State of Hawaii
DEPARTMENT OF LAND AND NATURAL RESOURCES
Division of Boating and Ocean Recreation
Honolulu, Hawaii

December 12, 2014

Board of Land and Natural Resources
State of Hawaii
Honolulu, Hawaii

DELEGATION OF AUTHORITY TO THE CHAIRPERSON OF THE BOARD OF LAND AND NATURAL RESOURCES (BOARD) TO APPROVE A GRANT AGREEMENT TO NAVATEK, LTD. (NAVATEK)

The Division of Boating and Ocean Recreation is requesting that the Board delegate authority to the Chairperson to approve a contract for goods and services to Navatek, Ltd. Under Act 134, SLH 2013, as amended by Act 122, SLH, the 2014 State Legislature awarded a Grant-in-Aid of $450,000 to Navatek, Ltd. to perform near shore wave data collection to validate wave buoy data from offshore wave measurements (Exhibit A).

The grantee proposes to conduct on the waters studies of current near-shore wave conditions at specific, highly utilized beaches and water sport locations, in order to build a data base of near shore wave data for selected locations to validate current predictive models in a variety of ocean conditions.

The data will be used to improve wave forecasting for Hawaii residents, tourists, and water safety personnel. Although the state has access to wave buoy data, the ability utilize the data and apply it to near-shore wave forecasting is limited. The effects of coastal geography on wave data has not been determined and may lead to inaccurate wave height and ocean condition prediction at Hawaii’s beaches. This may lead to endangerment of the public that utilize the beaches of the State. Inaccurate wave data forecast predictions endanger all who use the state waters of the state and this study will providing additional resources to water safety personnel of all jurisdictions.

RECOMMENDATION:

That the Board of Land and Natural Resources authorize the Chairperson to sign the necessary documents pertaining to the specific contract subject to available funding, release of funds by the Governor, and approval as to form by the Attorney General’s office.
Delegation Of Authority to the Chairperson of the Board of Land and Natural Resources to Approve a Grant Agreement to Navatek, Ltd.

Respectfully Submitted,

Edward R. Underwood
Administrator

Attachment: Exhibit A

APPROVED FOR SUBMITTAL

William J. Aila, Jr.
Chairperson and Member
THE TWENTY-SEVENTH LEGISLATURE
APPLICATION FOR GRANTS AND SUBSIDIES
CHAPTER 42F, HAWAI'I REVISED STATUTES

House District 26
Senate District 13

Type of Grant or Subsidy Request:

☐ GRANT REQUEST – OPERATING
☐ GRANT REQUEST – CAPITAL
☐ SUBSIDY REQUEST

"Grant" means an award of state funds by the legislature, by an appropriation to a specified recipient, to support the activities of the recipient and permit the community to benefit from those activities.

"Subsidy" means an award of state funds by the legislature, by an appropriation to a recipient specified in the appropriation, to reduce the costs incurred by the organization or individual in providing a service available to some or all members of the public.

"Recipient" means any organization or person receiving a grant or subsidy.

STATE DEPARTMENT OR AGENCY RELATED TO THIS REQUEST (LEAVE BLANK IF UNKNOWN): DLNR - DOBOR

STATE PROGRAM L.D. NO. (LEAVE BLANK IF UNKNOWN): __________

1. APPLICANT INFORMATION:

Legal Name of Requesting Organization or Individual: Navatek Ltd.
Dba: __________________________
Street Address: 841 Bishop St. Suite 1110
Mailing Address: 841 Bishop St. Suite 1110, Honolulu, HI 96813

2. CONTACT PERSON FOR MATTERS INVOLVING THIS APPLICATION:

Name __
Title __
Phone # ___________________
Fax # ___________________
e-mail ________________________

3. TYPE OF BUSINESS ENTITY:

☐ NON-PROFIT CORPORATION
☐ FOR PROFIT CORPORATION
☐ LIMITED LIABILITY COMPANY
☐ SOLE PROPRIETORSHIP/INDIVIDUAL

6. DESCRIPTIVE TITLE OF APPLICANT'S REQUEST:
Perform near shore wave data collection in highly utilized coastal zones. The wave data will be used to validate current predictive near shore models and improve wave forecasting for the safety of residents, tourists, and water safety personnel in Hawai'i and reduce liability for the State.

4. FEDERAL TAX ID #: 99-0178612
5. STATE TAX ID #: W20311820-0

7. AMOUNT OF STATE FUNDS REQUESTED:

FISCAL YEAR 2015: $467,783.23

8. STATUS OF SERVICE DESCRIBED IN THIS REQUEST:

☐ NEW SERVICE (PRESENTLY DOES NOT EXIST)
☐ EXISTING SERVICE (PRESENTLY IN OPERATION)

SPECIFY THE AMOUNT BY SOURCES OF FUNDS AVAILABLE
AT THE TIME OF THIS REQUEST:

STATE $________
FEDERAL $________
COUNTY $________
PRIVATE/OTHER $________

TYPE NAME & TITLE OF AUTHORIZED REPRESENTATIVE

Brian Kays, Supervisory Engineer/Vessel Operator
1/30/14
Application for Grants and Subsidies

If any item is not applicable to the request, the applicant should enter "not applicable".

I. Background and Summary

This section shall clearly and concisely summarize and highlight the contents of the request in such a way as to provide the State Legislature with a broad understanding of the request. Include the following:

1. A brief description of the applicant’s background

Navatek, Ltd. was founded in 1979 and operates out of offices in Honolulu, Hawaii with 49 employees. Navatek is a subsidiary of kama’aina company Pacific Marine, founded in 1944, with 450 employees.

For over 30 years, Navatek has professionally operated a fleet of advanced small craft in Hawaiian waters — including survey vessels capable of conducting sustained, at-sea observations and data collection. The company also employs a staff of local, certified, trained and USCG-licensed boat operators who are familiar with Hawaii waters, and ocean sports activities in those waters. Navatek’s staff regularly participates in ocean sports activities in near shore ocean locations, often relying on wave and weather forecasting published by various agencies. The combination of Navatek’s stable, seaworthy vessels and their staff of ocean savvy, technically capable employees makes Navatek the ideal entity to conduct the proposed wave height data collection and analysis.

2. The goals and objectives related to the request

 i. Perform near shore wave data collection in highly utilized coastal zones. The wave data will be used to validate current predictive near shore models and improve wave forecasting for the safety of residents, tourists, and water safety personnel in Hawaii and reduce liability for the State.

 ii. Coordinate with model developers and ocean safety personnel to identify specific near shore locations on Oahu for wave data collection. Factors for location selection will include population density, usage, access to rescue personnel, past incidences, and frequency of dangerous ocean conditions.

 iii. Develop and establish experimental methods and procedures for wave data collection in the selected near shore locations.

 iv. Conduct the near shore wave data collection program.
v. Compile, organize, and analyze the high fidelity data set of near-shore wave conditions. This data set will allow the State of Hawaii to validate current model performance over a statistically significant range of ocean conditions. The correlations between near shore models and actual real time data will allow for future model improvements and ultimately lead to increased ocean awareness for the residents and visitors of Hawaii. Lifeguards and water safety personnel will be able to utilize the improved near shore model information to better prepare for the fast changing Hawaiian ocean conditions.

3. The public purpose and need to be served

Hawaii near-shore wave forecast models have been developed using wave buoy data from far-field buoys (up to 1000nm offshore). These forecast models are limited in their ability to incorporate complex coastal geography which can lead to inaccurate wave height and ocean condition predictions at Hawaii’s beaches. The validation methods currently employed all include human observation which is subject to interpretation as there is no objective measurement tool. Due to the cited issues, the near shore wave models are only used to obtain notional forecasts for ocean conditions, and in the past, the models have either overstated or understated the wave heights at many popular ocean recreation locations. This has led to public distrust of the wave height forecasts and can undermine the effectiveness of the warnings issued by the State of Hawaii.

Lifeguards and other water safety personnel have the difficult task of assigning resources and planning for extreme ocean and weather events to help protect the residents and visitors in Hawaii. The wave height forecast predictions derived from the current near shore models cannot currently be utilized due to the uncertainties involved with their outputs. Ocean users often misinterpret or fail to adhere to wave height advisories and warnings due to prior understatements or overstatements of ocean conditions at Hawaii’s beaches.

Under this request, Navatek proposes to conduct on the water studies of current near-shore wave conditions at specific, highly utilized beaches and water sport locations, in order to build a data base of near shore wave data for the selected locations to validate current predictive models in a variety of ocean conditions. This data base will help improve wave forecasting for Hawaii residents, tourists, and water safety personnel.

4. Describe the target population to be served

The target population to be served includes Oahu residents, Oahu tourists, and water safety personnel who rely on wave forecasting models and participate in near shore ocean activities.

5. Describe the geographic coverage

The geographic coverage will be determined during the first phase of this project via coordination with model developers and ocean safety personnel. Possible geographical areas
include high activity surf zones on Oahu, popular beaches (Sandy Beach, Kailua Beach, Lanikai Beach, Makapu'u, Waikiki, Waimea Bay, etc.), and public harbors and channels around Oahu.

II. Service Summary and Outcomes

The Service Summary shall include a detailed discussion of the applicant’s approach to the request. The applicant shall clearly and concisely specify the results, outcomes, and measures of effectiveness from this request. The applicant shall:

1. Describe the scope of work, tasks and responsibilities

The scope of work, tasks and responsibilities include coordinating with model developers and ocean safety personnel, developing experimental methods and procedures, conducting the near-shore wave data collection program, compiling and analyzing the data, and managing the overall program.

a. Coordinate with model developers and ocean safety personnel to determine data collection locations

Navatek will coordinate with model developers and ocean safety agency personnel to identify specific locations on Oahu that would benefit from improved wave height forecasting and service a significant number of Hawaii’s residents and visitors. The geographic locations will be specifically defined in order to pinpoint exactly where wave measurements should be recorded in order to provide the best data to model developers.

b. Develop and establish experimental methods and procedures

While the basic process for collecting wave data is understood, each of the following items needs to be vetted and analyzed in order to conduct a meaningful study: Population served, near shore geographic locations, wave buoy placement (depth, distance offshore...etc.), duration of buoy deployment, and time of day for buoy deployment. Experimental methods and procedures will be defined to include: Study intervals, study frequency, study weather conditions, and study verification for quality assurance. The data analysis methods will be defined to include statistical data reduction tools and output data formats suitable for a final report.
c. **Conduct near-shore wave data collection program**

Using a portable yet high fidelity wave buoy, Navatek supplied vessels, mooring facilities, and data recording equipment, studies will be conducted in the selected locations around Oahu. The data will be collected by utilizing vessels with the range and endurance required to access all areas of interest and remain on station for the duration of each wave buoy deployment.

d. **Compile and analyze the data, prepare the final report, and validate current near-shore models**

All of the data collected will be consolidated into a comprehensive report. Wave data will be compiled and organized for analysis and comparison with current near-shore models. Raw data will be available as final report appendix information. Data reduction will be conducted using statistical analysis tools, and a detailed report summarizing the results, analysis, and conclusions will be provided.

e. **Program management**

Navatek shall maintain the overall program management, which will include overall direction, technical guidance, program schedule, reviews, report production, contracting support, and other programatics.

2. **Provide a projected annual timeline for accomplishing the results or outcomes of the service**

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Months After Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Define Study Locations</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Develop Study Methodologies</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Conduct Studies</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Analyze Data and Produce Report</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Program Management</td>
<td></td>
</tr>
</tbody>
</table>

Application for Grants and Subsidies
3. **Describe its quality assurance and evaluation plans for the request. Specify how the applicant plans to monitor, evaluate, and improve their results; and**

Navatek has conducted numerous at-sea tests and trials with experimental craft, ocean sensing equipment, data collection from electronic sensors for up to 25 channels at rates up to 20,000Hz, and supplemented all data collection with real time observational logging and recording. The processes for the at-sea data collection are established.

For the purposes of the proposed study, data will be recorded electronically with various data collection instruments, but manual observations will also be recorded to supplement and further validate the data. The entries made in the manual log will include date, time, location confirmed with GPS location, observed weather condition, wind speed and direction, tide height, study duration and other notations. The electronic recordings will be primarily done using a portable, high fidelity wave buoy. This buoy will record wave height, direction and swell period. The buoy is capable of recording multiple swells with different directions or periods in one data set. Data collected manually and electronically will be transferred to a computer on board as time allows, or no later than close of business on the day of the observations.

Two persons will be jointly conducting studies and will verify and confirm recordings. Acknowledgement of recordings will be required to establish them for record keeping. All data recording will be signed off daily by the persons conducting the survey.

The data will be evaluated for quality by reviewing logs and raw data streams for missing data components. During data reduction, the data streams will be cleaned of incomplete entries to allow for fully accurate and complete data sets to be used in analysis.

4. **List the measure(s) of effectiveness that will be reported to the State agency through which grant funds are appropriated (the expending agency). The measure(s) will provide a standard and objective way for the State to assess the program's achievement or accomplishment. Please note that if the level of appropriation differs from the amount included in this application that the measure(s) of effectiveness will need to be updated and transmitted to the expending agency.**

The proposed reporting line will be to the DLNR – Division of Boating and Ocean Recreation (DOBOR). There are also several other agencies that will also benefit from improved near shore wave height forecasting, including: The City and County of Honolulu Ocean Safety Division, the Pacific Islands Ocean Observing System (PacIoOS), USCG, and the University of Hawaii. The data outputs will be listed to include:

- Near shore significant wave height and period
- Time of day
- Distance from shore
- Height of tide
- Weather conditions

Application for Grants and Subsidies
- Season
- Current near shore wave forecast

Any differences between Navatek’s near shore wave data and current near shore models will be readily apparent upon analysis. The study can be considered effective if it provides the State Legislature with the following:

1) An assessment of major problems or discrepancies in the forecasts derived from existing near shore wave height and ocean condition predictive forecasting models.

2) An evaluation of existing predictive forecasting models. Do they provide Lifeguards and other water safety personnel with sufficient information to properly serve the general public, reliably assign resources and plan for extreme events, at beaches, bays and other coastal locations?

3) A complete set of near shore wave data that the State can use to help improve future wave forecasting models.
III. Financial

Budget

1. The applicant shall submit a budget utilizing the enclosed budget forms as applicable, to detail the cost of the request.

Please see attached completed budget forms following this section.

2. The applicant shall provide its anticipated quarterly funding requests for the fiscal year 2015.

<table>
<thead>
<tr>
<th>Quarter 1</th>
<th>Quarter 2</th>
<th>Quarter 3</th>
<th>Quarter 4</th>
<th>Total Grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>$283,042.49</td>
<td>$75,465.10</td>
<td>$70,333.77</td>
<td>$41,941.87</td>
<td>$467,783.23</td>
</tr>
</tbody>
</table>

3. The applicant shall provide a listing of all other sources of funding that they are seeking for fiscal year 2015.

None. No other sources of funding are being requested for FY 2014-2015.

4. The applicant shall provide a listing of all state and federal tax credits it has been granted within the prior three years. Additionally, the applicant shall provide a listing of all state and federal tax credits they have applied for or anticipate applying for pertaining to any capital project, if applicable.

<table>
<thead>
<tr>
<th>Tax Credits</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of Hawaii</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Federal</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Research & Development</td>
<td>$125,909</td>
<td>$208,333</td>
<td>$219,022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capitol Project Tax Credits</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of Hawaii</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Federal</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

5. The applicant shall provide the balance of its unrestricted current assets as of December 31, 2013.

<table>
<thead>
<tr>
<th>Estimated Balance of Unrestricted Current Assets as of December 31, 2013</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$9,681,151.00</td>
<td></td>
</tr>
</tbody>
</table>
BUDGET REQUEST BY SOURCE OF FUNDS
(Period: July 1, 2014 to June 30, 2015)

Applicant: Navatek Ltd.

<table>
<thead>
<tr>
<th>BUDGET CATEGORIES</th>
<th>Total State Funds Requested (a)</th>
<th>Navatek Supplied Funding (b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. PERSONNEL COST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Salaries</td>
<td>133,822</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Payroll Taxes & Assessments</td>
<td>180,586</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Fringe Benefits</td>
<td>42,823</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL PERSONNEL COST</td>
<td>337,230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. OTHER CURRENT EXPENSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Airfare, Inter-Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Lease/Rental of Equipment</td>
<td>448,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Lease/Rental of Space</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Staff Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Supplies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Telecommunication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Utilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Port Entry Fees</td>
<td>3,851</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Data Collection Equipment</td>
<td>47,918</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Vessel Consumables</td>
<td>33,985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Fuel</td>
<td>44,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL OTHER CURRENT EXPENSES</td>
<td>130,583</td>
<td>448,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. EQUIPMENT PURCHASES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. MOTOR VEHICLE PURCHASES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. CAPITAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL (A+B+C+D+E)</td>
<td>467,783</td>
<td>448,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOURCES OF FUNDING
(a) Total State Funds Requested 467,783
(b) Navatek Supplied Funding 448,000
(c)
(d)

TOTAL BUDGET 915,783

Budget Prepared By:

Brian Kays 808-221-8791
Name (Please type or print) Phone
Signature of Authorized Official Date
Brian Kays, Supervisory Engineer/Vessel Operator
Name and Title (Please type or print)
BUDGET JUSTIFICATION
PERSONNEL - SALARIES AND WAGES

Applicant: Navatek Ltd.

Period: July 1, 2014 to June 30, 2015

<table>
<thead>
<tr>
<th>POSITION TITLE</th>
<th>FULL TIME EQUIVALENT</th>
<th>ANNUAL SALARY A</th>
<th>% OF TIME ALLOCATED TO GRANT REQUEST B</th>
<th>TOTAL STATE FUNDS REQUESTED (A x B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisory Engineer/Vessel Operator</td>
<td>$130,558.48</td>
<td></td>
<td>9.57%</td>
<td>$12,500.28</td>
</tr>
<tr>
<td>Controller</td>
<td>$111,566.00</td>
<td></td>
<td>8.31%</td>
<td>$9,258.56</td>
</tr>
<tr>
<td>Mechanical Engineer/Vessel Operator</td>
<td>$60,008.00</td>
<td></td>
<td>29.97%</td>
<td>$17,983.07</td>
</tr>
<tr>
<td>Hydrodynamicist/Deck Hand</td>
<td>$83,467.80</td>
<td></td>
<td>29.24%</td>
<td>$24,403.37</td>
</tr>
<tr>
<td>Research Engineer/Vessel Operator</td>
<td>$110,011.20</td>
<td></td>
<td>29.97%</td>
<td>$32,967.92</td>
</tr>
<tr>
<td>Senior Naval Architect/Hydrodynamicist</td>
<td>$102,229.40</td>
<td></td>
<td>17.51%</td>
<td>$17,901.17</td>
</tr>
<tr>
<td>Mechanical Engineer/Deck Hand</td>
<td>$62,004.80</td>
<td></td>
<td>17.95%</td>
<td>$11,128.97</td>
</tr>
<tr>
<td>Marine Mechanic/Deck Hand</td>
<td>$42,723.20</td>
<td></td>
<td>17.95%</td>
<td>$7,668.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL: 133,821.54</td>
</tr>
</tbody>
</table>

JUSTIFICATION/COMMENTS: The budget listed above assumes a planning period of two months which will be primarily staffed by the Engineers, Naval Architects and Hydrodynamicists. The survey portion of the job will consist of four approximately 8 hour trips per week. The surveys will be staffed by vessel operators, deckhands, and engineers. The data reduction and report writing will be completed by the Engineers, Naval Architects and Hydrodynamicists.
BUDGET JUSTIFICATION - EQUIPMENT AND MOTOR VEHICLES

Applicant: Navatek Ltd
Period: July 1, 2014 to June 30, 2015

<table>
<thead>
<tr>
<th>DESCRIPTION OF EQUIPMENT</th>
<th>NO. OF ITEMS</th>
<th>COST PER ITEM</th>
<th>TOTAL COST</th>
<th>TOTAL BUDGETED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td>$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JUSTIFICATION/COMMENTS:

<table>
<thead>
<tr>
<th>DESCRIPTION OF MOTOR VEHICLE</th>
<th>NO. OF VEHICLES</th>
<th>COST PER VEHICLE</th>
<th>TOTAL COST</th>
<th>NO. OF DAYS UTILIZED</th>
<th>TOTAL BUDGETED</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLB-65 (Navatek Supplied Asset)</td>
<td>1.00</td>
<td>$4,500.00</td>
<td>$4,500.00</td>
<td>56</td>
<td>252000</td>
</tr>
<tr>
<td>TLB-CAT (Navatek Supplied Asset)</td>
<td>1.00</td>
<td>$3,500.00</td>
<td>$3,500.00</td>
<td>56</td>
<td>196000</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>$</td>
<td>$</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>$</td>
<td>$</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>2.00</td>
<td>$</td>
<td>$8,000.00</td>
<td></td>
<td>448,000</td>
</tr>
</tbody>
</table>

JUSTIFICATION/COMMENTS: All of the assets listed above are supplied and funded by Navatek. See attached reference titled Navatek Charter Rates.doc for cost basis. The budget assumes One Hundred Twelve survey trips equally distributed between the two suitable boats in Navatek’s fleet.
TLB-CAT:

Vessel Day Rate: $3,500/day
- Includes: Vessel, crew, fuel, food for crew for day operations in local waters not exceeding 12 hours.
- Applies to days vessel is restricted from any other operations at the request of the charterer or due to handling charterer equipment (mob/demob).
 o Exclusive access by charterer.
 o Crew on board for support of at-sea operations if required.

Vessel Day Rate; 24 hour operations: $5,000.00/day
- Includes: Vessel, two crews, fuel, food for crew for 24 hour operations in local waters.

Additional Days will be charged at the following rates:
- Underway Day $3,500.00
 o Any day vessel is made underway at charterer’s request.
- Manned Lay Day $2,000.00
 o Any pier side day vessel is for exclusive use of charterer with crew requested on board for possible underway or support.
- Lay Day $1,000.00
 o Any pier side Business Weekday vessel is for exclusive use/access of charterer without crew. OWNER may have crew or other personnel on board for maintenance activity.

Other Services:
- Crane - lifts to 10,000# $150.00/hr
- Crane - heavy or long reach lifts Price on request
- Trade services: $60.00/hr
 o Welding, Electrical, Mechanical, Machining, Labor, Rigging
BLB-65:

Vessel Day Rate: $4,500.00/day
- Includes: Vessel, crew, fuel, food for crew for day operations in local waters not exceeding 12 hours.
- Applies to days vessel is restricted from any other operations at the request of the charterer or due to handling charterer equipment (mob/demob).
 - Exclusive access by charterer.
 - Crew on board for support of at-sea operations if required.

Vessel Day Rate; 24 hour operations: $6,500.00/day
- Includes: Vessel, two crews, fuel, food for crew for 24 hour operations in local waters.

Additional Days will be charged at the following rates:
- **Underway Day** $4,500.00
 - Any day vessel is made underway at charterer’s request.
- **Manned Lay Day** $2,000.00
 - Any pier side day vessel is for exclusive use of charterer with crew requested on board for possible underway or support.
- **Lay Day** $1,000.00
 - Any pier side Business Weekday vessel is for exclusive use/access of charterer without crew. OWNER may have crew or other personnel on board for maintenance activity.

Other Services:
- Crane - lifts to 10,000# $150.00/hr
- Crane - heavy or long reach lifts Price on request
- Trade services: $60.00/hr
 - Welding, Electrical, Mechanical, Machining, Labor, Rigging

Application for Grants and Subsidies
BUDGET JUSTIFICATION
CAPITAL PROJECT DETAILS

Applicant: Navatek Ltd.

Period: July 1, 2014 to June 30, 2015

FUNDING AMOUNT REQUESTED

<table>
<thead>
<tr>
<th>TOTAL PROJECT COST</th>
<th>ALL SOURCES OF FUNDS RECEIVED IN PRIOR YEARS</th>
<th>STATE FUNDS REQUESTED</th>
<th>OF FUNDS REQUESTED</th>
<th>FUNDING REQUIRED IN SUCCEEDING YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANS</td>
<td>0</td>
<td>0</td>
<td>$467,783.23</td>
<td>0</td>
</tr>
<tr>
<td>LAND ACQUISITION</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DESIGN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EQUIPMENT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

JUSTIFICATION/COMMENTS: Funding requested for 2014-2015 is per this Grants in Aid application.
DECLARATION STATEMENT OF
APPLICANTS FOR GRANTS AND SUBSIDIES PURSUANT TO
CHAPTER 42F, HAWAI'I REVISED STATUTES

The undersigned authorized representative of the applicant certifies the following:

1) The applicant meets and will comply with all of the following standards for the award of grants and subsidies pursuant to Section 42F-103, Hawai'i Revised Statutes:

 a) Is licensed or accredited, in accordance with federal, state, or county statutes, rules, or ordinances, to conduct the activities or provide the services for which a grant or subsidy is awarded;

 b) Complies with all applicable federal and state laws prohibiting discrimination against any person on the basis of race, color, national origin, religion, creed, sex, age, sexual orientation, or disability;

 c) Agrees not to use state funds for entertainment or lobbying activities; and

 d) Allows the state agency to which funds for the grant or subsidy were appropriated for expenditure, legislative committees and their staff, and the auditor full access to their records, reports, files, and other related documents and information for purposes of monitoring, measuring the effectiveness, and ensuring the proper expenditure of the grant or subsidy.

2) The applicant meets the following requirements pursuant to Section 42F-103, Hawai'i Revised Statutes:

 a) Is incorporated under the laws of the State; and

 b) Has bylaws or policies that describe the manner in which the activities or services for which a grant or subsidy is awarded shall be conducted or provided.

3) If the applicant is a non-profit organization, it meets the following requirements pursuant to Section 42F-103, Hawai'i Revised Statutes:

 a) Is determined and designated to be a non-profit organization by the Internal Revenue Service; and

 b) Has a governing board whose members have no material conflict of interest and serve without compensation.

Pursuant to Section 42F-103, Hawai'i Revised Statutes, for grants or subsidies used for the acquisition of land, when the organization discontinues the activities or services on the land acquired for which the grant or subsidy was awarded and disposes of the land in fee simple or by lease, the organization shall negotiate with the expending agency for a lump sum or installment repayment to the State of the amount of the grant or subsidy used for the acquisition of the land.

Further, the undersigned authorized representative certifies that this statement is true and correct to the best of the applicant's knowledge.

Navatek Ltd.

(Typed Name of Individual or Organization)

(Signature) 1/30/14

Brian Kays Supervisory Engineer/Vessel Operator

(Typed Name) (Title)
IV. Experience and Capability

A. Necessary Skills and Experience

The applicant shall demonstrate that it has the necessary skills, abilities, knowledge of, and experience relating to the request. State your experience and appropriateness for providing the service proposed in this application. The applicant shall also provide a listing of verifiable experience of related projects or contracts for the most recent three years that are pertinent to the request.

Navatek’s vessels have logged thousands of hours in the waters of Oahu. All of the testing for Navatek’s Hawaii-built prototypes is primarily conducted between Makapuu and Kaena Point, but has extended to all shorelines around Oahu and other outer islands. The employees that will be used for this survey have qualifications that include the following:

- USCG Captain’s License,
- USCG Duty Designated Engineer,
- PADI dive certifications,
- First aid,
- CPR certifications.

In addition to these formal qualifications and work experience in these waters, many of the employees also spend their free time, canoe paddling, surfing, fishing, spearfishing, windsurfing, kite surfing, or kayaking. Navatek employees also have a lot of experience utilizing current wave height forecasting methods. The intimate knowledge of the waters and coastline greatly enhance Navatek’s ability to perform meaningful studies.

The engineers scheduled to support this effort also have a multitude of experience involving complex data acquisition programs. Hardware and software already owned by Navatek will be utilized to assist in the data collection, and laptop computers will be taken on each survey to log and store the collected data in real time. Navatek also possesses a number of data reduction tools and algorithms that will be employed after the data has been collected.

Previous Projects with Relevant Experience:

1. Combatant Craft, Medium (CCM) Mk 1 RFP: Sea Blade 40 Model Testing

2. Naval Special Warfare (NSW) Rigid Hull Inflatable (RIB) Testing
3. Pacific Missile Range Charters
 a. Utilized the BLB-65 to support missile recovery mission on Kauai

4. Data Acquisition Programs Conducted off of the South Shore of Oahu
 a. Include operations at various speeds in a wide range of sea states
 b. Also include wave height and frequency measurements
 c. Vessels Tested
 i. HDV-100
 ii. BLB-65
 iii. BR-51
 iv. TLB-CAT
 v. Sea Flyer
 vi. Foilcat
 vii. NSW RIBS
 viii. Navy Standard RIBS
 ix. Ultra Deep-V
 x. ST Marine USVs

5. Buoy Retrieval Charters

6. 2013-2014 ORMA Survey Study

B. Facilities

The applicant shall provide a description of its facilities and demonstrate its adequacy in relation to the request. If facilities are not presently available, describe plans to secure facilities. The applicant shall also describe how the facilities meet ADA requirements, as applicable.

Navatek's Research and Hydrodynamic Staff employs a staff of engineers, hydrodynamicists, marine mechanics, and vessel operators working out of offices and construction facilities located at, Pier 41, Honolulu, Hawaii. Navatek's small boat construction facilities include 7-acre construction and repair facilities, and equipment, including dry-docking, rigging and crane services, steel and aluminum fabrication and welding, mechanical and machine shop, and painting and preservation. Navatek separately owns and operates a fiberglass reinforced plastics shop. The Navatek, Ltd. FRP shop includes a free-span 3,000 square foot insulated building, a 1,000 square foot covered boat shop and more than 5,000 square feet of hard-top storage and lay-down area. The FRP shop and staff has the capability and expertise to work in a variety of composite materials including all fabrics such as Kevlar, carbon fiber and pre-pregs, and all resins such as vinylesters, epoxy and fire retardant formulations of each. The shop application techniques include capability for hand laminating, vacuum bagging, and resin infusion. Staff experience includes fabrication and repair of US Navy RIBs, and other small Navy support craft and construction of America's Cup racing yachts.

Application for Grants and Subsidies
Navatek has a fleet of vessels particularly suited for the waters off Oahu. These vessels are offered as in-kind contributing support to this project. See attached detail sheets for vessel information.

In addition to the facilities and fleet of vessels, Navatek proposes to purchase a Datawell DWR-G 0.4 GPS wave buoy to record wave height conditions during studies. See attached Datawell buoy specification sheet for more information.
Navatek TLB-Cat

Navateks 45' Tandem Lifting Body Catamaran was initially built in 2010 to demonstrate the application of tandem lifting body concept to a multihull vessel. The TLB-Cat has demonstrated excellent motions in high sea states and provides exceptional efficiency due to the reduced drag afforded by the lifting bodies. Combined with Navatek ARES (Adaptive Ride Enhancement system) the TLB-Cat is a stable working platform with a large enclosed cabin and ample space to accommodate a large group of passengers or crew.

PERFORMANCE:
- Speed Maximum: 27 kts
- Cruise Speed: 20 kts
- Maximum Time at Sea: 5 Days

GENERAL DIMENSIONS:
- Length Overall: 45' 6"
- Beam Overall: 20'6"
- Draft (Full Load): 4' 2"
- Displacement at Full Load: 16 LT

PROPULSION AND AUXILIARIES:
- Main engines x2: Yanmar 370 hp

TANK CAPACITIES:
- Fuel: 360 Gallons
Navatek's bow lifting body (BLB) hull form achieved the greatest combination of efficiency, sea keeping, and cost of any Navatek lifting body. Official Navy trials were conducted aboard the BLB-70 in 2007. Their subjective assessment stated: "most impressive was the smoothness and stability of the ride..." and "...the active system was highly effective in reducing the amount of severity of impacts and motions." In 2008, the BLB-70 was modified to become the BLB-65. Its waterline length was shortened slightly, and Navatek installed its new, dihedral bow lifting body with trailing edge flaps. The vessel provides a stable platform from which to conduct at sea operations, a weather proof helm station and long range capabilities.

PERFORMANCE:
- Speed Maximum ... 40 kts
- Cruise Speed ... 25 kts
- Maximum Time at Sea.. 5 Days

GENERAL DIMENSIONS:
- Length Overall .. 64' 9"
- Beam Overall ... 18' 11"
- Draft (Full Load) ... 5' 3"
- Displacement at Full Load .. 29LT

PROPULSION AND AUXILIARIES:
- Main engines x 2 ... CAT C-12 704 hp

TANK CAPACITIES:
- Fuel ... 1000 Gallons
Directional Waverider GPS
Datawell - Oceanographic Instruments

Measuring waves with GPS

The DWR-G wave buoy measures waves with help of the Global Positioning System (GPS) only. It features a patented algorithm and custom-made GPS receiver. With a single stand-alone GPS receiver it can measure directional waves, up to 100 s periods, without any calibration ever, and even in the middle of the ocean.

Already with its introduction in 2002 the new GPS measurement principle was tested against the standard in the field of wave measurement: the Datawell Directional Waverider (MkII). For a copy of these publications please visit our website or contact Sales. By now the GPS buoy is well-established and has taken its own place in the oceanographic market.

The highlights:
• Measuring wave height and wave direction.
• Wave periods up to 100 s.
• HF link up to 50 km over sea. By powering up the transmitter and using a directional receiving antenna the HF range can be stretched.
• LED flashlight mounted at the top of the antenna increasing the buoy's visibility to passing ships.
• The GPS receiver for the wave measurement also serves for buoy positioning, thus facilitating buoy retrieval.
• A water temperature sensor in the mooring eye providing sea surface temperature (0.7m and 0.9m version only)
• Standard integrated datalogger based on the latest flash card technology.
• High capacity primary cells operating under all wave conditions and weather circumstances for up to one-and-a-half years without replacement.

• An accurate onboard energy meter monitors the actual energy consumption of the buoy, and reports a reliable estimate of the remaining operating life.

• Available in 0.9 m, 0.7 m and even 0.4 m diameter hulls. See also our separate DWR-G 0.4 m diameter brochure.

Options:
• HF link: 25.5 MHz - 35.5 MHz
• Iridium: global, two-way satellite link
• Iridium SBD: global, two-way satellite link
• Argos: global, one-way satellite link.
• GSM: near shore data link via SMS or Internet
• Power switch: on/off
• Hull painting: yellow (no anti-fouling)

0.7 m (Hull painting is optional, not standard)
Specifications

<table>
<thead>
<tr>
<th>Wave motion sensor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>single GPS (not differential)</td>
</tr>
<tr>
<td>Precision</td>
<td>1.2 cm</td>
</tr>
<tr>
<td></td>
<td>1.2 cm \pm 0.5 %</td>
</tr>
<tr>
<td></td>
<td>moored, vertical (10°)</td>
</tr>
<tr>
<td></td>
<td>moored, horizontal, depends on current and wave frequency (excluding GPS antenna pitch and roll motion)</td>
</tr>
<tr>
<td>Periods</td>
<td>1.6 s - 100 s</td>
</tr>
<tr>
<td>Calibration</td>
<td>not required over</td>
</tr>
<tr>
<td>Exclusion</td>
<td>GPS signals do not penetrate through water, occasional data gaps may occur</td>
</tr>
<tr>
<td></td>
<td>not resistant to SA (Selective Availability, may be switched on by US Department of Defence for strategic reasons)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wave data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>north, west, vertical</td>
</tr>
<tr>
<td>Resolution</td>
<td>1 cm (north 2 cm, LSB "north" is GPS data gap indicator)</td>
</tr>
<tr>
<td>Range</td>
<td>-20 m - $+20$ m</td>
</tr>
<tr>
<td>Rate</td>
<td>1.28 Hz</td>
</tr>
<tr>
<td>Reference</td>
<td>WGS84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spectral data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency resolution</td>
<td>0.005 Hz below 0.10 Hz and 0.010 Hz above</td>
</tr>
<tr>
<td>Frequency range</td>
<td>0.025 Hz - 0.60 Hz</td>
</tr>
<tr>
<td>Direction resolution</td>
<td>1.5°</td>
</tr>
<tr>
<td>Direction range</td>
<td>0° - 360°</td>
</tr>
<tr>
<td>Datalogger</td>
<td>Compact Flash Module 512Mb</td>
</tr>
<tr>
<td>LED Flashlight</td>
<td>4 high intensity LEDs, colour yellow (590 nm), pattern 5 flashes every 20 s standard length 35 cm</td>
</tr>
<tr>
<td>GPS position</td>
<td>every 30 min, precision 10 m</td>
</tr>
<tr>
<td>Water temperature</td>
<td>range -5° C - $+46^\circ$ C, resolution 0.05 $^\circ$ C, accuracy 0.2 $^\circ$ C</td>
</tr>
<tr>
<td>HF transmitter</td>
<td>frequency range 25.5 MHz - 35.5 MHz (35.5 - 45.0 MHz on request)</td>
</tr>
<tr>
<td>Flashlight antenna 195 cm</td>
<td>transmission range 50 Km</td>
</tr>
<tr>
<td>Argos/Iridium</td>
<td>satellite communication</td>
</tr>
<tr>
<td>GSM</td>
<td>mobile communication</td>
</tr>
<tr>
<td>Power switch</td>
<td>data files are closed and secured</td>
</tr>
<tr>
<td>Hull painting</td>
<td>Branths Korrux "3 in 1" paint system (no anti-fouling)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull diameter</td>
<td>0.7 m or 0.9 m (excluding fender)</td>
</tr>
<tr>
<td>Material</td>
<td>stainless steel (AISI316) or Cunifer 10</td>
</tr>
<tr>
<td>Weight</td>
<td>approx. 95 Kg (0.9m 225 Kg)</td>
</tr>
<tr>
<td>Batteries</td>
<td>0.7 m diam. operational life 1 year, 2 sections of 15 batteries</td>
</tr>
<tr>
<td></td>
<td>0.9 m diam. operational life 2 years, 5 sections of 13 batteries</td>
</tr>
<tr>
<td></td>
<td>type Dacell RC25G (250 Wh green)</td>
</tr>
<tr>
<td>Receiver</td>
<td>RX-C, RX-D (recommended) or Warec (older Warecs may need modification)</td>
</tr>
<tr>
<td>Compatibility</td>
<td>DWR-G hatchcovers are compatible with MkII buoys</td>
</tr>
</tbody>
</table>
V. Personnel: Project Organization and Staffing

A. Proposed Staffing, Staff Qualifications, Supervision and Training

The applicant shall describe the proposed staffing pattern and proposed service capacity appropriate for the viability of the request. The applicant shall provide the qualifications and experience of personnel for the request and shall describe its ability to supervise, train and provide administrative direction relative to the request.

The staffing will be allocated over the term of the project consistent with the scope of work and the tasks. Navatek management will work closely with the model developer and ocean safety personnel in the first month to identify specific locations that would receive the most benefit from this study. Technical and program staff will be involved with the next month to establish the experimental methods and procedures. Vessel operating crews and observers will be involved during the 7 month long study phase. Technical staff will conduct data reduction and generate the final report. Management staff will oversee the project and support all phases of task activity.

Please see attached sheets which detail the staff experience and qualification.

Navatek regularly conducts large scale project operations for research and technical design and engineering. Project value ranges from $50,000 to $25,000,000. Staffing levels range from 1 to 50. Project terms range from 1 month to 3 years or more. Navatek has never been debarred, cited or restricted in any manner from participating in State, Federal, or other agency bid, procurement or competitive solicitations. Navatek has contracted with numerous State and Federal agencies including HI St. DOT, US Navy, US Air Force, US SOCOM and others.

B. Organization Chart

The applicant shall illustrate the position of each staff and line of responsibility/supervision. If the request is part of a large, multi-purpose organization, include an organizational chart that illustrates the placement of this request.

Please see attached organization chart following this section.
Education
2008 P.E. Mechanical, State of Hawaii
1997 BS, Mechanical Engineering, Univ. of Washington

Experience
Navatek, Ltd., Honolulu, HI 2002-Present
Supervisory Engineer
Leads and assists multiple mechanical and control system projects including high speed craft ride control and diesel electric propulsion. Detailed experience:
- Program manager for the Ventilated Ducted Propeller (VDP) propulsion demonstration on the HDV100 craft.
- A1.B ride control system for six different small craft including 40' Aronow Cat, 11m NSW Rib, 11m Navatek ETM Sled, Bladerunner 51', SeaBlade 40', and T1BCat 40'. Contributions include structural design of foils, struts, and hull attachment brackets; design of the hydraulic systems and hydraulic power units, packaging and installation of electric control equipment, software modifications for the different applications.
- Ride control system for BLB65 technology demonstration craft: Complete hydraulic design for 3-actuator servo valve system and bow thruster controls, integration of electronic controls and software tuning.
- Ride control system for HDV100 technology demonstration craft: Complete hydraulic design for a four actuator servo valve system; enclosing and wiring of electrical components and sensors; fiber optic control signal cable installation and termination; rudder tiller design; multiple hydraulic cylinder mechanical designs including rudder actuation geometry; computer simulation of control system algorithms and boat responses.
- Ride control system for Sea Flyer Technology demonstrator craft: Partial hydraulic system design for a seven actuator servo valve system; packaging of electrical components and shipboard wiring; fiber optic cable installation and termination; installation of motion sensors; data acquisition and assistance in tuning system.
- Trailing edge flap design for Sea Flyer: Mechanical linkage design for trailing edge flaps and mechanical design of all related components; provided assistance in building and installing flaps and linkage.
- Motion data collection of small watercraft: Designed and built a compact self-contained motion data acquisition system, wrote software to collect and display motion and GPS data along with portable wave buoy information. Installed system on multiple craft and collected and analyzed data.
- Ride control and electric propulsion tuning on 35-ft hybrid lifting body boat: Set up independent data acquisition system to collect data, monitor and tune the electric propulsion system, monitor and tune the ride control system while the boat is underway.

Genie Industries, Redmond, WA 2000-2002
Senior Design Engineer
Responsible for the mechanical and system designs of multiple pieces of rough terrain construction equipment for a large construction and industrial lifting equipment manufacturer. Detailed experience:
- Led the design of Rough Terrain Scissor Lift, Genie GS3384. Completed the mechanical chassis design, engine installation and testing, hydraulic four-wheel and two-wheel drive systems, and lifting/steering systems. Worked concurrently with the manufacturing team so that implementation into production was smooth and quick.
- Managed the certification and testing process for multiple pieces of equipment to ANSI, CSA, CE, and Australian standards.
- Performed stability calculations for and structural design of the lifting boom for a 65' man lift.

Genie Industries, Redmond, WA 1996-2000
Design Engineer, Associate Engineer, Intern
Designed mechanical components and hydraulic circuits for a large construction and industrial lifting equipment manufacturer. Detailed experience:
- Design of chassis (including multiple engine options, multiple drive system options, and multiple cylinder lifting systems) for a family of large rough terrain scissor lifts. Design of the hydraulic drive systems and the lifting and steering hydraulic systems. Implementation of designs into assembly line production and supported design for engineering changes.
Navatek Ltd. Research and Hydrodynamics Support Staff

Brian Kays
Supervisory Engineer
Vessel Operator

Zenzo Heshiki
Mechanical Engineer
Deckhand

Scott Yamashita
Hydrodynamicist
Deck Hand

James Stusse
Research Engineer
Vessel Operator

Troy Keipper
Senior Naval Architect
Hydrodynamicist

Kacey Lock
Controller

Charles Field
Mechanical Engineer
Vessel Operator

Kyle Ke'a
Marine Mechanic
Deck Hand

Notes: All employees highlighted in gray will play a role in the project. See page 5 in the financial section of the grant application for time allocation details for each employee.
C. Compensation

The applicant shall provide the annual salaries paid by the applicant to the three highest paid officers, directors, or employees of the organization by position.

<table>
<thead>
<tr>
<th>Highest Paid Personnel</th>
<th>Annual Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisory Engineer/Vessel Operator</td>
<td>$130,558.48</td>
</tr>
<tr>
<td>Controller</td>
<td>$111,566.00</td>
</tr>
<tr>
<td>Research Engineer/Vessel Operator</td>
<td>$110,011.20</td>
</tr>
</tbody>
</table>

VI. Other

A. Litigation

The applicant shall disclose any pending litigation to which they are a party, including the disclosure of any outstanding judgement. If applicable, please explain.

There is no litigation pending with Navatek.

B. Licensure or Accreditation

The applicant shall specify any special qualifications, including but not limited to licensure or accreditation that applicant possesses relevant to this request.

Not applicable.