/equipment, Date:
☐ Hull inspection, Date:

9. Vessel information (NOTE: if you are traveling aboard a National Oceanic and Atmospheric Administration vessel, skip this question):
Vessel name: SEARCHER
Vessel owner: The Medical Foundation for the Study of the Environment
Captain's name: Jonathan Litenberg
IMO#:192
Vessel ID#:U.S. Coast Guard 1103056
Flag: U.S.
Vessel type: Steel Hull
Call sign: WDA 6100
Embarkation port: Hcnolulu
Last port vessel will have been at prior to this embarkation: Honolulu
Length: LOA 96 ft/ Registered 78.1 ft
Gross tonnage: 197
Total ballast water capacity volume (m3): n/a
Total number of ballast water tanks on ship: n/a
Total fuel capacity: 9,600 gallons
Total number of fuel tanks on ship: 6
Marine Sanitation Device: Yes
Type: II

Explain in detail how you will comply with the regulations regarding discharge in the Monument. Describe in detail. If applicable, attach schematics of the vessel's discharge and treatment systems:
All materials and fluids shall be properly stored in holding tanks while the vessel is in Monument waters and will be properly disposed of upon our exit from the Monument.

Other fuel/hazardous materials to be carried on board and amounts:
Approximately 30 gallons of unleaded fuel in jerry cans for use in the skiffs.

Provide proof of a National Oceanic and Atmospheric Administration (NOAA) Office of Law Enforcement-approved Vessel Monitoring System (VMS). Provide the name and contact information of the contractor responsible for installing the VMS system. Also describe VMS unit name and type:
Vessel Monitoring System - Thrane & Thrane Sailor TT-3606XP

VMS Email: 436998398@c12.stratoemobile.net
Inmarsat ID#: 4TT072E62B15

Compliance Information Sheet 3
Contact: Jonathan Littenberg (808.225.8982) or Barbara Littenberg (808.221.6156)

* Individuals MUST ENSURE that a type-approved VMS unit is installed and that its automatic position reports are being properly received by the NOAA OLE system prior to the issuance of a permit. To make sure your VMS is properly configured for the NOAA OLE system, please contact NOAA OLE at (808) 203-2503 or (808) 203-2500.

* PERMITS WILL NOT BE ISSUED TO INDIVIDUALS ENTERING THE MONUMENT VIA VESSEL UNTIL NOAA OLE HAS CONTACTED THE MONUMENT PERMIT COORDINATOR WITH A ‘POSITIVE CHECK’ READING.

10. Tender information:

On what workboats (tenders) will personnel, gear and materials be transported within the Monument? List the number of tenders/skiffs aboard and specific types of motors:
One 16 foot RHIB Zodiac with Yamaha 4 stroke engine or one new 16 foot inflatable Avon with Yamaha 4 stroke tiller engine.
Additional Information for Land Based Operations

11. Proposed movement of personnel, gear, materials, and, if applicable, samples: none

12. Room and board requirements on island: none

13. Work space needs: none

DID YOU INCLUDE THESE?
☐ Map(s) or GPS point(s) of Project Location(s), if applicable
☐ Funding Proposal(s)
☐ Funding and Award Documentation, if already received
☐ Documentation of Insurance, if already received
☐ Documentation of Inspections
☐ Documentation of all required Federal and State Permits or applications for permits
May 9, 2014

TO: Division of Aquatic Resources File

THROUGH: William J. Aila Jr., Chairperson

FROM: Frazer McGilvray
Division of Aquatic Resources

The following permitted activities are found to be exempted from preparation of an environmental assessment under the authority of Chapter 343, HRS and Chapter 11-200, HAR:

Project Title:
Papahānaumokuākea Marine National Monument Research Permit to Dr. Christopher Bird, Assistant Professor, Texas A&M University – Corpus Christi, and Dr. Robert Toonen, Research Professor, Hawai‘i Institute of Marine Biology, University of Hawai‘i, for Access to State Waters to Conduct Intertidal Biodiversity Activities.

Permit Number: PMNM-2014-026

Project Description:
The research permit, as described below, would allow entry and activities to occur in Papahānaumokuākea Marine National Monument (Monument), including the NWHI State waters from June 1, 2014 through May 31, 2015.

The purpose of the proposed project would be to examine the biodiversity of the Hawaiian intertidal and subtidal ecosystem and to study the basic ecology of ‘ōpīhi populations within the Northwestern Hawaiian Islands. The applicants propose to collect samples of common intertidal invertebrates and macroalgae (limu) by hand in order to establish an intertidal baseline survey of the NWHI, that would characterize the biodiversity, population dynamics and connectivity, and contribute to the debate about how new species arise in the sea.

ITEM F-3c
The applicants would conduct conductivity and self-recruitment studies by through size-class sampling and genomic DNA sequencing in the intertidal zone. This would be performed by conducting a maximum of thirty (30) belt transects per island in the intertidal zone randomly located at sites based on access, safety, and weather conditions. ‘Opihi density and species presence/absence would be mapped on each island. Six (6) individuals would survey while two (2) individuals would watch for waves and two (2) individuals would collect data. Survey transects would be set up by: (1) delineating survey belt transects on each island to survey the entire accessible portion and record the GPS waypoints; (2) lay a transect sash chain perpendicular to the shoreline (mauka to makai) from the highest marine animal on shore to 15 ft deep; and (3) colored cable ties would be attached to sash chain to divide transects into 2 m wide zones. The survey protocol would entail the following: (1) all ‘opii was identified by species and counted in each zone; (2) all other visually identifiable organisms (invertebrates and edible limu) associated with ‘opii would be counted and recorded for species presence and abundance along with their GPS locations for each transect line; (3) percent cover would be estimated for each algae species; (4) voucher specimens (1 cm²) from each type of algae would be collected to confirm identification in the laboratory; (5) the x, y, and z spatial coordinates of each zone boundary along the transect and the “rugose” length of each transect to contour the exact surface distance of each zone would be measured; (6) each data sheet would be double-checked and photographed in the field and matched with a photograph of the entire transect and conditions would be recorded along with anything else noteworthy along the transect line; and (7) a photograph would be taken every 25 cm along the transect chain to capture each zone boundary. At French Frigate Shoals, all ‘opii would be counted. ‘Opihi reproductive cycles would be tracked in collaboration of Kehau Springer’s permit application currently in review (PMNM-2014-020). To coordinate with ‘opii spawning cycles, the cruise would begin shortly after the full moon and end on the new moon when ‘opii spawn. The applicants would collect twenty-four (24) individuals per 1 cm size class (<1, 1-2, 2-3, 3-4, 4-5, >5 cm) per species on Nihoa and Necker Island (Mokumanamana). On French Frigate Shoals, five (5) individuals per 1 cm size class would be collected. On Gardner Pinnacles, ‘opii populations (only Cellana exarata is found here) would be mapped to determine sampling and collections would be limited to 1 percent of the population. The applicants would extract RNA and DNA samples and separate gonad and non-gonadal tissue from the shell weighing all tissue. The weights of the tissues would be compared to access reproductive states for male and females. Tissues would be stored in liquid nitrogen. Non-lethal sampling of crab (Grapsus tenuicrustatus) and octopi (Octopus oliveri and O. cyanea) would be conducted by removing a leg or 1 inch section of an arm tip, respectively. To test the hypothesis of whether the size of ‘opii reproductive maturity decreases due to fishing pressure in the Main Hawaiian Islands, the size of gonad tissue would be compared to ‘opii from the Monument.

In the shallow subtidal zone, the applicants would perform near shore fish surveys. Here, four (4) snorkelers would perform one of four tasks, survey for benthic fish, survey for silver fish, survey for colorful fish, or video the transect line. All snorkelers surveying fish would count fish of each species they see along the transect line and photograph any unknown species. A list of the most common fish observed in the near shore environment was developed in 2011 and 2012 and this information would be included in datasheets used in the surveys. Snorkelers would swim side by side.
side with a boat escort for safety. The length of each swimming transect would be recorded from the boat using a GPS and stopwatch. This would give an estimate of catch per unit effort.

Two new activities would focus on intertidal biodiversity and ‘opíhi reproduction:

1. The applicants would collect forty-eight (48) individuals per island of each of the invertebrates, including three (3) invertebrate species that have not been previously permitted to collect. Except, twenty-five (25) individual specimens of *Cellana extarata* would be collected from French Frigate Shoals. Tissue from all invertebrates listed would be preserved for genetic analysis.

2. The applicants would conduct further laboratory analysis of gonad tissue (sampling described previously). Once the gonad tissue is transported to Dr. Bird’s laboratory at Texas A&M, the applicants would test the tissue for a correlation between allele frequency and ‘opíhi population density obtained from the transect surveys performed in both the Monument and Main Hawaiian Islands. The tissue would also be tested for gamete recognition proteins and correlated to human population densities nearby to test for human impacts.

Permitted personnel would be escorted at all times by an approved US Fish and Wildlife (USFWS) escort, experienced and trained to safely access all four island locations with no adverse impact to native species or cultural sites. Beach access at Nihoa Island would be prohibited and landing on the island would only occur in the rocky intertidal zone when no Hawaiian monk seals and sea turtles are present at the landing sites. Furthermore, all personnel would avoid all areas where Hawaiian monk seals and sea turtles haul out.

Activities associated with this project would continue work previously permitted in the Monument. This project would be a collaboration of efforts from Na Mamo o Muole’a, The Nature Conservancy, Hawai’i Institute of Marine Biology, Na Maka o Papahanaumokuakea, Conservation International-Hawaii Fish Trust, Texas A&M and the NOAA Papahanaumokuakea Marine National Monument.

The proposed activities are in direct support of the Monument Management Plan’s priority management needs 3.1 – Understanding and Interpreting the NWHI (through action plan 3.1.1 Marine Conservation Science). This action plan specifies to “measure connectivity and genetic diversity of key species to enhance management decisions” (Activity MCS-1.5, PMNM MMP Vol 1, p. 123). Activities to support marine conservation science, including biodiversity and genetic diversity surveys such as those to be carried out by the permittee, are also addressed in the Monument Management Plan (MMP) Environmental Assessment (EA) (FONSI, December 2008). This EA summarizes that connectivity and genetic studies of key species would be helpful in forecasting, preparing, and mediating potential threats to populations (PMNM MMP Vol 2, p. 171). Identification of biodiversity and genetic diversity of invertebrates in the NWHI, such as those proposed, would enhance this understanding.

Consulted Parties:
The permit application was sent out for review and comment to the following scientific and cultural entities: Hawaii Division of Aquatic Resources, Hawaii Division of Forestry and Wildlife, Papahānaumokuākea Marine National Monument (NOAA/NOS), NOAA Pacific Islands Regional Office (NOAA-PIRO), United States Fish and Wildlife Service Hawaiian and Pacific Islands National Wildlife Refuge Complex Office, and the Office of Hawaiian Affairs (OHA). In addition, the permit application has been posted on the Monument Web site since March 17, 2014 giving the public an opportunity to comment. The application was posted within 40 days of its receipt, in accordance with the Monument’s Public Notification Policy.

Exemption Determination:
After reviewing HAR § 11-200-8, including the criteria used to determine significance under HAR § 11-200-12, DLNR has concluded that the activities under this permit would have minimal or no significant effect on the environment and that issuance of the permit is categorically exempt from the requirement to prepare an environmental assessment based on the following analysis:

1. All activities associated with this permit; including transect monitoring in intertidal and near-shore regions, tissue biopsy sampling, and subsequent genetic and taxonomic study of invertebrates and macroalgae; have been evaluated as a single action. As a preliminary matter, multiple or phased actions, such as when a group of actions are part of a larger undertaking, or when an individual project is precedent to or represents a commitment to a larger project, must be grouped together and evaluated as a single action. HAR § 11-200-7. This permit may involve an activity that is precedent to a later planned activity, i.e. the continuation of near-shore biodiversity monitoring, sampling, and associated genetic studies; the categorical exemption determination here will treat all planned activities as a single action.

2. The Exemption Class for Experimental Management with no Serious or Major Environmental Disturbance Appears to Apply. Chapter 343, HRS, and § 11-200-8, HAR, provide for a list of classes of actions exempt from environmental assessment requirements. HAR §11-200-8.A.5. exempts the class of actions which involve “basic data collection, research, experimental management, and resource evaluation activities which do not result in a serious or major disturbance to an environmental resource.” The proposed removal activities here appear to fall squarely under the exemption class #5, exempt item #5 as described under the Division of Forestry and Wildlife exemption list published on June 12, 2008. This exemption class has been interpreted to include “wildlife surveys, new transect lines, photographing, recording, and sampling”, such as those being proposed. As discussed below, no significant disturbance to any environmental resource is anticipated in the monitoring and removal of a limited number of sharks. Thus, so long as the below considerations are met, an exemption class should include the action now contemplated.

These invertebrates are abundant and common on every island surveyed. The population sizes have been estimated and a collection of forty-eight (48) individuals would have no detectable impact because less than 1 percent of their population would be sampled. The applicant would follow Monument Best Management Practice (BMP) 016 – Activities on Nihoa and BMP 006 – General Storage and Transport to minimize any impacts from activities.
3. Cumulative Impacts of Actions in the Same Place and Impacts with Respect to the Potentially Particularly Sensitive Environment Will Not be Significant. Even where a categorical exemption appears to include a proposed action, the action cannot be declared exempt if “the cumulative impact of planned successive actions in the same place, over time, is significant, or when an action that is normally insignificant in its impact on the environment may be significant in a particularly sensitive environment.” HAR § 11-200-8.B. To gauge whether a significant impact or effect is probable, an exempting agency must consider every phase of a proposed action, any expected primary and secondary consequences, the long-term and short-term effects of the action, the overall and cumulative effect of the action, and the sum effects of an action on the quality of the environment. HAR § 11-200-12. Examples of actions which commonly have a significant effect on the environment are listed under HAR § 11-200-12.

Proposed activities would be a continuation of a proposed project in its sixth year. Similar near-shore biodiversity monitoring activities have also been permitted and performed within the NWHI. Past permitted projects including similar collections and techniques have shown no adverse impacts. No adverse impacts are expected from the proposed activities.

The cumulative impacts of this permit, in conjunction two proposed Native Hawaiian practices permits (permit application currently in review for Ms. Shauna Kēhaunani Springer, PMNM-2014-020 and amendment to approved application for Ms. Pelika Bertelmann, PMNM-2013-023) are also considered. The species targeted for collection in this project are ones identified as being abundant and common on every island surveyed to date, for which the estimated population sizes are so large that collection of less than one (1) percent of the population at any site would be sampled. Collections of this size would have no detectable impact. With this in mind, invertebrate collections approved under Ms Bertelmann’s permit and proposed with Ms. Springer’s permit are expected to have no detectable impact. With this in mind, significant cumulative impacts are not anticipated as a result of this activity, and numerous safeguards further ensure that the potentially sensitive environment of the project area will not be significantly affected.

The proposed project would be supported by the NOAA contracted vessel, R/V SEARCHER (PMNM-2014-001), from June 19 to July 2, 2014. There would be two other proposed activities that are anticipated to take place on this vessel pending approval of these permit applications.

The other proposed activities, Springer (PMNM-2014-020) and Bertelmann (PMNM-2013-023) would also take place in the intertidal areas of these islands at the same time. Springer proposes to conduct Native Hawaiian environmental monitoring of ‘ōpīhi and intertidal ecosystems. Bertelmann proposes to conduct Native Hawaiian cultural monitoring and subsistence gathering, focusing on the intertidal and near-shore zones. The three proposed activities, while differing in their approach to understanding this habitat, are the result of collaborations with the same goal of adding to a greater total knowledge base for this region. As such, there would be no duplicative sampling of resources or organisms.

There is the potential that two ships may be in the Monument during this time frame. The NOAA Ship HIʻIALAKAI (PMNM-2014-001) (Table 1) and SSV MAKANI OLU (applications currently
in review for Bonnie Kahapea-Tanner, PMNM-2014-013 and PMNM-2014-022) (Table 2). There is no anticipated overlap in activities and therefore no associated cumulative impacts between activities from the SEARCHER and activities from the two other vessels. At this time, no other concurrent activities are known. The culmination of this permit, occurring throughout the Monument over several months, is not anticipated to have significant cumulative impacts. The following tables outline the proposed activities on the two vessels:

Table 1: Concurrent projects aboard NOAA Ship HI’IALAKAI

<table>
<thead>
<tr>
<th>Permit</th>
<th>Purpose and scope</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMNM-2014-005 Ellis-Simon HI’IALAKAI (approved)</td>
<td>This permit allows the NOAA Ship HI’IALAKAI entry into the Monument. Personnel aboard the vessel would be permitted under separate permits</td>
<td>All locations</td>
</tr>
<tr>
<td>PMNM-2014-001 Co-Trustee (approved)</td>
<td>This permit allows monk seal field camp operations.</td>
<td>Kure Atoll, Midway Atoll, French Frigate Shoals</td>
</tr>
<tr>
<td>PMNM-2014-027 Jacobs (proposed)</td>
<td>The proposed action is to collect video data on marine mammal, marine turtle, seabird colony population dynamics using unmanned aircraft systems (UAS).</td>
<td>Nihoa, Necker Island (Mokumanamana), French Frigate Shoals</td>
</tr>
<tr>
<td>PMNM-2014-014 Meyer (proposed)</td>
<td>This proposed action is to conduct top predator research consisting of fishing for various shark and fish species.</td>
<td>All locations</td>
</tr>
</tbody>
</table>

Table 2: Concurrent projects aboard SSV MAKANI OLU.

<table>
<thead>
<tr>
<th>Permit</th>
<th>Purpose and scope</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMNM-2014-013 Kahape’a-Tanner (proposed)</td>
<td>The proposed action would allow Native Hawaiian youth enrolled in the Halau Holomoana training program to participate in the voyage of the SSV MAKANI OLU to Mokumanamana and Nihoa.</td>
<td>Nihoa Island, Necker Island (Mokumanamana)</td>
</tr>
<tr>
<td>PMNM-2014-022 Kahape’a-Tanner (proposed)</td>
<td>The proposed action would capture still photograph and video footage of activities covered under proposed permit no. PMNM-2014-013 for education and outreach purposes.</td>
<td>Nihoa Island, Necker Island (Mokumanamana)</td>
</tr>
</tbody>
</table>

Since no significant cumulative impacts or significant impacts with respect to any particularly sensitive aspect of the project area are anticipated, the categorical exemptions identified above should remain applicable.

4. Overall Impacts will Probably be Minimal and Insignificant Any foreseeable impacts from the proposed activity will probably be minimal, and further mitigated by general and specific conditions attached to the permit. Specifically, all conservation and management activities covered by this permit will be carried out with strict safeguards for the natural, historic, and cultural resources of
the Monument as required by Presidential Proclamation 8031, other applicable law and agency policies and standard operating procedures.

Conclusion. Upon consideration of the permit to be approved by the Board of Land and Natural Resources, the potential effects of the above listed project as provided by Chapter 343, HRS and Chapter 11-200 HAR, have been determined to be of probable minimal or no significant effect on the environment and exempt from the preparation of an environmental assessment.

William J. Aila Jr.
Board of Land and Natural Resources

Date